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Abstract 

The nuclear-electronic orbital (NEO) method treats all electrons and specified nuclei, typically 

protons, quantum mechanically on the same level with molecular orbital techniques. This approach 

directly includes nuclear delocalization, anharmonicity, and zero point energy contributions of the 

quantum nuclei in the self-consistent-field procedure for solving the time-independent Schrödinger 

equation. Herein the multicomponent wave function based methods configuration interaction 

singles and doubles (CISD) and coupled cluster singles and doubles (CCSD) are implemented 

within the NEO framework and are applied to molecular systems. In contrast to the NEO-HF 

(Hartree-Fock) and NEO-CISD methods, which produce proton densities that are much too 

localized, the NEO-CCSD method produces accurate proton densities in reasonable agreement 

with a grid-based reference. Moreover, the NEO-CCSD method also predicts accurate proton 

affinities in agreement with experimental measurements for a set of twelve molecules. An 

advantage of the NEO-CCSD method is its ability to include nuclear quantum effects, such as 

proton delocalization and zero point energy, during geometry optimizations and nuclear dynamics 

simulations. The NEO-CCSD method is a promising, parameter free approach for including 

nuclear quantum effects in high-level electronic structure calculations of molecular systems. 
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1   Introduction 

A central approximation in computational quantum chemistry is the Born-Oppenheimer 

separation of electronic and nuclear motions. In this approximation, nuclei are treated classically 

as point charges during the solution of the time-independent electronic Schrödinger equation. 

However, many interesting chemical phenomena, such as hydrogen tunneling and proton-coupled 

electron transfer, require a quantum mechanical description of nuclei beyond the Born-

Oppenheimer approximation.1-6 A variety of methods has been developed in an effort to address 

these issues.7-38 A computationally practical way of accurately incorporating nuclear quantum 

effects is provided by the nuclear-electronic orbital (NEO) approach.10 In the NEO framework, 

select nuclei, typically protons, are treated quantum mechanically on the same level as the electrons, 

with at least two nuclei treated classically to avoid issues associated with translations and rotations. 

An advantage of the NEO method over conventional quantum chemistry methods is that 

anharmonicity, nuclear delocalization, and zero point energy contributions of the quantum nuclei 

are included directly in the self-consistent-field (SCF) procedure.  

Due to the lack of electron-electron and, more importantly, electron-proton correlation 

effects, the NEO Hartree-Fock (NEO-HF) method, which represents the nuclear-electronic 

wavefunction as the product of a nuclear and electronic determinant, predicts highly over-localized 

proton densities. These problematic proton densities lead to inaccurate predictions of many 

molecular properties, including vibrationally averaged geometries, geometric isotope effects, 

proton affinities, and tunneling splittings.14, 17 The NEO density functional theory (DFT) method 

includes both electron-electron and electron-proton correlation effects in a consistent and 

computationally practical manner.9, 19, 21, 27 Recently our group developed a series of electron-

proton correlation functionals, denoted epc17 and epc18, that are based on a multicomponent 
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extension of the Colle-Salvetti approximation.34, 38 The use of these electron-proton correlation 

functionals within the NEO-DFT framework represents a practical multicomponent quantum 

chemistry method that provides accurate proton densities and energies, such as proton affinities.34-

35, 38 Furthermore, the recently developed linear response NEO-TDDFT (time-dependent DFT) 

method enables the efficient calculation of accurate proton and electron excitation energies.37 A 

significant advantage of the NEO-DFT method is its low computational cost (N 3 or N 4 in the case 

of exact electron exchange, where N is a measure of the system size), making it applicable to a 

wide range of chemical systems. However, a disadvantage of the NEO-DFT method is the lack of 

a clear path toward systematic improvement.  

In contrast to the NEO-DFT approach, wavefunction methods within the NEO framework 

are systematically improvable and parameter free. Early work on these methods in our group 

includes the development of NEO-HF, second-order Møller-Plesset perturbation theory (NEO-

MP2), configuration interaction (NEO-CI), and multiconfiguration self-consistent-field (NEO-

MCSCF).10, 15 Related methods have also been implemented independently at the HF7 level and at 

the many-body perturbation theory (MBPTX, X=2,3,4),12-13 CI,8, 13 coupled cluster doubles (CCD), 

and Brueckner doubles12 levels. Recently, the NEO method10, 16 was implemented in the LOWDIN 

package29 as the APMO (Any-Particle Molecular Orbital)18, 22, 24 method. This method was 

extended to any-particle propagator theory and successfully used to predict proton and positron 

binding energies.26, 28, 33 These methods either do not impact the proton density at all because they 

are implemented as energy corrections, such as the standard NEO-MP2 and propagator theory 

methods, or show very limited improvement in protonic density, such as current implementations 

of NEO-CI and NEO-MCSCF methods, due to insufficient treatment of electron-proton correlation. 

None of these wavefunction-based methods has been shown to provide accurate predictions of 
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molecular properties that are dependent on the proton densities.  

Another type of NEO wavefunction method incorporates explicit electron-proton 

correlation directly into the SCF procedure with Gaussian-type geminal functions, denoted the 

explicitly correlated HF (NEO-XCHF) method.17, 20, 23, 30 These methods provide improved proton 

densities along the hydrogen stretching modes but do not provide accurate proton densities along 

the hydrogen bending modes; additionally, these explicitly correlated methods require 

computation of up to five-particle integrals, limiting applications to very small systems.31 More 

recently, Chakraborty and coworkers presented a multicomponent coupled cluster method and 

applied it to positronium hydride, where the electrons and the positron were treated quantum 

mechanically, and to biexcitonic systems, where electrons and holes were treated quantum 

mechanically.32, 36 Although the results for these electron-positron and electron-hole systems are 

very promising, such multicomponent coupled cluster methods have not yet been used to treat 

electrons and nuclei quantum mechanically on equal footing. 

