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On the Global Dynamics of an Electroencephalographic Mean Field
Model of the Neocortex∗
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Abstract. This paper investigates the global dynamics of a mean field model of the electroencephalogram
developed by Liley, Cadusch, and Dafilis [Network , 13 (2002), pp. 67–113]. The model is presented
as a system of coupled ordinary and partial differential equations with periodic boundary conditions.
Existence, uniqueness, and regularity of weak and strong solutions of the model are established in
appropriate function spaces, and the associated initial-boundary value problems are proved to be well-
posed. Sufficient conditions are developed for the phase spaces of the model to ensure nonnegativity
of certain quantities in the model, as required by their biophysical interpretation. It is shown that
the semigroups of weak and strong solution operators possess bounded absorbing sets for the entire
range of biophysical values of the parameters of the model. Challenges involved in establishing a
global attractor for the model are discussed and it is shown that there exist parameter values for
which the constructed semidynamical systems do not possess a compact global attractor due to the
lack of the compactness property. Finally, using the theoretical results of the paper, instructive
insights are provided into the complexity of the behavior of the model and computational analysis
of the model.
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1. Introduction. Inspired by the seminal work of Alan Hodgkin and Andrew Huxley on
modeling the flow of ionic currents through the membrane of a giant nerve fiber, numer-
ous biophysical and mathematical models have been developed towards understanding the
neurophysiology of the central nervous system and the underlying mechanism of the various
phenomena that emerge during its vital operation in the body, many of which still remain a
mystery to researchers [17, 26, 42, 54]. In particular, in exploring the core component of the
central nervous system—the brain—substantial effort has been devoted to developing mod-
els at different levels of scope, from the molecular and intercellular level, dealing with the
transportation of ions and the enzymatic kinetics of neurotransmitter-receptor binding at ion
channels, to the single cell and intracellular level, dealing with the creation and transmission
of action potential, to the population and neuronal network level, dealing with the average
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behavior and synchronized activity of neuronal ensembles, to the system level, dealing with
the systematic operation and interaction between cortical and subcortical components of the
brain, and finally to the behavioral and cognitive level, dealing with the integrated mental
activity and the creation of mind [1, 15, 22, 29, 30, 46, 48, 55].

As an effective methodology for developing models at the population and network level,
mean field theory has been employed to construct approximate models for interconnected
populations of neurons by averaging the effect of all other neurons on a given individual neu-
ron inside a population. The resulting averaged neuron can be used to analyze the overall
temporal behavior of a single population of neurons—leading to a neural mass model—or can
be considered as a locally averaged component of a continuum of neural populations—leading
to a spatio-temporal mean field model. These models are particularly useful in analyzing the
electrophysiological activity of neuronal ensembles using local field potentials and electroen-
cephalograms (EEGs) [10, 40, 43, 45].

The evolution equations that describe a mean field model of neural activity in the cortex
are in the form of a system of partial differential equations (PDEs), or a system of coupled
ordinary and partial differential equations. The theory of infinite-dimensional dynamical
systems is hence used to analyze the global dynamics and long-term behavior of these systems.
The classical approach to this problem follows several steps. First, existence, uniqueness, and
regularity of solutions are established for all positive time in appropriately chosen problem-
dependent function spaces, and the well-posedness of the problem is confirmed. Second, a
semidynamical framework is constructed over a positively invariant complete normed space—
the phase space for the evolution of the solutions—and is shown to possess bounded absorbing
sets. Asymptotic compactness of the semigroup of solution operators is then ensured to
guarantee the existence of a global attractor, which is a compact strictly invariant attracting
set and which contains all the information regarding the asymptotic behavior of the model.
Third, the Hausdorff or fractal dimension of the global attractor is estimated to show that the
attractor is finite-dimensional, so that the asymptotic dynamics of the system is determined
by a finite number of degrees of freedom. Fourth, the existence of an inertial manifold is
established, which is a smooth finite-dimensional invariant manifold containing the global
attractor. Consequently, the dynamics on the attractor can be presented by a finite set of
ordinary differential equations (ODEs) and further characterized to give the overall picture of
the long-term behavior of the system [7, 24, 25, 44, 51].

In this paper, we investigate the mean field model proposed in [36] for an understanding of
the electrical activity in the neocortex as observed in the EEG. This model, which is comprised
of a system of coupled ordinary and partial differential equations in a two-dimensional space,
has been widely used in the literature to study the alpha- and gamma-band rhythmic activity
in the cortex [4, 5], phase transition and burst suppression in cortical neurons during general
anesthesia [6, 37, 49], the effect of anesthetic drugs on the EEG [2, 19], and epileptic seizures
[31, 32, 33, 35]. Open-source tools for numerical implementation of the model and computation
of equilibria and time-periodic solutions are developed in [23]. Complexity of the dynamics of
the model, including periodic and pseudoperiodic solutions, chaotic behavior, multistability,
and bifurcation are studied in [11, 12, 13, 20, 21, 52, 53].

The above results, however, are mainly computational or use approximate versions of the
model. A rigorous analysis of the dynamics of the model in an infinite-dimensional dynamical
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system framework as outlined above is not available in the literature. In particular, the basic
problems of well-posedness of the initial-boundary value problem associated with the model
and regularity of the solutions remain uninvestigated. It is not known under what conditions,
if any, the components of the solutions of the model that are associated with nonnegative
biophysical quantities remain nonnegative for all time. The solutions that take negative values
for such quantities—even for a small interval of time in the distant future—cannot represent
a biophysically plausible dynamics of the electrical activity in the neocortex.

The aim of this paper is to study the global dynamics of the mean field model discussed
above, to ensure its biophysical plausibility, and to provide the basic analytical results required
for characterization of the long-term dynamics of the model. Specifically, we follow the first two
steps of the classical analysis approach to investigate the problem of existence or nonexistence
of a global attractor.

This paper is organized as follows. In section 2, we introduce notation and recall key
definitions that are necessary for developing the results in this paper. In section 3, we give
a description of the anatomical structure of the neocortex and the physiological interactions
that underlie the construction of the model. Moreover, we present the mathematical structure
of the model as a system of coupled ordinary and partial differential equations with initial
values and periodic boundary conditions. In section 4, following the first step of the classical
analysis approach, we prove the existence and uniqueness of weak and strong solutions for the
proposed initial value problem and analyze the regularity of these solutions.

As in the second step of the classical analysis approach, in section 5 we define semigroups
of weak and strong solution operators and show their continuity properties. Moreover, we
establish sufficient conditions on the phase spaces as to ensure biophysical plausibility of the
evolution of the solutions under the associated semidynamical systems. In section 6, we show
that the semigroups of solution operators possess bounded absorbing sets for all possible values
of the biophysical parameters of the model. In section 7, we discuss challenges involved in
establishing a global attractor for the model, and in particular, we show that there exist sets
of values for the biophysical parameters of the model such that the associated semigroups
of solution operators do not possess a compact global attractor. We conclude the paper in
section 8 with a discussion on the results developed in the paper and their application to
computational analysis of the model.

2. Notation and preliminaries. The notation used in this paper is fairly standard. Specif-
ically, R

n denotes the n-dimensional real Euclidean space and R
m×n denotes the space of real

m × n matrices. A point x ∈ R
n is presented by the n-tuple x = (x1, . . . , xn) or, when it

appears in matrix operations, by the column vector x =
[

x1 · · · xn

]T, where (·)T denotes
the transpose. The nonnegative cone {x ∈ R

n : xj ≥ 0 for j = 1, . . . , n} is denoted by R
n
+. A

sequence of points in R
n is denoted by {x(l)}∞

l=1, with the jth component of x(l) denoted by
x

(l)
j . Moreover, the trace of a square matrix A ∈ R

n×n is denoted by trA, and a block-diagonal
matrix D with k blocks D1, . . . , Dk is denoted by diag(D1, . . . , Dk). For x, y ∈ R

n, we write
x ≥ y to denote componentwise inequality, that is, xj ≥ yj , j = 1, . . . , n. For A, B ∈ R

n×n,
we write A ≥ B to denote that A − B is positive semidefinite. Finally, we denote by 0n×n

and In×n the zero and identity matrices in R
n×n, respectively. We write I for the identity

operator in other vector spaces.
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For an inner product space U , we denote the associated inner product by
(·, ·)U and

the norm generated by the inner product by ‖ · ‖U . For a Hilbert space U , we denote the
pairing of U with its dual space U∗ by 〈·, ·〉U . In particular, for U = R

n, we write (·, ·)Rn

and ‖ · ‖Rn for the standard inner product and the Euclidean norm, respectively. Similarly,
for U = R

m×n, we write (·, ·)Rm×n for the standard inner product and ‖ · ‖Rm×n for the
associated inner product norm. Moreover, we denote the vector 1-, 2-, and ∞-norms in R

n by
‖ · ‖1, ‖ · ‖2 = ‖ · ‖Rn , and ‖ · ‖∞, respectively. The matrix 1-, 2-, and ∞-norms in R

m×n

induced, respectively, by the vector 1-, 2-, and ∞-norms in R
n are denoted by ‖ · ‖1, ‖ · ‖2,

and ‖ · ‖∞.
Let Ω be an open subset of R

n denoting the space domain of a given dynamical system,
with x ∈ Ω denoting a spatial point in Ω. The time domain of the system is given by the
closed interval [0, T ] ⊂ R, T > 0, with the temporal point t. For a function u : [0, T ] → R,
the kth-order total derivative with respect to t at t0 is denoted by dk

t u(t0). For k = 1,
we write dtu(t0). For a function u(x, t) : Ω × [0, T ] → R, the kth-order partial derivative
with respect to t at (x0, t0) is denoted by ∂k

t u(x0, t0) and the kth-order partial derivative
with respect to xj at (x0, t0) is denoted by ∂k

xj
u(x0, t0), j = 1, . . . , n. For k = 1, we write

∂tu(x0, t0) and ∂xju(x0, t0). The gradient of u in Ω is denoted by ∂xu and is given by ∂xu :=
(∂x1u, . . . , ∂xnu). The Laplacian of u in Ω is denoted by Δu and is given by Δu := (∂2

x1
+

· · ·+ ∂2
xn

). For a vector-valued function u(x, t) : Ω× [0, T ] → R
m, we interpret u(x, t) as the

m-tuple u(x, t) = (u1(x, t), . . . , um(x, t)), where each component uj(x, t), j = 1, . . . , m, is a
scalar-valued function on Ω × [0, T ]. In this case, ∂xu(x, t) ∈ R

m×n is the gradient of u and
the vector Laplacian Δu is given by Δu(x, t) := (Δu1(x, t), . . . ,Δum(x, t)) ∈ R

m, assuming
Cartesian coordinates.

For every integer k ≥ 0, the space of k-times continuously differentiable real-valued func-
tions on Ω is denoted by Ck(Ω). The space Ck(Ω) consists of all functions in Ck(Ω) that,
together with all of their partial derivatives up to the order k, are uniformly continuous in
bounded subsets of Ω. Moreover, for 0 < λ ≤ 1, the Hölder space Ck,λ(Ω) is a subspace of
Ck(Ω) consisting of functions whose partial derivatives of order k are Hölder continuous with
exponent λ; see [9, sect. 1.18] for details. We use C∞

c (Ω) to denote the space of infinitely dif-
ferentiable real-valued functions with compact support in Ω. Moreover, we denote by L1

loc(Ω)
the space of locally integrable real-valued functions on Ω. Then, for every function u ∈ L1

loc(Ω)
and any multi-index α with |α| ≥ 1, the weak partial derivative of u in L1

loc(Ω), of order |α|,
is defined by the distribution uα that satisfies∫

Ω
uαφ dx = (−1)|α|

∫
Ω

u∂αφ dx for all φ ∈ C∞
c (Ω),

where dx = dx1 · · ·dxn is the Lebesgue measure on R
n; see [9, sect. 6.3] for details. With a

minor abuse of notation, we use ∂k
t and ∂k

x to denote the kth-order weak—as well as classical—
partial derivatives with respect to t and x, respectively. The distinction will be clear from the
context, or will otherwise be explicitly specified.

The Hilbert space of vector-valued Lebesgue measurable functions u : Ω → R
m with finite

L2-norm is denoted by L2(Ω; Rm), with the associated inner product and norm given by

(
u, v
)
L2(Ω;Rm) :=

∫
Ω

(
u(x), v(x)

)
Rmdx, ‖u‖L2(Ω;Rm) :=

[∫
Ω
‖u(x)‖2

Rmdx

] 1
2

.
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The Banach space of vector-valued Lebesgue measurable functions u : Ω → R
m with finite

L∞-norm is denoted by L∞(Ω; Rm), with the norm

‖u‖L∞(Ω;Rm) := ess sup
x∈Ω

‖u(x)‖∞.

The Sobolev space of vector-valued functions u ∈ Lp(Ω; Rm), whose all lth-order weak deriva-
tives ∂l

xu, l ≤ k, exist and belong to Lp(Ω; Rm×nl
), is denoted by W k,p(Ω; Rm). When

p = 2, the Sobolev spaces W k,2(Ω; Rm) are Hilbert spaces for all k ∈ [0,∞), and are de-
noted by Hk(Ω; Rm) := W k,2(Ω; Rm). Specifically, H0(Ω; Rm) = L2(Ω; Rm), and H1(Ω; Rm)
is a Hilbert space with the inner product(

u, v
)
H1(Ω;Rm) :=

(
u, v
)
L2(Ω;Rm) +

(
∂xu, ∂xv

)
L2(Ω;Rm×n).

Moreover, H2(Ω; Rm) is a Hilbert space with the inner product(
u, v
)
H2(Ω;Rm) :=

(
u, v
)
L2(Ω;Rm) +

(
∂xu, ∂xv

)
L2(Ω;Rm×n) +

(
∂2

xu, ∂2
xv
)
L2(Ω;Rm×n2 ).

Let Ω = (0, ω1)×· · ·×(0, ωn), ωj > 0, j = 1, . . . , n, be an open rectangle in R
n. A function

u : R
n → R is called Ω-periodic if it is periodic in each direction, that is,

u(x + ωjej) = u(x), j = 1, . . . , n, x ∈ R
n,

where ej is the unit vector in the jth direction. Define the space C∞
per(Ω) as the restriction

to Ω of the space of infinitely differentiable Ω-periodic functions. Then, the Sobolev space
Hk

per(Ω), k ≥ 0, is defined by the completion of C∞
per(Ω) in Hk(Ω); see [44, Def. 5.37] or, for

an equivalent definition, [51, p. 50]. A vector-valued function u : R
n → R

m is Ω-periodic if
each of its components uj : R

n → R, j = 1, . . . , m, is Ω-periodic. The spaces C∞
per(Ω; Rm) and

Hk
per(Ω; Rm) are then defined accordingly. It follows from Green’s formula that

(−Δu, v
)
L2

per(Ω;Rm) =
(
∂xu, ∂xv

)
L2

per(Ω;Rm×n),(1) (
(−Δ + I)u, v

)
L2

per(Ω;Rm) =
(
u, v
)
H1

per(Ω;Rm),(−Δu, (−Δ + I)u
)
L2

per(Ω;Rm) = ‖u‖2H2
per(Ω;Rm) − ‖u‖2L2

per(Ω;Rm),

‖(−Δ + I)u‖2L2
per(Ω;Rm) = ‖u‖2H2

per(Ω;Rm) + ‖∂xu‖2L2
per(Ω;Rm×n)

= ‖u‖2H1
per(Ω;Rm) + ‖∂xu‖2H1

per(Ω;Rm×n).

In this paper, we interchangeably view the function u(x, t), x ∈ Ω, t ∈ [0, T ], as a composite
function of x and t, as well as a mapping u of t to a function of x, that is,

[u(t)](x) := u(x, t), x ∈ Ω, t ∈ [0, T ].

With a minor abuse of notation, the same symbol is used to denote both the original form
of the function and the mapping. The distinction becomes evident in the way we define the
space of such mappings or, equivalently, Banach space-valued functions; see, for example,
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[16, App. E.5]. For a Banach space U , the space L2(0, T ;U) is composed of all strongly
measurable Banach space-valued functions u : [0, T ] → U with the finite L2-norm defined by

‖u‖L2(0,T ;U) :=
[∫ T

0
‖u(t)‖2Udt

] 1
2

.

The space C0([0, T ];U) is composed of all continuous Banach space-valued functions u :
[0, T ] → U with the finite uniform norm defined by

‖u‖C0([0,T ];U) := max
t∈[0,T ]

‖u(t)‖U .

Accordingly, the spaces Ck([0, T ];U) and Ck,λ([0, T ];U), k ≥ 0, 0 < λ ≤ 1, are defined as
the space of k-times continuously differentiable Banach space-valued functions and its Hölder-
continuous subspace. The Sobolev spaces Hk(0, T ;U), k ≥ 0, are composed of all functions
u ∈ L2(0, T ;U), whose lth-order weak derivatives dl

tu exist for l ≤ k and belong to L2(0, T ;U).
In particular, for k = 1, we have

‖u‖H1(0,T ;U) :=
[∫ T

0

(‖u(t)‖2U + ‖dtu(t)‖2U
)

dt

] 1
2

.

For further details on these spaces, see [16, sect. 5.9.2] and [44, sect. 7.1].
When P : U → Y is a mapping between the Banach spaces U and Y, we denote the

kth-order Fréchet derivative of P at u0 by duP (u0). The space Ck(U ;Y) is then composed of all
k-times continuously differentiable mappings from U into Y. For a mapping P : U1×· · ·×Um →
Y, where Y and Uj , j = 1, . . . m, are Banach spaces, ∂ujP (u0) is the jth partial Fréchet
derivative of P at u0 = (u01, . . . , u0m). The gradient of P at u0 is then written as ∂uP (u0);
see [9, sect. 7.1] for details.

Finally, we denote the symmetric difference of two sets X and Y by X �Y . In a topo-
logical space X , we denote the closure of a set X ⊂ X by X , its interior by X ◦, and its
boundary by ∂X . The characteristic function of X is denoted by χX . When X is a measure
space, |X | denotes the measure of the set X ⊂ X . For normed vector spaces X and Y, we
write X ↪→ Y for continuous embedding of X in Y, and X � Y for compact embedding of
X in Y; see [9, sect. 6.6] for details. When X is a metric space and the topology on X is
induced by the given metric, B(x, R) denotes the open ball centered at x ∈ X with radius
R > 0, which is a basis element for the topology. For every bounded measurable set in X ,
and in particular for B(x, R), we denote by −

∫
B(x,R) the averaging operator over B(x, R), that

is, −
∫
B(x,R) := 1

|B(x,R)|
∫
B(x,R).

3. Model description. The neocortex has a layered columnar structure consisting mostly
of six distinct layers. Neurons in the neocortex are organized in vertical columns, usually
referred to as cortical columns or macrocolumns, which are a fraction of a millimeter wide
and traverse all the layers of the neocortex from the white matter to the pial surface [27,
28, 41]. Depending on their type of action, neurons are mainly classified as excitatory or
inhibitory, wherein this distinction depends on whether they increase the firing rate in the
destination neurons they are communicating with, or they suppress them. Inhibitory neurons
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Layers 
I – III

Layer 
IV

Layers 
V – VI

x

y

Subcortical excitatory input
Subcortical inhibitory input

x 1

Excitatory neurons

Inhibitory neurons
Excitatory populations
Inhibitory populations
Intracortical xcitatory- xcitatory connections
Intracortical xcitatory- nhibitory connections
Intracortical nhibitory- xcitatory connections
Intracortical nhibitory- nhibitory connections
Subcortical xcitatory- xcitatory connections
Subcortical xcitatory- xcitatory connections
Subcortical nhibitory- xcitatory connections
Subcortical nhibitory- nhibitory connections
Corticocortical xcitatory- xcitatory connections
Corticocortical xcitatory- nhibitory connections

Approx. 0.5 mm

Figure 1. Schematic of the structure of the neocortex with intracortical and corticocortical connections.

are located in all layers and usually have axons that remain within the same area as their
cell body resides, and hence they have a local range of action. Layers III, V, and VI contain
pyramidal excitatory neurons whose axons can provide long-range communication (projection)
throughout the neocortex. Layer IV contains primarily star-shaped excitatory interneurons
that receive sensory inputs from the thalamus. Figure 1 shows a schematic of the structure
of the neocortex, including the intracortical and corticocortical neuronal connections; see
[28, Chap. 15] for further details.

On a local scale, within a cortical column, neurons are densely interconnected and involve
all types of feedforward and feedback intracortical connections. Such a dense and relatively
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homogeneous local structure of the neocortex suggests modeling a local population of function-
ally similar neurons by a single space-averaged neuron, which preserves enough physiological
information to understand the temporal patterns observed in spatially smoothed (averaged)
EEG signals without creating excessive theoretical complicacies in the mathematical analysis
of the model. On a global scale, in the exclusively excitatory corticocortical communica-
tion throughout the neocortex, two major patterns of connectivity are observed, namely, a
homogeneous, symmetrical, and translation-invariant pattern of connections versus a hetero-
geneous, patchy, and asymmetrical distribution of connections. For modeling simplicity and
due to the unavailability of detailed anatomical data, in the model that we investigate in this
paper the corticocortical connectivity is assumed to be isotropic, homogeneous, symmetric,
and translation invariant [36].

To establish the mathematical framework of the model, let Ω = (0, ω)× (0, ω), ω > 0, be
an open rectangle in R

2 that defines the domain of the neocortex. Each point x = (x1, x2) ∈ Ω
indicates the location of a local network—possibly representing a cortical column—modeled
by a space-averaged excitatory neuron and a space-averaged inhibitory neuron. Let e denote
a population of excitatory neurons and let i denote a population of inhibitory neurons. For
x ∈ Ω, t ∈ [0, T ], T > 0, and x,y ∈ {e, i}, we denote by vx(x, t), measured in mV, the spatially
mean soma membrane potential of a population of type x centered at x. Moreover, we denote
by ixy(x, t), measured in mV, the spatially mean postsynaptic activation of synapses of a
population of type x centered at x onto a population of type y centered at the same point
x. In addition, we denote by wex(x, t), measured in s−1, the mean rate of corticocortical
excitatory input pulses from the entire domain of the neocortex to a population of type x

centered at x. Finally, we denote by gxy(x, t), measured in s−1, the mean rate of subcortical
input pulses of type x to a population of type y centered at x. Note that, by definition,
ixy(x, t), wex(x, t), and gxy(x, t) are nonnegative quantities.

Then, as developed in [36], the system of coupled ordinary and partial differential equations

(τe∂t + 1)ve(x, t) =
Vee − ve(x, t)

|Vee| iee(x, t) +
Vie − ve(x, t)

|Vie| iie(x, t),(2)

(τi∂t + 1)vi(x, t) =
Vei − vi(x, t)

|Vei| iei(x, t) +
Vii − vi(x, t)

|Vii| iii(x, t),

(∂t + γee)2iee(x, t) = eΥeeγee

[
Neefe

(
ve(x, t)

)
+ wee(x, t) + gee(x, t)

]
,

(∂t + γei)2iei(x, t) = eΥeiγei

[
Neife

(
ve(x, t)

)
+ wei(x, t) + gei(x, t)

]
,

(∂t + γie)2iie(x, t) = eΥieγie

[
Niefi

(
vi(x, t)

)
+ gie(x, t)

]
,

(∂t + γii)2iii(x, t) = eΥiiγii

[
Niifi

(
vi(x, t)

)
+ gii(x, t)

]
,[

(∂t + νΛee)2 − 3
2
ν2Δ

]
wee(x, t) = ν2Λ2

ee
Meefe

(
ve(x, t)

)
,

[
(∂t + νΛei)2 − 3

2
ν2Δ

]
wei(x, t) = ν2Λ2

ei
Meife

(
ve(x, t)

)
, (x, t) ∈ Ω× (0, T ],



GLOBAL DYNAMICS OF A MEAN FIELD MODEL OF THE NEOCORTEX 1977

Table 1
Definition and range of values for the biophysical parameters of the mean field model (2). All electric

potentials are given with respect to the mean resting soma membrane potential vrest = −70 mV [3].

