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Abstract

The development of multidimensional NMR spectroscopy enabled an explosion of structural and 

dynamical investigations on proteins and other biomacromolecules. Practical limitations on data 

sampling, based on the Jeener paradigm of parametric sampling of indirect time domains, have 

long placed limits on resolution in the corresponding frequency dimensions. The emergence of 

nonuniform sampling (NUS) in indirect time dimensions circumvents those limitations, affording 

high resolution spectra from short data records collected in practically realized measurement 

times. In addition to substantially improved resolution, NUS can also be exploited to improve 

sensitivity, with gains comparable to those obtained using cryogenically cooled probes. We 

describe a general approach for acquiring and processing multidimensional NUS NMR data for 

improving sensitivity.

Introduction

The proposal by Jean Jeener1 to parametrically sample an indirect time domain by repeating 

pulsed NMR experiments with an incremented time delay lead to the development of 

modern multidimensional NMR experiments. This simple idea nevertheless had profound 

impact, because the application of NMR to complex biomolecules that is routine today 

would not be possible without the resolution afforded by multiple dimensions. Yet even 

early on, it was well appreciated that there were practical limits on the resolution achievable 

along indirect dimensions, as the discrete Fourier transform (DFT) requires long data 

records for high resolution. The first and still most widely-used method to ameliorate this 

sampling limitation is to use linear prediction2 (LP) to extrapolate the signal beyond the 

measured interval. As simple and powerful as this method is, it is often not robust, especially 

for noisy data3.
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LP extrapolation4 uses time domain data sampled at uniform intervals as input and 

numerically extends the data at the same uniform intervals, and is thus suitable for the DFT. 

A more general approach of sampling at nonuniform intervals would enable collection of 

data at long evolution times (needed for high resolution) while shortening data collection 

times. This requires some method other than the DFT for computing the spectrum of a time 

series collected at nonuniform intervals. Barna et al.5,6 used maximum entropy (MaxEnt) 

reconstruction, a method originally developed7 in radio astronomy, in the first demonstration 

of this general approach for multidimensional NMR. Appreciation of the power of 

nonuniform sampling (NUS) grew considerably with the introduction of radial sampling 

methods introduced by Kupce and Freeman8,9. Though their approach used back-projection 

to reconstruct the spectrum (and hence is often referred to as projection reconstruction), the 

ability of MaxEnt to processes radially-sampled data10 demonstrated that radial sampling is 

a special case of the general approach introduced by Barna and colleagues.

Over the past decade, research into optimal strategies for NUS and non-Fourier methods for 

spectral reconstruction from NUS data has accelerated. Methods based on l1-norm 

minimization (whether via convex optimization or iterative fixed-point methods) are now 

commonly referred to as compressed sensing (CS) approaches11, and important theoretical 

work has led to theorems concerning the minimum number of samples needed to reliably 

recover a spectrum, and the universality of a sharp phase transition between success and 

failure12. Most of the theoretical work, however, is focused on random sampling (rarely used 

in NMR for reasons discussed below) and real-valued data (as opposed to the hypercomplex 

signals encountered in NMR). Thus while CS theorems have provided useful guidelines, 

they usually do not quantitatively apply to NMR, and thus the number of samples required 

for accurate recovery of multidimensional NMR spectra and the dependence on spectral 

sparsity need to be determined empirically.

Most reported applications of NUS and non-Fourier spectral reconstruction utilize NUS to 

reduce the measuring time required to obtain high resolution in the indirect dimensions13,14. 

It is well known (see especially the work of Rovnyak, Polenova, and Wagner15–21), however, 

that instead of saving measuring time, NUS can be used to improve the sensitivity per unit 

time for experiments for which the signal envelope is not constant in time. For an 

exponentially decaying sinusoid, sampling evolution times longer than 1.26T2 results in 

diminishing sensitivity3,18,22. Conversely, resolving peaks separated by the natural linewidth 

typically requires sampling to an evolution time of πT2. NUS affords a bridge between these 

seemingly incommensurate criteria: by sampling less frequently beyond evolution times of 

