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Abstract 

The quantum mechanical treatment of both electrons and protons in the calculation of excited state 

properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled 

electron transfer. Multicomponent density functional theory enables the consistent quantum 

mechanical treatment of more than one type of particle and has been implemented previously for 

studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, 

where all electrons and specified protons are treated quantum mechanically. To enable the study 

of excited state molecular properties, herein the linear response multicomponent time-dependent 

density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial 

applications to FHFand HCN illustrate that NEO-TDDFT provides accurate proton and electron 

excitation energies within a single calculation. As its computational cost is similar to that of 

conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, 

particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton 

vibronic excitations. 
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Multicomponent density functional theory, which treats more than one type of particle 

quantum mechanically, is an emerging field that has inspired several recent theoretical 

developments.1–6 In contrast to conventional density functional theory (DFT) in electronic 

structure theory, multicomponent DFT enables the quantum mechanical treatment of specified 

nuclei, such as protons, on equal footing with the electrons. Therefore, it includes the delocalized 

proton densities and associated zero point energy during the self-consistent-field procedure, as 

well as during geometry optimizations and potentially the dynamics of the classical nuclei.5,6 This 

treatment also provides opportunities to go beyond the Born-Oppenheimer approximation and 

thereby describe nonadiabatic processes, such as proton-coupled electron transfer (PCET).7,8 

Previous multicomponent DFT studies have focused mainly on the ground states of molecular 

systems, whereas multicomponent methods to study excited states have not been practically 

implemented, although the theoretical foundation has been formulated.9–11 The description of these 

excited states is important for nonadiabatic processes involving excited electron-proton vibronic 

states, such as photoacids and photoinduced PCET.12,13 

This Letter centers on the development of the linear-response multicomponent time-

dependent density functional theory within the nuclear-electronic orbital (NEO) framework,14 

denoted NEO-TDDFT, and its application to compute proton and electron excitation energies. The 

NEO framework is a multicomponent approach that balances practical implementation with 

chemical accuracy.4–6,15 It treats all electrons and one or more key protons quantum mechanically 

and requires at least two classical nuclei to avoid difficulties with translations and rotations. 

Previously developed explicitly correlated wavefunction-based NEO methods16–18 were found to 

be computationally expensive and unable to describe proton densities accurately. Recently, the 

epc17-1 functional, an electron-proton correlation functional developed within the NEO-DFT 
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framework, was shown to be the first working functional that is able to produce accurate proton 

densities in molecular systems.5 Moreover, quantitatively accurate proton affinities were obtained 

with a slightly reparameterized form, denoted the epc17-2 functional.6 Despite these recent 

successes, excited states, which are more challenging but also of broad interest, have never been 

investigated within the NEO-DFT framework. Although a related multicomponent linear response 

theory has been formulated,10,11 this previous formulation used the electronic one-body density 

and the diagonal of the nuclear N-body density matrix as the variables, where N is the number of 

nuclei.  In contrast, the NEO-TDDFT method uses the electronic one-body and proton one-body 

densities as the variables within a fixed frame of the classical nuclei. Herein we derive, implement, 

and test linear-response NEO-TDDFT. 

Among the various linear response theories used in quantum chemistry,19–23 the widely used 

density-density response theory describes the response of the density matrix to a small perturbative 

potential. The NEO framework requires two key density-density response functions — one for 

electrons and one for protons, as indicated by “e” and “p” superscripts, respectively. In the orbital 

basis, these response functions can be expressed as   

 𝜒𝑝𝑞,𝑟𝑠
𝑒 (𝜔) = ∑𝑛 (

〈0|𝑎𝑞
†

𝑎𝑝|𝑛〉〈𝑛|𝑎𝑟
†

𝑎𝑠|0〉

𝜔−(𝐸𝑛−𝐸0)+𝑖𝜂
−

〈0|𝑎𝑟
†

𝑎𝑠|𝑛〉〈𝑛|𝑎𝑞
†

𝑎𝑝|0〉

𝜔+(𝐸𝑛−𝐸0)+𝑖𝜂
), (1) 

