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Abstract—Crossings of the heliospheric current sheet (HCS) at the Earth’s orbit are often associated with
observations of anisotropic beams of energetic protons accelerated to energies from hundreds of keV to several
MeV and above. A connection between this phenomenon and the occurrence of small-scale magnetic islands
(SM1s) near reconnecting current sheets has recently been found. This study shows how pre-accelerated pro-
tons can be energized additionally due to oscillations of multiple SMIs inside the ripple of the reconnecting
HCS. A model of the electromagnetic field of an oscillating 3D SMI with a characteristic size of ~0.001 AU
is developed. A SMI is supposed to be bombarded by protons accelerated by magnetic reconnection at the
HCS to energies from ~1keV to tens of keV. Numerical simulations have demonstrated that the resulting lon-
gitudinal inductive electric fields can additionally reaccelerate protons injected into a SMI. It is shown that
there is a local “acceleration” region within the island in which particles gain energy most effectively. As a
result, their average escape energies range from hundreds of keV to 2 MeV and above. There is almost no par-
ticle acceleration outside the region. It is shown that energies gained by protons significantly depend on the
initial phase and the place of their entry into a SMI but weakly depend on the initial energy. Therefore, low-
energy particles can be accelerated more efficiently than high-energy particles, and all particles can reach the
total energy limit upon their escape from a SMI. It is also found that the escape velocity possesses a strong

directional anisotropy. The results are consistent with observations in the solar wind plasma.
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INTRODUCTION

The heliospheric current sheet (HCS) is the lon-
gest-lived magnetic structure in the heliosphere. The
HCS is supposed to be a continuation of the solar
magnetic equator. It is a relatively thin layer of a flow-
ing current with a thickness of about 10* km separating
magnetic sectors, which represent large-scale regions
of the oppositely directed magnetic field (sunward/
anti-sunward). The HCS is surrounded by a thicker
plasma layer filled with secondary current sheets,
small-scale magnetic islands (SMIs), and other prod-
ucts of magnetic reconnection (Bemporad, 2008;
Cartwright et al., 2008; Khabarova et al., 2015a;
2015b; 2016). The HCS dynamically reacts to the pas-
sage of solar wind streams of various origins, as a result
of which its form is diverse and varies from large-scale
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waves to small ripples even in the relatively quiet helio-
sphere (Khabarova et al., 2015a; 2015b; 2016; 2017).
Observations suggest that SMIs are formed as a result
of active processes in the solar corona near the HCS.
SMIs are also called magnetic bubbles, plasmoids, or
bubbles, which grow, evolve, and radially expand with
the solar wind along ripples of the HCS over long dis-
tances (Bemporad, 2008; Cartwright et al., 2008;
Khabarova et al., 2015a; 2015b; 2016). An average size
of SMIs at the Earth’s orbit is ~0.001—0.01 AU,
although a scatter of sizes can be large (Cartwright et
al., 2008). At the same time, some SMIs are formed
directly in the solar wind as a result of magnetic recon-
nection at the HCS or various instabilities developing
in current sheets (Eastwood et al., 2002; Drake et al.,
2006; Markidis et al., 2013; Greco et al., 2016; Zheng
and Hu, 2018).
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(@)
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Fig. 1. HCS ripples and SMIs. (a) HCS profile reconstructed from the STELab interplanetary scintillation data. The orbit and
the position of the Earth are schematically indicated as the half-circle and the dot. (b) Vertical HCS section. Magnetic islands
with sizes of 0.01—0.001 AU are confined inside the HCS ripples because of the plisse shape of the HCS. The radial component
of the interplanetary magnetic field outside the HCS—SMI system is directed oppositely from the two sides of the HCS (as indi-

cated by the plus and minus signs).