1.26T2 but reaching a maximum evolution time of πT2, the sensitivity per unit measurement 

time can be dramatically increased over an experiment that acquires the same number of 

indirect dimension samples, sampled uniformly. Using NUS, the time saved for the samples 

not acquired is used to perform additional signal averaging for the samples that are acquired, 

which are predominantly less than 1.26T2. For methods of spectrum analysis that are linear 

or nearly so, the sensitivity gain is given by the intrinsic signal-to-noise ratio (iSNR) 

determined in the time domain as defined by Rovnyak and colleagues15, modified to account 

for the number of transients signal-averaged for each tuple of indirect evolution times (i/
SW(1), j/SW(2))
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Ki j

[1]

where T2(1) and T2(2) are the time constants for the signal envelope decay in the indirect 

dimensions 1 and 2, n1 and n2 are the number of elements in the uniform sampling grid 

along dimensions 1 and 2, K is a sampling matrix with elements Kij equal to zero for 

indirect time evolution tuples that are not sampled and equal to the number of FIDs 

accumulated for tuples that are sampled, and SW(1) and SW(2) are the spectral sweep 

widths in dimensions 1 and 2. iSNR simply captures the signal power in the measured signal 

relative to the noise power. Equation [1] is a general expression suitable for comparing the 

relative sensitivity of sampling schemes that have an arbitrary number of transients sampled 

for each tuple of indirect time evolutions, and is the discrete counterpart of the analytic 

expressions given by Rovnyak and colleagues. The use of proportionality rather than 

equality reflects the fact the there are many other factors that influence true sensitivity and 

are not reflected in the expression, however the proportionality permits comparison of 

sampling strategies when all other aspects of the experiment are held fixed. Note that Eq. (1) 

corresponds to two parametrically-sampled (indirect) time dimensions; it is easily 

generalized to arbitrary dimension. Nonuniform sampling is generally only useful in the 

indirect dimensions, i.e. 2D NUS is used for 3D experiments.

A useful way to bias the sampling to evolution times shorter than 1.26T2 is to use 

exponential weighting of the sampling density that is related to the decay of the signal 

envelope. The term “matched sampling” refers to NUS in which the sampling density is 

biased with an exponential decay e−1/TSMP matching the decay of the signal envelope (i.e., 

the decay time of the biased sampling time TSMP is equal to T2). In ”overmatched 

sampling”, a decay rate for the sampling density faster than that of the signal envelope is 

used (e.g. 2X overmatched sampling corresponds to TSMP = T2/2).

Figure 1 depicts iSNR for exponentially biased sampling as a function of sampling coverage 

(the fraction of indirect time evolution tuples that are sampled from the uniform grid), 

assuming 40 Hz linewidths in dimensions 1 and 2 and a fixed number of samples N = 128 × 

128 or 16384, using sampling density decay constants TSMP of either zero (uniform 

random), T2, or T2/2 in both indirect dimensions. Values are reported relative to the iSNR 

for full uniform sampling, or sampling coverage of 1.0. The sampling bandwidth was chosen 

so that the maximum increment of 128 corresponds to a bit longer than 1.26T2. “Time 

equivalent” iSNR is the iSNR obtained using the same number of FIDs as would be 

collected using uniform sampling of the 128 × 128 grid. A nonuniform sample schedule can 

be made to be time equivalent to a uniform sample schedule by increasing the number of 

transients for FIDs that are collected. This can be done by uniformly increasing the number 

of transients by roughly the inverse of the sample coverage (e.g. a 25% coverage schedule 

that collects 4 transients per FID is time equivalent to uniform sampling with 1 transient per 

FID). Time equivalency for the NUS schedule can also be achieved by nonuniformly setting 

the number of transients by either following the sampling density of the sample schedule or 
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by using any other density function. Results shown here are for single realizations of a 

sampling schedule generated according to each distribution function (and hence exhibit 

slight variation from expected statistical averages). The lower three curves in Figure 1 

correspond to reduced overall measurement time, and the top three correspond to the same 

measuring time as full uniform sampling.