 𝜒𝑃𝑄,𝑅𝑆
𝑝 (𝜔) = ∑𝑛 (

〈0|𝑏𝑄
†

𝑏𝑃|𝑛〉〈𝑛|𝑏𝑅
†

𝑏𝑆|0〉

𝜔−(𝐸𝑛−𝐸0)+𝑖𝜂
−

〈0|𝑏𝑅
†

𝑏𝑆|𝑛〉〈𝑛|𝑏𝑄
†

𝑏𝑃|0〉

𝜔+(𝐸𝑛−𝐸0)+𝑖𝜂
), (2) 

where 0 denotes the ground state, n denotes the nth excited state, 𝐸𝑛 is the energy for the state 

𝑛, and 𝜂  is an infinitesimal positive real number. Here 𝑎†(𝑎) denote creation (annihilation) 

operators for electrons, and 𝑏†(𝑏) denote the corresponding operators for protons, where lower 

(upper) case indices indicate electron (proton) orbitals. We adopt the convention that subscripts 

𝑖, 𝑗, 𝑘, 𝑙 denote occupied orbitals, 𝑎, 𝑏, 𝑐, 𝑑 denote virtual orbitals, and 𝑝, 𝑞, 𝑟, 𝑠 denote general 
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orbitals. 

In the Kohn-Sham NEO-DFT framework, the multicomponent noninteracting system is the 

product of an electronic and a nuclear determinant. The electron and proton response functions, 

𝜒𝑠
𝑒 and 𝜒𝑠

𝑝
, associated with this noninteracting system can be calculated from Eqs. 1 and 2. The 

corresponding response equations are    

 𝛿𝑃𝑖𝑎
𝑒 (𝜔) = (𝜒𝑠

𝑒)𝑖𝑎,𝑖𝑎(𝜔)𝛿𝑣𝑖𝑎
𝑒 (𝜔) = −

𝛿𝑣𝑖𝑎
𝑒 (𝜔)

𝜔+(𝜀𝑎−𝜀𝑖)+𝑖𝜂
 (3) 

 𝛿𝑃𝑎𝑖
𝑒 (𝜔) = (𝜒𝑠

𝑒)𝑎𝑖,𝑎𝑖(𝜔)𝛿𝑣𝑎𝑖
𝑒 (𝜔) =

𝛿𝑣𝑎𝑖
𝑒 (𝜔)

𝜔−(𝜀𝑎−𝜀𝑖)+𝑖𝜂
 (4) 

 𝛿𝑃𝐼𝐴
𝑝 (𝜔) = (𝜒𝑠

𝑝)𝐼𝐴,𝐼𝐴(𝜔)𝛿𝑣𝐼𝐴
𝑝 (𝜔) = −

𝛿𝑣𝐼𝐴
𝑝

(𝜔)

𝜔+(𝜀𝐴−𝜀𝐼)+𝑖𝜂
 (5) 

 𝛿𝑃𝐴𝐼
𝑝(𝜔) = (𝜒𝑠

𝑝)𝐴𝐼,𝐴𝐼(𝜔)𝛿𝑣𝐴𝐼
𝑝 (𝜔) =

𝛿𝑣𝐴𝐼
𝑝

(𝜔)

𝜔−(𝜀𝐴−𝜀𝐼)+𝑖𝜂
 (6) 

where 𝛿𝑃 denotes the change in the density matrix, 𝛿𝑣 denotes the change in the potential, and 

𝜀 denotes the orbital energies for the noninteracting system. The two components of the change 

in the potential are the change in the external applied potential 𝛿𝑣𝑒𝑥𝑡, which is not influenced by 

the changes in the density matrices, and the change in the internal potential 𝛿𝑣𝑖𝑛 , which is 

influenced by those changes. In multicomponent theory, the change in the internal potential further 

consists of two parts: the same-particle-induced potential and the different-particle-induced 

potential, each including a Coulomb term and an exchange-correlation term, where exchange is 

only relevant for same-particle interactions.  