Herein we present an implementation of the NEO-CCSD (coupled cluster singles and 

doubles) method, as well as the NEO-CISD (configuration interaction singles and doubles) method, 

for treating electrons and specified nuclei quantum mechanically on the same level. Our 

applications to molecular systems indicate that the NEO-CCSD method provides much more 

accurate proton densities and proton affinities than does the NEO-CISD method. An advantage of 

using the NEO-CCSD approach rather than conventional electronic CCSD methods39-43 for 

computing quantities such as proton affinities is that the NEO-CCSD approach inherently includes 

the zero point energy associated with the quantum hydrogen and thus does not require the 

calculation of the Hessian, which can be computationally expensive. Moreover, an advantage of 

NEO-CCSD over energy correction approaches, such as the any-particle propagator theory, is that 
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the NEO-CCSD approach provides accurate proton densities, which is important for incorporating 

nuclear delocalization and zero point energy effects into geometry optimizations, reaction paths, 

and reaction dynamics.   

We emphasize that this paper does not present new theory because the NEO-CCSD and 

NEO-CISD equations are straightforward extensions of the conventional electronic CCSD and 

CISD equations.39-40, 44-45  Related multicomponent methods have been published previously12-13, 

32 but have not been used to investigate nuclear quantum effects in molecular systems with more 

than two atoms. The main goal of this paper is to present the complete equations and 

implementation of the NEO-CCSD approach for larger molecules and to illustrate that this 

approach provides accurate proton affinities, approximate proton densities, and vibrationally 

averaged optimized geometries for molecular systems. The programmable equations are also 

provided in the Supporting Information (SI) to enable others to implement this approach. 

The manuscript is organized as follows. In Section 2, we describe the theoretical foundation 

of the NEO-CISD and NEO-CCSD formalism. In Section 3, we discuss the validation of the 

implementation for the small model system positronium hydride (PsH), where the electrons and 

positron are treated quantum mechanically. Then we present results on molecular systems in which 

all electrons and a proton are treated quantum mechanically, illustrating the level of accuracy for 

calculating proton densities, vibrationally averaged optimized geometries, and proton affinities. 

Concluding remarks are provided in Section 4. 

 

2   Theory 

 In this section, we introduce the multicomponent CISD and CCSD formalism. A 

multicomponent system is a system where at least two types of particles, such as electrons and 
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positrons or electrons and nuclei, are treated quantum mechanically. Here we present the 

formalism for a multicomponent system composed of electrons and protons, but the extension to 

any multicomponent system is straightforward. In this case, all electrons and specified protons are 

treated quantum mechanically, while the remaining nuclei are treated classically. The NEO 

Hamiltonian using second quantization notation is given by:  

 𝐻̂ = ℎ𝑞
𝑝𝑎𝑝

𝑞 +
1

4
𝑔̅𝑟𝑠

𝑝𝑞𝑎𝑝𝑞
𝑟𝑠 + ℎ𝑄

𝑃𝑎𝑃
𝑄 +

1

4
𝑔̅𝑅𝑆

𝑃𝑄𝑎𝑃𝑄
𝑅𝑆 − 𝑔𝑞𝑄

𝑝𝑃𝑎𝑝𝑃
𝑞𝑄. (1) 

Occupied electronic molecular orbitals in the NEO-HF reference are denoted by 𝑖, 𝑗, . .. , 

unoccupied orbitals are denoted by 𝑎, 𝑏, . .., and general orbitals are denoted by 𝑝, 𝑞, . ... The same 

notation is used for the nuclear orbitals with upper-case letters. The Einstein summation 

convention is assumed over repeated indices, unless noted otherwise. Additionally, we use the 

standard tensor notation introduced by Kutzelnigg and Mukherjee,46 where the excitation operators 

𝑎𝑞1𝑞2...𝑞𝑛

𝑝1𝑝2...𝑝𝑛  are defined as a string (product) of creation (𝑎𝑝
†

) and annihilation (𝑎𝑝 ) operators: 

𝑎𝑞1𝑞2...𝑞𝑛

𝑝1𝑝2...𝑝𝑛 ≡ 𝑎𝑝1

† 𝑎𝑝2

† . . . 𝑎𝑝𝑛

† 𝑎𝑞𝑛
. . . 𝑎𝑞2

𝑎𝑞1
. Equivalent notations and definitions are used for the 

protonic excitation operators. The mixed excitation operators acting on the space of both electrons 

and protons are defined analogously. In Eq. (1), ℎ𝑞
𝑝 ≡ 〈𝑞|ℎ̂e|𝑝〉 corresponds to a matrix element 

of the electronic one-particle Hamiltonian, while 𝑔̅𝑟𝑠
𝑝𝑞 ≡ 〈𝑟𝑠||𝑝𝑞〉 = 〈𝑟𝑠|𝑝𝑞〉 − 〈𝑟𝑠|𝑞𝑝〉  is the 

antisymmetrized two-electron Coulomb repulsion tensor element. The protonic counterparts, ℎ𝑄
𝑃  

and 𝑔̅𝑅𝑆
𝑃𝑄

, are defined analogously. The electron-proton Coulomb attraction tensor element is 

defined as 𝑔𝑞𝑄
𝑝𝑃

≡ 〈𝑞𝑄|𝑝𝑃〉.  

