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Abstract

The quantum mechanical treatment of both electrons and protons in the calculation of excited state
properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled
electron transfer. Multicomponent density functional theory enables the consistent quantum
mechanical treatment of more than one type of particle and has been implemented previously for
studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework,
where all electrons and specified protons are treated quantum mechanically. To enable the study
of excited state molecular properties, herein the linear response multicomponent time-dependent
density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial
applications to FHF~ and HCN illustrate that NEO-TDDFT provides accurate proton and electron
excitation energies within a single calculation. As its computational cost is similar to that of
conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications,
particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton

vibronic excitations.
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Multicomponent density functional theory, which treats more than one type of particle
quantum mechanically, is an emerging field that has inspired several recent theoretical
developments.!® In contrast to conventional density functional theory (DFT) in electronic
structure theory, multicomponent DFT enables the quantum mechanical treatment of specified
nuclei, such as protons, on equal footing with the electrons. Therefore, it includes the delocalized
proton densities and associated zero point energy during the self-consistent-field procedure, as
well as during geometry optimizations and potentially the dynamics of the classical nuclei.>® This
treatment also provides opportunities to go beyond the Born-Oppenheimer approximation and
thereby describe nonadiabatic processes, such as proton-coupled electron transfer (PCET).”8
Previous multicomponent DFT studies have focused mainly on the ground states of molecular
systems, whereas multicomponent methods to study excited states have not been practically
implemented, although the theoretical foundation has been formulated.’ !! The description of these
excited states is important for nonadiabatic processes involving excited electron-proton vibronic
states, such as photoacids and photoinduced PCET.'*!3

This Letter centers on the development of the linear-response multicomponent time-
dependent density functional theory within the nuclear-electronic orbital (NEO) framework,!*
denoted NEO-TDDFT, and its application to compute proton and electron excitation energies. The
NEO framework is a multicomponent approach that balances practical implementation with
chemical accuracy.* %15 It treats all electrons and one or more key protons quantum mechanically
and requires at least two classical nuclei to avoid difficulties with translations and rotations.

16-18 \vere found to

Previously developed explicitly correlated wavefunction-based NEO methods
be computationally expensive and unable to describe proton densities accurately. Recently, the

epcl7-1 functional, an electron-proton correlation functional developed within the NEO-DFT



framework, was shown to be the first working functional that is able to produce accurate proton
densities in molecular systems.> Moreover, quantitatively accurate proton affinities were obtained
with a slightly reparameterized form, denoted the epcl7-2 functional.® Despite these recent
successes, excited states, which are more challenging but also of broad interest, have never been
investigated within the NEO-DFT framework. Although a related multicomponent linear response
theory has been formulated,'®!! this previous formulation used the electronic one-body density
and the diagonal of the nuclear N-body density matrix as the variables, where N is the number of
nuclei. In contrast, the NEO-TDDFT method uses the electronic one-body and proton one-body
densities as the variables within a fixed frame of the classical nuclei. Herein we derive, implement,
and test linear-response NEO-TDDFT.

Among the various linear response theories used in quantum chemistry,'® > the widely used
density-density response theory describes the response of the density matrix to a small perturbative
potential. The NEO framework requires two key density-density response functions — one for
electrons and one for protons, as indicated by “e” and “p” superscripts, respectively. In the orbital
basis, these response functions can be expressed as
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where 0 denotes the ground state, n denotes the nth excited state, E,, is the energy for the state
n, and 7 is an infinitesimal positive real number. Here a’(a) denote creation (annihilation)
operators for electrons, and bT(b) denote the corresponding operators for protons, where lower
(upper) case indices indicate electron (proton) orbitals. We adopt the convention that subscripts

i,j, k,1 denote occupied orbitals, a,b,c,d denote virtual orbitals, and p,q,r,s denote general



orbitals.

In the Kohn-Sham NEO-DFT framework, the multicomponent noninteracting system is the
product of an electronic and a nuclear determinant. The electron and proton response functions,
x¢ and xP, associated with this noninteracting system can be calculated from Eqgs. 1 and 2. The

corresponding response equations are
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where 8P denotes the change in the density matrix, dv denotes the change in the potential, and
€ denotes the orbital energies for the noninteracting system. The two components of the change
in the potential are the change in the external applied potential dv,,,, which is not influenced by
the changes in the density matrices, and the change in the internal potential 6v;,, which is
influenced by those changes. In multicomponent theory, the change in the internal potential further
consists of two parts: the same-particle-induced potential and the different-particle-induced
potential, each including a Coulomb term and an exchange-correlation term, where exchange is
only relevant for same-particle interactions.