Parameter Definition Range Unit

τe Passive excitatory membrane decay time constant [0.005, 0.15] s

τi Passive inhibitory membrane decay time constant [0.005, 0.15] s

Vee, Vei Mean excitatory Nernst potentials [50, 80] mV

Vie, Vii Mean inhibitory Nernst potentials [−20,−5] mV

γee, γei Excitatory postsynaptic potential rate constants [100, 1000] s−1

γie, γii Inhibitory postsynaptic potential rate constants [10, 500] s−1

Υee, Υei Amplitude of excitatory postsynaptic potentials [0.1, 2.0] mV

Υie, Υii Amplitude of inhibitory postsynaptic potentials [0.1, 2.0] mV

Nee, Nei Number of intracortical excitatory connections [2000, 5000] —

Nie, Nii Number of intracortical inhibitory connections [100, 1000] —

ν Corticocortical conduction velocity [100, 1000] cm/s

Λee, Λei Decay scale of corticocortical excitatory connectivities [0.1, 1.0] cm−1

Mee, Mei Number of corticocortical excitatory connections [2000, 5000] —

Fe Maximum mean excitatory firing rate [50, 500] s−1

Fi Maximum mean inhibitory firing rate [50, 500] s−1

μe Excitatory firing threshold potential [15, 30] mV

μi Inhibitory firing threshold potential [15, 30] mV

σe Standard deviation of excitatory firing threshold potential [2, 7] mV

σi Standard deviation of inhibitory firing threshold potential [2, 7] mV

with periodic boundary conditions provides a mean field model for the electrocortical activity
in the neocortex. Here, e is the Napier constant and fx(·) is the mean firing rate function of
a population of type x and is given by

fx

(
vx(x, t)

)
:=

Fx

1 + exp
(
−√2

vx(x, t)− μx

σx

) , x ∈ {e, i}.(3)

The definition of the biophysical parameters of the model and the ranges of the values they
may take are given in Table 1. For the range of values given in Table 1, we have |Vee| = Vee,
|Vei| = Vei, |Vie| = −Vie, and |Vii| = −Vii, which we use to simplify (2). Note that, in
addition to the notational changes to the original equations given in [36], we have changed
the reference of the electric potential to the resting potential to avoid the constant terms that
would otherwise appear in (2). Figure 2 shows a schematic of intracortical, corticocortical,
and subcortical inputs to two local networks located at points x and y, along with their
contribution to the global corticocortical activation as modeled by (2). The specific coupling
between the equations of the model is depicted by the block diagram shown in Figure 3.

The first two equations in (2), that is, the v-equations, model the dynamics of the
resistive-capacitive membrane of the space-averaged neurons located at x. In the absence
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Ω

E

I

gEE(x,t) gIE(x,t)

gEI(x,t) gII(x,t)

NIE f I(v I(x,t)) NEI fE(vE(x,t))

NEE fE(vE(x,t))

NII f I(v I(x,t))

x

E

I

E

I

gIE(y,t)gEE(y,t)

gEI(y,t)gII(y,t)

NIE f I(v I(y,t))NEI fE(vE(y,t))

NEE fE(vE(y,t))

NII f I(v I(y,t))

y

E
N

I

wEE(x,t)
wEE(y,t)

wEI(y,t)wEI(x,t)

Figure 2. Cortical inputs to two local networks located at points x and y as modeled by (2).

g EE

g EI

g IE

g II

t v E = P 1(v E, i EE, i IE)

t v I = P 2(v I, i EI, i II)

t
2

 w EE = P 7( t w EE, Δw EE, v E) t
2

 i EE = P 3( t i EE, v E, w EE, g EE)

t
2

 i II = P 6( t i II, v I, g II)

t
2

 w EI = P 8( t w EI, Δw EI, v E) t
2

 i EI = P 4( t i EI, v E, w EI, g EI)

t
2

 i IE = P 5( t i IE, v I, g IE)

Figure 3. Block diagram of the mean field model (2). The operators P1, . . . , P8 represent the eight equations
in (2), respectively. As in Figures 1 and 2, the blocks associated with excitatory populations are shown in red,
and the blocks associated with inhibitory populations are shown in blue.

of postsynaptic i-inputs, the mean membrane potential decays exponentially to the resting
potential. The fractions appearing in the equations weight the postsynaptic inputs to in-
corporate the effect of transmembrane diffusive ion flows into the model. Specifically, the
depolarizing effect of excitatory inputs on the membrane is linearly decreased by the weights
as the membrane potential rises to the Nernst (reversal) potential. When the membrane
potential exceeds the Nernst potential, the effect is reversed and further excitation tends to
hyperpolarize the membrane. The weights associated with the inhibitory postsynaptic inputs
have opposite signs at the resting potential, and hence they have an opposite reversal effect.

The critically damped second-order dynamics of the four i-equations in (2) generates a
synaptic α-function—as in the classical dendritic cable theory—in response to an impulse.
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As shown in Figure 2, these second-order dynamical systems are driven by three different
sources of presynaptic spikes, namely, the inputs Nxyfx(vx) from local neuronal populations,
the excitatory inputs wex from corticocortical fibers, and the inputs gxy from subcortical
regions. As a result, these four equations generate the postsynaptic responses that modulate
the polarization of the cell membranes according to the v-equations discussed before.

Unlike the conduction through short-range intracortical fibers, the conduction through
long-range corticocortical fibers cannot be assumed to be instantaneous. The w-equations
in (2) form a system of telegraph equations that effectively models the propagation of the
excitatory axonal pulses through corticocortical fibers. To derive these equations, it is as-
sumed in [36] that the strength of corticocortical connections onto a local population decays
exponentially with distance, with the characteristic scale Λex. Moreover, it is assumed that
the spatial distribution of connections is isotropic and homogeneous all over the neocortex.

In practical applications, the key variable in the model presented by (2) is the mean
membrane potential of excitatory populations ve(x, t), which is presumed to be linearly pro-
portional to EEG recordings from the scalp [36, 37]. For further details of the model see [36],
or the introductory sections of [6, 21, 37].

Now, let

v(x, t) :=
(
ve(x, t), vi(x, t)

) ∈ R
2,

i(x, t) :=
(
iee(x, t), iei(x, t), iie(x, t), iii(x, t)

) ∈ R
4,

w(x, t) :=
(
wee(x, t), wei(x, t)

) ∈ R
2,

g(x, t) :=
(
gee(x, t), gei(x, t), gie(x, t), gii(x, t)

) ∈ R
4,

and note that (2) can be represented in vector form in Ω× (0, T ] as

Φ∂tv + v − J1i + J2viTΨJ4 + J3viTΨJ5 = 0,(4)

∂2
t i + 2Γ∂ti + Γ2i− eΥΓJ6w − eΥΓNJ7f(v) = eΥΓg,(5)

∂2
t w + 2νΛ∂tw − 3

2
ν2Δw + ν2Λ2w − ν2Λ2MJ8f

(
v
)

= 0,(6)

where v, i, and w are Ω-periodic vector-valued functions with the initial values

v|t=0 = v0, i|t=0 = i0, (∂ti)|t=0 = i′0, w|t=0 = w0, (∂tw)|t=0 = w′
0,(7)

and

Φ = diag
(
τe, τi

)
, Ψ = diag

(
1

|Vee| ,
1
|Vei| ,

1
|Vie| ,

1
|Vii|

)
,(8)

Γ = diag(γee, γei, γie, γii), Υ = diag(Υee, Υei, Υie, Υii),

N = diag(Nee, Nei, Nie, Nii), M = diag(Mee, Mei),

Λ = diag(Λee, Λei), J1 =
[
I2×2 −I2×2

]
,

J2 = diag(1, 0), J3 = diag(0, 1),

J4 =
[
1 0 1 0

]T
, J5 =

[
0 1 0 1

]T
,
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J6 =
[

1 0 0 0
0 1 0 0

]T

, J7 =
[

1 1 0 0
0 0 1 1

]T

,

J8 =
[

1 0
1 0

]
, f(v) =

[
fe

( [
1 0

]
v
)

fi

( [
0 1

]
v
)
]

.

For simplicity of exposition, the dependence of the functions v, i, w, and g on the argu-
ments (x, t) is not explicitly shown in (4)–(6). Note that (4) and (5), which model the local
dynamics of the neocortex, are essentially systems of ODEs. These equations do not possess
any spatial smoothing components, and hence their solutions are expected to evolve in less
regular function spaces [39, 47]. The system of PDEs (6) consists of two telegraph equations
coupled indirectly through (4) and (5); see Figure 3.

Remark 3.1 (Variations in parameter values). In the analysis that follows in the rest of
the paper, we assume that all the parameters of the model are constant. However, in practical
applications, certain parameters may be considered to vary in time or space to model specific
physiological situations in the brain. The variations can occur independently, or can be
modeled using additional ODEs or PDEs coupled with the existing equations. We give all
the details of the results—some of which may, however, be considered fairly standard—along
with a careful inclusion of all parameters. Therefore, in applications it should be possible to
easily observe where the parameters of interest appear in the analysis, and whether or not
their particular variations can affect the validity of the results.

4. Existence and uniqueness of solutions. In this section, we investigate the problem
of existence, uniqueness, and regularity of solutions for (4)–(6) with the initial values (7)
and periodic boundary conditions. We set appropriate spaces of Ω-periodic functions as the
functional framework of the problem by which we include the boundary conditions in the
solution spaces. We view v(x, t), i(x, t), and w(x, t) as Banach space-valued functions and
follow the standard technique of Galerkin approximations [16, 44, 51] to construct weak and
strong solutions in Theorems 4.5 and 4.7. The details of the proof of these results can be
skipped if the reader is proficient in the analysis of the Galerkin method.

First, define the function spaces

L2
v := L2

per(Ω; R2), L2
i := L2

per(Ω; R4), L2
w := L2

per(Ω; R2),(9)

L∞
v := L∞

per(Ω; R2), L∞
i := L∞

per(Ω; R4), L∞
w := L∞

per(Ω; R2),

H1
w := H1

per(Ω; R2), H2
w := H2

per(Ω; R2),

L2
∂w := L2

per(Ω; R2×2), H1
∂w := H1

per(Ω; R2×2),

W1,∞
w := W 1,∞

per
(
Ω; R2),

and denote by L2
v
∗, L2

i
∗, and H1

w
∗ the dual spaces of L2

v, L2
i , and H1

w, respectively. Note
that L2

v and L2
i are, respectively, isometrically isomorphic to L2

v
∗ and L2

i
∗ [18, Thm. 6.15],

which we denote by L2
v
∗ = L2

v and L2
i
∗ = L2

i . By the Rellich–Kondrachov compact embedding
theorems we have H1

w � L2
w ↪→ H1

w
∗; see [9, Thm. 6.6-3] and [44, Thm. A.4]. Moreover, there
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exists a dual orthogonal basis of H1
w and L2

w given by the following lemma. The proof of this
lemma is fairly standard and follows the general results given in [51, sect. II.2.1].

Lemma 4.1 (Dual orthogonal basis). There exists an orthonormal basis of L2
w that is also

an orthogonal basis of H1
w, and can be constructed by the eigenfunctions of the linear operator

A := −Δ + I.

Now, before proceeding to the main results of this section, we define the notions of weak
and strong solutions of (4)–(7) as used in this paper.

Definition 4.2 (Weak solution). A solution (v, i, w) is called an Ω-periodic weak solution
of the initial value problem (4)–(7) if it solves the weak version of the problem wherein the
equations are understood as equalities in the space of duals L2(0, T ;L2

v
∗ × L2

i
∗ × H1

w
∗). That

is, the functions

v ∈ L2 (0, T ;L2
v

)
, i ∈ L2 (0, T ;L2

i

)
, w ∈ L2 (0, T ;H1

w

)
with

dtv ∈ L2(0, T ;L2
v
∗)

, dti ∈ L2 (0, T ;L2
i

)
, d2

t i ∈ L2(0, T ;L2
i
∗)

,

dtw ∈ L2 (0, T ;L2
w

)
, d2

t w ∈ L2(0, T ;H1
w
∗)

construct an Ω-periodic weak solution for (4)–(7) if, for every 
v ∈ L2
v, 
i ∈ L2

i , hw ∈ H1
w, and

almost every t ∈ [0, T ], T > 0,

〈Φdtv, 
v〉L2
v

+
(
v, 
v

)
L2

v
− (J1i, 
v

)
L2

v
+
(
J2viTΨJ4 + J3viTΨJ5, 
v

)
L2

v

= 0,(10)
〈
d2

t i, 
i

〉
L2

i
+ 2
(
Γdti, 
i

)
L2

i
+
(
Γ2i, 
i

)
L2

i
− e
(
ΥΓJ6w, 
i

)
L2

i
(11)

− e
(
ΥΓNJ7f(v), 
i

)
L2

i
= e
(
ΥΓg, 
i

)
L2

i
,

〈
d2

t w, hw

〉
H1

w
+ 2ν

(
Λdtw, hw

)
L2

w
+

3
2
ν2(∂xw, ∂xhw

)
L2

∂w
(12)

+ ν2(Λ2w, hw

)
L2

w
− ν2(Λ2MJ8f(v), hw

)
L2

w
= 0

with the initial values

v(0) = v0, i(0) = i0, dti(0) = i′0, w(0) = w0, dtw(0) = w′
0.(13)

Definition 4.3 (Strong solution). A solution (v, i, w) is called an Ω-periodic strong solution
of the initial value problem (4)–(7) if it solves the strong version of the problem wherein the
equations are understood as equalities in L2(0, T ;L2

v × L2
i × L2

w). That is, the functions

v ∈ H1 (0, T ;L2
v

)
, i ∈ H2 (0, T ;L2

i

)
, w ∈ L2 (0, T ;H2

w

)
with

dtv ∈ L2(0, T ;L2
v), dti ∈ H1(0, T ;L2

i ), d2
t i ∈ L2(0, T ;L2

i ),

dtw ∈ L2(0, T ;H1
w), d2

t w ∈ L2(0, T ;L2
w)

construct an Ω-periodic strong solution for (4)–(7) wherein they solve the equations for almost
every x ∈ Ω and almost every t ∈ [0, T ], T > 0.
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Now, let Bv = {
(l)
v }∞

l=1 be a basis of L2
v such that {Φ 1

2 

(l)
v }∞

l=1 is orthonormal in L2
v. Note

that (8), with the range of values given in Table 1, implies that Φ is a positive-definite diagonal
matrix, and hence such a basis exists. Moreover, let Bi = {
(l)

i }∞
l=1 be an orthonormal basis

of L2
i , and let Bw = {h(l)

w }∞
l=1 be an orthogonal basis of H1

w that is orthonormal in L2
w; see

Lemma 4.1 for the existence and structure of Bw. Finally, construct the set B = {b(k)}∞
k=1

⊂ L2
v × L2

i ×H1
w as

B := Bv × Bi × Bw =
{

b(k) =
(

(k)
v , 


(k)
i , h(k)

w

)
: 
(k)

v ∈ Bv, 

(k)
i ∈ Bi, h

(k)
w ∈ Bw

}∞
k=1

.(14)

For each positive integer m, we seek approximations v(m) : [0, T ] → L2
v, i(m) : [0, T ] → L2

i ,
and w(m) : [0, T ] → H1

w of the form

v(m)(t) :=
∑m

k=1
c(m)
vk

(t)
(k)
v ,(15)

i(m)(t) :=
∑m

k=1
c
(m)
ik

(t)
(k)
i ,(16)

w(m)(t) :=
∑m

k=1
c(m)
wk

(t)h(k)
w ,(17)

constructed by the first m components of B and sufficiently smooth scalar-valued functions
c
(m)
vk , c

(m)
ik

, and c
(m)
wk on [0, T ] such that these approximations satisfy

(
Φdtv

(m), 
(k)
v

)
L2

v

+
(
v(m), 
(k)

v

)
L2

v

−
(
J1i

(m), 
(k)
v

)
L2

v

(18)

+
(
J2v

(m)i(m)TΨJ4 + J3v
(m)i(m)TΨJ5, 


(k)
v

)
L2

v

= 0,

(
d2

t i
(m), 


(k)
i

)
L2

i

+ 2
(
Γdti

(m), 

(k)
i

)
L2

i

+
(
Γ2i(m), 


(k)
i

)
L2

i

(19)

− e
(
ΥΓJ6w

(m), 

(k)
i

)
L2

i

− e
(
ΥΓNJ7f(v(m)), 
(k)

i

)
L2

i

= e
(
ΥΓg, 


(k)
i

)
L2

i

,

(
d2

t w
(m), h(k)

w

)
L2

w

+ 2ν
(
Λdtw

(m), h(k)
w

)
L2

w

+
3
2
ν2
(
∂xw(m), ∂xh(k)

w

)
L2

∂w

(20)

+ ν2
(
Λ2w(m), h(k)

w

)
L2

w

− ν2
(
Λ2MJ8f(v(m)), h(k)

w

)
L2

w

= 0

for all t ∈ [0, T ] and k = 1, . . . , m, subject to the initial conditions

c(m)
vk

(0) =
(
v0, 


(k)
v

)
L2

v

, c
(m)
ik

(0) =
(
i0, 


(k)
i

)
L2

i

, dtc
(m)
ik

(0) =
(
i′0, 


(k)
i

)
L2

i

,(21)

c(m)
wk

(0) =
(
w0, h

(k)
w

)
L2

w

, dtc
(m)
wk

(0) =
(
w′

0, h
(k)
w

)
L2

w

on the coefficients c
(m)
k (t) := (c(m)

vk (t), c(m)
ik

(t), c(m)
wk (t)) ∈ R

3.
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Equations (18)–(21) are equivalent to a system of nonlinear 3m-dimensional ODEs on
coefficients c(m)(t) = (c(m)

1 (t), . . . , c(m)
m (t)) ∈ R

3m. Therefore, by the standard theory of ODEs
[50, Thm. 2.1], there exists a unique function c(m)(t) that solves (18)–(21) for t ∈ [0, Tm),
Tm > 0, with the approximations (15)–(17). Moreover, Tm = T for all positive integers m,
which follows from Proposition 4.4.

The standard Galerkin approximation method involves providing energy estimates that
are uniform in m for all the approximations (v(m), i(m), w(m)). Such a priori energy estimates
then allow construction of solutions by passing to the limits as m → ∞. The following
proposition gives the desired estimates for the approximations (15)–(17).

Proposition 4.4 (Energy estimates). Suppose g ∈ L2(0, T ;L2
i ) and, for every positive in-

teger m, let v(m), i(m), and w(m) be functions of the form (15)–(17), respectively, satisfying
(18)–(20) with the initial conditions (21). Then there exist positive constants αv, βv, αi, and
αw, dependent only on the parameters of the model, such that for every positive integer m,

sup
t∈[0,T ]

(
‖v(m)(t)‖2L2

v

)
+ ‖dtv

(m)‖2L2(0,T ;L2
v

∗) ≤ κv,(22)

sup
t∈[0,T ]

(
‖dti

(m)(t)‖2L2
i
+ ‖i(m)(t)‖2L2

i

)
+ ‖d2

t i
(m)‖2

L2(0,T ;L2
i

∗) ≤ κi,(23)

sup
t∈[0,T ]

(
‖dtw

(m)(t)‖2L2
w

+ ‖w(m)(t)‖2H1
w

)
+ ‖d2

t w
(m)‖2L2(0,T ;H1

w
∗) ≤ κw,(24)

where κv, κi, and κw are positive constants given, independently of m, by

κv := αv

((
1 + (1 +

√
κi)2T

)
exp (βv

√
κiT )

[
‖v0‖2L2

v
+
√

κi

]
+ κiT

)
,(25)

κi := αi

(
(1 + T )

[
‖i′0‖2L2

i
+ ‖i0‖2L2

i

]
+ (2 + T )

[
T (κw + |Ω|) + ‖g‖2L2(0,T ;L2

i )

])
,(26)

κw := αw

(
(1 + T )

[
‖w′

0‖2L2
w

+ ‖w0‖2H1
w

]
+ (2 + T )T |Ω|

)
.(27)

Proof. Multiplying (20) by dtc
(m)
wk and summing over k = 1, . . . , m yields

(
d2

t w
(m), dtw

(m)
)

L2
w

+ 2ν
(
Λdtw

(m), dtw
(m)
)

L2
w

+
3
2
ν2
(
∂xw(m), dt∂xw(m)

)
L2

∂w

+ ν2
(
Λ2w(m), dtw

(m)
)

L2
w

− ν2
(
Λ2MJ8f(v(m)), dtw

(m)
)

L2
w

= 0,

or, equivalently,

1
2
dt

[∥∥dtw
(m)∥∥2

L2
w

+
3
2
ν2∥∥∂xw(m)∥∥2

L2
∂w

+ ν2∥∥Λw(m)∥∥2
L2

w

]

+ 2ν
∥∥Λ 1

2 dtw
(m)∥∥2

L2
w
− ν2

(
Λ2MJ8f

(
v(m)

)
, dtw

(m)
)

L2
w

= 0.
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Now, Young’s inequality implies that, for every ε1 > 0,

ν2
(
Λ2MJ8f

(
v(m)), dtw

(m)
)

L2
w

≤ ε1ν
2∥∥dtw

(m)∥∥2
L2

w
+

ν2

4ε1

∥∥Λ2MJ8f
(
v(m))∥∥2

L2
w

= ε1ν
2∥∥dtw

(m)∥∥2
L2

w
+

ν2

4ε1
tr(Λ4M2)

∫
Ω

∣∣fe

(
v

(m)
e

)∣∣2dx

≤ ε1ν
2∥∥dtw

(m)∥∥2
L2

w
+

ν2

4ε1
|Ω|F2

e
tr(Λ4M2).

Therefore,

dt

[∥∥dtw
(m)∥∥2

L2
w

+
3
2
ν2∥∥∂xw(m)∥∥2

L2
∂w

+ ν2∥∥Λw(m)∥∥2
L2

w

]
+ 2ν(2Λmin − ε1ν)

∥∥dtw
(m)∥∥2

L2
w

≤ ν2

2ε1
|Ω|F2

e
tr(Λ4M2),

where Λmin := min{Λee, Λei} is the smallest eigenvalue of Λ.
Next, setting ε1 = 2

ν Λmin and integrating with respect to time over [0, t] yields

∥∥dtw
(m)(t)

∥∥2
L2

w
+

3
2
ν2∥∥∂xw(m)(t)

∥∥2
L2

∂w
+ ν2∥∥Λw(m)(t)

∥∥2
L2

w

≤
(∥∥dtw

(m)∥∥2
L2

w
+

3
2
ν2∥∥∂xw(m)∥∥2

L2
∂w

+ ν2∥∥Λw(m)∥∥2
L2

w

) ∣∣∣
t=0

+
1
4

ν3

Λmin
|Ω|F2

e
tr(Λ4M2)t,

which, using (21), implies

∥∥dtw
(m)(t)

∥∥2
L2

w
+
∥∥w(m)(t)

∥∥2
H1

w
≤ α̂w

(∥∥w′
0
∥∥2

L2
w

+
∥∥w0

∥∥2
H1

w
+

1
4

ν3

Λmin
|Ω|F2

e
tr(Λ4M2)t

)

for all t ∈ [0, T ] and some α̂w > 0. Since this inequality holds for all t ∈ [0, T ], it follows that

sup
t∈[0,T ]

(∥∥dtw
(m)(t)

∥∥2
L2

w
+
∥∥w(m)(t)

∥∥2
H1

w

)
≤ κ̂w,(28)

where

κ̂w := α̂w

(∥∥w′
0
∥∥2

L2
w

+
∥∥w0

∥∥2
H1

w
+

1
4

ν3

Λmin
|Ω|F2

e
tr(Λ4M2)T

)
.

