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Abstract

A significant challenge of multicomponent quantum chemistry methods is the calculation
of vibrational frequencies for comparison to experiment. The nuclear-electronic orbital (NEO)
approach treats specified nuclei, typically key protons, quantum mechanically. The Born-
Oppenheimer separation between the quantum and classical nuclei prevents the direct calculation
of vibrational frequencies corresponding to modes composed of both types of nuclei. Herein an
effective strategy for calculating the vibrational frequencies of the entire molecule within the NEO
framework is devised and implemented. This strategy requires diagonalization of an extended
NEO Hessian that depends on the expectation values of the quantum nuclei as well as the
coordinates of the classical nuclei and is constructed with input from multicomponent time-
dependent density functional theory (NEO-TDDEFT). Application of this NEO-DFT(V) approach
to molecular systems illustrates that it accurately incorporates the most significant anharmonic
effects. This general theoretical formulation opens up a broad spectrum of new directions for

multicomponent quantum chemistry.
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Multicomponent quantum chemistry, in which more than one type of particle is treated
quantum mechanically with either wavefunction methods or density functional theory (DFT), is
an emerging research field.!® A significant advantage of multicomponent quantum chemistry is
that electronic and nuclear quantum effects can be described simultaneously while avoiding the
Born-Oppenheimer separation between the electrons and the quantum nuclei. The nuclear-
electronic orbital (NEO) approach® % °!! balances chemical accuracy and computational
practicality by treating all electrons and one or more nuclei, typically key protons, quantum
mechanically, while treating at least two nuclei classically to avoid difficulties with translations
and rotations. The NEO potential energy surface depends on only the coordinates of the classical

nuclei,'?

predicated on the assumption that the electrons and quantum nuclei respond
instantaneously to the motion of the classical nuclei. The characterization of stationary points on
the NEO potential energy surface as minima or saddle points requires the computation of the NEO
Hessian matrix within the coordinate space.!? The Hessian matrix is also crucial for obtaining the
intrinsic reaction coordinate (IRC) or the minimum energy path within the NEO framework. Thus,
an efficient method for computing the NEO Hessian matrix is essential for a wide range of
applications.

A significant challenge of multicomponent quantum chemistry methods is the calculation
of meaningful vibrational frequencies. Molecular geometries can be described by representing the
positions of the quantum nuclei by the expectation values of their coordinates. The Born-
Oppenheimer separation between the quantum and classical nuclei, reflected by the instantaneous
response of the former to the latter, prevents the direct calculation of vibrational frequencies

corresponding to modes composed of both types of nuclei. As a result, the vibrational modes

obtained from diagonalizing the NEO Hessian matrix at a minimum on the NEO potential energy



surface are not directly connected to those obtained from experimental infrared or Raman
spectroscopy. In order to build this connection and enable the calculation of meaningful
vibrational frequencies within the NEO framework, the quantum and classical nuclei must be
coupled in a rigorous manner.

In this Letter, we derive the equations to efficiently calculate the NEO Hessian matrix and
devise an effective strategy to enable the calculation of meaningful vibrational frequencies. The
NEO Hessian is composed of second derivatives of the NEO energy with respect to only the
classical nuclei, invoking the Born-Oppenheimer separation between the quantum and classical
nuclei. The vibrational frequencies are calculated by diagonalizing an extended NEO Hessian
that includes second derivatives of the NEO energy with respect to the expectation values of the
quantum nuclei as well as the classical nuclei, thereby coupling these two types of nuclei.
Diagonalization of this extended NEO Hessian produces vibrational modes that are composed of
both types of nuclei and therefore can be directly connected to the vibrational modes measured
spectroscopically. This strategy, denoted NEO-DFT(V), differs from conventional quantum
chemistry calculations of vibrational frequencies because the delocalization and zero point energy
effects of the quantum nuclei are included in the geometry optimizations, and anharmonic effects
are included in the expectation values of the quantum nuclei used in the extended NEO Hessian.
These differences are expected to improve the quantitative accuracy of the vibrational frequencies,
particularly those involving the quantum nuclei. After deriving the key equations, we apply this
strategy to a set of molecular systems and compare the calculated vibrational frequencies to
experimental data.