In the NEO framework, the change in the potential can be expressed as
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where ee] (pp]) denotes the electron-electron (proton-proton) Coulomb interaction, exc (pxc)



denotes the electron (proton) exchange-correlation, ep/ denotes the electron-proton Coulomb
interaction, and epc denotes the electron-proton correlation. Note that the e (p) superscripts
indicate the change in the potential experienced by the electron (proton), respectively. The
influence of the density matrices on the potential can be described with the frequency-dependent
exchange-correlation kernels K (w):

vl (w) = K¢ (w)dP¢(w) + K (w)S PP (w), 9)

svP (w) = KP®(w)SP¢(w) + KPP ()PP (w). (10)
These kernels can be expressed as follows, where the frequency dependence is omitted for

notational simplicity:
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Figure 1: Summary of the relationships among the changes in density matrices (6P), changes in
potentials (6v), exchange-correlation kernels (K), and response functions () for the
multicomponent Kohn-Sham reference system. The changes in total potentials influence the



density matrices, as indicated in red (Egs. 3-6), and the changes in the density matrices impact
the changes in the internal potentials, as indicated in blue (Eqgs. 9-10).

The relations in Egs. (3-12) are summarized in Fig. 1 and can be cast into a matrix form.
Regardless of the perturbative external potential, the internal resonance gives rise to excitation

energies when the following relation is satisfied:
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Note that the kernel depends on the frequency in these expressions. For practical calculations,
however, we invoke the adiabatic approximation, in which the kernel K is assumed to be
independent of frequency and is evaluated with the second derivatives of the ground state
functional. Here we also adopt the convention of replacing the changes in density matrices 6P
with X for the occupied-virtual elements (Egs. 3 and 5) and with Y for the virtual-occupied
elements (Eqs. 4 and 6). The orthonormalization condition'® for any two eigenvectors denoted by
m and n is

(XE|XE) = (YSIYE) + (X, XB) — (YDIYD) = £6,m. 1)

Similar to TDDFT, the excitation energies arise in pairs with opposite signs (i.e., excitations
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and de-excitations). In principle, maintaining the frequency-dependent kerne
the description of single, double, and higher-order excitations, which could involve electron,
proton, and mixed electron-proton excitations. However, because we invoked the adiabatic
approximation, where the kernel is assumed to be frequency-independent, only single excitations
can be captured. In general, these single excitations could be pure electron, pure proton, or mixed
electron-proton character. Such excitations could be described as a linear combination of products
of electron and proton determinants in which only one determinant is singly excited in each term.
For electronically adiabatic systems, where the electron density responds instantaneously to
changes in the proton density, the proton and electron excitations are separable, as depicted in
Figure 2. Note that this usage of the word “adiabatic” is different from the adiabatic
approximation related to the frequency-independent kernel. By electronically adiabatic, we are
referring to the regime in which the non-Born-Oppenheimer effects between the electrons and
proton(s) are negligible. In this limit, each proton and electron excitation can be identified by
examining the corresponding eigenvector: proton excitations are dominated by X?, while electron
excitations are dominated by X®. Due to coupling between the electrons and protons, these are not
rigorously pure proton vibrational excitations and electronic excitations, although they will be
closely associated with such pure excitations in the electronically adiabatic limit. For systems with
significant nonadiabatic or non-Born-Oppenheimer effects between the electrons and the proton(s),
the eigenvectors are expected to exhibit non-negligible contributions from both the electron and
proton elements (i.e., both X¢ and XP), corresponding to a combination of electron and proton
excitation character. The oscillator strengths and transition densities can be obtained in an

analogous manner as in electronic TDDFT.
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Figure 2: Schematic depiction of the electron and proton excitations that can be computed with
NEO-TDDFEFT in a single calculation. In the case shown, the electronic excitation energies are
significantly greater than the proton vibrational excitation energies, leading to the separation
depicted. For systems in which these excitation energies are similar (i.e., significant nonadiabatic
or non-Born-Oppenheimer effects between the electrons and proton(s)), this separation would no
longer be valid, and the single excitations would represent electron-proton vibronic excitations.