Now, fix h̄ ∈ H1
w such that ‖h̄‖H1

w
≤ 1 and decompose h̄ as h̄ = h + h⊥, where h ∈

span{h(k)
w }m

k=1 and (h(k)
w h⊥)L2

w
= 0, k = 1, . . . , m. Since the basis Bw used to construct B in

(14) is orthonormal in L2
w, it follows from (17) that

〈
d2

t w
(m), h̄

〉
H1

w
=
(
d2

t w
(m), h̄

)
L2

w
=
(
d2

t w
(m), h

)
L2

w
,
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where the first equality holds since d2
t w

(m) ∈ H1
w; see the proof of [16, Thm. 5.9-1]. Therefore,

(20) gives

〈
d2

t w
(m), h̄

〉
H1

w
= −2ν

(
Λdtw

(m), h
)
L2

w
− 3

2
ν2(∂xw(m), ∂xh

)
L2

∂w

− ν2(Λ2w(m), h
)
L2

w
+ ν2(Λ2MJ8f(v(m)), h

)
L2

w
.

Since Bw is orthogonal in H1
w, we have ‖h‖H1

w
≤ ‖h̄‖H1

w
≤ 1, and hence the Cauchy–Schwarz

inequality gives

∣∣∣〈d2
t w

(m), h̄
〉
H1

w

∣∣∣ ≤ 2ν
∥∥dtw

(m)∥∥
L2

w
+

3
2
ν2∥∥∂xw(m)∥∥

L2
∂w

+ ν2∥∥Λ2w(m)∥∥
L2

w
+ ν2∥∥Λ2MJ8f(v(m))

∥∥
L2

w

≤ α1

(∥∥dtw
(m)∥∥

L2
w

+
∥∥w(m)∥∥

H1
w

+ ν2(|Ω|F2
e
tr(Λ4M2)

) 1
2

)
for some α1 > 0. Therefore, there exists α2 > 0 such that

∫ T

0

∥∥d2
t w

(m)∥∥2
H1

w
∗dt ≤ α2

∫ T

0

(∥∥dtw
(m)∥∥2

L2
w

+
∥∥w(m)∥∥2

H1
w

+ ν4|Ω|F2
e
tr(Λ4M2)

)
dt,

which, using (28), yields

∥∥d2
t w

(m)∥∥2
L2(0,T ;H1

w
∗) ≤ α2

(
κ̂w + ν4|Ω|F2

e
tr(Λ4M2)

)
T.

This inequality, together with (28), establishes the bound (24) with (27) for some αw > 0.
Next, multiplying (19) by dtc

(m)
ik

and summing over k = 1, . . . , m yields

(
d2

t i
(m), dti

(m))
L2

i
+ 2
(
Γdti

(m), dti
(m))

L2
i
+
(
Γ2i(m), dti

(m))
L2

i
− e
(
ΥΓJ6w

(m), dti
(m))

L2
i

(29)

− e
(
ΥΓNJ7f(v(m)), dti

(m))
L2

i
= e
(
ΥΓg, dti

(m))
L2

i
.

For the second term, we have

(
Γdti

(m), dti
(m))

L2
i
≥ γmin

∥∥dti
(m)∥∥2

L2
i
,

where γmin := min{γee, γei, γie, γii} is the smallest eigenvalue of Γ. Now, using Young’s in-
equality and recalling (24) we obtain, for every ε2, . . . , ε4 > 0,

e
(
ΥΓJ6w

(m), dti
(m))

L2
i
≤ ε2

∥∥dti
(m)∥∥2

L2
i
+

e2

4ε2

∥∥ΥΓJ6w
(m)∥∥2

L2
i

≤ ε2
∥∥dti

(m)∥∥2
L2

i
+

e2

4ε2

∥∥ΥΓJ6
∥∥2

2

∥∥w(m)∥∥2
L2

w

≤ ε2
∥∥dti

(m)∥∥2
L2

i
+

e2κw

4ε2

∥∥ΥΓJ6
∥∥2

2,
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e
(
ΥΓNJ7f(v(m)), dti

(m))
L2

i
≤ ε3

∥∥dti
(m)∥∥2

L2
i
+

e2

4ε3

∥∥ΥΓNJ7f
(
v(m))∥∥2

L2
i

≤ ε3
∥∥dti

(m)∥∥2
L2

i
+

e2

4ε3

∥∥ΥΓNJ7
∥∥2

2

∥∥f(v(m))∥∥2
L2

v

≤ ε3
∥∥dti

(m)∥∥2
L2

i
+

e2|Ω|
4ε3

(
F2

e
+ F2

i

) ∥∥ΥΓNJ7
∥∥2

2,

e
(
ΥΓg, dti

(m))
L2

i
≤ ε4

∥∥dti
(m)∥∥2

L2
i
+

e2

4ε4

∥∥ΥΓg
∥∥2

L2
i

≤ ε4
∥∥dti

(m)∥∥2
L2

i
+

e2

4ε4

∥∥ΥΓ
∥∥2

2

∥∥g∥∥2
L2

i
.

Hence, with the above inequalities, (29) implies

dt

[∥∥dti
(m)∥∥2

L2
i
+
∥∥Γi(m)∥∥2

L2
i

]
+ 2(2γmin − ε2 − ε3 − ε4)

∥∥dti
(m)∥∥2

L2
i

≤ e2κw

2ε2

∥∥ΥΓJ6
∥∥2

2 +
e2|Ω|
2ε3

(
F2

e
+ F2

i

) ∥∥ΥΓNJ7
∥∥2

2 +
e2

2ε4

∥∥ΥΓ
∥∥2

2

∥∥g∥∥2
L2

i
.

Now, setting ε2 = ε3 = 1
2γmin and ε4 = γmin, integrating with respect to time over [0, t],

and taking the supremum over t ∈ [0, T ], we have

sup
t∈[0,T ]

(∥∥dti
(m)(t)

∥∥2
L2

i
+
∥∥i(m)(t)

∥∥2
L2

i

)
≤ κ̂i,(30)

where, for some α̂i > 0,

κ̂i = α̂i

(
‖i′0‖2L2

i
+ ‖i0‖2L2

i
+
[
e2κw

γmin
‖ΥΓJ6‖22 +

e2|Ω|
γmin

(F2
e

+ F2
i
)‖ΥΓNJ7‖22

]
T

+
e2

2γmin
‖ΥΓ‖22‖g‖2L2(0,T ;L2

i )

)
.

Fix 
̄ ∈ L2
i such that ‖
̄‖L2

i
≤ 1 and decompose 
̄ as 
̄ = 
 + 
⊥, where 
 ∈ span{
(k)

i }m
k=1 and(



(k)
i , 
⊥)

L2
i

= 0, k = 1, . . . , m. Using (16) and (19), we obtain

〈
d2

t i
(m), 
̄

〉
L2

i
=
(
d2

t i
(m), 
̄

)
L2

i
=
(
d2

t i
(m), 


)
L2

i

= −2
(
Γdti

(m), 

)
L2

i
− (Γ2i(m), 


)
L2

i
+ e
(
ΥΓJ6w

(m), 

)
L2

i

+ e
(
ΥΓNJ7f(v(m)), 


)
L2

i
+ e
(
ΥΓg, 


)
L2

i
.

The orthogonality of the basis Bi in (14) implies ‖
‖L2
i
≤ 1, and hence∣∣∣〈d2

t i
(m), 
̄

〉
L2

i

∣∣∣ ≤ 2‖Γ‖2‖dti
(m)‖L2

i
+ ‖Γ2‖2‖i(m)‖L2

i

+ e‖ΥΓJ6w
(m)‖L2

i
+ e‖ΥΓNJ7f(v(m))‖L2

i
+ e‖ΥΓg‖L2

i
.
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Therefore, it follows from the same inequalities used to derive (30) that, for some α3 > 0,∥∥d2
t i

(m)∥∥2
L2(0,T ;L2

i
∗) ≤ α3

([
κ̂i + e2κw‖ΥΓJ6‖22 + e2|Ω|(F2

e
+ F2

i
)‖ΥΓNJ7‖22

]
T

+ e2‖ΥΓ‖22‖g‖2L2(0,T ;L2
i )

)
.

This, together with (30), establishes the bound (23) with (26) for some αi > 0.
Finally, multiplying (18) by c

(m)
vk and summing over k = 1, . . . , m yields(

Φdtv
(m), v(m))

L2
v

+
(
v(m), v(m))

L2
v
− (J1i

(m), v(m))
L2

v
(31)

+
(
J2v

(m)i(m)TΨJ4 + J3v
(m)i(m)TΨJ5, v

(m)
)

L2
v

= 0.

Now, using Young’s inequality and recalling (23), we obtain, for every ε5 > 0,

(
J1i

(m), v(m))
L2

v
≤ ε5‖v(m)‖2L2

v
+

1
4ε5
‖J1i

(m)‖2L2
v

≤ ε5‖v(m)‖2L2
v

+
1

2ε5
‖i(m)‖2L2

v

≤ ε5‖v(m)‖2L2
v

+
κi

2ε5
.

Moreover, using Hölder’s inequality in R
2 and the Cauchy–Schwarz inequality in R

4, we obtain

−
(
J2v

(m)i(m)TΨJ4 + J3v
(m)i(m)TΨJ5, v

(m)
)

L2
v

= −
∫

Ω

[(
v

(m)
1

)2
i(m)TΨJ4 +

(
v

(m)
2

)2
i(m)TΨJ5

]
dx

≤
∫

Ω
‖v(m)‖2

R2 max
{∣∣∣i(m)TΨJ4

∣∣∣ , ∣∣∣i(m)TΨJ5

∣∣∣}dx

≤
∫

Ω
‖v(m)‖2

R2‖i(m)‖R4 max {‖ΨJ4‖R4 , ‖ΨJ5‖R4}dx

≤ √2κi‖Ψ‖2‖v(m)‖2L2
v
.

Therefore, (31) implies

dt

∥∥Φ 1
2 v(m)∥∥2

L2
v

+ 2
(
1− ε5 −

√
2κi‖Ψ‖2

) ‖v(m)‖2L2
v
≤ κi

ε5
.

Next, setting ε5 = 1 and using Grönwall’s inequality [51, sect. III.1.1.3.] yields

sup
t∈[0,T ]

(
‖v(m)(t)‖2L2

v

)
≤ κ̂v,(32)

where, for some α̂v > 0 and β̂v > 0,

κ̂v = α̂v exp
(
β̂v

√
2κi‖Ψ‖2T

)(‖v0‖2L2
v

+
κi√

2κi‖Ψ‖2

)
.
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Now, fix 
̄ ∈ L2
v such that ‖
̄‖L2

v
≤ 1 and decompose 
̄ as 
̄ = 
+
⊥, where 
 ∈ span{
(k)

v }m
k=1

and
(
Φ


(k)
v , 
⊥)

L2
v

= 0, k = 1, . . . , m. Note that this decomposition exists due to the way in

which we construct the basis Bv in (14), wherein the elements, weighted by Φ
1
2 , are orthonor-

mal in L2
v. Then, it follows from (15) and (18) that〈

Φdtv
(m), 
̄

〉
L2

v
=
(
Φdtv

(m), 
̄
)
L2

v
=
(
Φdtv

(m), 

)
L2

v

= −(v(m), 

)
L2

v
+
(
J1i

(m), 

)
L2

v
−
(
J2v

(m)i(m)TΨJ4 + J3v
(m)i(m)TΨJ5, 


)
L2

v

.

Since Bv is a Φ
1
2 -weighted orthonormal set in L2

v, it follows that

‖
‖L2
v
≤ ‖Φ− 1

2 ‖2‖Φ 1
2 
‖L2

v
≤ ‖Φ− 1

2 ‖2‖Φ 1
2 
̄‖L2

v
≤ ‖Φ− 1

2 ‖2‖Φ 1
2 ‖2‖
̄‖L2

v
≤ ‖Φ− 1

2 ‖2‖Φ 1
2 ‖2

and hence, letting α4 := ‖Φ− 1
2 ‖2‖Φ 1

2 ‖2 and using the Cauchy–Schwarz inequality, we have∣∣∣〈Φdtv
(m), 
̄

〉
L2

v

∣∣∣ ≤ α4

(
‖v(m)‖L2

v
+ ‖J1i

(m)‖L2
v

+
∥∥J2v

(m)i(m)TΨJ4 + J3v
(m)i(m)TΨJ5

∥∥
L2

v

)
≤ α4

(
‖v(m)‖L2

v
+
√

2‖i(m)‖L2
i
+ 2
√

2‖v(m)‖L2
v
‖i(m)‖L2

i
‖Ψ‖2

)
≤ α4

((
1 + 2

√
2κi‖Ψ‖2

) ‖v(m)‖L2
v

+
√

2κi

)
,

which along with (32) implies that, for some α5 > 0,

‖dtv
(m)‖2L2(0,T ;L2

v
∗) ≤ α5

((
1 + 2

√
2κi‖Ψ‖2

)2
κ̂v + 2κi

)
T.

This, together with (32), establishes the bound (22) with (25) for some αv > 0. Note that
constants α1, . . . , α5, α̂v, β̂v, α̂i, and α̂w depend only on the parameters of the model, which
further implies that the constants αv, βv, αi, and αw also depend only on the parameters of
the model and completes the proof.

Theorem 4.5 (Existence and uniqueness of weak solutions). Suppose that g ∈ L2(0, T ;L2
i ),

v0 ∈ L2
v, i0 ∈ L2

i , i′0 ∈ L2
i , w0 ∈ H1

w, and w′
0 ∈ L2

w. Then there exists a unique Ω-periodic
weak solution (v, i, w) of the initial value problem (4)–(7).

Proof. The energy estimate (22) implies that the sequence {v(m)}∞
m=1 is bounded in

L2(0, T ;L2
v) and the sequence {dtv

(m)}∞
m=1 is bounded in L2(0, T ;L2

v
∗). Since L2

v
∗ = L2

v, it fol-
lows that {v(m)}∞

m=1 is bounded in H1(0, T ;L2
v) and {dtv

(m)}∞
m=1 is bounded in L2(0, T ;L2

v).
Similarly, since L2

i
∗ = L2

i , the energy estimate (23) implies that the sequence {i(m)}∞
m=1

is bounded in H2(0, T ;L2
i ), the sequence {dti

(m)}∞
m=1 is bounded in H1(0, T ;L2

i ), and the
sequence {d2

t i
(m)}∞

m=1 is bounded in L2(0, T ;L2
i ). Finally, the energy estimate (24) im-

plies that the sequence {w(m)}∞
m=1 is bounded in L2(0, T ;H1

w), the sequence {dtw
(m)}∞

m=1
is bounded in L2(0, T ;L2

w), and the sequence {d2
t w

(m)}∞
m=1 is bounded in L2(0, T ;H1

w
∗). Now,

it follows from the Rellich–Kondrachov compact embedding theorems [9, Thm. 6.6-3] that
H1(0, T ;L2

v) � L2(0, T ;L2
v) and H1(0, T ;L2

i ) � L2(0, T ;L2
i ). Therefore, by [9, Thm. 2.10-1b],

there exist subsequences {v(mk)}∞
k=1, {i(mk)}∞

k=1, and {dti
(mk)}∞

k=1 such that
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v(mk) → v strongly in L2(0, T ;L2
v),(33)

i(mk) → i strongly in L2(0, T ;L2
i ),

dti
(mk) → i′ strongly in L2(0, T ;L2

i ).

Moreover, by the Banach–Eberlein–Šmulian theorem [9, Thm. 5.14-4], there exist subse-
quences {dtv

(mk)}∞
k=1, d2

t {i(mk)}∞
k=1, {w(mk)}∞

k=1, {dtw
(mk)}∞

k=1, and {d2
t w

(mk)}∞
k=1 such that

dtv
(mk) ⇀ v′ weakly in L2(0, T ;L2

v),(34)

d2
t i

(mk) ⇀ i′′ weakly in L2(0, T ;L2
i ),

w(mk) ⇀ w weakly in L2(0, T ;H1
w),

dtw
(mk) ⇀ w′ weakly in L2(0, T ;L2

w),

d2
t w

(mk) ⇀ w′′ weakly in L2(0, T ;H1
w
∗),

where the time derivatives in the above analysis are derivatives in the weak sense.
Next, we show that

v′ = dtv, i′ = dti, i′′ = d2
t i, w′ = dtw, w′′ = d2

t w.

Since L2(0, T ;H1
w) is reflexive, the weak and weak* convergences coincide. Recalling the

definitions of weak* convergence and weak derivatives, it follows that, for every h ∈ H1
w and

φ ∈ C∞
c ([0, T ]),〈∫ T

0
w′′φdt, h

〉
H1

w

=
∫ T

0
〈w′′φ, h〉H1

w
dt = lim

k→∞

∫ T

0

〈
d2

t w
(mk)φ, h

〉
H1

w
dt

= lim
k→∞

〈∫ T

0
d2

t w
(mk)φdt, h

〉
H1

w

= lim
k→∞

〈
(−1)2

∫ T

0
w(mk)d2

t φdt, h

〉
H1

w

= lim
k→∞

(−1)2
∫ T

0

〈
w(mk)d2

t φ, h
〉
H1

w
dt = (−1)2

∫ T

0

〈
wd2

t φ, h
〉
H1

w
dt

=
〈

(−1)2
∫ T

0
wd2

t φdt, h

〉
H1

w

,

which implies w′′ = d2
t w in the weak sense. The other identities are proved similarly.

Now, recall (3) and (8) and note that the nonlinear map f : R
2 → R

2 is bounded and
smooth, and in particular is Lipschitz continuous. Therefore, it follows from the strong con-
vergence of {v(mk)}∞

k=1 in (33) that

f(v(mk)) → f(v) strongly in L2(0, T ;L2
v).(35)

For the bilinear term J2viTΨJ4, use (22) and (23) to write∥∥∥J2

(
viT − v(mk)i(mk)T

)
ΨJ4

∥∥∥
L2(0,T ;L2

v)

≤ ∥∥J2
(
v − v(mk))iTΨJ4

∥∥
L2(0,T ;L2

v) +
∥∥J2v

(mk)(i− i(mk))TΨJ4
∥∥

L2(0,T ;L2
v)
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≤
√

2‖Ψ‖2
[
‖v − v(mk)‖L2(0,T ;L2

v)‖i‖L2(0,T ;L2
i ) + ‖v(mk)‖L2(0,T ;L2

v)‖i− i(mk)‖L2(0,T ;L2
i )

]
≤
√

2‖Ψ‖2
[√

κi ‖v − v(mk)‖L2(0,T ;L2
v) +

√
κv ‖i− i(mk)‖L2(0,T ;L2

i )

]
.

The same inequality holds for the bilinear term J3viTΨJ5 as well. Therefore, (33) gives

J2v
(mk)i(mk)TΨJ4 → J2viTΨJ4 strongly inL2(0, T ;L2

v),(36)

J3v
(mk)i(mk)TΨJ5 → J3viTΨJ5 strongly inL2(0, T ;L2

v).

Next, fix a positive integer K and choose the functions

v̂ =
∑K

k=1
cvk

(t)
(k)
v ∈ C1([0, T ];L2

v),

î =
∑K

k=1
cik(t)
(k)

i ∈ C1([0, T ];L2
i ),

ŵ =
∑K

k=1
cwk

(t)h(k)
w ∈ C1([0, T ];H1

w),

where cvk
, cik , and cwk

are sufficiently smooth functions on [0, T ], and (
(k)
v , 


(k)
i , h

(k)
w ), k =

1, . . . , K, are the first K components of B given by (14). Set m = mk in (18)–(20) and
choose mk ≥ K. Then, multiplying (18)–(20) by cvk

, cik , and cwk
, respectively, summing over

k = 1, . . . , K, and integrating over t ∈ [0, T ] yields∫ T

0

[
〈Φdtv

(mk), v̂〉L2
v

+
(
v(mk), v̂

)
L2

v
− (J1i

(mk), v̂
)
L2

v
(37)

+
(
J2v

(mk)i(mk)TΨJ4 + J3v
(mk)i(mk)TΨJ5, v̂

)
L2

v

]
dt = 0,

∫ T

0

[
〈d2

t i
(mk), î〉L2

i
+ 2
(
Γdti

(mk), î
)
L2

i
+
(
Γ2i(mk), î

)
L2

i

− e
(
ΥΓJ6w

(mk), î
)
L2

i
− e
(
ΥΓNJ7f(v(mk)), î

)
L2

i
− e
(
ΥΓg, î

)
L2

i

]
dt = 0,

∫ T

0

[
〈d2

t w
(mk), ŵ〉L2

w
+ 2ν

(
Λdtw

(mk), ŵ
)
L2

w
+

3
2
ν2(∂xw(mk), ∂xŵ

)
L2

∂w

+ ν2(Λ2w(mk), ŵ
)
L2

w
− ν2(Λ2MJ8f(v(m)), ŵ

)
L2

w

]
dt = 0.

Note that the families of functions v̂, î, and ŵ chosen above are dense in the spaces L2(0, T ;L2
v),

L2(0, T ;L2
i ), and L2(0, T ;H1

w), respectively. Therefore, (37) holds for all functions v̂ ∈
L2(0, T ;L2

v), î ∈ L2(0, T ;L2
i ), and ŵ ∈ L2(0, T ;H1

w). Now, use (33)–(36) to pass to the
limits in (37), which implies that (10)–(12) hold for all 
v ∈ L2

v, 
i ∈ L2
i , hw ∈ H1

w, and almost
every t ∈ [0, T ].

It remains to verify the initial conditions (13). Choose the functions

v̂ ∈ C1([0, T ];L2
v), î ∈ C2([0, T ];L2

i ), ŵ ∈ C2([0, T ];H1
w)
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such that these functions vanish at the end point t = T . Integrating by parts in (37) yields∫ T

0

[
−(Φv(mk), dtv̂

)
L2

v
+ · · ·

]
dt =

(
Φv(mk)(0), v̂(0)

)
L2

v
,(38)

∫ T

0

[(
i(mk), d2

t î
)
L2

i
+ · · ·

]
dt = · · ·+ (dti

(mk)(0), î(0)
)
L2

i
− (i(mk)(0), dtî(0)

)
L2

i
,

∫ T

0

[(
w(mk), d2

t ŵ
)
H1

w
+ · · ·

]
dt =

(
dtw

(mk)(0), ŵ(0)
)
L2

w
− (w(mk)(0), dtŵ(0)

)
L2

w
,

where “· · · ” denotes terms that are not pertinent to the analysis. Similarly, integrating by
parts in the limit of (37) yields∫ T

0

[
−(Φv,dtv̂

)
L2

v
+ · · ·

]
dt =

(
Φv(0), v̂(0)

)
L2

v
,(39)

∫ T

0

[(
i,d2

t î
)
L2

i
+ · · ·

]
dt = · · ·+ (dti(0), î(0)

)
L2

i
− (i(0), dtî(0)

)
L2

i
,

∫ T

0

[(
w, d2

t ŵ
)
H1

w
+ · · ·

]
dt =

(
dtw(0), ŵ(0)

)
L2

w
− (w(0), dtŵ(0)

)
L2

w
.

Now, consider the initial conditions (21), pass to the limits in (38) through (33)–(36), and
compare the results with (39). Since v̂, î, and ŵ are arbitrary, the initial condition (13) holds
and this completes the proof of existence.

To prove uniqueness, assume by contradiction that there exist two weak solutions (ṽ, ĩ, w̃)
and (v̂, î, ŵ) for (2), initiating from the same initial values, such that (ṽ, ĩ, w̃) 
= (v̂, î, ŵ).
Then, (v, i, w) := (ṽ, ĩ, w̃)−(v̂, î, ŵ) is a weak solution initiating from the zero initial condition
(v0, i0, i

′
0, w0, w

′
0) = 0. Now, fix s ∈ [0, T ] and define, for 0 ≤ t ≤ T , the functions

p(t) :=
∫ t

0
w(r)dr, q(t) :=

{∫ s
t w(r)dr if 0 ≤ t ≤ s,

0 if s < t ≤ T.
(40)

Note that p(t) ∈ H1
w and q(t) ∈ H1

w for all t ∈ [0, T ], and hence p and q are regular enough to
be used as the test function hw in (12). Moreover, q(s) = 0, q(0) = p(s), and p(0) = 0. Let
ũ and û satisfy (10)–(12) with the same test functions 
v = v(t), 
i = dti(t), and hw = q(t).
Subtracting the two sets of equations and integrating over t ∈ [0, s] yields∫ s

0

[
〈Φdtv, v〉L2

v
+
(
v, v
)
L2

v
− (J1i, v

)
L2

v
(41)

+
(
J2
(
ṽĩT − v̂îT

)
ΨJ4 + J3

(
ṽĩT − v̂îT

)
ΨJ5, v

)
L2

v

]
dt = 0,

∫ s

0

[〈
d2

t i,dti
〉
L2

i
+ 2
(
Γdti,dti

)
L2

i
+
(
Γ2i,dti

)
L2

i
− e
(
ΥΓJ6w, dti

)
L2

i
(42)

− e
(
ΥΓNJ7(f(ṽ)− f(v̂)), dti

)
L2

i

]
dt = 0,
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∫ s

0

[〈
d2

t w, q
〉
H1

w
+ 2ν

(
Λdtw, q

)
L2

w
+

3
2
ν2(∂xw, ∂xq

)
L2

∂w
+ ν2(Λ2w, q

)
L2

w
(43)

− ν2(Λ2MJ8(f(ṽ)− f(v̂)), q
)
L2

w

]
dt = 0.

