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Abstract 

A significant challenge of multicomponent quantum chemistry methods is the calculation 

of vibrational frequencies for comparison to experiment.  The nuclear-electronic orbital (NEO) 

approach treats specified nuclei, typically key protons, quantum mechanically.  The Born-

Oppenheimer separation between the quantum and classical nuclei prevents the direct calculation 

of vibrational frequencies corresponding to modes composed of both types of nuclei.  Herein an 

effective strategy for calculating the vibrational frequencies of the entire molecule within the NEO 

framework is devised and implemented.  This strategy requires diagonalization of an extended 

NEO Hessian that depends on the expectation values of the quantum nuclei as well as the 

coordinates of the classical nuclei and is constructed with input from multicomponent time-

dependent density functional theory (NEO-TDDFT). Application of this NEO-DFT(V) approach 

to molecular systems illustrates that it accurately incorporates the most significant anharmonic 

effects.  This general theoretical formulation opens up a broad spectrum of new directions for 

multicomponent quantum chemistry. 
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Multicomponent quantum chemistry, in which more than one type of particle is treated 

quantum mechanically with either wavefunction methods or density functional theory (DFT), is 

an emerging research field.1-8 A significant advantage of multicomponent quantum chemistry is 

that electronic and nuclear quantum effects can be described simultaneously while avoiding the 

Born-Oppenheimer separation between the electrons and the quantum nuclei. The nuclear-

electronic orbital (NEO) approach3, 5-6, 9-11 balances chemical accuracy and computational 

practicality by treating all electrons and one or more nuclei, typically key protons, quantum 

mechanically, while treating at least two nuclei classically to avoid difficulties with translations 

and rotations.  The NEO potential energy surface depends on only the coordinates of the classical 

nuclei,12 predicated on the assumption that the electrons and quantum nuclei respond 

instantaneously to the motion of the classical nuclei.  The characterization of stationary points on 

the NEO potential energy surface as minima or saddle points requires the computation of the NEO 

Hessian matrix within the coordinate space.12 The Hessian matrix is also crucial for obtaining the 

intrinsic reaction coordinate (IRC) or the minimum energy path within the NEO framework.  Thus, 

an efficient method for computing the NEO Hessian matrix is essential for a wide range of 

applications. 

A significant challenge of multicomponent quantum chemistry methods is the calculation 

of meaningful vibrational frequencies. Molecular geometries can be described by representing the 

positions of the quantum nuclei by the expectation values of their coordinates.  The Born-

Oppenheimer separation between the quantum and classical nuclei, reflected by the instantaneous 

response of the former to the latter, prevents the direct calculation of vibrational frequencies 

corresponding to modes composed of both types of nuclei. As a result, the vibrational modes 

obtained from diagonalizing the NEO Hessian matrix at a minimum on the NEO potential energy 
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surface are not directly connected to those obtained from experimental infrared or Raman 

spectroscopy.  In order to build this connection and enable the calculation of meaningful 

vibrational frequencies within the NEO framework, the quantum and classical nuclei must be 

coupled in a rigorous manner. 

In this Letter, we derive the equations to efficiently calculate the NEO Hessian matrix and 

devise an effective strategy to enable the calculation of meaningful vibrational frequencies. The 

NEO Hessian is composed of second derivatives of the NEO energy with respect to only the 

classical nuclei, invoking the Born-Oppenheimer separation between the quantum and classical 

nuclei.  The vibrational frequencies are calculated by diagonalizing an extended NEO Hessian 

that includes second derivatives of the NEO energy with respect to the expectation values of the 

quantum nuclei as well as the classical nuclei, thereby coupling these two types of nuclei.  

Diagonalization of this extended NEO Hessian produces vibrational modes that are composed of 

both types of nuclei and therefore can be directly connected to the vibrational modes measured 

spectroscopically.  This strategy, denoted NEO-DFT(V), differs from conventional quantum 

chemistry calculations of vibrational frequencies because the delocalization and zero point energy 

effects of the quantum nuclei are included in the geometry optimizations, and anharmonic effects 

are included in the expectation values of the quantum nuclei used in the extended NEO Hessian.  

These differences are expected to improve the quantitative accuracy of the vibrational frequencies, 

particularly those involving the quantum nuclei.  After deriving the key equations, we apply this 

strategy to a set of molecular systems and compare the calculated vibrational frequencies to 

experimental data. 