The NEO Hamiltonian given by Eq. (1) can be recast into normal ordered form relative to 

the reference state, which in this case is the NEO-HF wavefunction: ΨNEO−HF(𝐫e, 𝐫p) =

Φ0
e(𝐫𝑒)Φ0

p
(𝐫𝑝) ≡ |0e0p〉. Using Wick’s theorem contraction rules,39, 46-47 the NEO Hamiltonian is 
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now given by  

 𝐻̂ = (ℎ𝑞
𝑝 + ∑𝑖 𝑔̅𝑞𝑖

𝑝𝑖 − ∑𝐼 𝑔𝑞𝐼
𝑝𝐼)𝑎̃𝑝

𝑞 +
1

4
𝑔̅𝑟𝑠

𝑝𝑞𝑎̃𝑝𝑞
𝑟𝑠  

 + (ℎ𝑄
𝑃 + ∑𝐼 𝑔̅𝑄𝐼

𝑃𝐼 − ∑𝑖 𝑔𝑄𝑖
𝑃𝑖)𝑎̃𝑃

𝑄 +
1

4
𝑔̅𝑅𝑆

𝑃𝑄𝑎̃𝑃𝑄
𝑅𝑆 − 𝑔𝑞𝑄

𝑝𝑃𝑎̃𝑝𝑃
𝑞𝑄

 

 + ∑𝑖 ℎ𝑖
𝑖 +

1

2
∑𝑖𝑗 𝑔̅𝑖𝑗

𝑖𝑗
+ ∑𝐼 ℎ𝐼

𝐼 +
1

2
∑𝐼𝐽 𝑔̅𝐼𝐽

𝐼𝐽 − ∑𝑖𝐼 𝑔𝑖𝐼
𝑖𝐼 (2) 

which can be written as 

 𝐻̂ = 𝐹̂𝑁
e + 𝑊̂𝑁

ee + 𝐹̂𝑁
p

+ 𝑊̂𝑁
pp

+ 𝑊̂𝑁
ep

+ 〈0e0p|𝐻̂|0e0p〉 (3) 

where 𝐹̂𝑁
e  and 𝑊̂𝑁

ee  are the normal-ordered NEO electronic Fock and fluctuation operators, 

respectively, in the spin-orbital basis. Protonic normal-ordered operators are defined analogously, 

and 𝑊̂𝑁
ep

≡ −𝑔𝑞𝑄
𝑝𝑃𝑎̃𝑝𝑃

𝑞𝑄
 is the normal-ordered electron-proton fluctuation operator. Operators with 

a tilde correspond to normal-ordered (with respect to |0e0p〉) excitation operators. Finally, the 

normal-ordered Hamiltonian is  

 𝐻̂𝑁 = 𝐻̂ − 〈0e0p|𝐻̂|0e0p〉. (4) 

There are two equivalent methods for constructing the exact wavefunction: the full 

configuration interaction (FCI) and the full coupled cluster (FCC) expansions. The former assumes 

a linear expansion ( |NEO − FCI〉 = (1 + 𝐶̂)|0e0p〉 ), while the latter assumes an exponential 

expansion (|NEO − FCC〉 = 𝑒𝑇̂|0e0p〉). The operators 𝐶̂ ≡ ∑𝑖 𝐶̂𝑖 and 𝑇̂ ≡ ∑𝑖 𝑇̂𝑖 are defined in 

terms of the cluster operators 𝐶̂𝑖  or 𝑇̂𝑖  that generate excited determinants by acting on the 

reference state, and the index 𝑖 corresponds to the excitation rank. Because these methods scale 

factorially with the system size, we include only single- and double-excitations (𝐶̂ ≡ 𝐶̂1
e + 𝐶̂2

e +

𝐶̂1
p

+ 𝐶̂2
p

+ 𝐶̂11
ep

 and 𝑇̂ ≡ 𝑇̂1
e + 𝑇̂2

e + 𝑇̂1
p

+ 𝑇̂2
p

+ 𝑇̂11
ep

), defining the NEO-CISD and NEO-CCSD 

methods, respectively, to make these methods computationally practical. The operators 𝑇̂1
e =

𝑡𝑎
𝑖 𝑎̃𝑖

𝑎  and 𝑇̂2
e =

1

4
𝑡𝑎𝑏

𝑖𝑗
𝑎̃𝑖𝑗

𝑎𝑏  are the conventional electronic single- and double-cluster operators, 
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while 𝑇̂1
p

= 𝑡𝐴
𝐼 𝑎̃𝐼

𝐴  and 𝑇̂2
p

=
1

4
𝑡𝐴𝐵

𝐼𝐽 𝑎̃𝐼𝐽
𝐴𝐵 are the protonic single- and double-cluster operators. 

Finally, the mixed cluster operator 𝑇̂11
ep

= 𝑡𝑎𝐴
𝑖𝐼 𝑎̃𝑖𝐼

𝑎𝐴  replaces single electronic and protonic 

occupied orbitals with unoccupied ones from the reference configuration. The cluster operators 

that occur in the NEO-CISD method are defined similarly as 𝐶̂1
e = 𝑐𝑎

𝑖 𝑎̃𝑖
𝑎, 𝐶̂2

e =
1

4
𝑐𝑎𝑏

𝑖𝑗
𝑎̃𝑖𝑗

𝑎𝑏, 𝐶̂1
p

=

𝑐𝐴
𝐼 𝑎̃𝐼

𝐴, 𝐶̂2
p

=
1

4
𝑐𝐴𝐵

𝐼𝐽 𝑎̃𝐼𝐽
𝐴𝐵  and 𝐶̂11

ep
= 𝑐𝑎𝐴

𝑖𝐼 𝑎̃𝑖𝐼
𝑎𝐴 . The coefficients 𝑐 and 𝑡 are unknown NEO-CISD 

and NEO-CCSD amplitudes that need to be determined. These unknown coefficients can be 

obtained from left projection by excited determinants.  

