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Abstract

The development of multidimensional NMR spectroscopy enabled an explosion of structural and
dynamical investigations on proteins and other biomacromolecules. Practical limitations on data
sampling, based on the Jeener paradigm of parametric sampling of indirect time domains, have
long placed limits on resolution in the corresponding frequency dimensions. The emergence of
nonuniform sampling (NUS) in indirect time dimensions circumvents those limitations, affording
high resolution spectra from short data records collected in practically realized measurement
times. In addition to substantially improved resolution, NUS can also be exploited to improve
sensitivity, with gains comparable to those obtained using cryogenically cooled probes. We
describe a general approach for acquiring and processing multidimensional NUS NMR data for
improving sensitivity.

Introduction

The proposal by Jean Jeener! to parametrically sample an indirect time domain by repeating
pulsed NMR experiments with an incremented time delay lead to the development of
modern multidimensional NMR experiments. This simple idea nevertheless had profound
impact, because the application of NMR to complex biomolecules that is routine today
would not be possible without the resolution afforded by multiple dimensions. Yet even
early on, it was well appreciated that there were practical limits on the resolution achievable
along indirect dimensions, as the discrete Fourier transform (DFT) requires long data
records for high resolution. The first and still most widely-used method to ameliorate this
sampling limitation is to use linear prediction? (LP) to extrapolate the signal beyond the
measured interval. As simple and powerful as this method is, it is often not robust, especially
for noisy data?.
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LP extrapolation® uses time domain data sampled at uniform intervals as input and
numerically extends the data at the same uniform intervals, and is thus suitable for the DFT.
A more general approach of sampling at nonuniform intervals would enable collection of
data at long evolution times (needed for high resolution) while shortening data collection
times. This requires some method other than the DFT for computing the spectrum of a time
series collected at nonuniform intervals. Barna et al.>*® used maximum entropy (MaxEnt)
reconstruction, a method originally developed” in radio astronomy, in the first demonstration
of this general approach for multidimensional NMR. Appreciation of the power of
nonuniform sampling (NUS) grew considerably with the introduction of radial sampling
methods introduced by Kupce and Freeman®-°. Though their approach used back-projection
to reconstruct the spectrum (and hence is often referred to as projection reconstruction), the
ability of MaxEnt to processes radially-sampled data'® demonstrated that radial sampling is
a special case of the general approach introduced by Barna and colleagues.

Over the past decade, research into optimal strategies for NUS and non-Fourier methods for
spectral reconstruction from NUS data has accelerated. Methods based on /j-norm
minimization (whether via convex optimization or iterative fixed-point methods) are now
commonly referred to as compressed sensing (CS) approaches!!, and important theoretical
work has led to theorems concerning the minimum number of samples needed to reliably
recover a spectrum, and the universality of a sharp phase transition between success and
failure!2. Most of the theoretical work, however, is focused on random sampling (rarely used
in NMR for reasons discussed below) and real-valued data (as opposed to the hypercomplex
signals encountered in NMR). Thus while CS theorems have provided useful guidelines,
they usually do not quantitatively apply to NMR, and thus the number of samples required
for accurate recovery of multidimensional NMR spectra and the dependence on spectral
sparsity need to be determined empirically.

Most reported applications of NUS and non-Fourier spectral reconstruction utilize NUS to
reduce the measuring time required to obtain high resolution in the indirect dimensions!3:14.
It is well known (see especially the work of Rovnyak, Polenova, and Wagner!5-21), however,
that instead of saving measuring time, NUS can be used to improve the sensitivity per unit
time for experiments for which the signal envelope is not constant in time. For an
exponentially decaying sinusoid, sampling evolution times longer than 1.26 7, results in
diminishing sensitivity3:18:22_ Conversely, resolving peaks separated by the natural linewidth
typically requires sampling to an evolution time of 1t 75. NUS affords a bridge between these
seemingly incommensurate criteria: by sampling less frequently beyond evolution times of
1.26 T, but reaching a maximum evolution time of 1 75, the sensitivity per unit measurement
time can be dramatically increased over an experiment that acquires the same number of
indirect dimension samples, sampled uniformly. Using NUS, the time saved for the samples
not acquired is used to perform additional signal averaging for the samples that are acquired,
which are predominantly less than 1.26 75. For methods of spectrum analysis that are linear
or nearly so, the sensitivity gain is given by the intrinsic signal-to-noise ratio (iSNR)
determined in the time domain as defined by Rovnyak and colleagues!?, modified to account
for the number of transients signal-averaged for each tuple of indirect evolution times (7