For a system with N classical nuclei and Nyq quantum nuclei, the NEO potential energy

surface depends on only the coordinates of the classical nuclei and therefore is 3N-dimensional.!?



In practice, a single-point energy calculation within the NEO framework also depends on the
positions of the electronic and nuclear basis function centers associated with the quantum nuclei.
Here we assume that the quantum nuclei are described by a total of N, basis function centers.
Although often each quantum nucleus is represented by a single basis function center that is the
same for both electronic and nuclear basis functions, leading to Ny = Ng, this assumption is not
necessary. For a finite basis set, the positions of the basis function centers associated with the
quantum nuclei must be optimized variationally to compute each point on the NEO potential
energy surface (i.e., for each configuration of the classical nuclei). Mathematically, the NEO

potential energy surface is defined by

E=E(r,r,(r,)) (1)
where r, is a 3Nc.-dimensional vector denoting the combined coordinates of the classical nuclei
and r, is a 3Ny-dimensional vector denoting the combined coordinates of the basis function

centers associated with the quantum nuclei. According to the definition of the NEO potential

energy surface, the coordinates r, depend on the classical nuclear coordinates r, and satisfy the

condition
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Using the chain rule, the gradient of the NEO energy, which is a 3N.-dimensional vector, is
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where the second equality arises because Eq. (2) is satisfied.

The NEO Hessian matrix, a 3Nc X 3N, square matrix, can be obtained as
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where this compact notation does not explicitly indicate the order of matrix operations and
transpose of certain matrices for practical implementation. The direct evaluation of this form is not

straightforward because the function r, =r,(r,) isnotexplicitly known. However, this expression
can be simplified by taking the derivative of Eq. (2) with respect to r,, yielding:
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and solving for ji . Egs. (2) and (5) lead to the simplification of the Hessian matrix in Eq. (4)
r
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$PE 0E 0E (0°E) &°E
_ [ ] ©

dr’ o’ orpor, | ox) ) oror.

In this new form, only second-order energy derivatives remain, and all of these terms can be

evaluated numerically or analytically. Defining the three submatrices H_ = 0 , H,,

2
and H, =——, as well as the NEO Hessian matrix H""°, Eq. (6) can be expressed as
® ol
b
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This matrix folding process accounts for the effect of the optimization of the nuclear basis function
centers associated with the quantum nuclei.

Diagonalizing the NEO Hessian given in Eq. (7) leads to the vibrational modes within the

classical coordinate space, assuming that the quantum nuclei respond instantaneously to the motion

of classical nuclei. However, because the mass difference between classical and quantum nuclei
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is not substantial, non-Born-Oppenheimer or nonadiabatic effects between the two types of nuclei
may be significant. Moreover, the NEO framework does not provide frequencies that can be
compared directly with experimentally measured IR spectra because the normal modes obtained
from the NEO Hessian depend on only the classical nuclear coordinates and do not accurately
describe the coupling effects between the classical and quantum nuclear motions. To address this
issue, we propose and implement a practical strategy to recover the experimentally meaningful
vibrational modes by combining NEO Hessian and NEO-TDDFT calculations. '

In a NEO calculation, the Hessian matrix is defined in the space of the N, classical nuclear

coordinates, denoted by r,, and the normal modes obtained from this Hessian do not depend

explicitly on the quantum nuclear coordinates. However, an extended NEO Hessian may be

defined to depend on both the classical nuclear coordinates, r,, and the expectation values of the
quantum nuclear coordinates defined as

r, = I rp, (r)dr. (®)
Here p (r) and r, denote the density and expectation value (i.e., average position),

respectively, of the ith quantum nucleus. This extended NEO Hessian matrix can be divided into