In the NEO framework, the change in the potential can be expressed as    

 𝛿𝑣𝑒 = 𝛿𝑣𝑒𝑥𝑡
𝑒 + 𝛿𝑣𝑖𝑛

𝑒 = 𝛿𝑣𝑒𝑥𝑡
𝑒 + (𝛿𝑣𝑒𝑒𝐽

𝑒 + 𝛿𝑣𝑒𝑥𝑐
𝑒 ) + (𝛿𝑣𝑒𝑝𝐽

𝑒 + 𝛿𝑣𝑒𝑝𝑐
𝑒 ), (7) 

 𝛿𝑣𝑝 = 𝛿𝑣𝑒𝑥𝑡
𝑝 + 𝛿𝑣𝑖𝑛

𝑝 = 𝛿𝑣𝑒𝑥𝑡
𝑝 + (𝛿𝑣𝑝𝑝𝐽

𝑝 + 𝛿𝑣𝑝𝑥𝑐
𝑝 ) + (𝛿𝑣𝑒𝑝𝐽

𝑝 + 𝛿𝑣𝑒𝑝𝑐
𝑝 ), (8) 

where 𝑒𝑒𝐽 (𝑝𝑝𝐽) denotes the electron-electron (proton-proton) Coulomb interaction, 𝑒𝑥𝑐 (𝑝𝑥𝑐) 
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denotes the electron (proton) exchange-correlation, 𝑒𝑝𝐽 denotes the electron-proton Coulomb 

interaction, and 𝑒𝑝𝑐  denotes the electron-proton correlation. Note that the e (p) superscripts 

indicate the change in the potential experienced by the electron (proton), respectively.  The 

influence of the density matrices on the potential can be described with the frequency-dependent 

exchange-correlation kernels 𝐾(𝜔): 

 𝛿𝑣𝑖𝑛
𝑒 (𝜔) = 𝐾𝑒𝑒(𝜔)𝛿𝑃𝑒(𝜔) + 𝐾𝑒𝑝(𝜔)𝛿𝑃𝑝(𝜔), (9) 

 𝛿𝑣𝑖𝑛
𝑝 (𝜔) = 𝐾𝑝𝑒(𝜔)𝛿𝑃𝑒(𝜔) + 𝐾𝑝𝑝(𝜔)𝛿𝑃𝑝(𝜔). (10) 

These kernels can be expressed as follows, where the frequency dependence is omitted for 

notational simplicity:    

 𝐾𝑟𝑠,𝑝𝑞
𝑒𝑒 =

(𝛿𝑣𝑒𝑒𝐽
𝑒 )𝑟𝑠

𝛿𝑃𝑝𝑞
𝑒 +

(𝛿𝑣𝑒𝑥𝑐
𝑒 )𝑟𝑠

𝛿𝑃𝑝𝑞
𝑒 +

(𝛿𝑣𝑒𝑝𝑐
𝑒 )𝑟𝑠

𝛿𝑃𝑝𝑞
𝑒 , (11) 

 𝐾𝑅𝑆,𝑃𝑄
𝑝𝑝 =

(𝛿𝑣𝑝𝑝𝐽
𝑝

)𝑅𝑆

𝛿𝑃𝑃𝑄
𝑝 +

(𝛿𝑣𝑝𝑥𝑐
𝑝

)𝑅𝑆

𝛿𝑃𝑃𝑄
𝑝 +

(𝛿𝑣𝑒𝑝𝑐
𝑝

)𝑅𝑆

𝛿𝑃𝑃𝑄
𝑝 , (12) 

 𝐾𝑟𝑠,𝑃𝑄
𝑒𝑝 =

(𝛿𝑣𝑒𝑝𝐽
𝑒 )𝑟𝑠

𝛿𝑃𝑃𝑄
𝑝 +

(𝛿𝑣𝑒𝑝𝑐
𝑒 )𝑟𝑠

𝛿𝑃𝑃𝑄
𝑝 , (13) 

 𝐾𝑅𝑆,𝑝𝑞
𝑝𝑒 =

(𝛿𝑣𝑒𝑝𝐽
𝑝

)𝑅𝑆

𝛿𝑃𝑝𝑞
𝑒 +

(𝛿𝑣𝑒𝑝𝑐
𝑝

)𝑅𝑆

𝛿𝑃𝑝𝑞
𝑒 . (14) 

   

Figure 1: Summary of the relationships among the changes in density matrices (𝛿𝑃), changes in 

potentials (𝛿𝑣), exchange-correlation kernels (𝐾), and response functions (𝜒𝑠) for the 

multicomponent Kohn-Sham reference system. The changes in total potentials influence the 
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density matrices, as indicated in red (Eqs. 3-6), and the changes in the density matrices impact 

the changes in the internal potentials, as indicated in blue (Eqs. 9-10). 