Next, integrating by parts in the first and second terms in (43) yields∫ s

0

[
− (dtw, dtq

)
L2

w
− 2ν

(
Λw, dtq

)
L2

w
+

3
2
ν2(∂xw, ∂xq

)
L2

∂w
+ ν2(Λ2w, q

)
L2

w

]
dt

=
∫ s

0
ν2(Λ2MJ8(f(ṽ)− f(v̂)), q

)
L2

w
dt.

Note that 〈dtw, dtq〉H1
w

=
(
dtw, dtq

)
L2

w
, since dtw ∈ L2

w for almost every t ∈ [0, T ]; see the
proof of [16, Thm. 5.9-1]. Now, it follows from the definition of q(t) that dtq = −w for all
t ∈ [0, s]. Therefore,∫ s

0

[
1
2
dt

(
‖w‖2L2

w
− 3

2
ν2‖∂xq‖2L2

∂w

)
+ 2ν‖Λ 1

2 w‖2L2
w

+ ν2(Λ2w, q
)
L2

w

]
dt(44)

=
∫ s

0
ν2(Λ2MJ8(f(ṽ)− f(v̂)), q

)
L2

w
dt.

Using Young’s inequality,

ν2(Λ2MJ8(f(ṽ)− f(v̂)), q
)
L2

w
≤ 1

4
ν2‖q‖2L2

w
+ ν2 tr(Λ4M2)

[
sup

ve(x,t)∈R

|∂ve
fe(ve)|

]2

‖v‖2L2
v

≤ 1
4
ν2‖q‖2L2

w
+

1
8
ν2 F2

e

σ2
e

tr(Λ4M2)‖v‖2L2
v
,

−ν2(Λ2w, q
)
L2

w
≤ 1

4
ν2‖q‖2L2

w
+ ν2‖Λ‖42‖w‖2L2

w
,

where the second inequality follows, for x = e, from differentiating (3) as

∂vx
fx(vx) =

√
2

σx

Fx exp
(
−
√

2
vx − μx

σx

)[
1 + exp

(
−
√

2
vx − μx

σx

)]−2

, x ∈ {e, i},(45)

which implies supvX(x,t)∈R |∂vx
fx(vx)| ≤ Fx

2
√

2σx

.
Now, (44) implies

1
2
‖w(s)‖2L2

w
+

3
4
ν2‖q(0)‖2H1

w
≤
∫ s

0

[(
− 2νΛmin + ν2‖Λ‖42

)
‖w‖2L2

w
+

1
2
ν2‖q‖2L2

w

+
1
8
ν2 F2

e

σ2
e

tr(Λ4M2)‖v‖2L2
v

]
dt +

3
4
ν2‖q(0)‖2L2

w
,

where Λmin := min{Λee, Λei} is the smallest eigenvalue of Λ. Noting from (40) that q(t) =
p(s)− p(t) for all t ∈ [0, s], it follows that the above inequality can be written as
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1
2
‖w(s)‖2L2

w
+

3
4
ν2‖p(s)‖2H1

w
≤
∫ s

0

[(
− 2νΛmin + ν2‖Λ‖42

)
‖w(t)‖2L2

w
+

1
2
ν2‖p(s)− p(t)‖2L2

w

+
1
8
ν2 F2

e

σ2
e

tr(Λ4M2)‖v(t)‖2L2
v

]
dt +

3
4
ν2‖p(s)‖2L2

w
.

Using the Cauchy–Schwarz inequality, it follows from the definition of p(t) given by (40) that
‖p(s)‖2L2

w
≤ s

∫ s
0 ‖w(t)‖2L2

w
dt. Moreover,

‖p(s)− p(t)‖2L2
w
≤ 2‖p(s)‖2L2

w
+ 2‖p(t)‖2L2

w
≤ 2‖p(s)‖2H1

w
+ 2‖p(t)‖2H1

w
.

Therefore,

1
2
‖w(s)‖2L2

w
+ ν2

(
3
4
− s

)
‖p(s)‖2H1

w
≤
∫ s

0

[(
−2νΛmin + ν2‖Λ‖42 +

3
4
ν2s

)
‖w(t)‖2L2

w
(46)

+ ν2‖p(t)‖2H1
w

+
1
8
ν2 F2

e

σ2
e

tr(Λ4M2)‖v(t)‖2L2
v

]
dt.

Next, recalling (22) and (23) and using the Cauchy–Schwarz and Young inequalities, it
follows that the fourth term in (41) satisfies, for every ε1 > 0,(

J2
(
ṽĩT − v̂îT

)
ΨJ4, v

)
L2

v

=
(
J2vĩTΨJ4, v

)
L2

v
+
(
J2v̂iTΨJ4, v

)
L2

v

≥ −√2κĩ ‖Ψ‖2‖v‖2L2
v
− ε1‖v‖2L2

v
− 2κv̂

4ε1
‖Ψ‖22‖i‖2L2

i
,

where κv̂ and κĩ are in the form of (25) and (26), respectively. The same inequality holds for(
J3(ṽĩT − v̂îT)ΨJ5, v

)
L2

v
. Similarly, using Young’s inequality and (45),

e
(
ΥΓNJ7(f(ṽ)− f(v̂)), dti

)
L2

i
≤ ε2‖dti‖2L2

i
+

e2

4ε2
‖ΥΓNJ7‖22 sup

v(x,t)∈R2
‖∂vf(v)‖22‖v‖2L2

v

≤ ε2‖dti‖2L2
i
+

e2

32ε2
‖ΥΓNJ7‖22 max

{
F2

e

σ2
e

,
F2

i

σ2
i

}
‖v‖2L2

v

for every ε2 > 0. Moreover, for every ε3 > 0 and ε4 > 0,

(
J1i, v

)
L2

v
≤ ε4‖v‖2L2

v
+

1
2ε4
‖i‖2L2

i
,

e
(
ΥΓJ6w, dti

)
L2

i
≤ ε4‖dti‖2L2

i
+

e2

4ε4
‖ΥΓJ6‖22‖w‖2L2

w
.

Substituting the above inequalities into (41) and (42), and adding the resulting inequalities
to (46) yields, for some α > 0,∥∥Φ 1

2 v(s)
∥∥2

L2
v

+ ‖dti(s)‖2L2
i
+ ‖Γi(s)‖2L2

i
+ ‖w(s)‖2L2

w
+ ν2(3

2 − 2s)‖p(s)‖2H1
w

≤ α

∫ s

0

[
‖v(t)‖2L2

v
+ ‖dti(t)‖2L2

i
+ ‖i(t)‖2L2

i
+ ‖w(t)‖2L2

w
+ ‖p(t)‖2H1

w

]
dt.



1994 FARSHAD SHIRANI, WASSIM M. HADDAD, AND RAFAEL DE LA LLAVE

Now, setting T1 = 3
4 , it follows from the integral form of Grönwall’s inequality [16, App. B.2]

that (v(s), i(s), w(s)) = 0 for all s ∈ [0, T1]. Repeating the same arguments for intervals
[T1, 2T1], [2T1, 3T1], . . . , we deduce (v(t), i(t), w(t)) = 0 for all t ∈ [0, T ], and hence (ṽ, ĩ, w̃) =
(v̂, î, ŵ) for all t ∈ [0, T ], which is a contradiction and completes the proof of uniqueness.

Proposition 4.6 (Regularity of weak solutions). Suppose that the assumptions of Theorem 4.5
hold, namely, g ∈ L2(0, T ;L2

i ), v0 ∈ L2
v, i0 ∈ L2

i , i′0 ∈ L2
i , w0 ∈ H1

w, and w′
0 ∈ L2

w. Then the
Ω-periodic weak solution (v, i, w) of the initial value problem (4)–(7) satisfies

ess sup
t∈[0,T ]

(
‖v(t)‖2L2

v

)
+ ‖dtv‖2L2(0,T ;L2

v) ≤ κv,(47)

ess sup
t∈[0,T ]

(
‖dti(t)‖2L2

i
+ ‖i(t)‖2L2

i

)
+ ‖d2

t i‖2L2(0,T ;L2
i ) ≤ κi,

ess sup
t∈[0,T ]

(
‖dtw(t)‖2L2

w
+ ‖w(t)‖2H1

w

)
+ ‖d2

t w‖2L2(0,T ;H1
w
∗) ≤ κw,

v ∈ H3(0, T ;L2
v) ∩ C2, 12 ([0, T ];L2

v),(48)

i ∈ H2(0, T ;L2
i ) ∩ C1, 12 ([0, T ];L2

i ), dti ∈ H1(0, T ;L2
i ) ∩ C0, 12 ([0, T ];L2

i ),

w ∈ H1(0, T ;L2
w) ∩ C0([0, T ];H1

w), dtw ∈ C0([0, T ];L2
w),

where κv, κi, and κw are given by (25)–(27). Moreover, if g ∈ C0([0, T ];L2
i ), then

v ∈ C3([0, T ];L2
v), i ∈ C2([0, T ];L2

i ), dti ∈ C1([0, T ];L2
i ),(49)

and if g ∈ C1([0, T ];L2
i ), then

v ∈ C4([0, T ];L2
v), i ∈ C3([0, T ];L2

i ), dti ∈ C2([0, T ];L2
i ).(50)

Proof. First, recall that L2
v = L2

v
∗ and L2

i = L2
i
∗. Assertion (47) follows immediately

from (22)–(24) by setting m = mk and passing to the limits through (33) and (34). The
inclusions in H1, H2, and H3 in assertion (48) are immediate from (47) and twice differen-
tiation of (4). The Sobolev embedding theorems [9, Thm. 6.6-1] applied to Banach space-
valued functions on [0, T ] ⊂ R imply that v ∈ C2, 12 ([0, T ];L2

v), i ∈ C1, 12 ([0, T ];L2
i ), and

dti ∈ C0, 12 ([0, T ];L2
i ).

Consider the time-independent self-adjoint linear operator A := (−3
2ν2Δ+ I) : H1

w→ H1
w
∗.

Note that f(v) ∈ C2, 12 ([0, T ];L∞
v ), since f is a bounded smooth function and v ∈ C2, 12 ([0, T ];

L2
v). Then, it follows from (6) and (47) that d2

t w + Aw ∈ L2(0, T ;L2
w). Therefore, by [51,

Lem. II.4.1], we have w ∈ C0([0, T ];H1
w) and dtw ∈ C0([0, T ];L2

w), which completes the proof
of (48). Assertions (49) and (50) are now immediate from (4), (5), and (48).

Theorem 4.7 (Existence and uniqueness of strong solutions). Suppose that g ∈ L2(0, T ;L2
i ),

v0 ∈ L2
v, i0 ∈ L2

i , i′0 ∈ L2
i , w0 ∈ H2

w, and w′
0 ∈ H1

w. Then there exists a unique Ω-periodic
strong solution (v, i, w) of the initial value problem (4)–(7).

Proof. Uniqueness follows immediately from Theorem 4.5, since every strong solution of
(4)–(7) is also a weak solution. Moreover, Proposition 4.6 implies that the weak solutions
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v ∈ H1(0, T ;L2
v) and i ∈ H2(0, T ;L2

i ) are indeed strong solutions as given in Definition 4.3.
It remains to prove the regularity required for w by Definition 4.3.

Consider (20) with the approximation (17), let Bw = {h(k)
w }∞

k=1 be the orthogonal basis
of H1

w consisting of the eigenfunctions of A := −Δ + I as given by Lemma 4.1, and let λk

denote the eigenvalue corresponding to the eigenfunction h
(k)
w . Multiplying (20) by λkc

(m)
wk

and summing over k = 1, . . . , m yields(
d2

t w
(m), Aw(m))

L2
w

+ 2ν
(
Λdtw

(m), Aw(m))
L2

w
+

3
2
ν2(∂xw(m), A∂xw(m))

L2
∂w

+ ν2(Λ2w(m), Aw(m))
L2

w
− ν2(Λ2MJ8f(v(m)), Aw(m))

L2
w

= 0.

Now, Young’s inequality implies that, for every ε1, . . . , ε4 > 0,

−(d2
t w

(m), Aw(m))
L2

w
≤ ε1‖Aw(m)‖2L2

w
+

1
4ε1
‖d2

t w
(m)‖2L2

w
,

−(Λdtw
(m), Aw(m))

L2
w
≤ ε2‖Aw(m)‖2L2

w
+

1
4ε2
‖Λdtw

(m)‖2L2
w
,

−(Λ2w(m), Aw(m))
L2

w
≤ ε3‖Aw(m)‖2L2

w
+

1
4ε3
‖Λ2w(m)‖2L2

w
,

(
Λ2MJ8f(v(m)), Aw(m))

L2
w
≤ ε4‖Aw(m)‖2L2

w
+

1
4ε4
‖Λ2MJ8f(v(m))‖2L2

w

≤ ε4‖Aw(m)‖2L2
w

+
1

4ε4
|Ω|F2

e
tr(Λ4M2).

Therefore, using (1),

3
2
ν2‖w(m)‖2H2

w
≤ (ε1 + 2νε2 + ν2ε3 + ν2ε4)

(
‖w(m)‖2H2

w
+ ‖∂xw(m)‖2L2

∂w

)

+
3
2
ν2‖w(m)‖2L2

w
+

1
4ε1
‖d2

t w
(m)‖2L2

w
+

ν

2ε2
‖Λdtw

(m)‖2L2
w

+
ν2

4ε3
‖Λ2w(m)‖2L2

w
+

ν2

4ε4
|Ω|F2

e
tr(Λ4M2).

Next, set ε1 = ν2

8 , ε2 = ν
16 , ε3 = 1

8 , and ε4 = 1
8 , and note that, for some constant β > 0,

‖w(m)‖2H2
w
≤ β

(
‖d2

t w
(m)‖2L2

w
+ ‖dtw

(m)‖2L2
w

+ ‖w(m)‖2H1
w

+ |Ω|F2
e
tr(Λ4M2)

)
.(51)

Bounds on ‖dtw
(m)‖L2

w
and ‖w(m)‖H1

w
are given by the energy estimate (24). To establish

bounds on ‖d2
t w

(m)‖L2
w

and ‖dtw
(m)‖H1

w
, consider (20) with the initial values given in (21).

Differentiating (20) with respect to t, multiplying the result by d2
t c

(m)
wk , and summing over

k = 1, . . . m yields(
d2

t ẇ
(m), dtẇ

(m))
L2

w
+ 2ν

(
Λdtẇ

(m), dtẇ
(m))

L2
w

+
3
2
ν2(∂xẇ(m), dt∂xẇ(m))

L2
∂w

+ ν2(Λ2ẇ(m), dtẇ
(m))

L2
w
− ν2(Λ2MJ8 dtf(v(m)), dtẇ

(m))
L2

w
= 0,
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where ẇ := dtw and dtfe(v
(m)
e ) = ∂ve

fe(v
(m)
e ) dtv

(m)
e . Now, (45) with x = e gives

‖Λ2MJ8 dtf(v(m))‖2L2
w

= tr(Λ4M2)
∫

Ω

∣∣∣dtfe

(
v

(m)
e

)∣∣∣2 dx(52)

≤ tr(Λ4M2)
F2

e

8σ2
e

∫
Ω

∣∣dtv
(m)
e

∣∣2dx ≤ tr(Λ4M2)
F2

e

8σ2
e

‖dtv
(m)‖2L2

v
.

Using similar arguments as in the proof of Proposition 4.4, it follows from the above inequality
and Young’s inequality that, for every ε > 0,

dt

[∥∥dtẇ
(m)∥∥2

L2
w

+
3
2
ν2∥∥∂xẇ(m)∥∥2

L2
∂w

+ ν2‖Λẇ(m)‖2L2
w

]
+ 2ν(2Λmin − εν)‖dtẇ

(m)‖2L2
w

≤ ν2

2ε

F2
e

8σ2
e

tr(Λ4M2)‖dtv
(m)‖2L2

v
,

where Λmin := min{Λee, Λei} is the smallest eigenvalue of Λ. Next, setting ε = 2
ν Λmin,

replacing ẇ = dtw, and using Grönwall’s inequality yields

∥∥d2
t w

(m)(t)
∥∥2

L2
w

+
3
2
ν2∥∥dt∂xw(m)(t)

∥∥2
L2

∂w
+ ν2∥∥Λdtw

(m)(t)
∥∥2

L2
w

(53)

≤
(∥∥d2

t w
(m)∥∥2

L2
w

+
3
2
ν2∥∥dt∂xw(m)∥∥2

L2
∂w

+ ν2∥∥Λdtw
(m)∥∥2

L2
w

)∣∣∣
t=0

+
1
32

ν3

Λminσ2 F2
e
tr(Λ4M2)

∥∥dtv
(m)∥∥2

L2(0,T ;L2
v).

Finally, it follows from (20) and (21) that, for some α1 > 0,

∥∥d2
t w

(m)∥∥2
L2

w

∣∣∣
t=0

≤ α1

(∥∥w′
0
∥∥2

H1
w

+ ‖w0‖2H2
w

+ ν2|Ω|F2
e
tr(Λ4M2)

)
.

Now, using the energy estimate (22) and the above inequality in (53), it follows that

∥∥d2
t w

(m)(t)
∥∥2

L2
w

+
∥∥dtw

(m)(t)
∥∥2

H1
w
≤ α2

(∥∥w′
0
∥∥2

H1
w

+ ‖w0‖2H2
w

+ (|Ω|+ κv)F2
e

)
for some α2 > 0 and all t ∈ [0, T ]. Since this inequality and (51) hold for all t ∈ [0, T ], it
follows that

sup
t∈[0,T ]

(∥∥d2
t w

(m)(t)
∥∥2

L2
w

+ ‖dtw
(m)(t)‖2H1

w
+
∥∥w(m)(t)

∥∥2
H2

w

)
≤ β̂w,(54)

where

β̂w := α
(
‖w′

0‖2H1
w

+ ‖w0‖2H2
w

+ (|Ω|+ κv)F2
e

)
for some α > 0. Now, using the above estimate and passing to the limits, the result follows
by similar arguments as in the proof of Theorem 4.5.
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Proposition 4.8 (Regularity of strong solutions). Suppose that the assumptions of
Theorem 4.7 hold, namely, g ∈ L2(0, T ;L2

i ), v0 ∈ L2
v, i0 ∈ L2

i , i′0 ∈ L2
i , w0 ∈ H2

w, and
w′

0 ∈ H1
w. Then, in addition to the properties of the weak solution given in Proposition 4.6,

the Ω-periodic strong solution (v, i, w) of the initial value problem (4)–(7) satisfies

ess sup
t∈[0,T ]

(
‖d2

t w(t)‖2L2
w

+ ‖dtw(t)‖2H1
w

+ ‖w(t)‖2H2
w

)
+ ‖d3

t w‖2L2(0,T ;H1
w
∗) ≤ βw,(55)

w ∈ H2(0, T ;L2
w) ∩H1(0, T ;H1

w) ∩ C1, 12 ([0, T ];L2
w) ∩ C0, 12 ([0, T ];H1

w)(56)

∩ C0([0, T ];H2
w) ∩ C0([0, T ];C0,λ

per(Ω, R2)),

dtw ∈ H1(0, T ;L2
w) ∩ C0, 12 ([0, T ];L2

w) ∩ C0([0, T ];H1
w),

d2
t w ∈ C0([0, T ];L2

w)

for all λ ∈ (0, 1) and some βw > 0.

Proof. Differentiate (20) with respect to t and denote ẇ := dtw. Use (52) and follow the
same steps used to prove (24) in Proposition 4.4 to show ‖d2

t ẇ
(m)‖2

L2(0,T ;H1
w
∗) ≤ β̃w for every

positive integer m, all t ∈ [0, T ], and some β̃w > 0 proportional to β̂w in (54). Replacing
ẇ = dtw, adding the result to (54), and passing to the limits establishes (55) for some βw > 0
proportional to β̂w.

The inclusions in H1 and H2 in assertion (56) follow immediately from (55). The inclu-
sions in the Hölder spaces C0, 12 and C1, 12 are implied by the Sobolev embedding theorems [9,
Thm. 6.6-1] applied to Banach space-valued functions on [0, T ] ⊂ R.

To show dtw ∈ C0([0, T ];H1
w) and d2

t w ∈ C0([0, T ];L2
w), consider the time-independent

self-adjoint linear operator A := (−3
2ν2Δ + I) : H1

w→ H1
w
∗. Differentiate (6) with respect to

t and denote ẇ := dtw. Note that dtf(v) ∈ C1([0, T ];L∞
v ), since ∂vf is a bounded smooth

function and dtv ∈ C1([0, T ];L2
v), given by Proposition 4.6. Then, it follows from (6) and (55)

that d2
t ẇ + Aẇ ∈ L2(0, T ;L2

w). Therefore, by [51, Lem. II.4.1], we have ẇ ∈ C0([0, T ];H1
w)

and dtẇ ∈ C0([0, T ];L2
w).

Next, noting that f(v) ∈ C2([0, T ];L∞
v ), w ∈ C1, 12 ([0, T ];L2

w), dtw ∈ C0, 12 ([0, T ];L2
w),

and d2
t w ∈ C0([0, T ];L2

w), it follows from (6) that (−Δ + I)w ∈ C0([0, T ];L2
w), and hence

w ∈ C0([0, T ];H2
w). Moreover, using the Sobolev embedding theorems applied to Ω-periodic

functions in R
2, this further implies that w ∈ C0([0, T ];C0,λ

per(Ω, R2)).

Other than the regularity properties given in Propositions 4.6 and 4.8, boundedness of
weak and strong solutions associated with bounded input functions g can also be established.
We defer this result to section 5.1, as a corollary of Proposition 5.3.

In the remainder of the paper, as suggested in [44, sect. 11.1.2], we give formal arguments
for some of the proofs, in the sense that we take the inner product of (6) with functions that
belong to L2

w, instead of functions belonging to H1
w as required for the test functions hw in

(12). However, the proofs can be made rigorous using the Galerkin approximation technique
based on the dual orthogonal basis of H1

w � L2
w and then passing to the limits, as in the

proofs of Theorems 4.5 and 4.7. See the discussion and results in [44, sect. 11.1.2] for further
details.
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5. Semidynamical systems and biophysical plausibility of the evolution. In this section,
we establish a semidynamical system framework for the initial value problem presented in
section 4. Assume g ∈ L2(0,∞;L2

i ) and let u(t) := (v(t), i(t), dti(t), w(t), dtw(t)) denote a
solution of (4)–(6) with the initial value u0 := u(0) = (v0, i0, i

′
0, w0, w

′
0). Recall Definitions 4.2

and 4.3 and the results of Theorems 4.5 and 4.7 to note that the Hilbert spaces

Uw := L2
v × L2

i × L2
i ×H1

w × L2
w,(57)

Us := L2
v × L2

i × L2
i ×H2

w ×H1
w

construct, respectively, the phase spaces associated with the weak and strong solutions. Now,
for every t ∈ [0,∞), define the mappings

Sw(t) : Uw → Uw, Sw(t)u0 := u(t),

Ss(t) : Us → Us, Ss(t)u0 := u(t).