In the case of NEO-CISD, the 𝑐 amplitude equations are given by  

 𝑐𝑎
𝑖 𝐸NEO−CISD

corr = 〈𝑖
𝑎|𝐻̂𝑁(1 + 𝐶̂)|0e0p〉 (5) 

 𝑐𝑎𝑏
𝑖𝑗

𝐸NEO−CISD
corr = 〈𝑖𝑗

𝑎𝑏|𝐻̂𝑁(1 + 𝐶̂)|0e0p〉 (6) 

 𝑐𝐴
𝐼 𝐸NEO−CISD

corr = 〈𝐼
𝐴|𝐻̂𝑁(1 + 𝐶̂)|0e0p〉 (7) 

 𝑐𝐴𝐵
𝐼𝐽 𝐸NEO−CISD

corr = 〈𝐼𝐽
𝐴𝐵|𝐻̂𝑁(1 + 𝐶̂)|0e0p〉 (8) 

 𝑐𝑎𝐴
𝑖𝐼 𝐸NEO−CISD

corr = 〈𝑖𝐼
𝑎𝐴|𝐻̂𝑁(1 + 𝐶̂)|0e0p〉 (9) 

and the corresponding programmable expressions are obtained by utilizing the generalized Wick’s 

theorem.46 The electronic excited determinants are defined as 〈𝑖
𝑎| = 〈0𝑒0𝑝|𝑎̃𝑎

𝑖 , etc. while protonic 

and electronic-protonic excited determinants are defined analogously. The NEO-CISD correlation 

energy is defined as  

 𝐸NEO−CISD
corr = 〈0𝑒0𝑝|𝐻̂𝑁(1 + 𝐶̂)|0e0p〉. (10) 

The programmable NEO-CISD energy and amplitude equations are provided in the SI. 

The NEO-CCSD energy and 𝑡  amplitude equations are obtained analogously to the 

derivation of the conventional electronic CCSD equations.32, 39, 44 The first step is to multiply the 

coupled cluster Schrödinger equation 𝐻̂𝑁𝑒𝑇̂|0e0p〉 = 𝐸NEO−CCSD
corr 𝑒𝑇̂|0e0p〉 by 𝑒−𝑇̂ from the left, 
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followed by left projection by the ground state (〈0𝑒0𝑝|) and excited determinants (〈𝜇|) to obtain 

the energy and amplitude equations, respectively, giving  

 𝐸NEO−CCSD
corr = 〈0e0p|𝑒−𝑇̂𝐻̂𝑁𝑒𝑇̂|0e0p〉 (11) 

 0 = 〈𝜇|𝑒−𝑇̂𝐻̂𝑁𝑒𝑇̂|0e0p〉. (12) 

Application of the Baker-Campbell-Hausdorff (BCH) expansion,48 which naturally truncates after 

the fourth-fold commutator, leads to  

 𝑒−𝑇̂𝐻̂𝑁𝑒𝑇̂ = 𝐻̂𝑁 + [𝐻̂, 𝑇̂] +
1

2!
[[𝐻̂𝑁 , 𝑇̂], 𝑇̂] 

 +
1

3!
[[[𝐻̂𝑁 , 𝑇̂], 𝑇̂], 𝑇̂] +

1

4!
[[[[𝐻̂𝑁 , 𝑇̂], 𝑇̂], 𝑇̂], 𝑇̂]. (13) 

This expression can be further simplified because the only terms that contribute are those for which 

the normal-ordered Hamiltonian has at least one contraction with all cluster operators on the right 

side, as indicated by the subscript 𝐶 in the following NEO-CCSD amplitude equations:39  

 0 = 〈𝑖
𝑎|𝐻̂𝑁𝑒𝑇̂|0e0p〉𝐶 (14) 

 0 = 〈𝑖𝑗
𝑎𝑏|𝐻̂𝑁𝑒𝑇̂|0e0p〉𝐶 (15) 

 0 = 〈𝐼
𝐴|𝐻̂𝑁𝑒𝑇̂|0e0p〉𝐶 (16) 

 0 = 〈𝐼𝐽
𝐴𝐵|𝐻̂𝑁𝑒𝑇̂|0e0p〉𝐶 (17) 

 0 = 〈𝑖𝐼
𝑎𝐴|𝐻̂𝑁𝑒𝑇̂|0e0p〉𝐶  (18) 

and in the NEO-CCSD energy equation  

 𝐸NEO−CCSD
corr = 〈0e0p|𝐻̂𝑁𝑒𝑇̂|0e0p〉𝐶 . (19) 

Similar to the NEO-CISD method, applying the generalized Wick’s theorem gives the 

programmable expressions for the 𝑡 amplitude equations and energy. In contrast to the NEO-

CISD method, the NEO-CCSD method is size-consistent even in the truncated form, making it 

more robust and preferable. The programmable NEO-CCSD energy and amplitude equations are 
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provided in the SI. 

In addition to the spin-orbital formalism discussed above, we have also used a spin-free 

formalism for derivation of the computationally efficient programmable amplitude and energy 

equations.42-43 The difference in this approach is that in place of the excitation operators 𝑎𝑞1𝑞2...𝑞𝑛

𝑝1𝑝2...𝑝𝑛, 

the spin-free one- and two-particle replacement operators 𝐸𝑞
𝑝

 and 𝐸𝑟𝑠
𝑝𝑞

 are used.46 These 

operators are defined in terms of the spin-orbital creation and annihilation operators 𝑎 and 𝑎†, 

respectively, as  

 𝐸𝑞
𝑝 ≡ ∑𝜎=↑,↓ 𝑎𝑝𝜎

† 𝑎𝑞𝜎
 (20) 

 𝐸𝑟𝑠
𝑝𝑞 ≡ ∑𝜎,𝜌=↑,↓ 𝑎𝑝𝜎

† 𝑎𝑞𝜌

† 𝑎𝑠𝜌
𝑎𝑟𝜎

 (21) 

where 𝜎 and 𝜌 denote indices for spin-up (𝑚𝑠 = 1/2) and spin-down (𝑚𝑠 = −1/2) magnetic 

quantum numbers, and 𝑝𝜎 denotes the spin orbital corresponding to spatial orbital 𝑝 with spin 