 

The relations in Eqs. (3-12) are summarized in Fig. 1 and can be cast into a matrix form. 

Regardless of the perturbative external potential, the internal resonance gives rise to excitation 

energies when the following relation is satisfied: 

 [

𝐀𝑒 𝐁𝑒 𝐂 𝐂
𝐁𝑒 𝐀𝑒 𝐂 𝐂
𝐂𝑇 𝐂𝑇 𝐀𝑝 𝐁𝑝

𝐂𝑇 𝐂𝑇 𝐁𝑝 𝐀𝑝

] [

𝐗𝑒

𝐘𝑒

𝐗𝑝

𝐘𝑝

] = 𝜔 [

𝐈 0 0 0
0 −𝐈 0 0
0 0 𝐈 0
0 0 0 −𝐈

] [

𝐗𝑒

𝐘𝑒

𝐗𝑝

𝐘𝑝

], (15) 

where the matrix elements are given by   

 𝐴𝑖𝑎,𝑗𝑏
𝑒 (𝜔) = 𝐾𝑖𝑎,𝑗𝑏

𝑒𝑒 (𝜔) + (𝜀𝑎 − 𝜀𝑖)𝛿𝑎𝑏𝛿𝑖𝑗, (16) 

 𝐵𝑖𝑎,𝑗𝑏
𝑒 (𝜔) = 𝐾𝑖𝑎,𝑏𝑗

𝑒𝑒 (𝜔), (17) 

 𝐴𝐼𝐴,𝐽𝐵
𝑝 (𝜔) = 𝐾𝐼𝐴,𝐽𝐵

𝑝𝑝 (𝜔) + (𝜀𝐴 − 𝜀𝐼)𝛿𝐴𝐵𝛿𝐼𝐽, (18) 

 𝐵𝐼𝐴,𝐽𝐵
𝑝 (𝜔) = 𝐾𝐼𝐴,𝐵𝐽

𝑝𝑝 (𝜔), (19) 

 𝐶𝑖𝑎,𝐽𝐵(𝜔) = 𝐾𝑖𝑎,𝐽𝐵
𝑒𝑝 (𝜔). (20) 

Note that the kernel depends on the frequency in these expressions. For practical calculations, 

however, we invoke the adiabatic approximation, in which the kernel K is assumed to be 

independent of frequency and is evaluated with the second derivatives of the ground state 

functional. Here we also adopt the convention of replacing the changes in density matrices 𝛿𝑃 

with 𝐗 for the occupied-virtual elements (Eqs. 3 and 5) and with 𝐘 for the virtual-occupied 

elements (Eqs. 4 and 6). The orthonormalization condition19 for any two eigenvectors denoted by 

m and n is  

 〈𝐗𝑚
𝑒 |𝐗𝑛

𝑒 〉 − 〈𝐘𝑚
𝑒 |𝐘𝑛

𝑒〉 + 〈𝐗𝑚
𝑝 |𝐗𝑛

𝑝〉 − 〈𝐘𝑚
𝑝 |𝐘𝑛

𝑝〉 = ±𝛿𝑚𝑛. (21) 

Similar to TDDFT, the excitation energies arise in pairs with opposite signs (i.e., excitations 
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and de-excitations). In principle, maintaining the frequency-dependent kernel19,24 would enable 

the description of single, double, and higher-order excitations, which could involve electron, 

proton, and mixed electron-proton excitations. However, because we invoked the adiabatic 

approximation, where the kernel is assumed to be frequency-independent, only single excitations 

can be captured. In general, these single excitations could be pure electron, pure proton, or mixed 

electron-proton character. Such excitations could be described as a linear combination of products 

of electron and proton determinants in which only one determinant is singly excited in each term. 