The existence and uniqueness of the solutions given by Theorems 4.5 and 4.7 along with
the time-continuity of the solutions given by Propositions 4.6 and 4.8 imply that the above
mappings are well defined for all t ∈ [0,∞). Then, {Sw(t)}t∈[0,∞) and {Ss(t)}t∈[0,∞) form
semigroups of operators which give the weak and strong solutions of (2), respectively. The
following propositions show that these semigroups are continuous, which also ensures that the
initial value problems of finding weak and strong solutions for (2) are well-posed.

Proposition 5.1 (Continuity of the semigroup {Sw}). The semigroup {Sw(t)}t∈[0,∞) of weak
solution operators is continuous for all g ∈ L2(0,∞;L2

i ).

Proof. Continuity of the semigroup with respect to t follows immediately from the continu-
ity of the weak solutions given in Proposition 4.6. It remains to prove continuous dependence
of the solution on the initial values. Let ũ0 and û0 be any two initial values in Uw that give the
solutions ũ(t) = Sw(t)ũ0 and û(t) = Sw(t)û0 for all t ∈ [0, T ], T > 0. Let u(t) := ũ(t) − û(t)
be the weak solution with the initial value u0 := ũ0 − û0. Now, consider (4)–(6) satisfied by
ũ and û, and take the inner product of (4)–(6) in each set with v, dti, and dtw, respectively.
Subtracting the resulting two sets of equations yields(

Φdtv, v
)
L2

v
+ (vv)L2

v
− (J1i, v

)
L2

v
(58)

+
(
J2
(
ṽĩT − v̂îT

)
ΨJ4 + J3

(
ṽĩT − v̂îT

)
ΨJ5, v

)
L2

v

= 0,(
d2

t i,dti
)
L2

i
+ 2
(
Γdti,dti

)
L2

i
+
(
Γ2i,dti

)
L2

i
− e
(
ΥΓJ6w, dti

)
L2

i
(59)

− e
(
ΥΓNJ7(f(ṽ)− f(v̂)), dti

)
L2

i
= 0,(

d2
t w, dtw

)
L2

w
+ 2ν

(
Λdtw, dtw

)
L2

w
+ 3

2ν2(∂xw, dt∂xw
)
L2

∂w
+ ν2(Λ2w, dtw

)
L2

w
(60)

− ν2(Λ2MJ8(f(ṽ)− f(v̂)), dtw
)
L2

w
= 0.

As in the proof of uniqueness given in Theorem 4.5,

−(J2
(
ṽĩT − v̂îT

)
ΨJ4, v

)
L2

v
≤√2κĩ ‖Ψ‖2‖v‖2L2

v
+ ‖v‖2L2

v
+

1
2
κv̂‖Ψ‖22‖i‖2L2

i
,(61)

−(J3
(
ṽĩT − v̂îT

)
ΨJ5, v

)
L2

v
≤√2κĩ ‖Ψ‖2‖v‖2L2

v
+ ‖v‖2L2

v
+

1
2
κv̂‖Ψ‖22‖i‖2L2

i
,
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e
(
ΥΓNJ7(f(ṽ)− f(v̂)), dti

)
L2

i
≤ ‖dti‖2L2

i
+

1
32

e2‖ΥΓNJ7‖22 max
{

F2
e

σ2
e

,
F2

i

σ2
i

}
‖v‖2L2

v
,

ν2(Λ2MJ8(f(ṽ)− f(v̂)), dtw
)
L2

w
≤ ν2‖dtw‖2L2

w
+

1
32

ν2 F2
e

σ2
e

tr(Λ4M2)‖v‖2L2
v
,

(
J1i, v

)
L2

v
≤ ‖v‖2L2

v
+

1
2
‖i‖2L2

i
,

e
(
ΥΓJ6w, dti

)
L2

i
≤ ‖dti‖2L2

i
+

1
4
e2‖ΥΓJ6‖22‖w‖2L2

w
,

where κv̂ and κĩ are in the form of (25) and (26). Now, substituting the above inequalities into
(58)–(60), adding the resulting inequalities together, and using Grönwall’s inequality yield,
for some α, β > 0,

‖u(t)‖2Uw
≤ βeαT ‖u0‖2Uw

for all t ∈ [0, T ],(62)

which completes the proof.

Proposition 5.2 (Continuity of the semigroup {Ss}). The semigroup {Ss(t)}t∈[0,∞) of strong
solution operators is continuous for all g ∈ L2(0,∞;L2

i ).

Proof. Continuity of the semigroup with respect to t follows immediately from the time
continuity of the strong solutions given by Proposition 4.8. To prove continuous dependence on
the initial values, consider any two initial values ũ0 and û0 in Us and construct the solutions
ũ(t) = Ss(t)ũ0 and û(t) = Ss(t)û0, t ∈ [0, T ], T > 0, for (4)–(6). Let u := ũ − û and
A := −Δ + I, and take the inner product of (4)–(6) for each solution with v, dti, and Adtw,
respectively. Subtracting the resulting two sets of equations gives (58), (59), and

1
2
dt‖dtw‖2H1

w
+ 2ν‖Λ 1

2 dtw‖2H1
w

+
3
4
ν2dt‖∂xw‖2H1

∂w
+

1
2
ν2dt‖Λw‖2H1

w
(63)

= ν2(Λ2MJ8(f(ṽ)− f(v̂)), Adtw
)
L2

w
.

Note that (62) also holds since Us ⊂ Uw, and since (58) and (59) remain unchanged, the
continuity of v and i holds.

Now, it follows from (63) by integrating over [0, t] that

‖dtw‖2H1
w

+ ν2
[
3
2
‖∂xw‖2H1

∂w
+ ‖Λw‖2H1

w

]
≤
(
‖dtw‖2H1

w
+ ν2

[
3
2
‖∂xw‖2H1

∂w
+ ‖Λw‖2H1

w

])∣∣∣∣
t=0

+ 2ν2
∫ t

0

(
Λ2MJ8(f(ṽ)− f(v̂)), Adsw

)
L2

w
ds,

which, using (1), can be written equivalently for some α1, β1 > 0 as

Q(w(t), dtw(t)) ≤ α1Q(w(0), dtw(0)) + β1

∫ t

0

(
Λ2MJ8(f(ṽ)− f(v̂)), Adsw

)
L2

w
ds,(64)

where

Q(w(t), dtw(t)) := ‖dtw(t)‖2H1
w

+ ‖Aw(t)‖2L2
w
.(65)
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Integrating by parts in the second term of the right-hand side of (64) yields

β1

∫ t

0

(
Λ2MJ8(f(ṽ)− f(v̂)), Adsw

)
L2

w
ds = β1

(
Λ2MJ8(f(ṽ)− f(v̂)), Aw

)
L2

w
(66)

− β1
(
Λ2MJ8(f(ṽ0)− f(v̂0)), Aw0

)
L2

w

− β1

∫ t

0

(
Λ2MJ8ds(f(ṽ)− f(v̂)), Aw

)
L2

w
ds.

Next, recalling that supvX(x,t)∈R |∂vx
fx(vx)| ≤ Fx

2
√

2σx

by (45) and using Young’s inequality,
we obtain

β1
(
Λ2MJ8(f(ṽ)− f(v̂)), Aw

)
L2

w
≤ 1

2
‖Aw‖2L2

w
+

β2
1

16
F2

e

σ2
e

tr(Λ4M2)‖v‖2L2
v
,(67)

−β1
(
Λ2MJ8(f(ṽ0)− f(v̂0)), Aw0

)
L2

w
≤ 1

2
‖Aw0‖2L2

w
+

β2
1

16
F2

e

σ2
e

tr(Λ4M2)‖v0‖2L2
v
.

Moreover,

−β1
(
Λ2MJ8ds(f(ṽ)− f(v̂)), Aw

)
L2

w

= −β1
(
Λ2MJ8(∂ṽf(ṽ)dsṽ − ∂v̂f(v̂)dsv̂), Aw

)
L2

w

≤ 1
2
‖Aw‖2L2

w
+

1
2
β2

1‖Λ2MJ8(∂ṽf(ṽ)dsṽ − ∂v̂f(v̂)dsv̂)‖2L2
w

=
1
2
‖Aw‖2L2

w
+

1
2
β2

1 tr(Λ4M2)
∫

Ω
|∂ṽe

f(ṽe)dsṽe − ∂v̂e
f(v̂e)dsv̂e|2dx,

where, noting that supve(x,t)∈R |∂2
ve

fe(ve)| < 1
5

Fe

σ2
e

by direct computation of the derivative of
(45), we can write

|∂ṽe
f(ṽe)dsṽe − ∂v̂e

f(v̂e)dsv̂e|2dx = |∂ṽe
f(ṽe)dsve + (∂ṽe

f(ṽe)− ∂v̂e
f(v̂e))dsv̂e|2

≤ 2|∂ṽe
f(ṽe)|2|dsve|2 + 2|∂ṽe

f(ṽe)− ∂v̂e
f(v̂e)|2|dsv̂e|2

≤ 1
4

F2
e

σ2
e

|dsve|2 + 2
[

sup
ve(x,t)∈R

∣∣∂2
ve

fe(ve)
∣∣]2

|ve|2|dsv̂e|2

≤ 1
4

F2
e

σ2
e

|dsve|2 +
2
25

F2
e

σ4
e

|ve|2|dsv̂e|2.

Therefore, it follows that

−β1
(
Λ2MJ8ds(f(ṽ)− f(v̂)), Aw

)
L2

w
≤ 1

2
‖Aw‖2L2

w
+

β2
1
8

F2
e

σ2
e

tr(Λ4M2)‖dsv‖2L2
v

(68)

+
β2

1
25

F2
e

σ4
e

tr(Λ4M2)‖dsv̂‖2C1([0,T ];L2
v)‖v‖2L2

v
.
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Moreover, (4) implies that, for some α2 > 0,

‖dsv(s)‖2L2
v
≤ α2

(
‖v(s)‖2L2

v
+ ‖i(s)‖2L2

i
+ ‖v(s)‖2L2

v
‖i(s)‖2L2

i

)
for all s ∈ [0, T ].(69)

Now, substituting (67), (68), and (69) into (66) and using (62), it follows that there exist
some β2, . . . , β6 > 0 such that

β1

∫ t

0

(
Λ2MJ8(f(ṽ)− f(v̂)), dsAw

)
L2

w
ds

≤ 1
2

∫ t

0
‖Aw‖2L2

w
ds + β2

∫ t

0

(
‖v‖2L2

v
+ ‖i‖2L2

i
+ ‖v‖2L2

v
‖i‖2L2

i

)
ds

+
1
2
‖Aw‖2L2

w
+ β3‖v‖2L2

v
+

1
2
‖Aw0‖2L2

w
+ β4‖v0‖2L2

v

≤ 1
2

∫ t

0
‖Aw‖2L2

w
ds + β5‖u0‖2Uw

(
1 + ‖u0‖2Uw

)
t +

1
2
‖Aw‖2L2

w

+
1
2
‖Aw0‖2L2

w
+ β6‖u0‖2Uw

.

Substituting this inequality into (64) yields

1
2
Q(w(t), dtw(t)) ≤ 1

2

∫ t

0
Q(w(s), dsw(s))ds + β5‖u0‖2Uw

(
1 + ‖u0‖2Uw

)
t(70)

+ α1Q(w(0), dtw(0)) +
1
2
‖Aw0‖2L2

w
+ β6‖u0‖2Uw

,

where, using Grönwall’s inequality for the function 1
2

∫ t
0 Q(w(s), dsw(s))ds, we can write

1
2

∫ t

0
Q(w(s), dsw(s))ds ≤ β5‖u0‖2Uw

(
1 + ‖u0‖2Uw

) (
et − (t + 1)

)

+
[
α1Q(w(0), dtw(0)) +

1
2
‖Aw0‖2L2

w
+ β6‖u0‖2Uw

] (
et − 1

)
.

This inequality, along with (70) and the definition of Q given by (65), implies that, for some
β7 > 0,

Q(w(t), dtw(t)) ≤ β7e
T
[
Q(w(0), dtw(0)) + ‖u0‖2Uw

(
1 + ‖u0‖2Uw

)]
for all t ∈ [0, T ].

Now, noting that Q(w(0), dtw(0)) = ‖w′
0‖2H1

w
+ ‖Aw0‖2L2

w
, it follows from the above inequality

and (62) that, for some α̂, β̂ > 0,

‖u(t)‖2Us
≤ β̂eα̂T ‖u0‖2Us

(
1 + ‖u0‖2Uw

)
for all t ∈ [0, T ],

which completes the proof.
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5.1. Biophysically plausible phase spaces. Although the spaces Uw and Us constructed
in (57) provide the theoretical phase spaces of the problem for the solutions constructed in
section 4, the evolution of the dynamics of the model is not biophysically plausible on the entire
spaces Uw and Us. As described in section 3, i(x, t), w(x, t), and g(x, t) represent nonnegative
biophysical quantities. In fact, initial functions i′0 ∈ L2

i and w′
0 ∈ L2

w can be constructed such
that the solutions i(x, t) and w(x, t), despite starting from nonnegative initial values i0 ∈ L2

i

and w0 ∈ H1
w, take negative values over a set X ⊂ Ω of positive measure for a time interval

of positive length. In the following propositions, we establish conditions under which the
dynamics of the model is guaranteed to evolve in biophysically plausible subsets of Uw and Us.

Proposition 5.3 (Nonnegativity of the solution w(x, t)). Suppose that w ∈ L2(0, T ;H1
w) is

the w-component of an Ω-periodic weak solution u(t) = Sw(t)u0 of (4)–(7) and define the set
Dw ⊂ H1

w × L2
w as

Dw := {(w0, w
′
0) ∈ W1,∞

w × L∞
w : w′

0 + νΛw0 ≥ 0 a.e. in Ω,(71)

and w0(y) + ∂yw0(y)(y − x) ≥ 0 for almost every x ∈ Ω, y ∈ B(x, t), t ∈ (0, T ]}.
Then, for every initial value (w0, w

′
0) ∈ Dw, the solution w(x, t) remains nonnegative almost

everywhere in Ω for all t ∈ (0, T ].

Proof. First, note that the weak and strong solutions coincide for v(t) and they satisfy
(4) and (5) almost everywhere in Ω for all t ∈ [0, T ], T > 0; see the proof of Theorem 4.7.
Substituting v(t) into f , we can interpret f(v) in (6) as a function f̂(x, t) := f(v(x, t)) for
almost every x ∈ Ω and all t ∈ [0, T ]. Next, using (3), (8), and Proposition 4.6, it is implied
that f̂ ∈ L∞(0, T ;L∞

v ) and f̂ > 0 in Ω× [0, T ]. Now, replace f(v) in (6) by f̂ and scale x by
the factor

√
3
2ν to obtain

∂2
t w̃ + 2νΛ∂tw̃ −Δw̃ + ν2Λ2w̃ − f̃ = 0 in Ω̃× (0, T ],

w̃ = w̃0, ∂tw̃ = w̃′
0 on Ω̃× {0},

where Ω̃ :=
√

3
2νΩ, and w̃, w̃0, w̃′

0, and f̃ denote w, w0, w′
0, and ν2Λ2MJ8f̂ in the scaled

domain Ω̃, respectively. Note that, with the new interpretation of f , the above equation is
a system of two decoupled telegraph equations. Therefore, applying the same arguments to
each of the two equations independently, in what follows we assume without loss of generality
that the above equation is a scalar equation.

Using the change of variable q := eνΛtw̃, the problem can be transformed to the initial
value problem of the standard wave equation given by

∂2
t q −Δq = eνΛtf̃ in R

2 × (0, T ],(72)

q = w̃0, ∂tq = w̃′
0 + νΛw̃0 on R

2 × {0}.

Here, the extension from Ω̃ to R
2 is done periodically due to the Ω̃-periodicity of the functions.

Let w̃0ε, w̃′
0ε, and f̃ε denote, respectively, w̃0, w̃′

0, and f̃ after mollification by the standard
positive mollifier φε ∈ C∞

c (R2); see [9, sect. 2.6]. Using Poisson’s formula for the homogeneous
wave equation in R

2, along with Duhamel’s principle for the nonhomogeneous problem [16,
sect. 2.4], it follows that the function
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qε(x, t) :=
1
2
−
∫

B(x,t)

t
[
w̃0ε(y) +

(
∂yw̃0ε(y), y − x

)
R2

]
+ t2

[
w̃′

0ε(y) + νΛw̃0ε(y)
]

[
t2 − ‖y − x‖2

R2

] 1
2

dy(73)

+
1
2

∫ t

0
(t− s)2eνΛs−

∫
B(x,t−s)

f̃ε(y, s)[
(t− s)2 − ‖y − x‖2

R2

] 1
2

dy ds

solves (72) classically for the forcing term eνΛtf̃ε and initial values w̃0ε and w̃′
0ε.

The second term in this solution is nonnegative for all t ∈ [0, T ], since f̃ and consequently,
f̃ε are nonnegative on B(x, t) for all x ∈ Ω and all t ∈ [0, T ]. Moreover, by [9, Thm. 2.6-1]
and the definition of the weak derivative, we can write

(
∂yw̃0ε(y), y − x

)
R2 =

(∫
B(y,ε)

∂yφε(y − z)w̃0(z)dz , y − x

)
R2

=

(
−
∫

B(y,ε)
∂zφε(y − z)w̃0(z)dz , y − x

)
R2

=

(∫
B(y,ε)

φε(y − z)∂zw̃0(z)dz , y − x

)
R2

=
∫

B(y,ε)
φε(y − z)

(
∂zw̃0(z), z − x

)
R2dz

+
∫

B(y,ε)
φε(y − z)

(
∂zw̃0(z), y − z

)
R2dz,

where, using Hölder’s inequality and the property
∫
B(0,ε) φε(x)dx = 1, we have∣∣∣∣∣

∫
B(y,ε)

φε(y − z)
(
∂zw̃0(z), y − z

)
R2dz

∣∣∣∣∣ ≤ ‖∂xw̃0‖L∞
∂w

∫
B(y,ε)

φε(y − z)‖y − z‖1dz

≤
√

2‖∂xw̃0‖L∞
∂w

ε.

Therefore, it follows that

−
∫

B(x,t)

t
[
w̃0ε(y) +

(
∂yw̃0ε(y), y − x

)
R2

]
[
t2 − ‖y − x‖2

R2

] 1
2

dy

≥ −
∫

B(x,t)
t

⎡
⎢⎣
∫
B(y,ε) φε(y − z)

[
w̃0(z) +

(
∂zw̃0(z), z − x

)
R2

]
dz[

t2 − ‖y − x‖2
R2

] 1
2

−
√

2‖∂xw0‖L∞
∂w

ε[
t2 − ‖y − x‖2

R2

] 1
2

⎤
⎥⎦dy

≥ −
√

2‖∂xw̃0‖L∞
∂w

ε for all (w̃0, w̃
′
0) ∈ D̃w,

where D̃w denotes Dw in the scaled domain Ω̃. Note that the last inequality holds since the first
term in the integration on the right-hand side is nonnegative by (71), and t

[
t2−‖y−x‖2

R2

]− 1
2
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takes the average value 1 over the ball B(x, t). Finally, note that w̃′
0ε(y) + νΛw̃0ε(y) in (73)

is nonnegative on B(x, t) when (w̃0, w̃
′
0) ∈ D̃w. Therefore, it follows that

qε(x, t) ≥ −
√

2‖∂xw̃0‖L∞
∂w

ε for all (w̃0, w̃
′
0) ∈ D̃w.(74)

Now, taking the limits as ε → 0, it follows from [9, Thm. 2.6-3] that w̃0ε → w̃0, w̃′
0ε → w̃′

0,
and f̃ε → f̃ in L2(Ω̃t), where Ω̃t := {y ∈ R

2 : y ∈ B(x, t), x ∈ Ω}. Therefore, there exists
a subsequence {εn}∞

n=1, convergent to 0, such that w̃0εn → w̃0, w̃′
0εn

→ w̃′
0, and f̃εn → f̃

almost everywhere on Ωt as n →∞ [18, Thm. 2.30]. Moreover, since (w̃0, w̃
′
0) ∈ W1,∞

w × L∞
w

in D̃w, f̃ ∈ L∞(0, T ;L∞
v ), and the function

[
t2 − ‖y − x‖2

R2

]− 1
2 is integrable over B(x, t),

it follows that the integrands in (73) are uniformly bounded with respect to ε by integrable
functions over B(x, t). Lebesgue’s dominated convergence theorem then implies that q(x, t) :=
limn→∞ qεn(x, t) exists on Ω̃t and, by uniqueness of the weak solution, is a weak solution of
the wave equation (72). Now, letting ε = εn → 0 in (74), it follows that if (w̃0, w̃

′
0) ∈ D̃w,

then q(x, t) ≥ 0 for almost every x ∈ Ω̃ and all t ∈ (0, T ]. This completes the proof, since the

change of variable w̃ = e−νΛtq and space rescaling Ω =
√

2
3ν−1Ω̃ do not change the sign of

solutions.

Corollary 5.4 (Boundedness of the weak solutions). Suppose g ∈ L∞(0, T ;L∞
i ), v0 ∈ L∞

v ,
i0 ∈ L∞

i , i′0 ∈ L∞
i , w0 ∈ W1,∞

w , and w′
0 ∈ L∞

w . Then, in addition to the regularities given by
Proposition 4.6, the weak solution (v(t), i(t), w(t)) of (4)–(7) satisfies

v ∈W 2,∞(0, T ;L∞
v ) ∩ C1,1([0, T ];L∞

v ),

i ∈W 1,∞(0, T ;L∞
i ) ∩ C0,1([0, T ];L∞

i ),
w ∈ L∞(0, T ;L∞

w ).

Proof. The boundedness of w follows immediately from the proof of Proposition 5.3, since
under the assumption w0 ∈ W1,∞

w and w′
0 ∈ L∞

w the integrands in (73) are integrable and each
component of the weak solution w(t) is achieved almost everywhere in Ω as the limit of (73)
when ε → 0, followed by the space rescaling from Ω̃ to Ω.

Now, to prove boundedness of v, i, and dti, let x0 ∈ Ω be any Lebesgue point1 of the
initial functions v0, i0, i′0, w0, and g(0). Take the R

4-inner product of (5) at x0 with dti(x0, t)
for every t ∈ (0, T ] to obtain(

d2
t ix0 , dtix0

)
R4 + 2

(
Γdtix0 , dtix0

)
R4 +

(
Γ2ix0 , dtix0

)
R4

− e
(
ΥΓJ6wx0 , dtix0

)
R4 − e

(
ΥΓNJ7f(vx0), dtix0

)
R4 = e

(
ΥΓgx0 , dtix0

)
R4 ,

where vx0(t) := v(x0, t), ix0(t) := i(x0, t), wx0(t) := w(x0, t), and gx0(t) := g(x0, t). This
equality is similar to (29) in the proof of Proposition 4.4, with the L2

i -inner product being
replaced by the R

4-inner product, and v(m), i(m), and w(m) being replaced by vx0 , ix0 , and
wx0 , respectively. Therefore, similar arguments as in the proof of Proposition 4.4 imply that

sup
t∈[0,T ]

(‖dtix0(t)‖2R4 + ‖ix0(t)‖2R4

) ≤ κi,(75)

1The choice of a Lebesgue point is for the sake of definiteness. Almost every point in Ω can be used as x0.
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where, with κw := ‖w‖2L∞(0,T ;L∞
w ) and for some α1 > 0 independent of x0,

κi = α1

(
‖i′0‖2L∞

i
+ ‖i0‖2L∞

i
+
[
e2κw

γmin
‖ΥΓJ6‖22 +

e2|Ω|
γmin

(F2
e

+ F2
i
)‖ΥΓNJ7‖22

]
T

+
e2

2γmin
‖ΥΓ‖22‖g‖2L∞(0,T ;L∞

i )

)
,

and γmin is the smallest eigenvalue of Γ.
Similarly, taking the R

2-inner product of (4) at x0 with vx0(t) and using the arguments
following (31) in the proof of Proposition 4.4 yields

sup
t∈[0,T ]

(
‖vx0(t)‖2L2

v

)
≤ κv,(76)

where, for some α2, β > 0 independent of x0,

κv = α2 exp
(
β
√

2κi‖Ψ‖2T
)(‖v0‖2L∞

v
+

κi√
2κi‖Ψ‖2

)
.