σ.46, 49 

 

3   Results and discussion 

 The NEO-CISD and NEO-CCSD amplitude and energy equations defined in Section 2 

have been implemented in an in-house code developed in our group in both the spin-orbital and 

spin-free basis. The code is built on top of the Libint integral library.50 Additionally, the 

programmable energy and amplitude equations were derived with the SeQuant package. The 

implementation was validated using the positronium hydride (PsH) system, which consists of two 

quantum electrons, one quantum positron, and a classical hydrogen nucleus.8, 51 The exact solution 

for this system can be obtained by extending the cluster operators 𝐶̂ and 𝑇̂ to include 𝐶̂21
ep

=

1

4
𝑐𝑎𝑏𝐴

𝑖𝑗𝐼
𝑎̃𝑖𝑗𝐼

𝑎𝑏𝐴 and 𝑇̂21
ep

=
1

4
𝑡𝑎𝑏𝐴

𝑖𝑗𝐼
𝑎̃𝑖𝑗𝐼

𝑎𝑏𝐴, respectively, which are equivalent to the multicomponent FCI 
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and FCC methods, respectively, for this particular system.13, 32, 51 Because they are both exact 

solutions for a given basis set, the FCI and FCC approaches should give the same result for this 

system and have been confirmed to do so for our implementation. Details of these calculations are 

provided in the SI. The NEO-CISD and NEO-CCSD methods have also been used to calculate the 

proton densities and the optimized geometry for the FHF– molecule and to compute the proton 

affinities of twelve small molecules. These results are presented in the next two subsections. 

 

3.1  Calculation of the proton density and optimized geometry for the FHF– 

molecule  

 The proton density is calculated by evaluating the expression  

 𝜌p(𝐫p) = ∑𝑃𝑄 𝜙𝑄(𝐫p)𝛾𝑄𝑃𝜙𝑃
∗ (𝐫p). (22) 

Here {𝜙𝑃} are protonic orbitals and 𝛾𝑄𝑃 is the matrix element of the one-particle reduced proton 

density matrix defined by 𝛾𝑄𝑃 =
〈ΨNEO|𝑎𝑄

𝑃|ΨNEO〉

〈ΨNEO|ΨNEO〉
,40, 52 where |ΨNEO〉 can be a NEO-HF, NEO-

CISD, or NEO-CCSD wavefunction. In the case of the NEO-CCSD density matrix, we include up 

to quadratic terms in the wavefunction expansion, |ΨNEO〉 = (1 + 𝑇̂ +
1

2!
𝑇̂2 + ⋯ )|0e0p〉.40 Note 

that the NEO-CCSD density matrix has a nonterminating expansion, but truncation after second 

order serves as a qualitative estimate of the NEO-CCSD density, as discussed by Noga and 

Urban.40, 53 Although this approach is only an approximation of the true NEO-CCSD density, it 

provides a qualitatively reasonable description of the proton density, as supported by the 

vibrationally averaged geometry optimizations discussed below. A more accurate, but technically 

more complicated, method for calculating the one-particle reduced proton density matrix is based 

on solving the Λ-CC equations,39, 44, 52, 54 which is beyond the scope of the current work.  
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The proton density was calculated for the FHF– molecule optimized at the CCSD/aug-cc-

pVTZ level of theory. The fluorine-fluorine distance was 2.267 Å with the hydrogen atom 

positioned at the midpoint between the two fluorines. For the NEO calculations, the aug-cc-pVTZ 

electronic basis set was used for the two classical nuclei, and the quantum hydrogen was 

represented by electronic and nuclear basis functions centered at the midpoint between the two 

fluorine atoms. Specifically, the aug-cc-pVQZ electronic basis set and an even-tempered 8s8p8d 

nuclear basis with exponents ranging from 2√2 to 32 were used for the quantum hydrogen.55-57 

As a benchmark, the proton densities were also calculated with the Fourier grid 

Hamiltonian (FGH) method,58 treating the hydrogen nucleus quantum mechanically with the two 

fluorine atoms fixed. In this approach, the hydrogen nucleus was moved on a three-dimensional 

grid spanning the region between the two fluorine atoms, and single-point energy calculations were 

performed at each grid point using the conventional electronic CCSD/aug-cc-pVTZ method. 

Subsequently, the FGH method was used to solve the three-dimensional Schrödinger equation for 

the proton, yielding the three-dimensional proton vibrational wavefunctions and energy levels. The 

proton density corresponding to the ground vibrational state was computed from the square of the 

ground state proton vibrational wavefunction. This approach is numerically exact for electronically 

adiabatic systems, in which the Born-Oppenheimer separation between electrons and nuclei is 

valid. The FHF– molecule is expected to be electronically adiabatic and therefore serves as a useful 

example in this regime. Although the NEO methods should be valid in the nonadiabatic or non-

Born-Oppenheimer regime, the proton densities must also be accurate and are more easily 

benchmarked in the electronically adiabatic regime.  

Figure 1 shows two slices of the proton density calculated for the FHF– molecule using the 

NEO-HF, NEO-CISD, and NEO-CCSD methods, as well as the FGH method, which is viewed as 
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the reference. As demonstrated previously, NEO-HF predicts a highly localized proton density due 

to an inadequate description of electron-proton correlation effects.  

 

Figure 1. On-axis (top) and off-axis (bottom) proton density for the FHF– molecule calculated with 

the reference FGH (solid black), NEO-HF (dashed red), NEO-CISD (dashed-dotted green), and 

NEO-CCSD (dotted blue) methods. The fluorine atoms are fixed at a distance of 2.267 Å, and the 

quantum proton basis functions are positioned at the origin. Note that all proton densities are 

normalized in three-dimensional space, with the tails contributing more than the peak region due 

to the volume element in the integration. 