For electronically adiabatic systems, where the electron density responds instantaneously to 

changes in the proton density, the proton and electron excitations are separable, as depicted in 

Figure 2.  Note that this usage of the word “adiabatic” is different from the adiabatic 

approximation related to the frequency-independent kernel.  By electronically adiabatic, we are 

referring to the regime in which the non-Born-Oppenheimer effects between the electrons and 

proton(s) are negligible.  In this limit, each proton and electron excitation can be identified by 

examining the corresponding eigenvector: proton excitations are dominated by 𝐗𝑝, while electron 

excitations are dominated by 𝐗𝑒. Due to coupling between the electrons and protons, these are not 

rigorously pure proton vibrational excitations and electronic excitations, although they will be 

closely associated with such pure excitations in the electronically adiabatic limit. For systems with 

significant nonadiabatic or non-Born-Oppenheimer effects between the electrons and the proton(s), 

the eigenvectors are expected to exhibit non-negligible contributions from both the electron and 

proton elements (i.e., both 𝐗𝑒 and 𝐗𝑝), corresponding to a combination of electron and proton 

excitation character. The oscillator strengths and transition densities can be obtained in an 

analogous manner as in electronic TDDFT.20 
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Figure 2: Schematic depiction of the electron and proton excitations that can be computed with 

NEO-TDDFT in a single calculation. In the case shown, the electronic excitation energies are 

significantly greater than the proton vibrational excitation energies, leading to the separation 

depicted.  For systems in which these excitation energies are similar (i.e., significant nonadiabatic 

or non-Born-Oppenheimer effects between the electrons and proton(s)), this separation would no 

longer be valid, and the single excitations would represent electron-proton vibronic excitations. 

 

 

 

  

The Tamm-Dancoff approximation (NEO-TDDFT-TDA)25 is obtained by eliminating all 

rows and columns involving 𝐁𝑒 and 𝐁𝑝, leading to the following simplified matrix equation:  

 [
𝐀𝑒 𝐂
𝐂𝑇 𝐀𝑝] [

𝐗𝑒

𝐗𝑝] = 𝜔 [
𝐗𝑒

𝐗𝑝]. (22) 

The NEO-TDDFT equation in Eq. 15 is a generalized eigenvalue problem. It can be simplified 

using similar tricks as developed for conventional electronic TDDFT and thereby transformed to 

an eigenvalue problem with an identity metric. The spin adapted formulation can also be carried 

out.19 The NEO-TDDFT and NEO-TDDFT-TDA equations can be solved by direct 

diagonalization with overall 𝑂(𝑁6) scaling. However, it is straightforward to implement the 

iterative Davidson method and thereby reduce the formal cost to 𝑂(𝑁4) for a single root.26,27 

We implemented NEO-TDDFT and NEO-TDDFT-TDA in GAMESS28 with direct 

diagonalization and investigated their performances on both proton and electron excitations. We 
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used the molecules FHF and HCN as test systems because they have been characterized in 

previous NEO ground state studies.5,6,18,29 The geometries were optimized at the conventional 

electronic DFT/B3LYP30,31 level (i.e., all nuclei were treated as point charges) with the def2-QZVP 

electronic basis set.  For the NEO-TDDFT calculations, the heavy nuclei were fixed to these 

geometries, and the hydrogen nucleus was treated quantum mechanically with the associated 

electronic and nuclear basis sets centered at the optimized hydrogen position.  We performed 

electronic basis set convergence tests with the NEO-TDDFT method, as provided in the SI. 

Utilizing these results, we employed the cc-pVDZ electronic basis set for the heavy atoms and the 

cc-pV5Z electronic basis set for the quantum hydrogen atom. Note that a relatively large electronic 

basis set on the quantum hydrogen is necessary to obtain accurate proton vibrational excitation 

energies. An even-tempered 8s8p8d proton basis set with exponents spanning the range from 2√2 

to 32  was used for all calculations.5 The electronic exchange-correlation energy was 

approximated by either the B3LYP or the PBE32 functional, while the exchange-correlation of the 

proton was computed as the Hartree-Fock exchange. The electron-proton correlation energy was 

treated at three different levels: using the epc17-15 or the epc17-26 functional, or alternatively at 

the no-epc level, which neglects all electron-proton correlation.  