Time-equivalent uniform random sampling (green circles) has no impact on relative 

sensitivity, whereas exponentially biased sampling (T2 orange squares, T2/2 cyan triangles) 

result in improved sensitivity (approaching a factor of two for T2/2 biased sampling at 2% 

sampling coverage). This is consistent with the observations of Rovnyak et al.18, who 

demonstrated sensitivity gains exceeding a factor of two for sampling at low coverage and 

heavily biased to short times. All the curves approach the value 1 as coverage approaches 1, 

where the sampling becomes uniform regardless of the sampling distribution employed.

As could be inferred from the independence of iSNR on sampling coverage for uniform 

random sampling, sensitivity gains that do accrue from biased sampling can only be realized 

when the signal envelope is not constant, for example modulated by exponential relaxation 

or J-modulation 23. (In principle sampling can be tailored to match the J-modulation of the 

signal envelope, however sampling schedules designed in this way are very brittle, in the 

sense that slight deviations from the assumed J-modulation can drastically reduce their 

performance23.) In constant-time experiments the signal envelope is uniform, so there is no 

way to bias sampling toward times where the signal is stronger, and thus no way to improve 

the sensitivity per unit time; for these experiments, matched NUS is random sampling. For 

semiconstant-time experiments the signal envelope is an amalgam. In principle one could 

use random sampling for the initial constant-time period and exponential sampling for the 

real-time period, however in practice we find simply using exponentially biased sampling 

spanning the entire signal affords useful sensitivity gains.

The iSNR metric is a powerful and unbiased method for comparing the relative sensitivity of 

different sampling schemes, but it is not the entire story. iSNR considers only the amount of 

signal present in the empirical time domain data, and does not consider the method used to 

perform spectral analysis of the data. Only if the method used to compute the spectrum from 

the data has no impact on sensitivity are the inferences gleaned from iSNR complete. This is 

true for methods that are linear or nearly linear, and preserve norms (e.g. obey Parseval’s 

Theorem4, which states that the integrated signal power is the same in the time and 

frequency domains). Many non-Fourier methods used to process NUS data are 

characteristically nonlinear. The nonlinearity of MaxEnt reconstruction is relatively well 

characterized, scaling down small signal values more than large signal values. A 

consequence of this nonlinearity is that apparent gains in signal-to-noise ratio do not 

necessarily correspond to gains in sensitivity24. It also implies that additional effort (beyond 

comparing iSNR values) is needed to fully characterize the relative sensitivity of NUS 

experiments that takes into account the method of spectrum analysis employed, if it is 

nonlinear.

We illustrate the sensitivity gains that can be achieved even when the signal envelope does 

not decay using data from an HNCACB experiment on the UBL3 domain from USP725. The 
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experiment is semiconstant-time in the t2 (15N) dimension) and constant-time in the t1 

dimension (13C), so there is little if any decay of the signal envelopes in t1 and t2 

(interferograms depicting the signal envelopes in t1 and t2 of the US data are shown in 

Figure 2). Accordingly, iSNR (Eq. (1)) indicates that there is little sensitivity gain to be 

expected from NUS (iSNR for uniform sampling is 25.8, compared to 27.0 for the 25% 2D 

sampling schedule depicted in Figure 3, using 4 times as many transients so the overall 

experiment time is the same). Figure 4 depicts projections of the HNCACB spectra onto the 
13C-1H plane. Panel A (top) shows the DFT spectrum computed for uniformly sampled (US) 

data. Panel B shows the spectrum computed from the US data using MaxEnt reconstruction. 

Panel (C) is the MaxEnt spectrum computed for NUS data, collected using uniform random 

sampling in t1 and t2. However the results using MaxEnt are strikingly different for uniform 

sampling and NUS. The one-dimensional cross sections (taken at the position indicated by 

the dashed lines) suggest substantial improvement, and also appear to confirm that 

sensitivity gains from redeploying the time saved through NUS are not fully accounted for 

by iSNR alone.