Figure 1a shows relatively small-scale ripples of the
HCS restored from interplanetary scintillations (see
(Khabarova et al., 2015a; 2015b; 2016) and http://
smei.ucsd.edu/new_smei/data&images/data&images.
html). Each ripple of this sort can contain from one to
several SMIs as illustrated in Fig. 1b. Figure 1b depicts
the vertical section of the HCS—SMI system. The HCS
triple line reflects its dividing into layers owing to mag-
netic reconnection, which is consistent with observations
(Khabarova et al., 2015a; 2015b; 2016). The HCS often
possesses a pleated form after the passage of powerful
coronal mass ejections provoking the intensification of
magnetic reconnection in the HCS and the excitation
of different MHD waves propagating along the HCS,
which in turn leads to oscillation of SMIs. In thtis
work, we consider the simplest case of a single SMI
confined inside a ripple of the reconnecting HCS.
Khabarova et al. (2015a; 2015b; 2016) have shown that
such ripples are similar to tokamaks, confining SMIs
and ensuring the effectiveness of mechanisms of parti-
cle acceleration. The same occurs if a region filled
with SMIs is magnetically confined anywise, for
example, when magnetic cavities are formed between
current sheets at fronts of various solar wind streams
and the HCS. The presence of SMIs in any natural
magnetic cavity bounded by strong current sheets is
often accompanied by atypical enhancements in the
flux of charged particles with energies up to several
MeV (typically, 100 keV—1 MeV) (Khabarova et al.,
2015a; 2015b; 2016). Such energetic particle flux
enhancements have been called “atypical” because it
was previously assumed that the process of accelera-
tion of particles to such energies can occur only far
from the Earth’s orbit. It was believed that particles
could be accelerated to such energies either at the Sun
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during flares or at coronal mass ejection-driven shocks
(i.e., also near the Sun). Alternatively, it could occur at
interplanetary shocks formed by streams from coronal
holes at 2—3 AU. However, observations point out the
local nature of energized particles as the regions in
which accelerated particles are detected move together
with the surrounding solar wind, which is clearly
traced by several space-separated spacecraft.

A possibility of stochastic acceleration of energetic
particles in SMIs due to dynamic processes was sug-
gested by simulations (Matthaeus et al., 1984; Drake
et al., 2006; Oka et al., 2010; Bian, Kontar, 2013; Zhou
et al., 2015), and the theory of charged particle accel-
eration in merging or contracting SM1Is was developed
by Zank et al. (2014; 2015a; 2015b) and le Roux et al.
(2015; 2016). Zank et al. (2015a; 2015b) have shown
that theoretical predictions of combined particle
acceleration at shocks with acceleration in SMIs
downstream of the shock front is in agreement with
observations of the Voyager-2 spacecraft. The primary
acceleration occurs at the shock according to the pro-
posed combined mechanism. At the same time, the
mechanism puts no constraints on the source of pre-
accelerated particles trapped in merging or contracting
SMIs, i.e., pre-accelerated particles can be of various
nature (Zank et al., 2014; le Roux et al., 2015; 2016).

A comparison of theoretical predictions (Zank
et al., 2015b) with observations has revealed an effect
of two populations of accelerated particles associated
with SMIs. It can be described as following: below a
certain threshold energy, the relative particle accelera-
tion is stronger for seed particles with lower energies,
and, on the contrary, energetic particles with higher
energies are accelerated more intensively above the
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threshold energy. The mechanism proposed by (Zank
et al., 2015b) explains the behavior of particles belong-
ing to the last population. The origin of the pro-
nounced inversion of acceleration of particles belong-
ing to the first population has remained unknown.
Obviously, a different mechanism not related to con-
traction or merging of SMIs can play a role here.

Let us consider possible sources of additional
acceleration of particles in SMIs in the solar wind. In
the absence of interplanetary shocks, pre-accelerated
particles with typical energies from 1 keV to several
tens of keV come to regions filled with SMIs predom-
inantly from the quasi-regularly reconnecting HCS
(Zharkova and Khabarova, 2012; 2015; Khabarova
et al., 2017). In this case, the characteristic tempera-
ture of thermal protons of the solar wind is several
orders of magnitude lower, varying from 1—100 eV and
being ~10eV on average. One of possible mechanisms
responsible for further acceleration of pre-accelerated
protons near the HCS seems to be acceleration by the
longitudinal electric field in a system of rather large-
scale oscillating SMIs that propagate together with the
solar wind along ripples of the HCS.