For a system with Nc classical nuclei and Nq quantum nuclei, the NEO potential energy 

surface depends on only the coordinates of the classical nuclei and therefore is 3Nc-dimensional.12  
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In practice, a single-point energy calculation within the NEO framework also depends on the 

positions of the electronic and nuclear basis function centers associated with the quantum nuclei.  

Here we assume that the quantum nuclei are described by a total of Nb basis function centers.  

Although often each quantum nucleus is represented by a single basis function center that is the 

same for both electronic and nuclear basis functions, leading to Nb = Nq, this assumption is not 

necessary.  For a finite basis set, the positions of the basis function centers associated with the 

quantum nuclei must be optimized variationally to compute each point on the NEO potential 

energy surface (i.e., for each configuration of the classical nuclei).  Mathematically, the NEO 

potential energy surface is defined by 

 c b c( , ( ))E E r r r  (1) 

where cr  is a 3Nc-dimensional vector denoting the combined coordinates of the classical nuclei 

and br  is a 3Nb-dimensional vector denoting the combined coordinates of the basis function 

centers associated with the quantum nuclei.  According to the definition of the NEO potential 

energy surface, the coordinates br  depend on the classical nuclear coordinates cr  and satisfy the 

condition 

 
b

0
E


r
. (2) 

Using the chain rule, the gradient of the NEO energy, which is a 3Nc-dimensional vector, is  

 b

c c b c c

dd

d d

E E E E  
  
  

r

r r r r r
 (3) 

where the second equality arises because Eq. (2) is satisfied.  

  The NEO Hessian matrix, a 3Nc × 3Nc square matrix, can be obtained as 
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where this compact notation does not explicitly indicate the order of matrix operations and 

transpose of certain matrices for practical implementation. The direct evaluation of this form is not 

straightforward because the function b b c( )r r r  is not explicitly known. However, this expression 

can be simplified by taking the derivative of Eq. (2) with respect to cr , yielding: 

 
2 2

b

2

b c b c

d
0

d

E E 
 

  

r

r r r r
 (5) 

and solving for b

c

d

d

r

r
.  Eqs. (2) and (5) lead to the simplification of the Hessian matrix in Eq. (4) 

as 

 

1
2 2 2 2 2

2 2 2

c c b c b b c

d

d

E E E E E


    
   
      r r r r r r r

. (6) 

In this new form, only second-order energy derivatives remain, and all of these terms can be 

evaluated numerically or analytically. Defining the three submatrices 
2

cc 2

c

E



H
r

, 
2

bc

b c

E

 

H
r r

, 

and 
2

bb 2

b

E



H
r

, as well as the NEO Hessian matrix NEO
H , Eq. (6) can be expressed as  

 NEO T 1

cc bc bb bc

 H H H H H . (7) 

This matrix folding process accounts for the effect of the optimization of the nuclear basis function 

centers associated with the quantum nuclei. 

Diagonalizing the NEO Hessian given in Eq. (7) leads to the vibrational modes within the 

classical coordinate space, assuming that the quantum nuclei respond instantaneously to the motion 

of classical nuclei.  However, because the mass difference between classical and quantum nuclei 
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is not substantial, non-Born-Oppenheimer or nonadiabatic effects between the two types of nuclei 

may be significant.  Moreover, the NEO framework does not provide frequencies that can be 

compared directly with experimentally measured IR spectra because the normal modes obtained 

from the NEO Hessian depend on only the classical nuclear coordinates and do not accurately 

describe the coupling effects between the classical and quantum nuclear motions. To address this 

issue, we propose and implement a practical strategy to recover the experimentally meaningful 

vibrational modes by combining NEO Hessian and NEO-TDDFT calculations.13 

In a NEO calculation, the Hessian matrix is defined in the space of the Nc classical nuclear 

coordinates, denoted by cr , and the normal modes obtained from this Hessian do not depend 

explicitly on the quantum nuclear coordinates.  However, an extended NEO Hessian may be 

defined to depend on both the classical nuclear coordinates, cr , and the expectation values of the 

quantum nuclear coordinates defined as  

 
q q ( )d

i i
 r r r r . (8) 

Here 
q ( )

i
 r  and 

qi
r  denote the density and expectation value (i.e., average position), 

respectively, of the ith quantum nucleus. This extended NEO Hessian matrix can be divided into 

three submatrices: 
2

0 2

c

E



H
r

, 
2

1

q c

E

 

H
r r

, 
2

2 2

q

E



H
r

, where 
qr  is a 3Nq-dimensional vector 

denoting the combined coordinates of the expectation values of the quantum nuclei.  Analogous 

to conventional quantum chemistry calculations, the non-zero eigenvalues of the mass-weighted 

extended Hessian matrix correspond to the squares of the frequencies of the vibrational modes, 

and the associated eigenvectors correspond to the amplitudes of motion along the mass-weighted 

coordinates for these modes.   