Now, note that almost every point x0 ∈ Ω is a Lebesgue point for the locally integrable
initial functions, and the estimates κv and κi are independent of x0. Therefore, taking the
supremum over all Lebesgue points x0 ∈ Ω in (75) and (76) implies v ∈ L∞(0, T ;L∞

v ) and
i ∈W 1,∞(0, T ;L∞

i ), which, recalling (4), further imply v ∈W 2,∞(0, T ;L∞
v ). Finally, it follows

by using Morrey’s inequality [16, Thm. 5.6-4 and Thm. 5.6-5] that v ∈ C1,1([0, T ];L∞
v ) and

i ∈ C0,1([0, T ];L∞
i ), which completes the proof.

Next, we recall and use the following standard result in the theory of ODEs to establish
conditions that guarantee nonnegativity of i(x, t) for all biophysically plausible values of the
input g, that is, for all g ∈ L2(0, T ;Dg), where

Dg := {
 ∈ L2
i : 
 ≥ 0 a.e. in Ω}.(77)

Proposition 5.5 (Invariance of the nonnegative cone [7, Prop. I.1.1]). Let {S(t)}t∈[0,∞) be
the semigroup of solution operators associated with the ODE

dtq(t) = P (q(t)), q(t) ∈ R
n, t ∈ [0,∞),

where P : R
n → R

n is a continuous locally Lipschitz mapping. Then the nonnegative cone
R

n
+ is invariant for {S(t)}t∈[0,∞) if and only if P (q) is quasi-positive, that is, for every j ∈
{1, . . . , n},

Pj(q1, . . . , qn) ≥ 0 whenever qj = 0 and qk ≥ 0 for all k 
= j.

Proposition 5.6 (Positively invariant region for the solution i(x, t)). Suppose g ∈ L2(0, T ;Dg)
and let u(t) = Sw(t)u0 be an Ω-periodic weak solution of (4)–(7). Suppose the w-component
of the weak solution, w(x, t), is nonnegative for almost every x ∈ Ω and all t ∈ [0, T ], T > 0,
and define the set

Di := {(
, 
′) ∈ L2
i × L2

i : 
 ≥ 0 and 
′ + Γ
 ≥ 0 a.e. in Ω}.(78)
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Then, for every (i0, i′0) ∈ Di, we have (i(t), dti(t)) ∈ Di almost everywhere in Ω for all t ∈
[0, T ]. An identical result holds for strong solutions u(t) = Ss(t)u0 of (4)–(7) with nonnegative
w-component.

Proof. Let b := dti + Γi and rewrite (5) as the first-order system of equations

dti = −Γi + b,(79)
dtb = −Γb + eΥΓJ6w + eΥΓNJ7f(v) + eΥΓg.

Let x0 ∈ Ω be a Lebesgue point of the initial functions v0, i0, i′0, w0, and g(0), and define
vx0(t), ix0(t), wx0(t), and gx0(t) as given in the proof of Corollary 5.4. Accordingly, let
bx0(t) := b(x0, t) = dtix0(t) + Γix0(t).

Now, (79) implies that the function qx0 := (ix0 , bx0) satisfies the ODE dtqx0(t) = P (qx0(t)),
t ∈ [0, T ], where the mapping P : R

8 → R
8 given by

P (qx0) = P (ix0 , bx0) := (−Γix0 + bx0 ,−Γbx0 + eΥΓJ6wx0 + eΥΓNJ7f(vx0) + eΥΓgx0)

is Lipschitz continuous. Moreover, note that by assumption we have wx0 ≥ 0 and gx0 ≥ 0,
which, along with the definitions of f , Υ, Γ, N, J6, and J7 given by (3) and (8), implies
eΥΓJ6wx0(t) ≥ 0, eΥΓNJ7f(vx0(t)) ≥ 0, and eΥΓgx0(t) ≥ 0 for all t ∈ [0, T ]. Therefore,
it follows that P is quasi-positive, and hence by Proposition 5.5 we have qx0(t) ≥ 0 for all
t ∈ [0, T ]. This completes the proof, since x0 is an arbitrary Lebesgue point of the initial
functions and almost every point in Ω is a Lebesgue point for these functions.2

Remark 5.7 (Biophysically plausible set of initial values). Propositions 5.3 and 5.6 ensure
that if g ∈ L2(0,∞;Dg), where Dg is given by (77), and the initial values lie in the set

DBio := L2
v ×Di ×Dw,(80)

whereDw andDi are given by (71) and (78), respectively, then i(x, t) and w(x, t) always remain
nonnegative at almost every point in Ω as they evolve in time. However, it should be noted
that this does not imply that the set DBio ⊂ Uw is positively invariant, since Proposition 5.3
does not imply positive invariance of the set Dw. Therefore, DBio cannot serve as a phase
space for the semidynamical system framework of the problem.

In the analysis of the following sections, nonnegativity of the solution i(x, t) is essential.
Moreover, it would be of no practical value to analyze the dynamics of the model out of the
biophysical regions of the phase space. Therefore, we define

2Note that there are fairly standard results in the literature that ensure the positivity of a C1(Ω×[0, T ]; Rm)
function as it evolves in time, provided its time derivative satisfies certain conditions on the boundary of the
positive cone; see, for example, [34, Lem. 6] and [8]. The proofs of these results are relatively geometrical
and usually use continuity of the functions and the compactness of Ω. However, these proofs are by no means
applicable to functions in C1([0, T ]; L2(Ω; Rm)). In fact, functions in C1([0, T ]; L2(Ω; Rm)) are allowed to leak
through the boundary of the positive cone on sets of measure zero at every t ∈ [0, T ]. Since any subinterval of
[0, T ] is uncountable, it is not guaranteed that the uncountable union of such leakage sets will have measure
zero over a subinterval. In the proof of Proposition 5.6, we use the additional property that the functions are
governed by a system of ODEs. Therefore, for all t ∈ (0, T ], the Banach space-valued function i(t) is defined
at the same almost every points in Ω as it is initially defined at t = 0. In other words, the leakage set remains
unchanged for all t ∈ (0, T ].
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Dw := {u0 ∈ Uw : i(t) ≥ 0, w(t) ≥ 0 a.e. in Ω for all t ∈ [0,∞), u(t) = Sw(t)u0},(81)

Ds := {u0 ∈ Us : i(t) ≥ 0, w(t) ≥ 0 a.e. in Ω for all t ∈ [0,∞), u(t) = Ss(t)u0}
as the maximal closed subsets of Uw and Us for the initial values of the weak and strong
solutions, respectively, such that i and w initiating from the points in these sets evolve non-
negatively over time. Note that Dw and Ds are nonempty since DBio ⊂ Dw and DBio∩Us ⊂ Ds
when g ∈ L2(0,∞,Dg). Moreover, Dw and Ds are closed sets since {Sw(t)}t∈[0,∞) and
{Ss(t)}t∈[0,∞) are continuous semigroups, as given by Propositions 5.1 and 5.2. Moreover,
it follows immediately from the definitions given by (81) that Dw and Ds are positively invari-
ant sets. Therefore, endowed with the metric induced by the norm in Uw and Us, the sets Dw
and Ds form positively invariant complete metric spaces and can be considered as biophys-
ically plausible phase spaces of the model, based on which we construct the semidynamical
systems (

Dw, {Sw(t)}t∈[0,∞)

)
,
(
Ds, {Ss(t)}t∈[0,∞)

)
associated with the weak and strong solutions of (4)–(7), respectively, and investigate their
global dynamics in the remainder of the paper.

6. Existence of absorbing sets. In this section, we prove the existence of bounded absorb-
ing sets for the semigroups {Sw(t)}t∈[0,∞) and {Ss(t)}t∈[0,∞) acting on Dw and Ds, respectively.
First, we recall the following definition of an absorbing set for an operator semigroup.

Definition 6.1 (Absorbing set [7, Def. II.2.3]). A set B0 in a complete metric space D is
called an absorbing set for the semigroup {S(t) : D → D}t∈[0,∞) if for every bounded set
B ∈ D there exists t0(B) ∈ (0,∞) such that S(t)B ⊂ B0 for all t ≥ t0(B).

Theorem 6.2 (Existence of absorbing sets in Dw). Assume that g ∈ L∞(0,∞;Dg) and that
there exists θ > 2γ−3

min such that

(i) 4
3θe2Υ2

ee
γmax(νΛee)−3 < 1,

(ii) 4
3θe2Υ2

ei
γmax(νΛei)−3 < 1,

where γmin := min{γee, γei, γie, γii} and γmax := max{γee, γei, γie, γii} are the smallest and
largest eigenvalues of Γ, respectively. Then the semigroup {Sw(t) : Dw → Dw}t∈[0,∞) associ-
ated with the weak solutions of (4)–(7) has a bounded absorbing set Bw. Specifically, consider
the functions Q−

w : Dw → [0,∞) and Q+
w : Dw → [0,∞) defined by

Q−
w(u) :=

∥∥Φ 1
2 v
∥∥2

L2
v

+ θ

∥∥∥∥dti +
3
2
Γi

∥∥∥∥
2

L2
i

+
1
4
θ‖Γi‖2L2

i
+
∥∥∥∥dtw +

3
2
νΛw

∥∥∥∥
2

L2
w

(82)

+
1
4
ν2 min

{
6, Λ2

min
} ‖w‖2H1

w
,

Q+
w(u) :=

∥∥Φ 1
2 v
∥∥2

L2
v

+ θ

∥∥∥∥dti +
3
2
Γi

∥∥∥∥
2

L2
i

+
1
4
θ
∥∥Γi
∥∥2

L2
i
+
∥∥∥∥dtw +

3
2
νΛw

∥∥∥∥
2

L2
w

+
1
4
ν2 max

{
6, Λ2

max
} ‖w‖2H1

w
,



2008 FARSHAD SHIRANI, WASSIM M. HADDAD, AND RAFAEL DE LA LLAVE

and a scalar ε such that

max
{

4
3
θe2Υ2

ee
γmax(νΛee)−3,

4
3
θe2Υ2

ei
γmax(νΛei)−3

}
< 2γmaxε < 1.(83)

Let τmax := max{τe, τi} denote the largest eigenvalue of Φ, and let Λmin := min{Λee, Λei}
and Λmax := max{Λee, Λei} denote the smallest and largest eigenvalues of Λ, respectively. Let
ρ2
w := βw

αw
, where

αw := min
{

2
3
τ−1
max,

(
1
2
γ−1

max − ε

)
γ2

min, 3θ−1 (θγmin − 2γ−2
min

)
,
1
2
νΛmin,(84)

3νΛ−2
max min

{
Λ3

ee
− 2

3
θe2

ν3ε
Υ2

ee
, Λ3

ei
− 2

3
θe2

ν3ε
Υ2

ei

}}
,

βw :=
4θe2

γ−1
max − 2ε

[
|Ω|(F2

e
+ F2

i
)‖ΥNJ7‖22 + ‖Υ‖22‖g‖2L∞(0,∞;L2

i )

]
+ 2ν3|Ω|F2

e
tr(Λ3M2).(85)

Then, for all ρ > ρw, the bounded sets Bw := {u ∈ Dw : Q−
w(u) ≤ ρ2} are absorbing in Dw.

Moreover, for every bounded set B ⊂ Dw, there exists R > 0 such that Q+
w(u0) ≤ R2 for all

u0 ∈ B, and S(t)B ⊂ Bw for all t ≥ tw(B), where

tw(B) = tw(R) := max
{

0,
1

αw
log

R2

ρ2 − ρ2
w

}
.(86)

Proof. First, taking the inner product of (4) with v yields

1
2
dt

∥∥Φ 1
2 v
∥∥2

L2
v

+ ‖v‖2L2
v
− (J1i, v

)
L2

v
+
∫

Ω

(
v2
1i

TΨJ4 + v2
2i

TΨJ5
)
dx = 0.

The integral term in this equation is nonnegative in Dw for all t ∈ [0,∞); see (8) and (81).
Therefore, dropping the integral term and using Young’s inequality yields, for every ε1 > 0,

dt

∥∥Φ 1
2 v
∥∥2

L2
v
≤ −2(1− ε1)‖v‖2L2

v
+

1
ε1
‖i‖2L2

i
(87)

≤ −2(1− ε1)τ−1
max
∥∥Φ 1

2 v
∥∥2

L2
v

+
1

ε1γ2
min
‖Γi‖2L2

i
.

Next, let b := dti + 3
2Γi and rewrite (5) as

dtb +
1
2
Γb +

1
4
Γ2i− eΥΓJ6w − eΥΓNJ7f(v) = eΥΓg.

Taking the inner product of the above equality with b yields

1
2
dt‖b‖2L2

i
+

1
2
(
Γb, b

)
L2

i
+

1
8
dt‖Γi‖2L2

i
+

3
8

∥∥Γ 3
2 i
∥∥2

L2
i

− e
(
ΥΓJ6w, b

)
L2

i
− e
(
ΥΓNJ7f(v), b

)
L2

i
= e
(
ΥΓg, b

)
L2

i
.
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Note that (
Γb, b

)
L2

i
≥ γ−1

max‖Γb‖2L2
i
,∥∥Γ 3

2 i
∥∥2

L2
i
≥ γmin‖Γi‖2L2

i
,

and, using similar arguments as in the proof of Proposition 4.4, it follows that for every
ε2, ε3, ε4 > 0,

e
(
ΥΓJ6w, b

)
L2

i
≤ ε2‖Γb‖2L2

i
+

e2

4ε2
‖ΥJ6w‖2L2

i

e
(
ΥΓNJ7f(v), b

)
L2

i
≤ ε3‖Γb‖2L2

i
+

e2|Ω|
4ε3

(F2
e

+ F2
i
)‖ΥNJ7‖22,

e
(
ΥΓg, b

)
L2

i
≤ ε4‖Γb‖2L2

i
+

e2

4ε4
‖Υ‖22‖g‖2L2

i
.

Therefore,

dt

[
‖b‖2L2

i
+

1
4
‖Γi‖2L2

i

]
≤− (γ−1

max − 2(ε2 + ε3 + ε4)
) ‖Γb‖2L2

i
− 3

4
γmin‖Γi‖2L2

i
(88)

+
e2

2ε2
‖ΥJ6w‖2L2

i
+

e2

2ε3
|Ω|(F2

e
+ F2

i
)‖ΥNJ7‖22 +

e2

2ε4
‖Υ‖22‖g‖2L2

i
.

Next, let q := dtw + 3
2νΛw and rewrite (6) as

dtq +
1
2
νΛq − 3

2
ν2Δw +

1
4
ν2Λ2w − ν2Λ2MJ8f(v) = 0.(89)

Taking the inner product of this equality with q yields

1
2
dt‖q‖2L2

w
+

1
2
ν‖Λ 1

2 q‖2L2
w

+
3
4
ν2dt‖∂xw‖2L2

∂w
+

9
4
ν3‖Λ 1

2 ∂xw‖2L2
∂w

+
1
8
ν2dt‖Λw‖2L2

w

+
3
8
ν3‖Λ 3

2 w‖2L2
w
− ν2(Λ2MJ8f(v), q

)
L2

w
= 0.

Using similar arguments as in the proof of Proposition 4.4, we can write, for every ε5 > 0,

(
Λ2MJ8f(v(m)), q

)
L2

w
≤ ε5

∥∥Λ 1
2 q
∥∥2

L2
w

+
1

4ε5
|Ω|F2

e
tr(Λ3M2),

and hence it follows that

dt

[
‖q‖2L2

w
+

3
2
ν2‖∂xw‖2L2

∂w
+

1
4
ν2‖Λw‖2L2

w

]
≤ −ν(1− 2νε5)

∥∥Λ 1
2 q
∥∥2

L2
w

(90)

− 3ν

(
3
2
ν2∥∥Λ 1

2 ∂xw
∥∥2

L2
∂w

+
1
4
ν2∥∥Λ 3

2 w
∥∥2

L2
w

)

+
ν2

2ε5
|Ω|F2

e
tr(Λ3M2).
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Now, set ε1 = 2
3 in (87), set ε3 = ε4 = 1

8(γ−1
max − 2ε) in (88) with ε := ε2, and set ε5 = 1

4ν
in (90). Then, multiplying (88) by θ > 0 and adding the result to (87) and (90) yields

dtQw ≤ −2
3
τ−1
max‖Φ

1
2 v‖2L2

v
− θ

(
1
2
γ−1

max − ε

)
‖Γb‖2L2

i

− 3
4
(
θγmin − 2γ−2

min

) ‖Γi‖2L2
i
− 1

2
ν‖Λ 1

2 q‖2L2
w

− 3ν

(
3
2
ν2‖Λ 1

2 ∂xw‖2L2
∂w

+
1
4
ν2
([

Λ3 − 2
3

θe2

ν3ε
JT

6 Υ2J6

]
w, w

)
L2

w

)
+ βw,

where βw is given by (85) and

Qw(u) =
∥∥Φ 1

2 v
∥∥2

L2
v

+ θ‖b‖2L2
i
+

1
4
θ‖Γi‖2L2

i
+ ‖q‖2L2

w
+

3
2
ν2‖∂xw‖2L2

∂w
+

1
4
ν2‖Λw‖2L2

w
.(91)

Note that for θ > 2γ−3
min, we have θγmin − 2γ−2

min > 0, and for the range of values of ε given by
(83), we have 1

2γ−1
max − ε > 0. Moreover, assumptions (i) and (ii) along with (83) ensure that

Λ3 − 2
3

θe2

ν3ε
JT

6 Υ2J6 > 0. Therefore, with the decay rate αw given by (84),

dtQw(u) ≤ −αwQw(u) + βw,(92)

and hence, using Grönwall’s inequality [51, sect. III.1.1.3.],

Q−
w(u(t)) ≤ Q+

w(u(0))e−αwt + ρ2
0
(
1− e−αwt

)
,(93)

where Q−
w and Q+

w are given in (82) and lim supt→∞ Q−
w(u(t)) ≤ ρ2

0 := βw
αw

. Now, since the
mapping

(v, i, i′, w, w′) �→
(

Φ
1
2 v,

1
2
θ

1
2 Γi, θ

1
2

[
i′ +

3
2
Γi

]
,
1
2
ν
[
max

{
6, Λ2

max
}] 1

2 w, w′ +
3
2
νΛw

)
(94)

is a linear isomorphism over Uw, for every bounded set B ⊂ Dw there exists R > 0 such that
Q+

w(u0) ≤ R2 for all u0 ∈ B. Hence, it is immediate from (93) that Sw(t)B ⊂ Bw for all
t ≥ tw(B), where tw(B) is given by (86).

Theorem 6.3 (Existence of absorbing sets in Ds). Suppose the assumptions of Theorem 6.2
hold, namely, assume that g ∈ L∞(0,∞;Dg) and that there exists θ > 2γ−3

min such that the
biophysical parameters of the model satisfy

(i) 4
3θe2Υ2

ee
γmax(νΛee)−3 < 1,

(ii) 4
3θe2Υ2

ei
γmax(νΛei)−3 < 1,

where γmin and γmax are the smallest and largest eigenvalues of Γ, respectively. Then the
semigroup {Ss(t) : Ds → Ds}t∈[0,∞) associated with the strong solutions of (4)–(7) has a
bounded absorbing set Bs. Specifically, consider the function Q−

s : Ds → [0,∞) defined by

Q−
s (u) :=

∥∥Φ 1
2 v
∥∥2

L2
v

+ θ

∥∥∥∥dti +
3
2
Γi

∥∥∥∥
2

L2
i

+
1
4
θ‖Γi‖2L2

i
+
∥∥∥∥dtw +

3
2
νΛw

∥∥∥∥
2

H1
w

(95)

+
1
8
ν2 min

{
6, Λ2

min
} ‖(−Δ + I)w‖2L2

w
,
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and denote by Λmin and Λmax the smallest and largest eigenvalues of Λ, respectively, and by
τmax the largest eigenvalue of Φ. Let ρ2

s := 2βs
αs

with

αs := min
{

2
3
τ−1
max,

(
1
2
γ−1

max − ε

)
γ2

min, 3θ−1 (θγmin − 2γ−2
min

)
, νΛmin,(96)

3νΛ−2
max min

{
Λ3

ee
− 2

3
θe2

ν3ε
Υ2

ee
, Λ3

ei
− 2

3
θe2

ν3ε
Υ2

ei

}}
,

βs :=
4θe2

γ−1
max − 2ε

[
|Ω|(F2

e
+ F2

i
)‖ΥNJ7‖22 + ‖Υ‖22‖g‖2L∞(0,∞;L2

i )

]
(97)

+ 2ν2
[

1
32ε1

F2
e

σ2
e

tr(Λ4M2)ηρ2
w(1 + ρ2

w) +
1
4
|Ω|F2

e
tr(Λ4M2)

(
1
ε1

+
αs

ε2

)]
,

where η is a positive constant, ρ2
w := βw

αw
is the same constant as given in Theorem 6.2, the

scalar ε takes values within the same range as given by (83), and

ε1 :=
1
32

αs min
{
6, Λ2

min
}(

1 +
∥∥∥∥3

2
νΛ− αI

∥∥∥∥
2

2

)−1

, ε2 :=
1
16

min
{
6, Λ2

min
}

.(98)

Then, for all ρ > ρs, the bounded sets Bs := {u ∈ Ds : Q−
s (u) ≤ ρ2} are absorbing in Ds.

Proof. Let A := −Δ + I and take the inner product of (89) with Aq to obtain

1
2
dt‖q‖2H1

w
+

1
2
ν
∥∥Λ 1

2 q
∥∥2

H1
w

+
3
4
ν2dt‖∂xw‖2H1

∂w
+

9
4
ν3∥∥Λ 1

2 ∂xw
∥∥2

H1
∂w

+
1
8
ν2dt‖Λw‖2H1

w

+
3
8
ν3‖Λ 3

2 w‖2H1
w
− ν2(Λ2MJ8f(v), Aq

)
L2

w
= 0.

This equality, along with the inequalities (87) and (88) derived in the proof of Theorem 6.2
and the same values of ε1, . . . , ε4 therein, implies that

dtQs ≤ −2
3
τmax

∥∥Φ 1
2 v
∥∥2

L2
v
− θ

(
1
2
γ−1

max − ε

)
‖Γb‖2L2

i
− 3

4
(
θγmin − 2γ−2

min

) ‖Γi‖2L2
i
− ν
∥∥Λ 1

2 q
∥∥2

H1
w

− 3ν

(
3
2
ν2‖Λ 1

2 ∂xw‖2H1
∂w

+
1
4
ν2
([

Λ3 − 2
3

θe2

ν3ε
JT

6 Υ2J6

]
w, w

)
H1

w

)

+ 2ν2(Λ2MJ8f(v), Aq
)
L2

w
+ β,

where

Qs(u) :=
∥∥Φ 1

2 v
∥∥2

L2
v

+ θ‖b‖2L2
i
+

1
4
θ‖Γi‖2L2

i
+ ‖q‖2H1

w
+

3
2
ν2‖∂xw‖2H1

∂w
+

1
4
ν2‖Λw‖2H1

w
,

β :=
4θe2

γ−1
max − 2ε

[
|Ω|(F2

e
+ F2

i
)‖ΥNJ7‖22 + ‖Υ‖22‖g‖2L∞(0,∞;L2

i )

]
,
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and ε takes values within the range given by (83). Now, using similar arguments as in the
proof of Theorem 6.2, it follows from assumptions (i) and (ii) with θ > 2γ−3

min that

dtQs(u) ≤ −αsQs(u) + 2ν2(Λ2MJ8f(v), Aq
)
L2

w
+ β,(99)

where the decay rate αs is given by (96). Then, Grönwall’s inequality [51, sect. III.1.1.3.]
implies

Qs(u(t)) ≤ Qs(u(0))e−αst + 2ν2
∫ t

0

(
Λ2MJ8f(v), Aq

)
L2

w
eαs(s−t)ds +

β

αs

(
1− e−αst

)
.(100)

Replacing q := dtw + 3
2νΛw in the integral term in the above inequality and integrating

by parts yields∫ t

0

(
Λ2MJ8f(v), Aq

)
L2

w
eαs(s−t)ds = −

∫ t

0

(
Λ2MJ8dsf(v), Aw

)
L2

w
eαs(s−t)ds

+
∫ t

0

(
Λ2MJ8f(v),

(
3
2
νΛ− αsI

)
Aw

)
L2

w

eαs(s−t)ds

+
(
Λ2MJ8f(v), Aw

)
L2

w
− (Λ2MJ8f(v0), Aw0

)
L2

w
e−αst.