Collective effects of particle acceleration arising
from the contraction of numerous SMIs were studied
in detail in (Zank et al., 2014; 2015a; 2015b; Zhou
et al., 2015; le Roux et al., 2015; 2016), suggesting sto-
chastic particle acceleration. Regions of contraction
can be observed between interacting streams of various
origins as well as between the heliospheric current
sheet and any approaching stream. However, the most
common and natural cause of contraction/rarefaction
of SMIs in the quiet solar wind is magnetohydrody-
namic waves with a characteristic period from minutes
to hours which propagate in the azimuthal direction
along the HCS (Musielak and Suess, 1988; Wang et
al., 1988; Ruderman, 1990; Dai et al., 2014). Numeri-
cal experiments show that a wavy form of the solar
magnetic equator at the height of the photosphere
enhances this effect and causes the occurrence of well-
formed ripples of the HCS at heliocentric distances of
about 1 AU (Merkin et al., 2011).

The chain of events described below seems natural
in this regard. One can suggest that surface waves cre-
ate oscillations of the rippled HCS and stimulate the
magnetic reconnection in the HCS ripples. Particles
pre-accelerated by magnetic reconnection are injected
into SMIs. In the latter case, SMIs oscillate simulta-
neously with the oscillating HCS, which generates the
inductive electric field in them. Our estimations for an

arbitrarily selected island with a size of L ~ 10% m,
oscillating with a period of ~10 min with an amplitude
of oscillations of the magnetic field of 5 nT at 1 AU,
show that the longitudinal inductive electric field can

be E, ~ 107°10™" V/m, while the potential electric
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field £, can be 1-2 orders of magnitude lower due to the

separation of charges (being no larger than 10~ V/m).
Therefore, the sufficiently strong longitudinal induc-
tive electric field cannot be shielded by charge separa-
tion effects. The final energy gained by particles can
increase by several orders of magnitude as a result of
collective effects of particle acceleration in surround-
ing SM1s.

Indeed, collective effects play a dramatic role in the
acceleration process in vast regions filled with dynam-
ical SMIs as shown in (Zank et al., 2014; Zhou et al.,
2015; 2015a; 2015b; le Roux et al., 2015; 2016) since
they lead to the dominance of second-order Fermi
acceleration over all possible energy losses in individ-
ual islands (Ie Roux et al., 2016).

Modeling of this large-scale and complex phenom-
enon in its entirety requires a huge amount of compu-
tational resources. Therefore, we propose the follow-
ing approach. First, an analytical model of the electro-
magnetic field will be developed for in a single
periodically oscillating SMI with a certain set of input
parameters. The electric field is formally considered to
be purely inductive in the model. Second, the built
analytical model will be used to select several situa-
tions consistent with 1 AU observations of the mag-
netic field for numerical modeling of the particle
behavior in oscillating SM1s. Next, proton trajectories
will be calculated for a sufficiently representative set of
initial data in the chosen magnetic fields. The set will
include the initial time/oscillation phase, the initial
particle acceleration point, and the initial velocity.

The modeling performed in our study has revealed
an interesting and diverse picture of possible options
of acceleration of protons by the longitudinal electric
field generated by oscillating SMIs. The modeling
results are consistent with observations and confirm
the tested hypothesis.

SYSTEM GEOMETRY AND SCENARIOS
OF ISLAND OSCILLATIONS

We will consider a periodically oscillating SMI
which has an ellipsoid shape with semiaxes oscillating
around their mean values. Note that the model is a
rather simplified scheme of a SMI that can be formed
as a result of magnetic reconnection of numerous cur-
rent sheets surrounding the HCS. Thus, a SM1 is con-
sidered as autonomous and not connected with a com-
mon current system inside the heliospheric plasma
sheet, which is an undoubtedly fairly strong simplifi-
cation. However, the developed model is not self-con-
sistent. It focuses only on the processes of particle
acceleration in the SMI region where electric fields are
maximal. A structure of regions adjacent to a SMI as
well as processes of particle injection into a SMI are
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not considered. We will use the spherical coordinate
system (r, 0, ) with the origin in the center of the Sun,