The proton vibrational excitation energies are compared to those obtained with a grid-based 

method that is numerically exact for electronically adiabatic systems. In this approach, the total 

electronic energy was calculated at the DFT/B3LYP level for the hydrogen nucleus positioned at 

each grid point on a three-dimensional grid spanning the relevant region for the proton density, 

and the three-dimensional Schrödinger equation was solved numerically for the proton using the 

Fourier grid Hamiltonian method.33,34 Note that the NEO-TDDFT method is designed to capture 

non-Born-Oppenheimer effects and therefore will be applicable to electronically nonadiabatic 
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systems, but our initial benchmarking focuses on electronically adiabatic systems to allow direct 

comparison to numerically exact results. The electronic excitation energies are compared to the 

corresponding conventional TDDFT results. These comparisons are based on the assumption of 

weak coupling between the electronic and proton vibrational excitations, a valid assumption in the 

electronically adiabatic limit. For the two molecules investigated herein, we found that the 

magnitudes of the electronic elements are extremely small for those eigenvectors corresponding 

to proton excitations, and vice versa, suggesting that the electronic excitations and proton 

vibrational excitations are predominantly separable.  This observation is consistent with the 

known electronic adiabaticity of these systems. However, it is possible that in other systems, such 

as photoacids12 or photoinduced PCET systems,7,8,13 which exhibit electronically nonadiabatic or 

non-Born-Oppenheimer effects, mixing between the two types of excitations might be observed. 

Table 1 presents the proton excitation energies for FHF and HCN computed with the B3LYP 

electronic exchange-correlation functional and the epc17-2 electron-proton correlation functional, 

as well as with no electron-proton correlation (no-epc). The analogous results with the PBE 

electronic functional and the epc17-1 electron-proton correlation functional are provided in Tables 

S1 and S2 of the SI. The choice of electronic exchange-correlation functional has negligible impact 

on the proton excitation energies, with the B3LYP and PBE electronic excitation energies differing 

by less than 200 cm-1.  

The impact of electron-proton correlation on the proton vibrational excitation energies is 

somewhat unexpected. Although the NEO-DFT/no-epc method does not provide even 

qualitatively accurate proton densities5 for the ground state, the corresponding NEO-TDDFT/no-

epc method provides accurate proton vibrational excitation energies with average errors of only 

~200 cm-1. In contrast, the epc17-1 functional does not perform as well as neglecting electron-
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proton correlation altogether, even though it provides much more accurate ground state proton 

densities. The epc17-2 functional, which has been shown to provide quantitatively accurate proton 

affinities,6 performs equally well or slightly better than the no-epc case for computing proton 

vibrational excitation energies. Thus, the relation between the ground state proton density and 

excitation energies is not clear.  

The electron-proton correlation functionals epc17-1 and epc17-2 were parameterized to 

reproduce ground state proton densities or energies in previous work5,6 and were not further 

parameterized in the present work. Moreover, as indicated from the basis set convergence study 

presented in the SI, the results are sensitive to the basis sets, particularly on the quantum hydrogen. 

Further parameterization of the electron-proton functionals, as well as larger electronic and nuclear 

basis sets, could improve the quantitative accuracy of the proton vibrational excitation energies.  

In addition, the grid-based method used as a reference assumes electronic adiabaticity, and in 

principle NEO-TDDFT might include non-Born-Oppenheimer effects that are not accurately 

reflected in this grid-based method. An exact benchmark that includes all of these nonadiabatic 

effects would be a grid-based method that includes the first-order and second-order nonadiabatic 

couplings.35 

Although it violates the sum rules, the Tamm-Dancoff approximation often gives comparable 

excitation energies as the underlying full linear-response treatment in conventional electronic 

structure theory methods.25,36,37 However, this trend is not observed for proton excitations within 

the NEO framework, as indicated by the results in Table 1. The NEO-TDDFT-TDA method 

overestimates the proton excitation energies by ~2000 cm-1 compared to the corresponding NEO-

TDDFT method. The reason for this disparity is not yet fully clear, although it might arise from 

the small vibrational excitation energies, which could reduce the validity of the Tamm-Dancoff 
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approximation.38 We will further investigate this phenomenon in future studies. 