SWM), jISM2))
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where 75(1) and 7,(2) are the time constants for the signal envelope decay in the indirect
dimensions 1 and 2, n; and m, are the number of elements in the uniform sampling grid
along dimensions 1 and 2, K is a sampling matrix with elements Kj; equal to zero for
indirect time evolution tuples that are not sampled and equal to the number of FIDs
accumulated for tuples that are sampled, and SW(1) and SWA2) are the spectral sweep
widths in dimensions 1 and 2. 7SNR simply captures the signal power in the measured signal
relative to the noise power. Equation [1] is a general expression suitable for comparing the
relative sensitivity of sampling schemes that have an arbitrary number of transients sampled
for each tuple of indirect time evolutions, and is the discrete counterpart of the analytic
expressions given by Rovnyak and colleagues. The use of proportionality rather than
equality reflects the fact the there are many other factors that influence true sensitivity and
are not reflected in the expression, however the proportionality permits comparison of
sampling strategies when all other aspects of the experiment are held fixed. Note that Eq. (1)
corresponds to two parametrically-sampled (indirect) time dimensions; it is easily
generalized to arbitrary dimension. Nonuniform sampling is generally only useful in the
indirect dimensions, i.e. 2D NUS is used for 3D experiments.

A useful way to bias the sampling to evolution times shorter than 1.26 75 is to use
exponential weighting of the sampling density that is related to the decay of the signal
envelope. The term “matched sampling” refers to NUS in which the sampling density is
biased with an exponential decay e~!/7SMP matching the decay of the signal envelope (i.c.,
the decay time of the biased sampling time 7gyp is equal to 73). In ”overmatched
sampling”, a decay rate for the sampling density faster than that of the signal envelope is
used (e.g. 2X overmatched sampling corresponds to Tgvp = 72/2).

Figure 1 depicts 7zSNR for exponentially biased sampling as a function of sampling coverage
(the fraction of indirect time evolution tuples that are sampled from the uniform grid),
assuming 40 Hz linewidths in dimensions 1 and 2 and a fixed number of samples N =128 x
128 or 16384, using sampling density decay constants 7gyp of either zero (uniform
random), 7>, or 75/2 in both indirect dimensions. Values are reported re/ative to the iISNR
for full uniform sampling, or sampling coverage of 1.0. The sampling bandwidth was chosen
so that the maximum increment of 128 corresponds to a bit longer than 1.26 75. “Time
equivalent” iSNR is the iSNR obtained using the same number of FIDs as would be
collected using uniform sampling of the 128 x 128 grid. A nonuniform sample schedule can
be made to be time equivalent to a uniform sample schedule by increasing the number of
transients for FIDs that are collected. This can be done by uniformly increasing the number
of transients by roughly the inverse of the sample coverage (e.g. a 25% coverage schedule
that collects 4 transients per FID is time equivalent to uniform sampling with 1 transient per
FID). Time equivalency for the NUS schedule can also be achieved by nonuniformly setting
the number of transients by either following the sampling density of the sample schedule or

Methods. Author manuscript; available in PMC 2019 April 01.



1duosnuely Joyiny 1diosnuely Joyiny 1duosnuely Joyiny

1diiosnuely Joyiny

Zambrello et al.

Page 4

by using any other density function. Results shown here are for single realizations of a
sampling schedule generated according to each distribution function (and hence exhibit
slight variation from expected statistical averages). The lower three curves in Figure 1
correspond to reduced overall measurement time, and the top three correspond to the same
measuring time as full uniform sampling.