The Tamm-Dancoff approximation (NEO-TDDFT-TDA)? is obtained by eliminating all
rows and columns involving B® and BP, leading to the following simplified matrix equation:
[er o) Bel = @ o) @)
The NEO-TDDFT equation in Eq. 15 is a generalized eigenvalue problem. It can be simplified
using similar tricks as developed for conventional electronic TDDFT and thereby transformed to
an eigenvalue problem with an identity metric. The spin adapted formulation can also be carried
out.” The NEO-TDDFT and NEO-TDDFT-TDA equations can be solved by direct
diagonalization with overall O(N®) scaling. However, it is straightforward to implement the
iterative Davidson method and thereby reduce the formal costto O(N*) for a single root.?%?’
We implemented NEO-TDDFT and NEO-TDDFT-TDA in GAMESS® with direct

diagonalization and investigated their performances on both proton and electron excitations. We



used the molecules FHF~ and HCN as test systems because they have been characterized in
previous NEO ground state studies.>*!%?° The geometries were optimized at the conventional
electronic DFT/B3LYP3*3! level (i.e., all nuclei were treated as point charges) with the def2-QZVP
electronic basis set. For the NEO-TDDFT calculations, the heavy nuclei were fixed to these
geometries, and the hydrogen nucleus was treated quantum mechanically with the associated
electronic and nuclear basis sets centered at the optimized hydrogen position. We performed
electronic basis set convergence tests with the NEO-TDDFT method, as provided in the SI.
Utilizing these results, we employed the cc-pVDZ electronic basis set for the heavy atoms and the
cc-pV5Z electronic basis set for the quantum hydrogen atom. Note that a relatively large electronic

basis set on the quantum hydrogen is necessary to obtain accurate proton vibrational excitation

energies. An even-tempered 8s8p8d proton basis set with exponents spanning the range from 2+/2

to 32 was used for all calculations.’

The electronic exchange-correlation energy was
approximated by either the B3LYP or the PBE?? functional, while the exchange-correlation of the
proton was computed as the Hartree-Fock exchange. The electron-proton correlation energy was
treated at three different levels: using the epc17-1° or the epc17-2° functional, or alternatively at
the no-epc level, which neglects all electron-proton correlation.

The proton vibrational excitation energies are compared to those obtained with a grid-based
method that is numerically exact for electronically adiabatic systems. In this approach, the total
electronic energy was calculated at the DFT/B3LYP level for the hydrogen nucleus positioned at
each grid point on a three-dimensional grid spanning the relevant region for the proton density,
and the three-dimensional Schrédinger equation was solved numerically for the proton using the

Fourier grid Hamiltonian method.*-* Note that the NEO-TDDFT method is designed to capture

non-Born-Oppenheimer effects and therefore will be applicable to electronically nonadiabatic

10



systems, but our initial benchmarking focuses on electronically adiabatic systems to allow direct
comparison to numerically exact results. The electronic excitation energies are compared to the
corresponding conventional TDDFT results. These comparisons are based on the assumption of
weak coupling between the electronic and proton vibrational excitations, a valid assumption in the
electronically adiabatic limit. For the two molecules investigated herein, we found that the
magnitudes of the electronic elements are extremely small for those eigenvectors corresponding
to proton excitations, and vice versa, suggesting that the electronic excitations and proton
vibrational excitations are predominantly separable. This observation is consistent with the
known electronic adiabaticity of these systems. However, it is possible that in other systems, such

as photoacids'? or photoinduced PCET systems, %13

which exhibit electronically nonadiabatic or
non-Born-Oppenheimer effects, mixing between the two types of excitations might be observed.

Table 1 presents the proton excitation energies for FHF~ and HCN computed with the B3LYP
electronic exchange-correlation functional and the epc17-2 electron-proton correlation functional,
as well as with no electron-proton correlation (no-epc). The analogous results with the PBE
electronic functional and the epc17-1 electron-proton correlation functional are provided in Tables
S1 and S2 of the SI. The choice of electronic exchange-correlation functional has negligible impact
on the proton excitation energies, with the B3LYP and PBE electronic excitation energies differing
by less than 200 cm™'.

The impact of electron-proton correlation on the proton vibrational excitation energies is
somewhat unexpected. Although the NEO-DFT/no-epc method does not provide even
qualitatively accurate proton densities® for the ground state, the corresponding NEO-TDDFT/no-

epc method provides accurate proton vibrational excitation energies with average errors of only

~200 cm!. In contrast, the epcl7-1 functional does not perform as well as neglecting electron-
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proton correlation altogether, even though it provides much more accurate ground state proton
densities. The epc17-2 functional, which has been shown to provide quantitatively accurate proton
affinities,® performs equally well or slightly better than the no-epc case for computing proton
vibrational excitation energies. Thus, the relation between the ground state proton density and
excitation energies is not clear.