In addition to the proton excitation energies, NEO-TDDFT also provides electron excitation 

energies, as depicted in Figure 2.  Table 2 presents the excitation energies for the lowest two 

singlet and triplet single-electron excitations for FHF, with the analogous results for HCN 

provided in Table S4. These results illustrate that NEO-TDDFT and conventional electronic 

TDDFT lead to almost exactly the same electronic excitation energies, regardless of how the 

electron-proton correlation is treated. The NEO-TDDFT-TDA method also leads to very similar 

results as the corresponding electronic TDDFT-TDA method, indicating that the Tamm-Dancoff 

approximation is better justified for pure electronic excitations than for proton vibrational 

excitation energies. 

In summary, we derived and implemented the linear response NEO-TDDFT method and 

showed that it can accurately predict both proton and electron excitation energies with a single 

calculation. The proton excitation energies are not sensitive to the choice of electron exchange-

correlation functional but are more sensitive to the choice of electron-proton correlation functional,  

with epc17-2 providing the best results, corresponding to errors of ~200 cm-1 with no 

reparameterization of the functionals. Neglecting electron-proton correlation altogether also leads 

to reasonable proton excitation energies for the molecules studied herein, although electron-proton 

correlation may be more important for other systems, such as proton transfer systems.  The NEO-

TDDFT-TDA method does not provide even qualitatively reasonable proton excitation energies, 

with errors of ~2000 cm-1 for the systems studied. Both NEO-TDDFT and NEO-TDA provide 

accurate electron excitation energies with all electron-proton correlation functionals studied. 

We emphasize that the objective of this Letter is to present a proof of concept that the NEO-

TDDFT method is able to predict accurate proton and electron excitation energies. A more 
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comprehensive investigation of the effects of the adiabatic approximation (i.e., the frequency-

independent kernel) and the roles of electron exchange-correlation and electron-proton correlation 

functionals will be the focus of future work. In addition, the significance of the individual block-

matrix contributions in the NEO-TDDFT working equations will be investigated to understand 

why TDA does not perform well for proton excitation energies. Such understanding will be critical 

for harnessing this method in future applications to systems such as photoacids and photoinduced 

PCET processes, which may exhibit mixed electron-proton vibronic excitations.  

Table 1. Proton Excitation Energies for FHF and HCN (in cm-1)a 

  NEO-TDDFT-TDA  NEO-TDDFT 
Grid Ref 

  no-epc epc17-2  no-epc epc17-2 

FHF- Off-axis 3351 3628  1408 1401 1278 
On-axis 3636 4005  1889 1828 1647 

HCN 
Off-axis 3796 3983  980 920 667 
On-axis 4875 5296  3136 3217 3195 

a The B3LYP electronic exchange-correlation functional was used to compute all numbers in this table. Results with 
the PBE electronic functional and epc17-1 electron-proton correlation functional are provided in Tables S1 and S2. 
 

Table 2. Electron Excitation Energies for FHF(in eV)a 

 NEO-TDDFT-TDA 
TDDFT-TDA 

NEO-TDDFT 
TDDFT 

 no-epc epc17-2 no-epc epc17-2 

T1 6.84 6.84 6.86 6.83 6.84 6.85 
T2 6.92 6.92 6.91 6.91 6.91 6.90 
S1 7.02 7.02 7.04 7.01 7.02 7.03 
S2 7.15 7.16 7.15 7.14 7.14 7.13 

a The B3LYP electronic exchange-correlation functional was used to compute all numbers in this table. Results with 

the PBE electronic functional and epc17-1 electron-proton correlation functional are provided in Tables S3 and S4. 
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