Next, noting that dsf(v) = ∂vf(v)dsv and supve(x,t)∈R |∂ve
fe(ve)| ≤ Fe

2
√

2σe

by (45), it follows
that, for every ε1, ε2 > 0,∫ t

0

(
Λ2MJ8f(v), Aq

)
L2

w
eαs(s−t)ds ≤ ε1

(
1 +

∥∥∥∥3
2
νΛ− αsI

∥∥∥∥
2

2

)∫ t

0
‖Aw‖2L2

w
eαs(s−t)ds

+
1

32ε1

F2
e

σ2
e

tr(Λ4M2)
∫ t

0
‖dsv‖2L2

v
eαs(s−t)ds

+ ε2‖Aw‖2L2
w

+
1
4
|Ω|F2

e
tr(Λ4M2)

(
1

αsε1
+

1
ε2

)

− (Λ2MJ8f(v0), Aw0
)
L2

w
e−αst.

Moreover, it follows from Theorem 6.2 that for every bounded set B ⊂ Ds there exists a
time tw(B), given by (86), and positive constants η1 and η2 such that ‖v(t)‖2L2

v
≤ η1ρ

2
w and

‖i(t)‖2L2
i
≤ η2ρ

2
w for all t ≥ tw(B). Therefore, using the estimate (69), we can write

∫ t

0
‖dsv‖2L2

v
eαs(s−t)ds ≤

∫ tw(B)

0
‖dsv‖2L2

v
eαs(s−t)ds +

1
αs

ηρ2
w(1 + ρ2

w)(101)

≤ κ0(B)e−αst +
1
αs

ηρ2
w(1 + ρ2

w),

where η is a positive constant and, for some α > 0,

κ0(B) := α

∫ tw(B)

0

(
‖v(s)‖2L2

v
+ ‖i(s)‖2L2

i
+ ‖v(s)‖2L2

v
‖i(s)‖2L2

i

)
eαssds <∞.
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Now, using the above estimate for the integral term in (100) with ε1 and ε2 given by (98)
yields

Q−
s (u)eαst ≤ 1

2
αs

∫ t

0
Q−

s (u)eαssds + κ(B) +
βs

αs
eαst,(102)

where βs := β +2ν2[ 1
32ε1

F2
e

σ2
e

tr(Λ4M2)ηρ2
w(1+ρ2

w)+ 1
4 |Ω|F2

e
tr(Λ4M2)( 1

ε1
+ αs

ε2
)] as given in (97),

Q−
s (u) is given in (95), and

κ(B) := Q+
s (u(0)) + 2ν2

[
1

32ε1

F2
e

σ2
e

tr(Λ4M2)κ0(B)− (Λ2MJ8f(v0), Aw0
)
L2

w

]
− β

αs
,

Q+
s (u) :=

∥∥Φ 1
2 v
∥∥2

L2
v

+ θ‖b‖2L2
i
+

1
4
θ‖Γi‖2L2

i
+ ‖q‖2H1

w
+

1
4
ν2 max

{
6, Λ2

max
} ‖Aw‖2L2

w
.

Next, using Grönwall’s inequality for the function
∫ t
0 Q−

s (u)eαssds in (102) gives∫ t

0
Q−

s (u)eαssds ≤ 1
1
2αs

[
κ(B)

(
e

1
2αst − 1

)
+

βs

αs

(
eαst − e

1
2αst
)]

,

which along with (102) implies

Q−
s (u) ≤ κ(B)e− 1

2αst + ρ2
s

(
1− 1

2
e− 1

2αst

)
,(103)

where lim supt→∞ Q−
s (u(t)) ≤ ρ2

s := 2βs
αs

.
Finally, considering the linear isomorphism (94) over Us, it follows that for every bounded

set B ⊂ Ds there exists R > 0 such that κ(B) ≤ R2 for all u0 ∈ B. Therefore, (103) implies
that Ss(t)B ⊂ Bs for all t ≥ ts(B) and some ts(B) > 0, which completes the proof.

Note that an estimate similar to (86) given in Theorem 6.2 can also be obtained for ts(B)
in the proof of Theorem 6.3. However, this would be of limited practical value since the bound
(101) is very conservative for times t � tw(B).

Remark 6.4 (Conditions on parameter sets). For the range of values given in Table 1,
the maximum value that the left-hand side of the inequalities in assumptions (i) and (ii)
of Theorems 6.2 and 6.3 may take is 39.4083 θ, which is achieved when Υee = 2, Υei = 2,
Λee = 0.1, Λei = 0.1, ν = 100, and γmax = 1000. Assumptions (i) and (ii) then require
that θ < 1

39.4083 = 0.0254. Moreover, Theorems 6.2 and 6.3 allow for θ > 2γ−3
min ≥ 0.002, in

accordance with Table 1. This implies that—for the entire range of values that the biophysical
parameters of the model may take—the conditions imposed by Theorems 6.2 and 6.3 are
satisfied at least for any 0.002 < θ < 0.0254, and the model (2) possesses bounded absorbing
sets as given by these theorems.

7. Existence and nonexistence of a global attractor. In this section, we investigate the
problem of existence of a global attractor for the semigroups {Sw(t) : Dw → Dw}t∈[0,∞) and
{Ss(t) : Ds → Ds}t∈[0,∞) of solution operators of (4)–(7). First, we recall the definition of a
global attractor, and a widely used theorem for establishing the existence of a global attractor.
See [25, Chap. 1] for the motivation behind this definition, and [25, Chap. 3] for further results.
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Definition 7.1 (Attracting set [7, Def. II.2.4]). A set P in a complete metric space D is
called an attracting set for a semigroup {S(t)}t∈[0,∞) acting in D if, for every bounded set
B ∈ D, distD(S(t)B,P) → 0 as t → ∞. Here, distD(G ,H ) := supg∈G infh∈H ‖g − h‖D is
the Hausdorff distance between the two sets G ,H ⊂ D.

Definition 7.2 (Global attractor [7, Def. II.3.1]). A bounded set A in a complete metric
space D is called a global attractor for a semigroup {S(t)}t∈[0,∞) acting in D if it satisfies the
following conditions:

(i) A is compact in D,
(ii) A is an attracting set for {S(t)}t∈[0,∞),
(iii) A is strictly invariant with respect to {S(t)}t∈[0,∞), that is, S(t)A = A for all t ∈

[0,∞).

Definition 7.3 (Asymptotic compactness [7, Def. II.2.5]). The semigroup {S(t)}t∈[0,∞) act-
ing in a complete metric space D is called asymptotically compact if it possesses a compact
attracting set K � D.

Theorem 7.4 (Global attractor [7, Thm. II.3.1]). Let {S(t)}t∈[0,∞) be an asymptotically
compact continuous semigroup in a complete metric space D, possessing a compact attracting
set K � D. Then {S(t)}t∈[0,∞) has a global attractor A ⊂ K given by A = ω(K ), where
ω(K ) is the ω-limit set of K .

7.1. Challenges in establishing a global attractor. In this section, we discuss some of
the standard approaches available in the literature for establishing a global attractor based
on Theorem 7.4, and identify reasons that make these approaches rather unpromising for the
model (4)–(6).

Continuity of {Sw(t)}t∈[0,∞) and {Ss(t)}t∈[0,∞), as required by Theorem 7.4, is established
in Propositions 5.1 and 5.2, respectively. To prove asymptotic compactness of a semigroup
{S(t)}t∈[0,∞) acting in D, a general approach is to first show that the semigroup possesses a
bounded absorbing set and then to show that the semigroup is κ-contracting, meaning that
limt→∞ κ(S(t)B) = 0 for any bounded set B ∈ D, where κ denotes the Kuratowski measure
of noncompactness; see [38, 56] and [25, Chap. 3]. An effective way to establish the latter
property is through a decomposition S(t) = S1(t) + S2(t) such that for every bounded set
B ∈ D the component S1(t)B converges uniformly to 0 as t → ∞, and the component
S2(t)B is κ-contractive or is precompact in D for large t [47, 51].

As the first step towards proving the asymptotic compactness property stated above,
existence of bounded absorbing sets for {Sw(t)}t∈[0,∞) and {Ss(t)}t∈[0,∞) is established in
Theorems 6.2 and 6.3, respectively. However, it turns out that the κ-contracting property is
hard to achieve for the model (4)–(6) with parameter values in the range given in Table 1,
due to the lack of space-dissipative terms in the ODEs (4) and (5), the nature of nonlinear
couplings in (4) and (5), and the range of values of the biophysical parameters of the model.

The uniform compactness of the component S2(t) in the decomposition approach stated
above is usually verified by establishing energy estimates in more regular function spaces and
then deducing compactness from compact embedding theorems. This approach, although
successfully used in [39] to prove existence of a global attractor for a coupled ODE-PDE
reaction-diffusion system, is not very promising here. In [39], the ODE subsystem is linear
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and the energy estimates in a higher regular space are achieved by taking space derivatives
of the ODEs and constructing energy functionals for the resulting equations. As seen in the
proof of Theorem 6.2, the nonnegativity of i(x, t) is a key property that permits elimination
of the sign-indefinite quadratic term in the energy equation of (4), which results in the en-
ergy variation inequality (87). This nonnegativity property, however, is not preserved in the
derivative or any other variations of i(x, t), leaving some sign-indefinite quadratic terms in the
analysis. Moreover, it can be observed from the range of parameter values given in Table 1
that the sign-indefinite nonlinear terms that would appear in the energy equations of any
variations of (4) and (5) have significantly larger coefficients compared with the sign-definite
dissipative terms. This makes it challenging to balance the terms in the energy functional in
order to absorb the nondissipative terms into dissipative ones. Finally, the nonlinear terms
appearing in (4) and (5) do not satisfy the usual assumptions, as in, e.g., [14, sect. 11.1],
that enable shaping the energy functional to eliminate the nondissipative terms that would
otherwise appear in the equations.

Some other techniques are available in the literature to avoid energy estimations in higher
regular spaces. In [38], for instance, the notion of ω-limit compactness is used to develop
necessary and sufficient conditions for existence of a global attractor. This is accomplished
by decomposing the phase space into two spaces, one of which is finite-dimensional, and
then showing that for every bounded set B ⊂ D the canonical projection of S(t)B onto
the finite-dimensional space is bounded, and the canonical projection on the complement
space remains arbitrarily small for sufficiently large t ≥ t0 for some t0 = t0(B) > 0. These
decomposition techniques, however, rely on the spectral decomposition of the space-acting
operators to construct the desired phase space decomposition. Such operators do not exist in
the ODE subsystems (4) and (5) in our problem.

7.2. Nonexistence of a global attractor. As discussed in section 7.1, establishing a global
attractor for (4)–(6) is a challenging problem. In fact, in this section we show that there exist
sets of parameter values, leading to physiologically reasonable behavior in the model, for which
the semigroups {Sw(t)}t∈[0,∞) and {Ss(t)}t∈[0,∞) do not possess a global attractor.

We first use [14, Prop. 11.11] to prove Theorem 7.5 below, which gives sufficient conditions
for noncompactness of the equilibrium sets of (4)–(6) in Uw and Us. However, before embarking
on the technical details of this theorem, we delineate the main idea using the following intuitive
discussion.

Assume that the ODE components (4) and (5) are decoupled from the PDE component
(6) by freezing w(x, t) in space and time in (5). In this case, (4) and (5) can be viewed
pointwise as an uncountable set of dynamical systems governed by ODEs that are enumerated
by points x ∈ Ω. To distinguish this pointwise view, let (vx(t), ix(t)) denote the solution of the
dynamical system located at x ∈ Ω, in contrast with (v(x, t), i(x, t)) that denotes the solution
of the decoupled ODEs (4) and (5) defined over Ω. Note that the pointwise-defined dynamical
systems are fully decoupled from each other, which means the solutions (vx(t), ix(t)) and
(vy(t), iy(t)) evolve totally independently in time for every x 
= y ∈ Ω.

Now, assume further that the decoupled ODE system (4) and (5) possesses more than one
equilibrium, two of which are denoted by (ve, ie) and (v0, i0). Then, all pointwise defined dy-
namical systems correspondingly possess more than one equilibrium, in particular (vxe, ixe) =
(ve(x), ie(x)) and (vx0, ix0) = (v0(x), i0(x)) for the system located at x. This implies that
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the solutions (vx(t), ix(t)) can converge independently to different values at different points
x ∈ Ω. Therefore, when composed together, they form a solution (v(x, t), i(x, t)) for the de-
coupled ODE system (4) and (5), which can possibly develop drastic discontinuities over Ω as
it evolves in time. Note that such discontinuities in the solutions can occur even though the
initial values are smooth. Moreover, it follows in particular that the ODE system (4) and (5)
possesses an uncountable discrete equilibrium set. In fact, any function composed arbitrarily
of either values (vxe, ixe) and (vx0, ix0) at each point x ∈ Ω would be an equilibrium.

The idea of Theorem 7.5 is to prove that the space-smoothing effect of the coupling with
the PDE component (6) is not sufficiently strong to rule out the discontinuities of the above
nature in (v, i) and, in particular, having a noncompact equilibrium set. Define the mappings

Pv(v, i) := v − J1i + J2viTΨJ4 + J3viTΨJ5,(104)

Pi(v, i) := (eΥ)−1Γi−NJ7f(v)− g,

and let (ve, ie, we) be an equilibrium of (4)–(6), that is, Pv(ve, ie) = 0 and Pi(ve, ie) = J6we.
Assume that there exists (v0, i0) 
= (ve, ie) such that Pv(v0, i0) = 0 and Pi(v0, i0) = Pi(ve, ie).
In this case, (ve, ie) and (v0, i0) are both equilibria of the system (4) and (5) if we assume that it
is decoupled from (6) by freezing w at w = we. Therefore, motivated by the discussion above,
we can construct a new equilibrium (v̄, ī) for this decoupled system by letting (v̄, ī) = (v0, i0)
over an arbitrary set Ω0, and (v̄, ī) = (ve, ie) over the complement set Ωe. This construction
is illustrated in Figure 4.

Since w is not actually frozen at w = we, the function (v̄, ī) is not necessarily a component
of a new equilibrium of the coupled system (4)–(6). However, if it is certain that w remains
close to we, then we can expect that there exists a new equilibrium (v∗, i∗, w∗) of (4)–(6) whose
component (v∗, i∗) is close to (v̄, ī). Since the w-component of an equilibrium of (4)–(6) is
continuous over Ω, we may postulate that, provided the sets Ω0 are sufficiently small, updating
(ve, ie) by (v̄, ī) in the equilibrium equations would not greately deviate the w-component from

Ωe 

Ω0 
Ω 

(v e,i e)

(v 0,i 0)

( , )v i
( , )v i

Figure 4. Illustrative construction of new equilibria as given by Theorem 7.5. To avoid unnecessary
complexity in the graph, only one representative curve out of the six curves in the (v, i) components of the
solutions is shown.
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we and the above expectation is satisfied. This postulation is indeed true, and it is proved
in Theorem 7.5 that under certain conditions a new equilibrium (v∗, i∗, w∗) exists such that
(v∗, i∗) are arbitrarily close to (v̄, ī) provided Ω0 is sufficiently small. The proof is relatively
involved and constitutes the core part of the proof of Theorem 7.5. It relies strongly on the
L∞

w -boundedness of the space-acting operator A−1 that appears in the equilibrium equations,
and on assumption (iv) of Theorem 7.5. Figure 4 gives an illustration of the component (v∗, i∗)
lying uniformly closer than ε to (v̄, ī).

Finally, the noncompactness of the equilibrium set of (4)–(6) follows if we show that the
existence of equilibria (v∗, i∗, w∗) is uniform with respect to the shape of the sets Ω0, that is,
as long as only the size of Ω0 is smaller than a uniform bound. In this case, we take ε small
enough such that the distance between (ve(x), ie(x)) and (v0(x), i0(x)) is larger than 3ε. Then,
for any two sufficiently small sets Ω̃0 and Ω̂0, we can construct new equilibria as discussed
above, having components closer than ε to their associated estimates (v̄, ī). It can be observed
from Figure 4 that the associated components (v∗, i∗) of these two equilibria would certainly
be at a distance larger than ε from each other, at least on the difference between the two sets
Ω̃0 and Ω̂0. Therefore, since this construction is independent of the shape of the sets Ω̃0 and
Ω̂0 and we have uncountably different choices for these sets, it follows that we can construct
an uncountable set of disjoint equilibria. This implies noncompactness of the equilibrium set
of (4)–(6). Theorem 7.5 below gives rigorous arguments for the above discussion.

Theorem 7.5 (Noncompactness of equilibrium sets). Suppose g is bounded and constant in
time, that is, g(x, t) = g(x) for all (x, t) ∈ Ω × [0,∞) and g ∈ L∞

i . Let ue := (ve, ie, 0, we, 0)
be an equilibrium of (4)–(6) such that ve ∈ L∞

v , ie ∈ L∞
i , and we ∈ H2

w. Define the mapping
P = (Pv, Pi) : L∞

v × L∞
i → L∞

v × L∞
i as in (104) and let A := −3

2Δ + Λ2I. Assume that the
following conditions hold.

(i) Λee and Λei take the same values, that is, Λ = ΛeeI2×2 = ΛeiI2×2.
(ii) There exists (v0, i0) ∈ L∞

v × L∞
i such that

ess inf
x∈Ω

‖(ve(x), ie(x))− (v0(x), i0(x))‖∞ > 0

and

Pv(v0, i0) = 0, Pi(v0, i0) = Pi(ve, ie).(105)

(iii) ∂(v,i)P (ve, ie) and ∂(v,i)P (v0, i0) are nonsingular almost everywhere in Ω.
(iv) There exists α > 0 such that, for every b = (bv, bi) ∈ L∞

v ×L∞
i , the system of equations

∂(v,i)Pv(ve, ie)φ = bv,(106)

∂(v,i)Pi(ve, ie)φ− J6A
−1Λ2MJ8∂vf(ve)φv = bi

has a unique solution φ = (φv, φi) ∈ L∞
v × L∞

i that satisfies

‖φ‖L∞
v ×L∞

i
≤ α‖b‖L∞

v ×L∞
i

.(107)

Then, for a measurable partition Ω = Ωe ∪ Ω0 and

v̄ := veχΩe + v0χΩ0 , ī := ieχΩe + i0χΩ0 ,(108)
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the following assertions hold.
(I) For every ε > 0 there exists δ > 0 and an equilibrium u∗ := (v∗, i∗, 0, w∗, 0) of (4)–(6)

such that

‖(v∗, i∗)− (v̄, ī)‖L∞
v ×L∞

i
≤ ε whenever |Ω0| ≤ δ.

(II) The equilibrium sets of (4)–(6) are noncompact in Us and Uw.

Proof. The proof is organized in three steps.
Step 1. We show that there exists ᾱ > 0 such that, for every b = (bv, bi) ∈ L∞

v × L∞
i , the

system of equations

∂(v,i)Pv(v̄, ī)φ = bv,(109)

∂(v,i)Pi(v̄, ī)φ− J6A
−1Λ2MJ8∂vf(v̄)φv = bi

has a unique solution φ ∈ L∞
v × L∞

i that satisfies ‖φ‖L∞
v ×L∞

i
≤ ᾱ‖b‖L∞

v ×L∞
i

. This provides
the required conditions of the implicit function theorem that is used in Step 2 to prove the
existence of the equilibrium u∗. The proof proceeds by iteratively constructing a solution by
starting from the solution of (106) and applying certain corrections at each iteration.

Let φ(0) = (φ(0)
v , φ

(0)
i ) be the solution of (106) for a given b ∈ L∞

v × L∞
i and construct an

approximate solution for (109) of the form φ(1) := φ(0) + φ
(1)
r , where φ

(1)
r = (φ(1)

rv , φ
(1)
ri ) is the

unique solution of

∂(v,i)P (v0, i0)φ(1)
r =

(
∂(v,i)P (ve, ie)− ∂(v,i)P (v0, i0)

)
φ(0)χΩ0 .(110)

Note that by assumption (iii) the unique solution φ
(1)
r exists and belongs to L∞

v × L∞
i . The

approximate solution φ(1) solves

∂(v,i)Pv(v̄, ī)φ(1) = bv,

∂(v,i)Pi(v̄, ī)φ(1) − J6A
−1Λ2MJ8∂vf(v̄)φ(1)

v = bi + b(1)
ri

,

where b
(1)
r = (0, b

(1)
ri ),

b(1)
ri

:= J6A
−1Λ2MJ8

[
(∂vf(ve)− ∂vf(v0)) φ(0)

v − ∂vf(v0)φ(1)
rv

]
χΩ0(111)

is the remainder resulting from the approximation error in φ(1).
Now, note that by assumption (iv) there exists α0 := α > 0 such that

‖φ(0)‖L∞
v ×L∞

i
≤ α0‖b‖L∞

v ×L∞
i

.(112)

Moreover, since by assumption (ii) we have (v0, i0) ∈ L∞
v × L∞

i , it is immediate from the
definition of Pv and Pi, given by (104), that ∂(v,i)P (v0, i0) is bounded. This, along with

assumption (iii) and (112), implies that the solution φ
(1)
r of (110) satisfies∥∥φ(1)

r
∥∥

L∞
v ×L∞

i
≤ ζ1

∥∥φ(0)∥∥
L∞

v ×L∞
i
≤ α1‖b‖L∞

v ×L∞
i

(113)

for some ζ1, α1 > 0.
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Next, note that since A−1 : L2
w → H2

w is a bounded operator and f is smooth, the
definition of b

(1)
ri , given by (111), implies that b

(1)
ri ∈ H2

per(Ω; R4). Moreover, it further implies

by the Sobolev embedding theorems [9, Thm. 6.6-1] that b
(1)
ri ∈ C0,λ

per(Ω, R4) for all λ ∈ (0, 1)
and, in particular, ‖b(1)

ri ‖L∞
i
≤ ζ2‖b(1)

ri ‖H2
per(Ω;R4) for some ζ2 > 0. Therefore, using (112) and

(113), there exist ζ3, ζ4, ζ5, β1 > 0 such that

∥∥b(1)
r
∥∥

L∞
v ×L∞

i
≤ ζ2

∥∥b(1)
ri

∥∥
H2

per(Ω;R4) ≤ ζ3

(∥∥φ(0)
v

∥∥
L2

v
+
∥∥φ(1)

rv

∥∥
L2

v

)
(114)

≤ ζ4
∥∥φ(0)∥∥

L2
v×L2

i
≤ ζ5|Ω0| 12

∥∥φ(0)∥∥
L∞

v ×L∞
i

≤ β1|Ω0| 12
∥∥b∥∥L∞

v ×L∞
i

.

Now, for m = 2, 3, . . . , let φ(m) := φ(m−1) + φ
(m)
r , where φ

(m)
r is the unique solution of

∂(v,i)P (v0, i0)φ(m)
r = −b(m−1)

r χΩ0 .

It follows immediately that, for some η > 0,∥∥φ(m)
r
∥∥

L∞
v ×L∞

i
≤ η

∥∥b(m−1)
r

∥∥
L∞

v ×L∞
i

, m = 2, 3, . . . .(115)

Moreover, φ
(m)
r solves the system of equations

∂(v,i)Pv(v̄, ī)φ(m) = bv,

∂(v,i)Pi(v̄, ī)φ(m) − J6A
−1Λ2MJ8∂vf(v̄)φ(m)

v = bi + b(m)
ri

,

where

b(m)
ri

:= −J6A
−1Λ2MJ8∂vf(v0)φ(m)

rv
χΩ0 , m = 2, 3, . . . .