the physical basis of which is set by {h,,hwhﬁ}, and
components of the magnetic field in the system are
denoted by B,, B, B;. We will also use the solar-mag-
netospheric Cartesian coordinate system GSM, the
Cartesian basis of which we denote by {ex, e y,ez} ,and
components of the magnetic field in the system are
B,,B,, B,. The curvature of the magnetic field lines
can be neglected at 1 AU, and it can be assumed that

e,=-h,, e, =-h, e =hg, B =-B,

y
B, =-B,, B, =B;.
Suppose that a large-scale ripple of the HCS is

directed along e, i.e., perpendicular to the ecliptic
plane, which corresponds to observations. In the
model, we assume that there is only one island in the
ripple, which is also often takes place near the HCS.

We assume that the background electric and mag-
netic fields of the solar wind are uniform and steady
inside HCS ripples in the undisturbed “steady” case.
In the GSM coordinate system, these are as follows:

B“" = B_e, + B e 0€.- (1)
The solar wind speed in the GSM coordinate sys-

tem upon using the SI-system is

(sw) (sw)
V(sw) —v, = I:E xB :| _ EzO (_Byoex + one
=vp = =

B Baf +|Bf

Note that the value of the solar wind speed
yew = ‘V(sw)‘ varies in the range of ~250—1200 km/s
according to spacecraft measurements, and its average
value is about 400 km/s, i.e., the condition V(SW)/ c<1

holds. The following condition is obtained from the
latter and Eq. (2)

[E“)|
c |B(SW)|

(sw) _
> E - Ez

|EZO|

e\|Bo*+ |Byo

At the next step we employ the coordinate system
K with axes parallel to the axes of the GSM coordinate

<1.

system, moving with the solar wind speed V®". There
is no electric field according to the Lorentz transfor-
mation formulas for the fields in this reference frame:

E® =0, and the magnetic field has the following
form:

B(SW)' — 1
1- (V(SW)/C)z
% (1 —(‘E(W) /( c‘B(SW))) )B“W’ B¢,
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e., it is practically of the same order as the magnetic
field in the GSM coordinate system. We consider a
SMI moving along with the solar wind in the K'. In
this system, the center of a SMI is steady, there is no
electric field in the undisturbed steady case, and the
magnetic field has the following form

B(x) = B*” + B (x). 3)

Here and elsewhere we omit the primes at the let-
ters indicating fields. The spatially nonuniform part of

the magnetic field B” (x) is created by a closed cur-
rent system inside the SMI (Grigorenko, 2016) with a

current j(i) (x), satisfying the Ampere equation

curlB” (x) = uoj” (x).

The geometry of the problem is shown schemati-
cally in Figure 2. Figure 2a shows the position of the
island in the ripple of the pleated HCS. Figure 2b pres-
ents the general view of the SMI and the coordinate sys-
tem. The X axis is directed sunward against the direction
of the solar wind propagation. Figure 2c shows the cross
section of the SMI oscillating with the period © by the
plane {x = 0} at times = 0,0/4,30/4, corresponding
to the initial position, the maximal contraction, and
the maximal expansion. The SMI is elongated along
the coordinate (X) due to the presence of the domi-
nant direction of the solar wind propagation, and
oscillations occur in the transverse direction (YZ). In
the general case, a bubble represents a structure con-
fined by current sheets from the two opposite sides,
also assuming that the SMI is adjacent to other SMIs
above and below (see the geometry in Figure 2a). In
this case, the electric current flows along the HCS
from the both sides of the SMI in the opposite direc-
tion as shown in Figures 2a and 2c.

Figure 3 shows the distribution of the absolute
value of the normalized magnetic field of the island

‘B([)(x =0,y, z,t)‘ /on in the plane {x =0} for the
oscillation phases T = 0,0/8,0/4.

Let us consider a system of equations that describes
slow large-scale processes in a collisionless plasma
(with a characteristic time change of the order of 10
min). We will use it to analyze a possible scenario of
oscillations of a SMI in the solar wind near the Earth’s
orbit. It is known that there are two types of basic ions
in the solar wind: H* protons and He?" o-particles.
The characteristic abundance of the fraction of a-par-
ticles n(x/ne is 5%, but near the HCS the number of o.-
particles is significantly reduced, therefore these can
be neglected in approximate estimates.