. O’E ? 2
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where r_ is a 3Ng-dimensional vector

denoting the combined coordinates of the expectation values of the quantum nuclei. Analogous
to conventional quantum chemistry calculations, the non-zero eigenvalues of the mass-weighted
extended Hessian matrix correspond to the squares of the frequencies of the vibrational modes,
and the associated eigenvectors correspond to the amplitudes of motion along the mass-weighted

coordinates for these modes.
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The OE
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term defined as H, is the force constant matrix for the quantum nuclei while

all classical nuclei are fixed within the harmonic oscillator approximation. Thus, this term is
related to the harmonic vibrational excitation frequencies, which can be approximated by the
vibrational excitation frequencies w obtained from a NEO-TDDFT calculation.'? In this case, the

Hessian matrix elements can be calculated as

OE
==
rq

u'eMu 9)

where M is the diagonal mass matrix corresponding to the quantum nuclei, Q is the diagonal

matrix with elements @ corresponding to the NEO-TDDFT vibrational frequencies for fixed
classical nuclei, and U is a unitary matrix that transforms the diagonal frequency matrix to a
coordinate system consistent with the other molecular vibrational modes. Note that nuclear
delocalization and aharmonicity effects of the quantum nuclei are included in the vibrational
excitation frequencies w, as well as in the optimized geometries and expectation values of the
quantum nuclear coordinates. Although these anharmonic frequencies are incorporated as
second-order harmonic frequency terms in the extended Hessian, this procedure incorporates a
portion of these physically significant effects. This point will be discussed further below in the

analysis of the applications.
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term defined as H,, is the force constant matrix for the classical nuclei with

the expectation values of the quantum nuclei fixed. Therefore, it differs from the elements of the
NEO Hessian defined in Eq. (7), which requires the quantum nuclei to respond instantaneously to
the motion of the classical nuclei. The NEO energy can be expressed as

E=E(r,,r,(r,)) (10)
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where the expectation values of the quantum nuclei depend on the classical nuclear coordinates.
Because the NEO energy is computed by variationally optimizing the densities of the quantum
nuclei, the energy is stationary with respect to the expectation values of the quantum nuclei (see
SI for details):

OF

—=0. 11
= (11)

Equations (10) and (11) have the same form as Eqgs. (1) and (2), except that the positions of the

basis function centers, r, , have been substituted with the expectation values of the quantum nuclei,

r, . Following the same mathematical derivations leads to

-1
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In this case, H, is the target matrix that contains the matrix elements and can be obtained

or?
by
H,=H" +H'H;'H,, (14)
The NEO Hessian H™™ is already known from Eq. (7), H,' can be calculated as described

above, and H, will be derived in the next step.

The derivation of H, utilizes the analog of Eq. (5) with r, substituted by r,:

O’E N O°E dr,
or,or, or; dr,

0, (15)

Rearrangement of this equation provides the matrix elements in H,:
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with the response of r, to r, defined as
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The matrix R can be calculated either numerically or analytically. For the applications described
below, we compute the numerical gradient of the expectation value of each quantum nucleus with
respect to each classical nucleus. Analytically, the density matrix response with respect to
changes in the classical nuclear coordinates can be obtained by coupled perturbed NEO-Hartree-
Fock equations, which is a direction of current research.

Combining all of these parts, the extended Hessian matrix can be calculated from the

following expressions:

H, =U'QMU (18)
H, =-H,R (19)
H,=H"° +H'H,;'H, =H""° + R"H,R (20)

Note that all of these quantities are straightforward to calculate. The two matrices HY and R

can be calculated numerically or analytically within the NEO-DFT method, while H, is

constructed from the results of a NEO-TDDFT calculation. These three matrices alone are
sufficient for calculating the remaining required pieces for the full vibrational analysis, which is
performed on the mass-weighted extended Hessian matrix. The construction of the extended
Hessian matrix is depicted in Figure 1, and an example of this NEO-DFT(V) procedure applied to

HCN is depicted in Figure 2.