To validate the apparent sensitivity gain, we performed in-situ Receiver Operating 

Characteristic (IROC) analysis26. In this recently-developed approach, synthetic time-

domain signals are added to the empirical data, in relatively blank regions of the spectrum 

and having amplitudes that span the range from near the noise to the magnitude of the 

strongest empirical signals. Using these synthetic signals as ground truth, it is possible to 

compute true and false discovery rates (the number of true and false positives) as a function 

of detector (peak-picker) threshold. IROC analysis can be applied to arbitrary data 

processing workflows, and provides quantitative sensitivity and resolution metrics that 

enable comparison of linear or nonlinear methods of spectrum analysis. The IROC curve for 

the data shown in Fig. 2 is shown in Fig. 5. Panels A and B depict example cross-sections 

containing both empirical (near 7.8 ppm 1H frequency) and synthetic peaks, using the US 

and NUS data sets. The signal amplitudes in panel B were multiplied by 4 to reflect the 4X 

signal averaging performed for the NUS data. In the 1D cross-sections corresponding to the 

vertical dashed lines, five synthetic peaks are discernible in the NUS spectrum (panel B), but 

only three are discernible in the US spectrum (panel A). Panel C shows the IROC curves for 

the spectra from panels A (cyan) and B (magenta). Values at the left correspond to high 

threshold values, where few peaks (whether true or false) are detected. As the detection 

threshold is lowered, more peaks are detected. For the majority of useful threshold values 

(where the curves are closest to the point (0,1) corresponding to perfect detection, all real 

peaks detected and no false peaks detected), more true peaks are detected in the NUS data 

than in the US data.

Example Workflow

The basic steps involved in conducting and analyzing a NUS experiment consist of 

determining a suitable sampling schedule, performing the experiment, and reconstructing the 

spectrum. All tools, including the new version of NMRPipe used to implement the workflow 

described below are available on the NMRbox platform27 (http://NMRbox.org).
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Generate schedule

The Rowland NMR Toolkit includes a tool, sampsched2d for generating 2D sampling 

schedules that are random, exponentially biased, or sine-modulated in each dimension. 

Inputs are the total number of samples to be acquired, the filename for output, a seed for the 

pseudo-random number generator, and for each dimension the linewidth (in Hz) 

corresponding to the sampling density decay rate, the J-modulation frequency (in Hz; 

frequently zero), the maximum possible increment (integer), and the spectral width (in Hz). 

The output is a text file consisting of two integers per line indicating the indices of the 

indirect time evolution in each dimension. The sampling schedule is used to perform the 

experiment and to reconstruct the spectrum. An additional tool implemented on the 

NMRbox platform, nus-tool, provides a graphical user interface and support for additional 

sampling schemes. Alternatively, the most recent software on commercial NMR instruments 

provide support for generating NUS schedules.

The details of optimal schedules remain an active area of research, but some useful rules-of-

thumb have been derived from experience. The smallest useful sampling coverage depends 

on the sparsity of the spectrum, the dynamic range (difference between the weakest and 

strongest signal components), and the dimensionality of the experiment. For coherence-

transfer experiments where the signals are expected to be similar in amplitude and the 

spectrum fairly sparse, we find that sampling coverage of around 30% per NUS dimension 

to be conservative, e.g 10% coverage for a 2D experiment. For NOESY experiments where 

the sparsity is lower (more signals are expected) and the dynamic range is high, we find that 

more samples are typically needed, around 50% per NUS dimension. For dimensions where 

the signal envelope decays exponentially, we typically apply an exponential bias to the 

sampling distribution that decays twice as fast as the signal envelope. For constant-time or 

semiconstant-time dimensions, we typically use a uniform (random) distribution. Other 

sampling schemes have been proposed28,29, but none have yet been shown to be 

systematically superior.

Reconstruct spectrum

Many different non-Fourier methods have been utilized for computing spectra from NUS 

data30. Here we describe MaxEnt reconstruction as practiced in our laboratory4. Constant-
Aim and Constant-λ: Processing data with Maximum Entropy Reconstruction (MaxEnt) as 

implemented in the Rowland NMR Toolkit (RNMRTK) can be performed in two modes, (1) 

constant-aim and (2) constant-λ. When processing all dimensions simultaneously with 

MaxEnt, including the acquisition dimension, constant-aim mode is used. When one or more 

of the dimensions are processed with the DFT, MaxEnt is performed in constant-λ mode. (λ 
is the weighting factor applied to the constraint statistic that determines it’s importance 

relative to the entropy; the value of λ determines the extent of nonlinearities manifest in the 