 

The NEO-CISD method leads to only a very small improvement in the proton density because it 

does not recover enough electron-proton correlation energy. In contrast, the NEO-CCSD method 

leads to a significant improvement in the proton density, exhibiting much better agreement with 

the grid-based reference density. To the best of our knowledge, NEO-CCSD is the first parameter-

free quantum chemistry approach that produces qualitatively accurate proton densities. We expect 

that including excitation operators of higher rank, in addition to rigorous construction of the one-

particle reduced proton density matrix, would further improve the proton density, but unfortunately 

at greater computational expense. 

 Another important feature of the NEO approach is that it incorporates the nuclear quantum 

effects of the proton, such as proton delocalization and zero point energy, during geometry 
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optimizations of the classical nuclei or nuclear dynamics simulations. In contrast, conventional 

electronic structure calculations typically include the zero point energy as a correction to the total 

energy at the optimized geometry based on frequencies obtained from the Hessian and thus do not 

include these nuclear quantum effects during geometry optimizations or dynamics. Previously 

studied methods such as NEO-HF, NEO-MP2, and NEO-CISD, as well as the APMO/PP2 method, 

do not provide even qualitatively accurate proton densities and therefore are not suitable for this 

purpose. The NEO-DFT/epc17 approach, however, has been shown to produce accurate proton 

densities as well as to correctly predict the impact of nuclear quantum effects on the optimized 

geometries.35 

To investigate this feature for wavefunction-based methods, we calculated the impact of 

proton quantization on the equilibrium, minimum-energy FF distance for the FHF– molecule. The 

results obtained with the NEO-HF, NEO-CISD, NEO-CCSD, and conventional electronic CCSD 

methods are shown in Figure 2. The equilibrium distance obtained with the FGH method, which 

is numerically exact for electronically adiabatic systems, is indicated with a vertical black line and 

serves as the benchmark. Due to a combination of proton delocalization, zero point energy, and 

anharmonicity effects, the equilibrium FF distance determined from the FGH method is increased 

by 0.022 Å with respect to the equilibrium distance determined from conventional electronic 

CCSD. In contrast, the NEO-HF and NEO-CISD methods increase the equilibrium FF distance 

by only 0.011 Å and 0.013 Å, respectively. The similarity of the equilibrium distances obtained 

from the NEO-HF and NEO-CISD methods is consistent with the similar, highly over-localized 

proton densities generated by these methods (Figure 1). The equilibrium FF distance obtained 

with the NEO-CCSD method is increased by 0.026 Å relative to the distance obtained with 

conventional electronic CCSD, representing much better agreement with the reference FGH 
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distance. Because accurate proton densities are essential for obtaining accurate vibrationally 

averaged geometries, the more accurate optimized geometry obtained with the NEO-CCSD 

method provides further validation of the improved proton densities shown in Figure 1. 

 

Figure 2. Energy as a function of the fluorine-fluorine distance in the FHF– molecule calculated 

with the reference FGH (solid black vertical line), NEO-HF (dashed red), NEO-CISD (dashed-

dotted green), NEO-CCSD (dotted blue), and conventional CCSD (dotted magenta) methods. All 

minimum energies are set to 0.0 Hartree. 

 
 

 

3.2  Calculation of proton affinities 

 In this section, we use the NEO-CISD and NEO-CCSD methods to compute the proton 

affinities for a set of small molecules. The proton affinity (PA) of a molecular system A is the 

negative enthalpy change of the reaction A + H+ → AH+: 

 PA(A) = −Δ𝐻 = −Δ𝐸 + 𝑅𝑇 (23) 

where 𝑅 is the universal gas constant, 𝑇 is the absolute temperature, and Δ𝐸(𝑇) is the energy 

difference between the product (AH+) and the reactant (A) species. The change in energy for a 

nonlinear polyatomic molecule can be approximated as Δ𝐸(𝑇) = Δ𝐸trans(𝑇) + Δ𝐸rot(𝑇) +

Δ𝐸vib(𝑇) + Δ𝐸elec , which accounts for the translational, rotational, vibrational, and electronic 
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contributions, respectively.59 Further simplifications can be achieved by assuming the ideal gas 

approximation,  Δ𝐸trans(𝑇) = −
3

2
𝑅𝑇 , and by neglecting the difference in rotational energy 

between the A and AH+ species, i.e., assuming Δ𝐸rot(𝑇) = 0. Therefore, the PA for the species 

A is given by  

 PA(A) = −Δ𝐸elec − Δ𝐸vib(𝑇) +
5

2
𝑅𝑇. (24) 

We calculated the proton affinities using conventional electronic structure CISD and CCSD 

methods and the corresponding NEO methods. In addition to the calculation of the electronic 

energy, conventional electronic structure calculations of proton affinities require the calculation of 

the Hessian, from which the vibrational energy contributions (i.e., the zero point energies) are 

determined. Within the NEO framework, the zero point energy of the quantum proton is included 

in the total energy calculation. We invoked the reasonable approximation that the vibrational 

modes of the classical nuclei are predominantly separable from those of the quantum hydrogen 

and that their corresponding zero point energies remain mostly unchanged upon protonation. As 

discussed below, we tested this approximation for this set of molecules and estimated the error 

introduced by it. In this case, the proton affinity of molecule A within the NEO framework is 

given by  

 PA(A) = 𝐸A − 𝐸AH+ +
5

2
𝑅𝑇, (25) 

where 𝐸A is obtained with a conventional electronic structure calculation and 𝐸AH+ is obtained 

with its NEO counterpart.26, 35  
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Table 1. Absolute Deviation, Mean Absolute Error (MAE), and Maximum Absolute Error 

(MaxAE) with Respect to Experimentally Determined Proton Affinitiesa  

Molecule CISD CCSD NEO-HF NEO-CISD NEO-CCSD 

CN– 0.06 0.04 0.91 0.31 0.11 

NO2
– 0.19 0.14 0.53 0.15 0.01 

NH3 0.07 0.04 0.52 0.17 0.05 

HCOO– 0.17 0.09 0.55 0.21 0.04 

HO– 0.21 0.13 0.36 0.08 <0.01 

HS– 0.08 0.05 0.84 0.27 0.10 

H2O 0.07 0.04 0.52 0.17 0.06 

H2S 0.12 0.11 0.65 0.17 <0.01 

CO 0.07 0.09 0.84 0.24 0.04 

N2 0.08 0.09 0.76 0.25 0.07 

CO2 0.07 0.07 0.60 0.22 0.04 

CH2O 0.14 0.09 0.33 0.10 <0.01 

MAE 0.11 0.08 0.62 0.20 0.04 

MaxAE 0.21 0.14 0.91 0.31 0.11 
a
All values given in units of eV. 