Time-equivalent uniform random sampling (green circles) has no impact on relative
sensitivity, whereas exponentially biased sampling ( 7, orange squares, 75/2 cyan triangles)
result in improved sensitivity (approaching a factor of two for 75/2 biased sampling at 2%
sampling coverage). This is consistent with the observations of Rovnyak et al.!8, who
demonstrated sensitivity gains exceeding a factor of two for sampling at low coverage and
heavily biased to short times. All the curves approach the value 1 as coverage approaches 1,
where the sampling becomes uniform regardless of the sampling distribution employed.

As could be inferred from the independence of iSNR on sampling coverage for uniform
random sampling, sensitivity gains that do accrue from biased sampling can only be realized
when the signal envelope is not constant, for example modulated by exponential relaxation
or J-modulation 23. (In principle sampling can be tailored to match the J-modulation of the
signal envelope, however sampling schedules designed in this way are very brittle, in the
sense that slight deviations from the assumed J-modulation can drastically reduce their
performance?3.) In constant-time experiments the signal envelope is uniform, so there is no
way to bias sampling toward times where the signal is stronger, and thus no way to improve
the sensitivity per unit time; for these experiments, matched NUS is random sampling. For
semiconstant-time experiments the signal envelope is an amalgam. In principle one could
use random sampling for the initial constant-time period and exponential sampling for the
real-time period, however in practice we find simply using exponentially biased sampling
spanning the entire signal affords useful sensitivity gains.

The iSNR metric is a powerful and unbiased method for comparing the relative sensitivity of
different sampling schemes, but it is not the entire story. iSNR considers only the amount of
signal present in the empirical time domain data, and does not consider the method used to
perform spectral analysis of the data. Only if the method used to compute the spectrum from
the data has no impact on sensitivity are the inferences gleaned from iSNR complete. This is
true for methods that are linear or nearly linear, and preserve norms (e.g. obey Parseval’s
Theorem®, which states that the integrated signal power is the same in the time and
frequency domains). Many non-Fourier methods used to process NUS data are
characteristically nonlinear. The nonlinearity of MaxEnt reconstruction is relatively well
characterized, scaling down small signal values more than large signal values. A
consequence of this nonlinearity is that apparent gains in signal-to-noise ratio do not
necessarily correspond to gains in sensitivity24. It also implies that additional effort (beyond
comparing iSNR values) is needed to fully characterize the relative sensitivity of NUS
experiments that takes into account the method of spectrum analysis employed, if it is
nonlinear.

We illustrate the sensitivity gains that can be achieved even when the signal envelope does
not decay using data from an HNCACB experiment on the UBL3 domain from USP7%3. The
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experiment is semiconstant-time in the # (1°N) dimension) and constant-time in the #
dimension (13C), so there is little if any decay of the signal envelopes in # and &
(interferograms depicting the signal envelopes in # and & of the US data are shown in
Figure 2). Accordingly, iSNR (Eq. (1)) indicates that there is little sensitivity gain to be
expected from NUS (iSNR for uniform sampling is 25.8, compared to 27.0 for the 25% 2D
sampling schedule depicted in Figure 3, using 4 times as many transients so the overall
experiment time is the same). Figure 4 depicts projections of the HNCACB spectra onto the
13C-H plane. Panel A (top) shows the DFT spectrum computed for uniformly sampled (US)
data. Panel B shows the spectrum computed from the US data using MaxEnt reconstruction.
Panel (C) is the MaxEnt spectrum computed for NUS data, collected using uniform random
sampling in 4 and . However the results using MaxEnt are strikingly different for uniform
sampling and NUS. The one-dimensional cross sections (taken at the position indicated by
the dashed lines) suggest substantial improvement, and also appear to confirm that
sensitivity gains from redeploying the time saved through NUS are not fully accounted for
by iSNR alone.