7 

 

The 
2

2

q

E

r
 term defined as 2H  is the force constant matrix for the quantum nuclei while 

all classical nuclei are fixed within the harmonic oscillator approximation. Thus, this term is 

related to the harmonic vibrational excitation frequencies, which can be approximated by the 

vibrational excitation frequencies ω obtained from a NEO-TDDFT calculation.13 In this case, the 

Hessian matrix elements can be calculated as   

 
2

†

2

q

E



U ΩMU

r
 (9) 

where M is the diagonal mass matrix corresponding to the quantum nuclei, Ω  is the diagonal 

matrix with elements 2  corresponding to the NEO-TDDFT vibrational frequencies for fixed 

classical nuclei, and U is a unitary matrix that transforms the diagonal frequency matrix to a 

coordinate system consistent with the other molecular vibrational modes. Note that nuclear 

delocalization and aharmonicity effects of the quantum nuclei are included in the vibrational 

excitation frequencies ω, as well as in the optimized geometries and expectation values of the 

quantum nuclear coordinates.  Although these anharmonic frequencies are incorporated as 

second-order harmonic frequency terms in the extended Hessian, this procedure incorporates a 

portion of these physically significant effects.  This point will be discussed further below in the 

analysis of the applications. 

The 
2

2

c

E

r
 term defined as 0H  is the force constant matrix for the classical nuclei with 

the expectation values of the quantum nuclei fixed. Therefore, it differs from the elements of the 

NEO Hessian defined in Eq. (7), which requires the quantum nuclei to respond instantaneously to 

the motion of the classical nuclei.  The NEO energy can be expressed as 

 
c q c( , ( ))E E r r r  (10) 
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where the expectation values of the quantum nuclei depend on the classical nuclear coordinates. 

Because the NEO energy is computed by variationally optimizing the densities of the quantum 

nuclei, the energy is stationary with respect to the expectation values of the quantum nuclei (see 

SI for details): 

 
q

0
E


r
. (11) 

Equations (10) and (11) have the same form as Eqs. (1) and (2), except that the positions of the 

basis function centers, br , have been substituted with the expectation values of the quantum nuclei, 

qr . Following the same mathematical derivations leads to 

 

1
2 2 2 2 2

2 2 2

c c q c q q c

d

d

E E E E E


    
          r r r r r r r

 (12) 

 NEO T 1

0 1 2 1

 H H H H H . (13) 

In this case, 0H  is the target matrix that contains the 
2

2

c

E

r
 matrix elements and can be obtained 

by  

 NEO T 1

0 1 2 1

 H H H H H , (14) 

The NEO Hessian NEO
H  is already known from Eq. (7), 1

2


H  can be calculated as described 

above, and 1H  will be derived in the next step. 

The derivation of 1H  utilizes the analog of Eq. (5) with br  substituted by 
qr : 

 
2 2

q

2

q c q c

d
0

d

E E 
 

  

r

r r r r
, (15) 

Rearrangement of this equation provides the matrix elements in 1H : 
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q
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q c q c
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d

d

E E 
 

  

 

r

r r r r

H H R

 (16) 

with the response of 
qr  to cr  defined as   

 
qq

q

c c c

dρ ( )d d
( )d d

d d d

i

i
   

rr
R r r r r r

r r r
 . (17) 

The matrix R can be calculated either numerically or analytically.  For the applications described 

below, we compute the numerical gradient of the expectation value of each quantum nucleus with 

respect to each classical nucleus.  Analytically, the density matrix response with respect to 

changes in the classical nuclear coordinates can be obtained by coupled perturbed NEO-Hartree-

Fock equations, which is a direction of current research. 