These methods were used to compute the proton affinities for a set of twelve molecules.  

The geometries of these molecules were optimized at the CISD and CCSD levels of theory 

employing the aug-cc-pVTZ basis set.55-57 At the optimized structures, the harmonic zero point 

energy corrections were computed to generate the proton affinities at the conventional electronic 

CISD and CCSD levels. These calculations were performed with the ORCA quantum chemistry 

package.60 The NEO calculations were performed on the optimized CISD and CCSD geometries 

employing the aug-cc-pVTZ electronic basis set centered on the classical nuclei. The aug-cc-

pVQZ electronic basis set and an even-tempered 8s8p8d nuclear basis set with exponents ranging 

from 2√2 to 32 were centered at the hydrogen position optimized with conventional CISD or 

CCSD. 

The absolute deviations of the proton affinities obtained with each method with respect to 

the experimentally determined proton affinities are given in Table 1.61-65 These results indicate 

that conventional electronic CCSD yields a mean absolute error (MAE) of 0.08 eV, which is more 



19 

 

accurate than the conventional electronic CISD method, which has an MAE of 0.11 eV. The 

performance of the CCSD method can be significantly improved by inclusion of the perturbative 

treatment of the triples excitations (T) along with a larger basis set. Thus, for the same set of 

molecules, conventional electronic CCSD(T)/aug-cc-pVQZ produces an MAE below 0.03 eV 

(Table S2). This result is consistent with previous studies of proton affinities computed with post-

HF composite methods.59 The NEO-HF method produces extremely large errors in the proton 

affinities with an MAE of 0.62 eV, presumably due to the lack of both electron-electron and 

electron-proton correlation effects. While the NEO-CISD method exhibits a significant 

improvement over NEO-HF for the proton affinities, it still yields a relatively large MAE of 0.20 

eV, which is beyond the experimental uncertainty of ~0.09 eV reported by Hunter and Lias.62 

Finally, the NEO-CCSD method produces the smallest deviations with an MAE of only 0.04 eV, 

which is within both chemical accuracy (~0.04 eV) and experimental accuracy (~0.09 eV). Similar 

to our findings for conventional electronic structure methods, NEO-CCSD(T) calculations with a 

larger electronic basis set are expected to produce an MAE below 0.03 eV (Table S2). 

The NEO-CCSD method yields similar proton densities and proton affinities to those 

obtained with the NEO-DFT/epc17-2 method.35 The main advantages of the NEO-CCSD method 

are that it is a parameter-free approach and can be improved systematically. The main disadvantage 

is that it is more computationally expensive, formally scaling as N 6. Both NEO-CCSD and NEO-

DFT invoke the assumption that the vibrational energy effects associated with the classical nuclei 

predominantly cancel in the calculation of the proton affinities. Here the “classical” nuclei refer to 

all nuclei in the conventional electronic structure calculations and to all nuclei except the quantum 

protons in the NEO calculations, although the quantum effects of such “classical” nuclei can be 

included in the form of zero point energies (ZPEs). 
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Table 2. Zero Point Energies in eV Calculated from Harmonic Vibrational Frequencies with 

CCSD and NEO-CCSD Methods.  

Molecule A Conv. ZPE(A)a NEO ZPE(AH+)b ∆ZPEc 

CN– 0.13 0.14 -0.01 

HO– 0.24 0.24 <-0.01 

HS– 0.17 0.17 <-0.01 

CO 0.14 0.15 -0.01 

N2 0.15 0.15 <-0.01 
a
ZPE calculated from the harmonic vibrational frequencies at the conventional CCSD level, as obtained from 

the CCSD Hessian. 
b
ZPE calculated from the harmonic vibrational frequencies of the “classical” nuclei at the NEO-CCSD level. 

Note that the ZPE associated with the quantum proton is included directly in the NEO-CCSD energy, and the ZPE 

reported here is calculated from the vibrational frequencies obtained from the NEO-CCSD Hessian computed for the 

other nuclei. 
c
∆ZPE = Conv. ZPE(A) - NEO ZPE(AH+). 

 
To investigate the validity of the assumption that the vibrational energy effects associated 

with the classical nuclei predominantly cancel in the proton affinity calculations, we compared the 

ZPE associated with the classical nuclei for A and AH+ using the conventional electronic CCSD 

and NEO-CCSD methods, respectively. This comparison is provided in Table 2 for a subset of the 

systems in Table 1. The ZPE for A was calculated using the harmonic vibrational frequencies 

obtained by diagonalizing the Hessian computed with the conventional CCSD method. The ZPE 

for AH+ was calculated using the harmonic vibrational frequencies associated with the “classical” 

nuclei obtained by diagonalizing the Hessian computed with the NEO-CCSD method. As 

discussed previously,11 the NEO-CCSD potential energy surface depends on only the classical 

nuclear coordinates and is defined such that the centers of the electronic and nuclear basis functions 

associated with the quantum proton(s) are optimized variationally for each configuration of the 

classical nuclear coordinates. Within this framework, the NEO-CCSD Hessian can be computed 

numerically, and diagonalization of this Hessian produces the vibrational frequencies associated 

with the classical nuclei, allowing the calculation of the associated ZPE. The results shown in 

Table 2 indicate that the ZPEs associated with the classical nuclei for A and AH+ predominantly 

cancel. Specifically, the assumption of this cancellation introduces a maximum error of ~0.01 eV 



21 

 

and therefore has a negligible impact on the proton affinities reported in Table 1. We have also 

used an alternative, less consistent analysis to assess the validity of this assumption (Table S3), 

leading to a slightly larger estimated error that is still well within the experimental uncertainty for 

proton affinities.  