To validate the apparent sensitivity gain, we performed in-sifu Receiver Operating
Characteristic (IROC) analysis29. In this recently-developed approach, synthetic time-
domain signals are added to the empirical data, in relatively blank regions of the spectrum
and having amplitudes that span the range from near the noise to the magnitude of the
strongest empirical signals. Using these synthetic signals as ground truth, it is possible to
compute true and false discovery rates (the number of true and false positives) as a function
of detector (peak-picker) threshold. IROC analysis can be applied to arbitrary data
processing workflows, and provides quantitative sensitivity and resolution metrics that
enable comparison of linear or nonlinear methods of spectrum analysis. The IROC curve for
the data shown in Fig. 2 is shown in Fig. 5. Panels A and B depict example cross-sections
containing both empirical (near 7.8 ppm 'H frequency) and synthetic peaks, using the US
and NUS data sets. The signal amplitudes in panel B were multiplied by 4 to reflect the 4X
signal averaging performed for the NUS data. In the 1D cross-sections corresponding to the
vertical dashed lines, five synthetic peaks are discernible in the NUS spectrum (panel B), but
only three are discernible in the US spectrum (panel A). Panel C shows the IROC curves for
the spectra from panels A (cyan) and B (magenta). Values at the left correspond to high
threshold values, where few peaks (whether true or false) are detected. As the detection
threshold is lowered, more peaks are detected. For the majority of useful threshold values
(where the curves are closest to the point (0,1) corresponding to perfect detection, all real
peaks detected and no false peaks detected), more true peaks are detected in the NUS data
than in the US data.

Example Workflow

The basic steps involved in conducting and analyzing a NUS experiment consist of
determining a suitable sampling schedule, performing the experiment, and reconstructing the
spectrum. All tools, including the new version of NMRPipe used to implement the workflow
described below are available on the NMRbox platform?’ (http://NMRbox.org).
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Generate schedule

The Rowland NMR Toolkit includes a tool, sampsched2d for generating 2D sampling
schedules that are random, exponentially biased, or sine-modulated in each dimension.
Inputs are the total number of samples to be acquired, the filename for output, a seed for the
pseudo-random number generator, and for each dimension the linewidth (in Hz)
corresponding to the sampling density decay rate, the J-modulation frequency (in Hz;
frequently zero), the maximum possible increment (integer), and the spectral width (in Hz).
The output is a text file consisting of two integers per line indicating the indices of the
indirect time evolution in each dimension. The sampling schedule is used to perform the
experiment and to reconstruct the spectrum. An additional tool implemented on the
NMRbox platform, nus-tool, provides a graphical user interface and support for additional
sampling schemes. Alternatively, the most recent software on commercial NMR instruments
provide support for generating NUS schedules.

The details of optimal schedules remain an active area of research, but some useful rules-of-
thumb have been derived from experience. The smallest useful sampling coverage depends
on the sparsity of the spectrum, the dynamic range (difference between the weakest and
strongest signal components), and the dimensionality of the experiment. For coherence-
transfer experiments where the signals are expected to be similar in amplitude and the
spectrum fairly sparse, we find that sampling coverage of around 30% per NUS dimension
to be conservative, e.g 10% coverage for a 2D experiment. For NOESY experiments where
the sparsity is lower (more signals are expected) and the dynamic range is high, we find that
more samples are typically needed, around 50% per NUS dimension. For dimensions where
the signal envelope decays exponentially, we typically apply an exponential bias to the
sampling distribution that decays twice as fast as the signal envelope. For constant-time or
semiconstant-time dimensions, we typically use a uniform (random) distribution. Other
sampling schemes have been proposed?8:2%, but none have yet been shown to be
systematically superior.

Reconstruct spectrum

Many different non-Fourier methods have been utilized for computing spectra from NUS
data30. Here we describe MaxEnt reconstruction as practiced in our laboratory*. Constant-
Aim and Constant-\.: Processing data with Maximum Entropy Reconstruction (MaxEnt) as
implemented in the Rowland NMR Toolkit (RNMRTK) can be performed in two modes, (1)
constant-azm and (2) constant-A. When processing all dimensions simultaneously with
MaxEnt, including the acquisition dimension, constant-azm mode is used. When one or more
of the dimensions are processed with the DFT, MaxEnt is performed in constant-A mode. (A
is the weighting factor applied to the constraint statistic that determines it’s importance
relative to the entropy; the value of A determines the extent of nonlinearities manifest in the
MaxEnt spectrum.) In practice when processing data in constant-A mode a preliminary
reconstruction in constant-aim mode is performed on a representative part of the spectrum to
determine the converged A value. Processing the acquisition dimension with a DFT and
processing all the indirect dimensions with MaxEnt is the general approach, since sampling
is rarely limited in the acquisitions dimension and is assumed for the workflow described
here.
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Adjustable parameters def and aim—MaxEnt requires two adjustable parameters; def
and aim. Defrepresents the scale at which nonlinear effects become significant and aimis a
measure of how tight the agreement between the reconstruction and the empirical data must
be for convergence. Def'values that are large will have nearly linear reconstructions, and if
defis large and aim is small the results will be close to the DFT of a zero-filled spectrum.
Very low values for defwill cause slow convergence and give rise to spiky noise
distributions. Thus, determining reasonable values for defand aim are critical for obtaining
quality reconstructions. In practice, reasonable reconstructions are obtained with a value for
aim equal to or just above the noise power and a def'value somewhat lower than the noise.