Figure 1: Schematic depiction of the extended Hessian matrix (upper left corner) associated with
the coordinates of the classical nuclei and the expectation values of the quantum nuclei. The
components H,, H,, and H, are defined in Eqs. (18)-(20). H;, is the 3N, x3N, NEO

Hessian matrix defined in Eq. (7), predicated on the instantaneous response of the quantum nuclei
to the classical nuclei. H, is the 3N, x3N, matrix computed from a unitary transform of the
diagonal matrix composed of the NEO-TDDFT vibrational excitation frequencies associated with
the quantum nuclei for fixed classical nuclei. R is the 3N, x3N, matrix defined in Eq. (17),

corresponding to the derivatives of the expectation values of the quantum nuclei with respect to
the classical nuclear coordinates.

Figure 2: Schematic depiction of the application of the NEO-DFT(V) method to HCN, where the
hydrogen nucleus and all electrons are treated quantum mechanically. The quantum proton is
depicted in red mesh, and the classical nuclei carbon and nitrogen are depicted in gray and blue,
respectively. The NEO Hessian calculation produces the CN vibrational stretch with the hydrogen
nucleus responding instantaneously to this motion. The NEO-TDDFT calculation provides the
vibrational excitation frequencies associated with the bend (doubly degenerate) and stretch for the
hydrogen nucleus with the carbon and nitrogen nuclei fixed. This information is combined to
construct the extended Hessian, as shown in Figure 1, to produce the four coupled vibrational
motions shown on the right, where the bend is doubly degenerate.
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Herein the NEO-DFT(V) method is used to compute the vibrational modes for a set of five
molecular systems, each with a single proton. For each system, the geometries were optimized at
the NEO-DFT level with the B3LYP electronic exchange-correlation functional'*!® and the epc17-
2 electron-proton correlation functional.'® The cc-pVTZ!” electronic basis set was used for all
heavy nuclei, while the cc-pV6Z!® basis set, excluding the z-function (denoted cc-pV6Z* herein),

was employed for the protons. An even-tempered 8s8p8d8f proton basis set was used for all

calculations with @ =22 and B=+2." The NEO Hessian and the derivatives of the

expectation value of the quantum proton with respect to the classical nuclei were computed
numerically. The NEO-TDDFT calculations were performed at the same level of theory for these
geometries with the exception that the cc-pVDZ!” basis set was used for the oxygen and flurine
atoms in HCFO and the fluorine atoms in HCF3. For the TDDFT calculations, the proton basis
function centers were placed at the covalent bond distance determined from conventional DFT;
the results with the proton basis function centers placed at the expectation values are similar (Table
S1). The unitary matrix U in Eq. (9) is determined from the normal modes of the quantum proton,
as obtained from the conventional DFT Hessian when all classical nuclei are assigned infinite
masses. An alternative procedure based on NEO-TDDFT will be explored in future work. All of
the NEO calculations and the conventional DFT calculations were performed with an in-house
modified version of the GAMESS program.?’ For comparison, we also performed conventional
DFT calculations including third and fourth order anharmonic terms using Gaussian09.2! Although
these molecules each contain only a single hydrogen nucleus, the extension to multiple protons is
straightforward. For multiple protons, the extended Hessian depends on the expectation value of
each proton orbital, and NEO-TDDFT is used to compute the vibrational frequencies for each

proton.
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Table 1: Vibrational Frequencies (in cm™) Calculated with Conventional DFT with Harmonic and

Anharmonic Treatments and with NEO-DFT(V)

Vibrational Mode Experiment NEO-DFT(V)* Conv. Anharmonic? Cony. Harmonic®
HCN ¢ | CH stretch 3311 3317 3321 3439
CN stretch 2097 2191 2177 2201
CH bend 712 789 753 773
HNC ¢ | NH stretch 3653 3645 3644 3814
NC stretch 2024 2100 2073 2105
NH bend 462 568 464 480
HCFO*° | CH stretch 2976 2947 2942 3081
CO stretch 1834 1885 1861 1891
CH in-plane bend 1344 1329 1341 1370
CF stretch 1070 1075 1049 1069
CH out-of-plane bend 1000-1050 1061 1019 1039
OCEF scissor 661 665 659 665
HCF3/ | CH stretch 3035 2988 2999 3119
CH bend 1376 1353 1360 1388
CF asymmetric stretch 1152 1134 1117 1139
CF symmetric stretch 1137 1128 1118 1133
CF simultaneous bend 700 693 688 694
FCF scissor 508 501 497 501
FHF-¢ | FH stretch 1331 1695 1615 1451
FH bend 1286 1302 1287 1360
FF stretch 583 617 557 625