Combining all of these parts, the extended Hessian matrix can be calculated from the 

following expressions:   

 †

2 H U ΩMU   (18) 

 1 2 H H R   (19) 

 NEO T 1 NEO T

0 1 2 1 2

   H H H H H H R H R   (20) 

Note that all of these quantities are straightforward to calculate.  The two matrices NEO
H  and R  

can be calculated numerically or analytically within the NEO-DFT method, while 2H  is 

constructed from the results of a NEO-TDDFT calculation. These three matrices alone are 

sufficient for calculating the remaining required pieces for the full vibrational analysis, which is 

performed on the mass-weighted extended Hessian matrix. The construction of the extended 

Hessian matrix is depicted in Figure 1, and an example of this NEO-DFT(V) procedure applied to 

HCN is depicted in Figure 2. 
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Figure 1: Schematic depiction of the extended Hessian matrix (upper left corner) associated with 

the coordinates of the classical nuclei and the expectation values of the quantum nuclei.  The 

components 0H , 1H , and 2H  are defined in Eqs. (18)-(20). NEOH  is the c c3 3N N  NEO 

Hessian matrix defined in Eq. (7), predicated on the instantaneous response of the quantum nuclei 

to the classical nuclei. 2H  is the 
q q3 3N N  matrix computed from a unitary transform of the 

diagonal matrix composed of the NEO-TDDFT vibrational excitation frequencies associated with 

the quantum nuclei for fixed classical nuclei.  R  is the 
q c3 3N N  matrix defined in Eq. (17), 

corresponding to the derivatives of the expectation values of the quantum nuclei with respect to 

the classical nuclear coordinates. 
 

 

Figure 2: Schematic depiction of the application of the NEO-DFT(V) method to HCN, where the 

hydrogen nucleus and all electrons are treated quantum mechanically.  The quantum proton is 

depicted in red mesh, and the classical nuclei carbon and nitrogen are depicted in gray and blue, 

respectively.  The NEO Hessian calculation produces the CN vibrational stretch with the hydrogen 

nucleus responding instantaneously to this motion.  The NEO-TDDFT calculation provides the 

vibrational excitation frequencies associated with the bend (doubly degenerate) and stretch for the 

hydrogen nucleus with the carbon and nitrogen nuclei fixed.  This information is combined to 

construct the extended Hessian, as shown in Figure 1, to produce the four coupled vibrational 

motions shown on the right, where the bend is doubly degenerate. 
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Herein the NEO-DFT(V) method is used to compute the vibrational modes for a set of five 

molecular systems, each with a single proton.  For each system, the geometries were optimized at 

the NEO-DFT level with the B3LYP electronic exchange-correlation functional14-16 and the epc17-

2 electron-proton correlation functional.10 The cc-pVTZ17 electronic basis set was used for all 

heavy nuclei, while the cc-pV6Z18 basis set, excluding the h-function (denoted cc-pV6Z* herein), 

was employed for the protons. An even-tempered 8s8p8d8f proton basis set was used for all 

calculations with 2 2   and 2  .19 The NEO Hessian and the derivatives of the 

expectation value of the quantum proton with respect to the classical nuclei were computed 

numerically. The NEO-TDDFT calculations were performed at the same level of theory for these 

geometries with the exception that the cc-pVDZ17 basis set was used for the oxygen and flurine 

atoms in HCFO and the fluorine atoms in HCF3. For the TDDFT calculations, the proton basis 

function centers were placed at the covalent bond distance determined from conventional DFT; 

the results with the proton basis function centers placed at the expectation values are similar (Table 

S1). The unitary matrix U in Eq. (9) is determined from the normal modes of the quantum proton, 

as obtained from the conventional DFT Hessian when all classical nuclei are assigned infinite 

masses. An alternative procedure based on NEO-TDDFT will be explored in future work. All of 

the NEO calculations and the conventional DFT calculations were performed with an in-house 

modified version of the GAMESS program.20 For comparison, we also performed conventional 

DFT calculations including third and fourth order anharmonic terms using Gaussian09.21 Although 

these molecules each contain only a single hydrogen nucleus, the extension to multiple protons is 

straightforward.  For multiple protons, the extended Hessian depends on the expectation value of 

each proton orbital, and NEO-TDDFT is used to compute the vibrational frequencies for each 

proton.   
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Table 1: Vibrational Frequencies (in cm-1) Calculated with Conventional DFT with Harmonic and 

Anharmonic Treatments and with NEO-DFT(V)  
Vibrational Mode Experiment NEO-DFT(V)a Conv. Anharmonicb Conv. Harmonicb 