Automated determination of def, aim, and A—An automated method for determining
def; aim, and A has been implemented in the latest version of NMRPipe3 ! and starts with
determining the noise power from the interferograms after the acquisition dimension is
transformed with the DFT. It is critical that a region of the spectrum along the acquisition
dimension be extracted to avoid issues from a strong solvent signal. From the noise power
aim and defare set by the following equations and thus the only adjustable parameters
become the defand aim scale factors with typical values of 0.2 (range 0.05 — 1) and 1.0
(range 1 — 3) respectively.

aim = (Noise Power)(Scale) [2a]

\/Number of Complex FIDs collected
y/Product of Indirect Output Sizes

def = [Noise Power (Scale) [2b]

During a MaxEnt reconstruction in constant-azm mode the final converged A value will be
reported. In the automated workflow a MaxEnt reconstruction is performed in constant-azm
mode with defand aim set as above and a log of the output captured and analyzed to average
the ten highest A values. Reconstructions of noise will converge with smaller A values, thus
taking the average of the highest A values gives a more reliable estimate. Another approach
would be to only perform the constant-aim MaxEnt reconstruction on a representative part of
the spectrum with stronger signals. Once a value is determined for A a final MaxEnt
reconstruction is performed in constant-A mode using defas defined above and the averaged
A value.

Processing Workflow in NMRPipe—A newer feature of NMRPipe is the ability to
generate processing scripts from within NMRDraw and in the latest version installed in
NMRbox, NUS data can be reconstructed with IST, SMILE, and MaxEnt as implemented in
the RNMRTK. Below are the workflow steps.

. Data conversion and expansion - Convert data from vendor format to NMRPipe
format and expand the NUS data with zeros for any points not collected using the
“bruker” or “varian” programs of NMRPipe.
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. NMRDraw in process mode — The data is opened in NMRDraw in process mode
with extranus parameters.

. nuDFT— With the data fully expanded a simple DFT of the full spectrum is
performed allowing rapid determination of phase values, apodization, zero-fill
sizes, ROI to extract, sign alterations, data reversals, and other parameters
necessary for processing any spectrum. The 2D skyline projection views built
into NMRPipe processing mode are helpful in parameter determination.

. Automated MaxEnt reconstruction — Reconstructing the spectrum with MaxEnt
(RNMRTK) from within NMRPipe is fully automated. Internally scripts are
generated to process the acquisition dimension with a DFT and the
interferograms analyzed to determine the noise power used for automated
determination of defand aim as described above. Data processed along the
acquisition dimension is converted to RNMRTK format using Connjur Spectrum
Translator32. The converted data is reconstructed with MaxEnt (RNMRTK) in
constant-a/m mode using a default value of 1.0 for scaling aim and the output
analyzed to average the ten highest A values. A second MaxEnt reconstruction is
performed in constant-A mode using the averaged A value from the constant-aim
run. Finally, data is converted back to NMRPipe format and processing of the
indirect dimensions performed for phasing, sign alterations, data reversals,
deletion of the imaginary component, and creation of 2D projections for quick
viewing of the spectrum. Note that a DFT in the indirect dimension is not
performed as the output from MaxEnt (RNMRTK) is in the frequency domain.