The electron-proton correlation functionals epcl7-1 and epcl7-2 were parameterized to
reproduce ground state proton densities or energies in previous work>® and were not further
parameterized in the present work. Moreover, as indicated from the basis set convergence study
presented in the SI, the results are sensitive to the basis sets, particularly on the quantum hydrogen.
Further parameterization of the electron-proton functionals, as well as larger electronic and nuclear
basis sets, could improve the quantitative accuracy of the proton vibrational excitation energies.
In addition, the grid-based method used as a reference assumes electronic adiabaticity, and in
principle NEO-TDDFT might include non-Born-Oppenheimer effects that are not accurately
reflected in this grid-based method. An exact benchmark that includes all of these nonadiabatic
effects would be a grid-based method that includes the first-order and second-order nonadiabatic
couplings.®

Although it violates the sum rules, the Tamm-Dancoff approximation often gives comparable
excitation energies as the underlying full linear-response treatment in conventional electronic
structure theory methods.?**%3" However, this trend is not observed for proton excitations within
the NEO framework, as indicated by the results in Table 1. The NEO-TDDFT-TDA method
overestimates the proton excitation energies by ~2000 cm™! compared to the corresponding NEO-
TDDFT method. The reason for this disparity is not yet fully clear, although it might arise from

the small vibrational excitation energies, which could reduce the validity of the Tamm-Dancoff
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approximation.*® We will further investigate this phenomenon in future studies.

In addition to the proton excitation energies, NEO-TDDFT also provides electron excitation
energies, as depicted in Figure 2. Table 2 presents the excitation energies for the lowest two
singlet and triplet single-electron excitations for FHF~, with the analogous results for HCN
provided in Table S4. These results illustrate that NEO-TDDFT and conventional electronic
TDDFT lead to almost exactly the same electronic excitation energies, regardless of how the
electron-proton correlation is treated. The NEO-TDDFT-TDA method also leads to very similar
results as the corresponding electronic TDDFT-TDA method, indicating that the Tamm-Dancoff
approximation is better justified for pure electronic excitations than for proton vibrational
excitation energies.

In summary, we derived and implemented the linear response NEO-TDDFT method and
showed that it can accurately predict both proton and electron excitation energies with a single
calculation. The proton excitation energies are not sensitive to the choice of electron exchange-
correlation functional but are more sensitive to the choice of electron-proton correlation functional,
with epcl7-2 providing the best results, corresponding to errors of ~200 cm™ with no
reparameterization of the functionals. Neglecting electron-proton correlation altogether also leads
to reasonable proton excitation energies for the molecules studied herein, although electron-proton
correlation may be more important for other systems, such as proton transfer systems. The NEO-
TDDFT-TDA method does not provide even qualitatively reasonable proton excitation energies,
with errors of ~2000 cm™! for the systems studied. Both NEO-TDDFT and NEO-TDA provide
accurate electron excitation energies with all electron-proton correlation functionals studied.

We emphasize that the objective of this Letter is to present a proof of concept that the NEO-

TDDFT method is able to predict accurate proton and electron excitation energies. A more
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comprehensive investigation of the effects of the adiabatic approximation (i.e., the frequency-
independent kernel) and the roles of electron exchange-correlation and electron-proton correlation
functionals will be the focus of future work. In addition, the significance of the individual block-
matrix contributions in the NEO-TDDFT working equations will be investigated to understand
why TDA does not perform well for proton excitation energies. Such understanding will be critical
for harnessing this method in future applications to systems such as photoacids and photoinduced
PCET processes, which may exhibit mixed electron-proton vibronic excitations.

Table 1. Proton Excitation Energies for FHF~and HCN (in cm2)?

NEO-TDDFT-TDA NEO-TDDFT .
Grid Ref
no-epc epcl7-2 no-epc epcl7-2
FHE- Off-axis 3351 3628 1408 1401 1278
On-axis 3636 4005 1889 1828 1647
HCN Off-axis 3796 3983 980 920 667
On-axis 4875 5296 3136 3217 3195

9The B3LYP electronic exchange-correlation functional was used to compute all numbers in this table. Results with
the PBE electronic functional and epc17-1 electron-proton correlation functional are provided in Tables S1 and S2.

Table 2. Electron Excitation Energies for FHF~ (in eV)?

NEO-TDDFT-TDA TDDET-TDA NEO-TDDFT TDDET

no-epc epcl7-2 no-epc epcl7-2
T1 6.84 6.84 6.86 6.83 6.84 6.85
T2 6.92 6.92 6.91 6.91 6.91 6.90
S1 7.02 7.02 7.04 7.01 7.02 7.03
S2 7.15 7.16 7.15 7.14 7.14 7.13

% The B3LYP electronic exchange-correlation functional was used to compute all numbers in this table. Results with
the PBE electronic functional and epc17-1 electron-proton correlation functional are provided in Tables S3 and S4.
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Supporting Information

See Supporting Information for the complete derivation of the NEO-TDDFT equations and the

equation for the corresponding oscillator strength, method performance with different functionals,

and basis set convergence tests.
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