“NEO-DFT/B3LYP/epc17-2 with electronic and nuclear basis sets given in the text. “DFT/B3LYP;
cc-pVTZ basis set for heavy nuclei and cc-pV6Z (cc-pV6Z*) basis set for the hydrogen for
anharmonic (harmonic) treatment. “Experimental data from Ref. 22. “Experimental data from Ref.
23. “Experimental data from Ref. 24. /Experimental data from Ref. 25. Experimental data from

Ref. 26.




The vibrational frequencies obtained from these calculations, as well as experimental data,
are given in Table 1. The conventional harmonic DFT and NEO-DFT(V) methods provide
similarly accurate vibrational frequencies, with the exception that the hydrogen stretch frequencies
for terminal hydrogen nuclei are notably lower and closer to the experimental values when
calculated with the NEO-DFT(V) method. This decrease in the frequency of the hydrogen stretch
is attributed to the anharmonic effects included directly in the NEO-DFT(V) calculations.
Application of numerical third- and fourth-order corrections to the conventional DFT calculations
supports this assertion, as the hydrogen stretch frequencies decrease by a similar amount. The
hydrogen bending modes are more challenging to compute for linear molecules, as indicated by
overestimates of these frequencies by vibrational self-consistent-field calculations (Table S2).
Thus, the NEO-DFT(V) method accurately incorporates the most significant anharmonic effects
that lead to a substantial decrease in the hydrogen stretch frequencies.

A different trend is observed for the FHF~ system, where inclusion of anharmonic effects
via NEO-DFT(V) or conventional DFT increases the hydrogen stretch frequency. This
phenomonen of anharmonicity increasing the hydrogen stretch frequency for FHF~ is not
uncommon for an internal hydrogen nucleus moving in a single well potential between two other
nuclei, in contrast to the terminal hydrogen nuclei in the other molecules studied here. In this
case, inclusion of anharmonicity increases the deviation of the calculated hydrogen stretch
frequency compared to the experimental value. This deviation is attributed to limitations of the
underlying DFT method on the basis of the similar trend observed in the conventional DFT
calculations including anharmonic corrections. Moreover, coupled-cluster singles and doubles
with perturbative triples (CCSD(T)) calculations®’ produce a hydrogen stretch frequency of 1195

cm’! with a harmonic treatment and 1343 cm™ with an anharmonic treatment, in good agreement
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with the experimental value. The magnitude of the increase in frequency due to anharmonic
effects in these CCSD(T) calculations is similar to that observed with NEO-DFT(V), confirming
that the anharmonic effects are being described in a reasonable manner.

In this Letter, we present an efficient method for computing the NEO Hessian matrix and
a novel strategy for calculating the vibrational frequencies of the entire molecule. The NEO
Hessian matrix is required for characterizing stationary points on the NEO potential energy surface
and for generating the IRC or minimum energy path. However, the NEO Hessian matrix alone is
not sufficient to compute vibrational frequencies composed of both classical and quantum nuclei.
For this purpose, we devised an extended NEO Hessian that depends on the expectation values of
the quantum nuclei as well as the coordinates of the classical nuclei. Diagonalization of this
extended NEO Hessian, which relies on input from NEO-TDDFT, produces vibrational modes that
are directly related to those measured spectroscopically. Application of this NEO-DFT(V)
approach to a series of five molecules illustrates that this approach accurately includes anharmonic
effects of the hydrogen nuclei. This general theoretical formulation opens up a broad spectrum

of new directions for both DFT and wavefunction-based multicomponent quantum chemistry.
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