MaxEnt spectrum.) In practice when processing data in constant-λ mode a preliminary 

reconstruction in constant-aim mode is performed on a representative part of the spectrum to 

determine the converged λ value. Processing the acquisition dimension with a DFT and 

processing all the indirect dimensions with MaxEnt is the general approach, since sampling 

is rarely limited in the acquisitions dimension and is assumed for the workflow described 

here.
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Adjustable parameters def and aim—MaxEnt requires two adjustable parameters; def 
and aim. Def represents the scale at which nonlinear effects become significant and aim is a 

measure of how tight the agreement between the reconstruction and the empirical data must 

be for convergence. Def values that are large will have nearly linear reconstructions, and if 

def is large and aim is small the results will be close to the DFT of a zero-filled spectrum. 

Very low values for def will cause slow convergence and give rise to spiky noise 

distributions. Thus, determining reasonable values for def and aim are critical for obtaining 

quality reconstructions. In practice, reasonable reconstructions are obtained with a value for 

aim equal to or just above the noise power and a def value somewhat lower than the noise.

Automated determination of def, aim, and λ—An automated method for determining 

def, aim, and λ has been implemented in the latest version of NMRPipe31 and starts with 

determining the noise power from the interferograms after the acquisition dimension is 

transformed with the DFT. It is critical that a region of the spectrum along the acquisition 

dimension be extracted to avoid issues from a strong solvent signal. From the noise power 

aim and def are set by the following equations and thus the only adjustable parameters 

become the def and aim scale factors with typical values of 0.2 (range 0.05 – 1) and 1.0 

(range 1 – 3) respectively.

aim = (Noise Power)(Scale) [2a]

def = Noise Power Number o f Complex FIDs collected
Product o f Indirect Output Sizes

(Scale) [2b]

During a MaxEnt reconstruction in constant-aim mode the final converged λ value will be 

reported. In the automated workflow a MaxEnt reconstruction is performed in constant-aim 
mode with def and aim set as above and a log of the output captured and analyzed to average 

the ten highest λ values. Reconstructions of noise will converge with smaller λ values, thus 

taking the average of the highest λ values gives a more reliable estimate. Another approach 

would be to only perform the constant-aim MaxEnt reconstruction on a representative part of 

the spectrum with stronger signals. Once a value is determined for λ a final MaxEnt 

reconstruction is performed in constant-λ mode using def as defined above and the averaged 

λ value.

Processing Workflow in NMRPipe—A newer feature of NMRPipe is the ability to 

generate processing scripts from within NMRDraw and in the latest version installed in 

NMRbox, NUS data can be reconstructed with IST, SMILE, and MaxEnt as implemented in 

the RNMRTK. Below are the workflow steps.

• Data conversion and expansion - Convert data from vendor format to NMRPipe 

format and expand the NUS data with zeros for any points not collected using the 

“bruker” or “varian” programs of NMRPipe.
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• NMRDraw in process mode – The data is opened in NMRDraw in process mode 

with extranus parameters.

• nuDFT – With the data fully expanded a simple DFT of the full spectrum is 

performed allowing rapid determination of phase values, apodization, zero-fill 

sizes, ROI to extract, sign alterations, data reversals, and other parameters 

necessary for processing any spectrum. The 2D skyline projection views built 

into NMRPipe processing mode are helpful in parameter determination.

• Automated MaxEnt reconstruction – Reconstructing the spectrum with MaxEnt 

(RNMRTK) from within NMRPipe is fully automated. Internally scripts are 

generated to process the acquisition dimension with a DFT and the 

interferograms analyzed to determine the noise power used for automated 

determination of def and aim as described above. Data processed along the 

acquisition dimension is converted to RNMRTK format using Connjur Spectrum 

Translator32. The converted data is reconstructed with MaxEnt (RNMRTK) in 

constant-aim mode using a default value of 1.0 for scaling aim and the output 

analyzed to average the ten highest λ values. A second MaxEnt reconstruction is 

performed in constant-λ mode using the averaged λ value from the constant-aim 
run. Finally, data is converted back to NMRPipe format and processing of the 

indirect dimensions performed for phasing, sign alterations, data reversals, 

deletion of the imaginary component, and creation of 2D projections for quick 

viewing of the spectrum. Note that a DFT in the indirect dimension is not 

performed as the output from MaxEnt (RNMRTK) is in the frequency domain.