Using the Sobolev embedding theorems and (115), the remainder b
(m)
r = (0, b

(m)
ri ) satisfies, for

some ζ6, ζ7, ζ8, β > 0,
∥∥b(m)

r
∥∥

L∞
v ×L∞

i
≤ ζ6

∥∥b(m)
ri

∥∥
H2

per(Ω;R4) ≤ ζ7
∥∥φ(m)

r
∥∥

L2
v×L2

i
≤ ζ8|Ω0| 12

∥∥φ(m)
r
∥∥

L∞
v ×L∞

i

≤ β|Ω0| 12
∥∥b(m−1)

r
∥∥

L∞
v ×L∞

i
, m = 2, 3, . . . ,

which, letting κ := β|Ω0| 12 and recalling (114), implies

∥∥b(m)
r
∥∥

L∞
v ×L∞

i
≤ β1|Ω0| 12 κ(m−1)‖b‖L∞

v ×L∞
i

, m = 2, 3, . . . .(116)

Now, let |Ω0| < δ̄, δ̄ > 0, and choose δ̄ such that κ < 1. Note that β, and consequently
the choice of δ̄ and the value of κ, do not depend on b and the specific form of the partition
Ω = Ωe ∪ Ω0. Therefore, it follows that ‖b(m)

r ‖L∞
v ×L∞

i
→ 0 as m → ∞, and hence φ(m)

converges to a solution φ for (109) when |Ω0| < δ̄. Moreover, (112)–(116) imply
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∥∥φ(m)∥∥
L∞

v ×L∞
i
≤ ∥∥φ(0)∥∥

L∞
v ×L∞

i
+
∥∥φ(1)

r
∥∥

L∞
v ×L∞

i
+

m∑
l=2

∥∥φ(l)
r
∥∥

L∞
v ×L∞

i

≤
[
α0 + α1 + ηβ1|Ω0| 12

m∑
l=2

κ(l−2)

]
‖b‖L∞

v ×L∞
i

,

and hence, taking the limit as m → ∞, there exists ᾱ > 0, independent of the form of the
partition, such that

‖φ‖L∞
v ×L∞

i
≤ ᾱ‖b‖L∞

v ×L∞
i

.(117)

To prove that the solution constructed above for (109) is unique, first note that by as-
sumption (i) the operator A becomes a scalar operator given by A = (−3

2Δ + Λ2
ee

I). Then,
considering the structure of the matrix parameters given by (8) and reinspecting the ex-
panded form (2), the system of equations (109) can be transformed to a system composed of
five algebraic equations and one PDE by pre-multiplying the second equation in (109) by the
elementary matrix ⎡

⎢⎢⎢⎣
1 0

−Mei

Mee

1
02×2

02×2 I2×2

⎤
⎥⎥⎥⎦.

This follows from the fact that the scalar operator (−3
2Δ + Λ2

ee
I)−1 acts only on one of the

unknowns, namely, φve
. Now, since ∂(v,i)P (v̄, ī) is nonsingular by assumption (iii), the five

unknowns φi = (φiee , φiei , φiie , φiii) and φvi
can be uniquely determined in terms of φve

by
elementary algebraic operations. Consequently, (109) is reduced to a scalar PDE of the form

p(v̄, ī)φve
−
(
−3

2
Δ + Λ2

ee
I

)−1

Λ2
ee

Mee∂ve
f(v̄e)φve

= ĥ,

where ĥ ∈ L∞
per(Ω, R) is given by the same elementary operations on b, and p(v̄, ī) is nonzero

almost everywhere in Ω, since elementary operations do not disrupt the nonsingularity of
∂(v,i)P (v̄, ī).

Next, dividing by p(v̄, ī), the above equation can be written as

(I −K)φve
= h,(118)

where K := p(v̄, ī)−1Λ2
ee

Mee∂ve
f(v̄e)(−3

2Δ + Λ2
ee

I)−1 and h := p(v̄, ī)−1ĥ. The operator
K : L2

per(Ω, R) → L2
per(Ω, R) is linear, self-adjoint, and compact by the Rellich–Kondrachov

compact embedding theorems [9, Thm. 6.6-3]. The existence of solutions of (109) proved above
guarantees the existence of a solution φve

∈ L∞
per(Ω, R) for every h ∈ L∞

per(Ω, R), which implies
L∞

per(Ω, R) ⊂ Range(I−K). However, Range(I−K) = Kernel(I−K∗)⊥ = Kernel(I−K)⊥ by
the Fredholm alternative [16, Thm. 5, App. D], and hence L∞

per(Ω, R)∩Kernel(I −K) = {0}.
This proves the uniqueness of bounded solutions of (118), and consequently the uniqueness
of solutions of (109) for every b = (bv, bi) ∈ L∞

v × L∞
i .
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Step 2. We prove assertion (I) using the implicit function theorem. Note that since
ue := (ve, ie, 0, we, 0) is an equilibrium of (4)–(6), we have

Pv(ve, ie) = 0, Pi(ve, ie) = J6we, we = A−1Λ2MJ8f(ve).(119)

We seek an equilibrium u∗ := (v∗, i∗, 0, w∗, 0) such that

v∗ = v̄ + φv, i∗ = ī + φi,

where φ := (φv, φi) ∈ L∞
v × L∞

i is a small corrector function that satisfies

Pv(v∗, i∗) = 0, Pi(v∗, i∗) = J6w
∗, w∗ = A−1Λ2MJ8f(v∗).(120)

Note that (105), (108), and (119) imply

Pv(v̄, ī) = 0, Pi(v̄, ī) = J6we, ve = v̄ − (v0 − ve)χΩ0 .

Therefore, the system of equations (120) is equivalent to

Pv(v̄ + φv, ī + φi)− Pv(v̄, ī) = 0,(121)

Pi(v̄ + φv, ī + φi)− Pi(v̄, ī) = J6A
−1Λ2MJ8

(
f(v̄ + φv)− f(v̄ − (v0 − ve)χΩ0)

)
,

which, by the implicit function theorem [9, Thm. 7.13-1], has a unique solution φ ∈ L∞
v ×L∞

i ,
since (109) has a unique solution in L∞

v × L∞
i for every b ∈ L∞

v × L∞
i , as proved in Step 1.

Moreover, it is immediate from the definition of the Fréchet derivative of the mappings Pi and
Pv that the solution of (121) is arbitrarily close to the solution of (109) with

b := (0, J6A
−1Λ2MJ8∂vf(v̄)(v0 − ve))χΩ0 ,

provided these solutions are sufficiently small. This is ensured by (117) for small |Ω0|, since
‖b‖L∞

v ×L∞
i
≤ ζ|Ω0| 12 for some ζ > 0. Therefore, it follows that assertion (I) holds for some

δ = δ(ε) ≤ δ̄.
Step 3. We prove assertion (II) using the fact that δ = δ(ε) > 0 in assertion (I) is

independent of the specific form of the partition Ω = Ωe ∪ Ω0. Figure 4 can be used to
visualize the arguments of the proof.

Let

ε :=
1
3

ess inf
x∈Ω

‖(ve(x), ie(x))− (v0(x), i0(x))‖∞ > 0(122)

in assertion (I), and let δ = δ(ε) > 0 be the corresponding bound on the size of the partitions
that satisfies the result of assertion (I). Note that ε > 0 by assumption (ii). Moreover, let
M (Ω) denote the set of all measurable subsets of Ω and define

Pδ(Ω) := {(Ωe, Ω0) ∈M (Ω)×M (Ω) : Ωe = Ω \ Ω0, |Ω0| ≤ δ}.

Let Θδ(Ω) ⊂ Pδ(Ω) such that, for every θ̃ = (Ω̃e, Ω̃0) ∈ Θδ(Ω) and θ̂ = (Ω̂e, Ω̂0) ∈ Θδ(Ω), we
have |Ω̃0 � Ω̂0| > 1

2δ. Note that Θδ(Ω) is an uncountable set that can be viewed as an index
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set enumerating all measurable partitions Ω = Ωe ∪ Ω0, |Ω0| ≤ δ, which are distinct in the
sense of measure by a factor of at least 1

2δ.
Now, it follows from assertion (I) that, for every θ̃ 
= θ̂ ∈ Θδ(Ω), there exist equilibria

uθ̃ := (vθ̃, iθ̃, 0, wθ̃, 0) and uθ̂ := (vθ̂, iθ̂, 0, wθ̂, 0) such that

ess sup
x∈(Ω̃e∩Ω̂0)

‖(vθ̂(x), iθ̂(x))− (v0(x), i0(x))‖∞ ≤ ε,

ess sup
x∈(Ω̃0∩Ω̂e)

‖(vθ̂(x), iθ̂(x))− (ve(x), ie(x))‖∞ ≤ ε,

ess sup
x∈(Ω̃e∩Ω̂0)

‖(vθ̃(x), iθ̃(x))− (ve(x), ie))‖∞ ≤ ε,

ess sup
x∈(Ω̃0∩Ω̂e)

‖(vθ̃(x), iθ̃(x))− (v0(x), i0))‖∞ ≤ ε.

Therefore, noting that Ω̃0� Ω̂0 = (Ω̃0 ∩ Ω̂e)∪ (Ω̃e ∩ Ω̂0) and recalling the definition of ε given
by (122),

ess inf
x∈(Ω̃0�Ω̂0)

‖(vθ̃(x), iθ̃(x))− (vθ̂(x), iθ̂(x))‖∞ ≥ ε,

which further implies

∥∥(vθ̃, iθ̃
)− (vθ̂, iθ̂

)∥∥
L2

v×L2
i
≥∣∣Ω̃0 � Ω̂0

∣∣ 12 ess inf
x∈(Ω̃0�Ω̂0)

∥∥(vθ̃(x), iθ̃(x)
)− (vθ̂(x), iθ̂(x)

)∥∥
∞ >

(
1
2
δ

) 1
2

ε.

Since θ̃ and θ̂ are arbitrary, it follows that the set E := {uθ}θ∈Θδ(Ω) composed of the equilibria
uθ constructed as above is an uncountable discrete subset of the equilibrium sets of (4)–(6)
in Us and Uw. This completes the proof.

Remark 7.6 (Alternative assumptions for Theorem 7.5). According to the proof of
Theorem 7.5, some of the assumptions of this theorem can be relaxed or replaced by al-
ternative assumptions as follows.

• Assumption (i) is used to prove the uniqueness of solutions of (109). Without this
assumption, the operator A is not a scalar operator and (109) cannot be reduced to
a scalar PDE using elementary algebraic operations. The operator K representing
the system of PDEs in this case would not be self-adjoint, and hence application of
the Fredholm alternative would not immediately imply uniqueness of the solutions.
However, an alternative assumption to assumption (i) can be made on the adjoint
of the operator K, so that the uniqueness of the solutions of (109) is still ensured
using the Fredholm alternative. We avoid this complication, since the fiber decay scale
constants Λee and Λei are always assumed to be equal in the practical applications of
the model [3].

• In assumption (ii), it suffices to have ess infx∈X ‖(ve(x), ie(x) − (v0(x), i0(x))‖∞ > 0,
where X is any measurable subset of Ω with positive measure. Correspondingly, it
suffices that the nonsingularity in assumption (iii) holds almost everywhere on an open
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subset Y ⊃ X of Ω. In this case, the proof is modified by restricting Pδ(Ω) to its
subset consisting of partitions with Ω0 ⊂ X . The index set Θδ(Ω) remains uncountable,
and the noncompactness result of the theorem holds with no change.

Remark 7.7 (Nonexistence of a global attractor). Suppose that the assumptions of
Theorem 7.5 hold for an input g and an equilibrium ue that further satisfy ie, we > ε1, ε1 > 0,
almost everywhere in Ω and g ∈ Dg, where Dg is given by (77). Note that ue then belongs
to Ds. Then, the equation Pi(ve, ie) = J6we in the equilibrium equations (119) implies that
Pi(ve, ie) ≥ 0, and hence Pi(v0, i0) ≥ 0 in (105). Therefore, it follows from the definition of Pi

given by (104) that every solution i0 of (105) satisfies i0 > ε2, ε2 > 0, almost everywhere in
Ω. Then, by definition of (v̄, ī), given by (108), all equilibria u∗ constructed by assertion (I)
of Theorem 7.5 satisfy i∗ > 0 almost everywhere in Ω when δ is sufficiently small. Also, the
equilibrium equations we = A−1Λ2MJ8f(ve) and w∗ = A−1Λ2MJ8f(v∗) imply that

‖w∗ − we‖L∞
w
≤ β1‖w∗ − we‖H2

w
≤ β2‖v∗ − ve‖L2

v

for some β1, β2 > 0, and hence w∗ > 0 almost everywhere in Ω, when δ is sufficiently small.
Therefore, assertion (II) of Theorem 7.5 ensures existence of a biophysically plausible
noncompact set of equilibria E ⊂ Ds ⊂ Dw. This, in particular, implies that in the case
where the assumptions of Theorem 7.5 are satisfied for some ue and g as given above, the
semigroups {Sw(t) : Dw → Dw}t∈[0,∞) and {Ss(t) : Ds → Ds}t∈[0,∞) are not asymptotically
compact, and hence they do not possess a global attractor.

The assumptions of Theorem 7.5 are relatively straightforward to check for the space-
homogeneous equilibria of (4)–(6). Consider the set of values given in Table 2 for the param-
eters of the model, which are suggested in [3, Table VI, col. 2] as a set of parameter values
leading to physiologically reasonable behavior of the model. The parameters ḡee, ḡei, ḡie,
and ḡii are the mean values of the physiologically shaped random signals used in [3] as the
subcortical inputs gee, gei, gie, and gii, respectively. Here, we set g(t, x) = (ḡee, ḡei, ḡie, ḡii) for
all x and t, and check the assumptions of Theorem 7.5 for a space-homogeneous equilibrium
of (4)–(6).

Table 2
A set of biophysically plausible parameter values for the model (2) for which Theorem 7.5 implies nonexis-

tence of a global attractor [3, Table VI, col. 2]. The parameters ḡee, ḡei, ḡie, and ḡii are, respectively, the mean
values of the physiologically shaped random inputs gee, gei, gie, and gii used in [3].

Parameter τe τi Vee Vei Vie Vii γee γei

Value 11.787×10−3 138.25×10−3 61.264 51.703 −7.127 −12.679 816.04 261.29

Parameter γie γii Υee Υei Υie Υii Nee Nei

Value 219.09 40.575 0.92695 1.3012 0.19053 0.94921 3893.0 3326.8

Parameter Nie Nii ν Λee, Λei Mee Mei Fe Fi

Value 839.39 682.41 101.78 0.96545 4013.5 1544.3 266.44 300.65

Parameter μe μi σe σi ḡee ḡei ḡie ḡii

Value 30.628 19.383 5.6536 3.3140 83.190 6407.5 0 0
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Assumption (i) holds with Λee = Λee = 0.96545, as given in Table 2. Solving the equations
Pv(ve, ie) = 0, Pi(ve, ie) = J6we, and we = MJ8f(ve), a space-homogeneous equilibrium is
calculated as

ve = (1.9629, 6.5150), ie = (5.2552, 100.2372, 2.4493, 53.5665), we = (821.7136, 316.1760).

Note that the numbers given here should actually be regarded as constant functions over Ω.
Assumption (ii) then holds by finding a solution (v0, i0) 
= (ve, ie) for (105) as

v0 = (10.9417, 7.7148), i0 = (25.9005, 177.5837, 4.0757, 89.1352).

Assumption (iii) also holds with the following nonsingular matrix-valued functions:

∂(v,i)P (ve, ie) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.4294 0 −0.9680 0 1.2754 0
0 7.1635 0 −0.8740 0 1.5138

−199.2222 0 323.8625 0 0 0
−170.2472 0 0 73.8727 0 0

0 −440.3409 0 0 423.0237 0
0 −357.9898 0 0 0 15.7254

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

∂(v,i)P (v0, i0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.9946 0 −0.8214 0 2.5352 0
0 11.4648 0 −0.8508 0 1.6085

−1858.395 0 323.8625 0 0 0
−1588.109 0 0 73.8727 0 0

0 −730.7260 0 0 423.0237 0
0 −594.0680 0 0 0 15.7254

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

To check assumption (iv), note that, for every b = (bv, bi) ∈ L∞
v ×L∞

i , elementary algebraic
operations reduce (106) to

φve
= 0.6287φiee + hve

, φvi
= 0.0521φiee + hvi

,(123)
φiei = 2.4834φiee + hiei , φiie = 0.0543φiee + hiie , φiii = 1.1870φiee + hiii

and the scalar PDE

(I −D)φiee = hiee , D := 0.6060
(
−3

2
Δ + 0.965452I

)−1

,(124)

where h = (hv, hi) ∈ L∞
v ×L∞

i is the result of the same algebraic operations on b. Now, note
that since −Δ is a nonnegative operator in H2

per(Ω; R), it follows from the spectral theory of
bounded linear self-adjoint operators [16, App. D.6] that the spectrum of the operator (I−D) :
L2

per(Ω; R) → L2
per(Ω; R) lies entirely above 1 − 0.6060 × 0.96545−2 = 0.3498 > 0. Therefore,

the PDE (124) has a unique solution φiee ∈ L2
per(Ω; R) for every hiee ∈ L2

per(Ω; R) ⊃ L∞
per(Ω; R),

and hence it follows from (123) that (106) has a unique solution φ = (φv, φi) ∈ L∞
v × L∞

i for
every b ∈ L∞

v × L∞
i .

It remains to check (107). Using the spectral theory of bounded linear self-adjoint opera-
tors and the Cauchy–Schwarz inequality, we can write
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‖φiee‖2L2
per(Ω;R) ≤ 1

0.3498

(
(I −D)φiee , φiee

)
L2

per(Ω;R) = 1
0.3498

(
hiee , φiee

)
L2

per(Ω;R)

≤ 1
0.3498‖hiee‖L2

per(Ω;R)‖φiee‖L2
per(Ω;R).

Therefore, there exists α1 = 1
0.3498 > 0 such that

‖φiee‖L2
per(Ω;R) ≤ α1‖hiee‖L2

per(Ω;R).

Now, using (124) and the Sobolev embedding theorems, we can write, for some α2, α3 > 0,

‖φiee‖L∞
per(Ω;R) ≤ ‖hiee‖L∞

per(Ω;R) + ‖Dφiee‖L∞
per(Ω;R) ≤ ‖hiee‖L∞

per(Ω;R) + α2‖Dφiee‖H2
per(Ω;R)

≤ ‖hiee‖L∞
per(Ω;R) + α3‖φiee‖L2

per(Ω;R) ≤ ‖hiee‖L∞
per(Ω;R) + α1α3‖hiee‖L2

per(Ω;R)

≤
(
1 + α1α3|Ω| 12

)
‖hiee‖L∞

per(Ω;R),

which, along with the algebraic equalities (123), implies (107). Hence, assumption (iv) holds.
It is now implied by Theorem 7.5 that the equilibrium sets of (4)–(6) are noncompact in

Us and Uw. Moreover, it follows immediately from the equilibrium equations (119) and the
definition of Pi given by (104) that, in general, all space-homogeneous equilibria ie and we are
positive and, in particular, belong to DBio ∩ Ds. Therefore, by Remark 7.7, the semigroups
{Sw(t) : Dw → Dw}t∈[0,∞) and {Ss(t) : Ds → Ds}t∈[0,∞) associated with (4)–(6) with parame-
ter values given by Table 2 do not possess a global attractor.

It can be shown by similar calculations as above that the assumptions of Theorem 7.5 are
satisfied by space-homogeneous equilibria of the model for 3 other sets of parameter values
out the 24 sets available in [3, Tables V and VI], namely, the sets given in [3, Table V, col.
2] and [3, Table VI, col. 10 and col. 12]. Moreover, it is likely that these assumptions or
their possible alternatives suggested in Remark 7.6 would also hold for other sets of parameter
values if we consider equilibria ue and inputs g that are not homogeneous over Ω. Checking
the assumptions of Theorem 7.5 in this case is, however, not straightforward.

8. Discussion and conclusion. In this paper, we developed basic analytical results to
establish a global attractor theory for the mean field model of the electroencephalogram
(EEG) proposed by Liley, Cadusch, and Dafilis [36]. We showed that the initial-boundary
value problem associated with the model is well-posed in the weak and strong sense, and
established sufficient conditions for the nonnegativity of the i(x, t) and w(x, t) components of
the solution over the entire time horizon. Moreover, we proved existence of bounded absorbing
sets for semigroups of weak and strong solutions, and discussed the challenges involved in
proving the asymptotic compactness property for these semigroups. Finally, we showed that
the equilibrium sets of the model are noncompact for some physiologically reasonable sets of
parameter values which, in particular, implies nonexistence of a global attractor.

The conditions developed in this paper for ensuring nonnegativity of the solution compo-
nents i(x, t) and w(x, t) over the entire infinite time horizon can be useful for computational
analysis of the model. Without using such mathematical analysis, it is impossible to ensure
that the solutions computed numerically over a finite time horizon are biophysically plausible
since, evidently, negativity might occur for time intervals beyond the finite time horizon of
numerical computations. This fact has been overlooked in most of the available computational
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analysis of the model. However, in these computational studies, the initial values are usually
set equal to a numerically computed space-homogeneous equilibrium of the model, or equal to
zero when no equilibrium is found numerically. In both cases, the preset initial values satisfy
the sufficient conditions developed in section 5.1 of this paper for biophysical plausibility of
the solutions. It is perhaps an intractable problem to specify a set of biophysical initial values
for a model of the EEG; however, analyzing a more diverse set of reasonable initial values sat-
isfying the sufficient conditions developed in section 5.1 can be beneficial in observing different
behaviors of the model.

Existence of bounded absorbing sets is a desirable global property for a model of electrical
activity in the neocortex. As stated in Remark 6.4, the EEG model investigated in this
paper possesses this global property for its entire range of parameter values given in Table 1.
Moreover, this property holds independently of the parameters of the firing rate functions, the
number of intracortical and corticocortical connections, the mean Nernst potentials, and the
membrane time constants, as observed in assumptions (i) and (ii) of Theorems 6.2 and 6.3.

The lack of space-dissipative terms in the ODE components (4) and (5) of the model is
one of the major sources of difficulty in establishing a global attractor. Indeed, as discussed
in section 7.2, the v(x, t) and i(x, t) components of the solution can evolve discontinuously
in space despite continuous evolution of the w(x, t) component. Other than disrupting the
asymptotic compactness property of the semigroups of solution operators, these space irreg-
ularities can predict sharp transitions in the v(x, t) and i(x, t) components of the solution,
which can potentially be problematic in numerical computation of the solutions.

Slight modifications to the model that result in the presence of additional space-dissipative
terms in the ODEs can improve the regularity of the solutions and can be of particular ad-
vantage in numerical computations. The fact that some of the equations of the model appear
as ODEs is partially due to the simplifying assumption of instantaneous conduction through
short-range fibers. Removing such simplifying assumptions, or considering a singularly per-
turbed version of (4) and (5) by artificially including additional diffusion terms εΔ, with
sufficiently small ε, can be considered as potential modifications. Any such modifications
should, however, maintain the neurophysiological plausibility of the model.

The regularization made by appropriate modifications to the model may result in the
possibility of establishing the asymptotic compactness property. However, the analysis in sec-
tion 7.2 suggests that the resulting compact attractor would be of very high dimension for some
sets of parameter values. Based on this observation, we speculate that the noncompactness of
the attracting sets shown in this paper can provide an explanation for the possibility of having
a rich variety of behaviors for this model, some of which are already shown by computational
analysis in the literature; see, for example, [4, 5, 11, 12, 13, 20, 21, 52, 53]. Such diversity of
complicated behaviors is indeed what one would expect from a model of the neocortex, the
part of the brain that is presumed to be responsible for the extremely complicated perceptual
and cognitive functionality of the brain.
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School of Mathematics at Georgia Institute of Technology for his helpful suggestions on some
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