Concluding remarks

The challenge of quantifying sensitivity

It has been known for decades that apparent improvements in SNR obtained using non-
Fourier methods do not necessarily correspond to improvements in sensitivity2*, which is the
ability to distinguish signal from noise. What we mean by “sensitivity” is very much
determined by how we distinguish signals. If we employ linear processing methods (whether
DFT or a non-Fourier method applied in a quasi-linear regime) and simply use the amplitude
in the frequency domain to identify signals, then SNR is a reasonable proxy for sensitivity.
However, any detection method that considers signal characteristics other than or in addition
to amplitude will result in nonlinear detection. A simple example is a peak picker that
considers lineshape and/or linewidth. Gains in sensitivity that can accrue from a nonlinearity
are not captured by consideration of the amount of signal power captured by a sampling
scheme (iISNR). Additional research in this area is needed.

The ability of NUS to achieve greater sensitivity per unit measuring time than uniform
sampling when the signal envelope is not constant is well known, and although demonstrated
previously by Rovnyak, Polenova, and Wagner and colleagues, it is not widely practiced.
This is somewhat astonishing, because the gains that can be achieved are comparable to
those from expensive cryogenically-cooled RF probes. NUS can be employed at zero cost,
and software tools for implementing NUS experiments and analyzing the results are
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abundant (see NMRbox.org). Even though there is still much to learn about the sensitivity

gains that accrue from NUS and from the non-Fourier methods used for spectral

reconstruction from NUS data, it should become a standard technique for multidimensional

NMR experiments.
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Nonuniform sampling of indirect time dimensions is widely used in multidimensional
NMR spectroscopy to shorten experiment times and improve resolution. Careful design
of nonuniform sampling schemes can also be used to improve sensitivity. A protocol for
obtaining sensitivity gains comparable to those attained with cryogenically-cooled probes
is described.

Methods. Author manuscript; available in PMC 2019 April 01.




1duosnuey Joyiny 1duosnuely Joyiny yduosnuey Joyiny

1duosnuelp Joyiny

Zambrello et al.

1.8

1.6

1.4

1.2

relative iSNR
=

0.8
0.6
0.4

0.2

Figure 1.

Page 12
=) X T2 ==l=1XxT2 ==@=Uniform TE2XT2 e=fi=TE1xT2 ==@==TEuniform
o000 —©
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling coverage

iSNR as a function of coverage and decay rate for a 2D schedule, for different sampling
decay rates (1X and 2X the signal envelope decay rate). iSNR decreases with decreasing
coverage. However, when the number of transients is increased so that the overall

experiment time is held constant, iSNR improves with decreasing coverage. Note the time-

equivalent iSNR for random (unweighted) sampling is independent of sampling coverage.
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Figure 2.

Interferograms along # and # following DFT of the 'H (#) dimension of the uniformly
sampled (US) HNCACB data for the UBL3 domain of USP7.
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Figure 3.

The sampling schedule used to conduct the NUS HNCACB experiment for the UBL3
domain of USP7. Large dots indicate tuples of evolution times collected, small dots
correspond to tuples not collected. The sampling coverage of 25% enabled 4x signal
averaging at each tuple of evolution times, compared to uniform sampling, while
maintaining the same overall measuring time. iSNR for the sampling schedule is 27.0,
compared to 25.8 for uniform sampling.
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Projections onto the !3C-1H plane and 1D cross-sections of HNCACB spectra for UBL3
from USP7. A. DFT spectrum obtained from US data. B. MaxEnt reconstruction from the
US data. C. MaxEnt reconstruction from NUS data, 25% coverage. The sampling schedule

is depicted in Figure 3. The 1D cross-sections parallel to the 13C axis are taken at the 'H

frequency indicated by the dashed line.
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Figure 5.
IROC analysis performed for the data used in Fig. 4. Panels A and B depict a 2D

crosssection containing both empirical (near 7.8 ppm 1H) and synthetic peaks. Panel A is
derived from the US data set, Panel B from the NUS data set. The amplitudes of the
syntactic signals added to the NUS data set are multiplied by 4 relative to the amplitudes of
the signals added to the US data set, to reflect the 4X signal averaging in the NUS data.
Panel C shows the IROC curves (US in cyan, NUS in magenta).
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