Additionally, we calculated the proton affinities for the same set of molecules with the CID, 

CCD, NEO-CID, and NEO-CCD methods, which include double excitations but not single 

excitations, to investigate the impact of the single excitations (𝑪̂𝟏 and 𝑻̂𝟏) on the proton affinities. 

The results given in Table S4 illustrate that inclusion of single excitations has negligible impact 

on the results obtained with the NEO-CISD and conventional electronic CISD and CCSD methods, 

but it significantly impacts the results obtained with the NEO-CCSD method. The single excitation 

cluster operator, 𝒆𝑻̂𝟏, in the NEO-CCSD method accounts for orbital optimization and relaxation 

effects, according to the Thouless theorem.66-68 These observations are in agreement with the 

findings by Nakai and Sodeyama in the context of Brueckner doubles.12 Thus, the NEO-CCSD 

method produces significantly more accurate proton affinities than the NEO-HF, NEO-CID, NEO-

CCD, and NEO-CISD methods. 

The APMO/PP2 method, which is a multicomponent propagator theory, has been 

extensively benchmarked for proton affinities on a large number of molecules.26, 33 The 

APMO/PP2 method was found to produce a very small MAE of 0.03 eV for a set of 150 organic 

molecules with MaxAE of 0.15 eV. This maximum absolute error (MaxAE) is observed on the 

CH2O molecule.33 For the same system, CH2O, the NEO-CCSD method produces a much smaller 

deviation of 0.001 eV. The APMO/PP2 method also produced relatively large deviations for the 

molecules CN– and HS–, where the APMO/PP2 method deviated from experiment by 0.51 and 

0.49 eV, respectively, while the NEO-CCSD method deviates by only 0.11 and 0.10 eV, 
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respectively. These two molecules also exhibit the largest deviations among the twelve molecules 

studied with the NEO-CCSD method. For the six molecules that have been studied with both the 

APMO/PP2 and NEO-CCSD methods (i.e., CN–, NO2
–, NH3, HCOO–, HS–, and CH2O), the MAE 

is 0.22 eV for the APMO/PP2 method and 0.05 eV for the NEO-CCSD method. The larger error 

for the APMO/PP2 method for this set of challenging molecules may be due in part to the use of 

relatively small electronic and nuclear basis sets,69-70 but it also may be due to limitations of the 

overall approach. Although the APMO/PP2 method is less computationally expensive than the 

NEO-CCSD method, the NEO-CCSD method possesses several significant advantages. In contrast 

to the APMO/PP2 method, the NEO-CCSD method includes electron-electron correlation and the 

geometry changes that occur upon protonation. Another distinction from the APMO/PP2 method 

is that the NEO-CCSD method generates accurate proton densities and is therefore more generally 

suitable for computing other molecular properties, such as vibrationally averaged geometries. 

Nevertheless, it is very useful to have several different methods available for computing proton 

affinities.   

 

4   Conclusions 

 In this paper, we presented the implementation of the multicomponent wavefunction 

based methods NEO-CISD and NEO-CCSD for molecular systems, in which all electrons and 

specified protons are treated quantum mechanically on the same level. The computational 

complexity of the NEO-CISD and NEO-CCSD methods is the same as their conventional 

electronic counterparts, with scaling as N 6 where N is a measure of the system size. However, the 

NEO methods are technically more complex because of three additional amplitude equations, as 

well as more terms that enter the conventional amplitude equations.  
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The NEO-HF, NEO-CISD, and NEO-CCSD methods were used to calculate the proton 

density for the FHF– molecule, and the resulting proton densities were compared to the proton 

density obtained with a reference grid-based method. The NEO-CCSD method was found to 

exhibit a major improvement over both the NEO-HF and NEO-CISD methods, which do not 

provide even qualitatively accurate proton densities. In particular, the NEO-HF and NEO-CISD 

methods produce proton densities that are much too localized compared to the proton densities 

obtained with the NEO-CCSD and reference grid-based methods. Moreover, the NEO-CCSD 

method also produces accurate proton affinities that are in good agreement with experimentally 

measured values for the set of twelve molecules studied. Our conjecture is that NEO-CCSD 

produces significantly more accurate proton densities and affinities than NEO-CISD because of 

the additional orbital optimization and the cluster operators that generate higher excitations in 

NEO-CCSD that are not present in NEO-CISD.39-40, 44, 68, 71-72 

A significant advantage of the NEO-CCSD approach over post-Hartree-Fock approaches, 

such as methods based on many-body perturbation theory or propagator theory, is that the proton 

densities are improved, enabling meaningful calculations of other molecular properties, such as 

vibrationally averaged geometries. To investigate this capability, the NEO-CISD and NEO-CCSD 

methods were used to optimize the geometry of the FHF– molecule. The FF distance determined 

with the NEO-CCSD method was found to agree well with the grid-based reference distance, 

suggesting that inclusion of proton delocalization, zero point energy, and anharmonicity increases 

the FF distance. In addition to geometry optimizations, the NEO-CCSD method could be used to 

calculate reaction paths and reaction dynamics of molecular systems. The development and 

implementation of the NEO-CCSD approach opens up many possible directions in terms of both 

method development and applications.  
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