Concluding remarks

The challenge of quantifying sensitivity

It has been known for decades that apparent improvements in SNR obtained using non-

Fourier methods do not necessarily correspond to improvements in sensitivity24, which is the 

ability to distinguish signal from noise. What we mean by “sensitivity” is very much 

determined by how we distinguish signals. If we employ linear processing methods (whether 

DFT or a non-Fourier method applied in a quasi-linear regime) and simply use the amplitude 

in the frequency domain to identify signals, then SNR is a reasonable proxy for sensitivity. 

However, any detection method that considers signal characteristics other than or in addition 

to amplitude will result in nonlinear detection. A simple example is a peak picker that 

considers lineshape and/or linewidth. Gains in sensitivity that can accrue from a nonlinearity 

are not captured by consideration of the amount of signal power captured by a sampling 

scheme (iSNR). Additional research in this area is needed.

The ability of NUS to achieve greater sensitivity per unit measuring time than uniform 

sampling when the signal envelope is not constant is well known, and although demonstrated 

previously by Rovnyak, Polenova, and Wagner and colleagues, it is not widely practiced. 

This is somewhat astonishing, because the gains that can be achieved are comparable to 

those from expensive cryogenically-cooled RF probes. NUS can be employed at zero cost, 

and software tools for implementing NUS experiments and analyzing the results are 
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abundant (see NMRbox.org). Even though there is still much to learn about the sensitivity 

gains that accrue from NUS and from the non-Fourier methods used for spectral 

reconstruction from NUS data, it should become a standard technique for multidimensional 

NMR experiments.
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Nonuniform sampling of indirect time dimensions is widely used in multidimensional 

NMR spectroscopy to shorten experiment times and improve resolution. Careful design 

of nonuniform sampling schemes can also be used to improve sensitivity. A protocol for 

obtaining sensitivity gains comparable to those attained with cryogenically-cooled probes 

is described.
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Figure 1. 
iSNR as a function of coverage and decay rate for a 2D schedule, for different sampling 

decay rates (1X and 2X the signal envelope decay rate). iSNR decreases with decreasing 

coverage. However, when the number of transients is increased so that the overall 

experiment time is held constant, iSNR improves with decreasing coverage. Note the time-

equivalent iSNR for random (unweighted) sampling is independent of sampling coverage.
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Figure 2. 
Interferograms along t1 and t2 following DFT of the 1H (t3) dimension of the uniformly 

sampled (US) HNCACB data for the UBL3 domain of USP7.
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Figure 3. 
The sampling schedule used to conduct the NUS HNCACB experiment for the UBL3 

domain of USP7. Large dots indicate tuples of evolution times collected, small dots 

correspond to tuples not collected. The sampling coverage of 25% enabled 4x signal 

averaging at each tuple of evolution times, compared to uniform sampling, while 

maintaining the same overall measuring time. iSNR for the sampling schedule is 27.0, 

compared to 25.8 for uniform sampling.
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Figure 4. 
Projections onto the 13C-1H plane and 1D cross-sections of HNCACB spectra for UBL3 

from USP7. A. DFT spectrum obtained from US data. B. MaxEnt reconstruction from the 

US data. C. MaxEnt reconstruction from NUS data, 25% coverage. The sampling schedule 

is depicted in Figure 3. The 1D cross-sections parallel to the 13C axis are taken at the 1H 

frequency indicated by the dashed line.
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Figure 5. 
IROC analysis performed for the data used in Fig. 4. Panels A and B depict a 2D 

crosssection containing both empirical (near 7.8 ppm 1H) and synthetic peaks. Panel A is 

derived from the US data set, Panel B from the NUS data set. The amplitudes of the 

syntactic signals added to the NUS data set are multiplied by 4 relative to the amplitudes of 

the signals added to the US data set, to reflect the 4X signal averaging in the NUS data. 

Panel C shows the IROC curves (US in cyan, NUS in magenta).
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