HCN c CH stretch 3311 3317 3321 3439 

CN stretch 2097 2191 2177 2201 

CH bend 712 789 753 773 

HNC d NH stretch 3653 3645 3644 3814 

NC stretch 2024 2100 2073 2105 

NH bend 462 568 464 480 

HCFOe CH stretch 2976 2947 2942 3081 

CO stretch 1834 1885 1861 1891 

CH in-plane bend 1344 1329 1341 1370 

CF stretch 1070 1075 1049 1069 

CH out-of-plane bend 1000‒1050 1061 1019 1039 

OCF scissor 661 665 659 665 

HCF3 
f CH stretch 3035 2988 2999 3119 

CH bend 1376 1353 1360 1388 

CF asymmetric stretch 1152 1134 1117 1139 

CF symmetric stretch 1137 1128 1118 1133 

CF simultaneous bend 700 693 688 694 

FCF scissor 508 501 497 501 

FHF‒ g FH stretch 1331 1695 1615 1451 

FH bend 1286 1302 1287 1360 

FF stretch 583 617 557 625 

aNEO-DFT/B3LYP/epc17-2 with electronic and nuclear basis sets given in the text. bDFT/B3LYP; 

cc-pVTZ basis set for heavy nuclei and cc-pV6Z (cc-pV6Z*) basis set for the hydrogen for 

anharmonic (harmonic) treatment. cExperimental data from Ref. 22. dExperimental data from Ref. 

23. eExperimental data from Ref. 24. fExperimental data from Ref. 25. gExperimental data from 

Ref. 26. 
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The vibrational frequencies obtained from these calculations, as well as experimental data, 

are given in Table 1.  The conventional harmonic DFT and NEO-DFT(V) methods provide 

similarly accurate vibrational frequencies, with the exception that the hydrogen stretch frequencies 

for terminal hydrogen nuclei are notably lower and closer to the experimental values when 

calculated with the NEO-DFT(V) method. This decrease in the frequency of the hydrogen stretch 

is attributed to the anharmonic effects included directly in the NEO-DFT(V) calculations. 

Application of numerical third- and fourth-order corrections to the conventional DFT calculations 

supports this assertion, as the hydrogen stretch frequencies decrease by a similar amount. The 

hydrogen bending modes are more challenging to compute for linear molecules, as indicated by 

overestimates of these frequencies by vibrational self-consistent-field calculations (Table S2). 

Thus, the NEO-DFT(V) method accurately incorporates the most significant anharmonic effects 

that lead to a substantial decrease in the hydrogen stretch frequencies. 

A different trend is observed for the FHF system, where inclusion of anharmonic effects 

via NEO-DFT(V) or conventional DFT increases the hydrogen stretch frequency.  This 

phenomonen of anharmonicity increasing the hydrogen stretch frequency for FHF is not 

uncommon for an internal hydrogen nucleus moving in a single well potential between two other 

nuclei, in contrast to the terminal hydrogen nuclei in the other molecules studied here.  In this 

case, inclusion of anharmonicity increases the deviation of the calculated hydrogen stretch 

frequency compared to the experimental value. This deviation is attributed to limitations of the 

underlying DFT method on the basis of the similar trend observed in the conventional DFT 

calculations including anharmonic corrections. Moreover, coupled-cluster singles and doubles 

with perturbative triples (CCSD(T)) calculations27 produce a hydrogen stretch frequency of 1195 

cm-1 with a harmonic treatment and 1343 cm-1 with an anharmonic treatment, in good agreement 
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with the experimental value.  The magnitude of the increase in frequency due to anharmonic 

effects in these CCSD(T) calculations is similar to that observed with NEO-DFT(V), confirming 

that the anharmonic effects are being described in a reasonable manner.  

In this Letter, we present an efficient method for computing the NEO Hessian matrix and 

a novel strategy for calculating the vibrational frequencies of the entire molecule.  The NEO 

Hessian matrix is required for characterizing stationary points on the NEO potential energy surface 

and for generating the IRC or minimum energy path.  However, the NEO Hessian matrix alone is 

not sufficient to compute vibrational frequencies composed of both classical and quantum nuclei.  

For this purpose, we devised an extended NEO Hessian that depends on the expectation values of 

the quantum nuclei as well as the coordinates of the classical nuclei.  Diagonalization of this 

extended NEO Hessian, which relies on input from NEO-TDDFT, produces vibrational modes that 

are directly related to those measured spectroscopically.  Application of this NEO-DFT(V) 

approach to a series of five molecules illustrates that this approach accurately includes anharmonic 

effects of the hydrogen nuclei.  This general theoretical formulation opens up a broad spectrum 

of new directions for both DFT and wavefunction-based multicomponent quantum chemistry. 
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