The collisionless plasma is described by a nonrela-
tivistic system of Vlasov—Maxwell equations on small
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Fig. 2. Topology of the numerical experiment. (a) Schematic position of the SMI in the ripple of the HCS. (b) General view of
the island and the coordinate system. (c) Cut of the island by the plane {x = 0} for different phases of oscillations. T =0 corre-
sponds to the solid line, T = @/ 4 stands for the dash-dotted line, and Tt = 3@/ 4 corresponds to the dashed line.
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Fig. 3. Modulus of the normalized magnetic field of the island |B(i) (x=0,yz t)| / B, inthe {x = 0} plane for different phases of
oscillations: (a) T =0, (b) T=6/8, and (c) T = ©/4.
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spatial scales of the order of the Debye electron length.
‘We denote the scalar and vector products of vectors in the

space R’ by (a,b) and[a x b], and the dyadic tensor with
Cartesian components (a®b), , = ab formed by

these vectors by a ® b. For each plasma component

(protons p* and electrons e™: B = p,e), we denote the
distribution function depending on time ¢, the spatial

coordinate x = (xl,xz,x3)r e R’, and the velocity
V= (vl,vz,v3)T e R’ by /3 (t,x,v), ey denotes the par-
ticle charge (for electrons e, = —e, where e is the pro-
ton charge), mg indicates the particle mass, ng(x,?)
denotes the density, and jj; (x,7) stands for the current
density. g, and p, denote the electric and magnetic con-

stants,and ¢ =1 / €, is the velocity of light in vacuum.
The system of Vlasov—Maxwell equations can be repre-
sented as follows in the SI system:

I + (v,%j + e—B[E (x,7) +[v xB(x,t)],aaﬁ] =0
v

ot ox mg "(4)

B=npe,

ng (x,1) = I f (t,x,v)d,
R3

(5)

p(x.1) = e(n, (x.1) = n, (x,1)),

ip(x.1) = ¢ | V4 (1,X,V) d’v,
ﬁRL : (©)

i(x1) =1, (x1)+j. (x.1),
divB(x,7) = 0, )
% = —curlE (x,7), (8)
divE (x,7) = p(x,1)/g,, )
80% = l%curlB (x,7) — j(x,7). (10)
0

Here, E (x,7) is the electric field vector, B(x,?) is the
vector of magnetic induction, p; (x,7) and j, (x,7) are
the total charge and ion current density, and p(x,t)
and j(x,?) are the total charge and the total current

aj eznp
==—L/E+[u,xB|-
o m,

enp enp

m,div(n,u, ®u,) _ divﬁp]
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densities. We derive the following hydrodynamic
equations for the momentum flux for each plasma

component B = p,e from Vlasov equations (4):

dj N
B _ 2B (engk +[jg x B]- divily ),
ot mg (11)
ﬁﬁ (x,7) = mﬁj VOV (t,x,v)d,
R3
where ﬁB (x,?) is the total stress tensor for particles of
each [ sort. dinIB (x,7) is the divergence vector of this
tensor. Cartesian components Iy, , (x,7) of the tensor
ﬁB (x,#) and components (dinIB (x, t)) . of vector

divf[B (x,?) are determined by the following formulas

Mgy, (x,2) = mBI vivify (2, x,v)d3v,
R3

A 2 0l (%,7)
(divIT, (x,t))k = ZS—;{I

=1

Note that the full stress tensor ﬁﬁ (x,?) is usually rep-
resented as a sum of the inertia tensor mgngug ® ug

and the pressure tensor 133 :
I (x,7) = mgng (X, 1) ug (X, 1) ® ug (x,7) + Py (x,1).(12)

where the hydrodynamic velocity ug(x,7) and the
pressure tensor are defined by the following formulas:

jB(X,t) _ 1 - 3
= fe(t,x,v)dv, (13)
epny (%,1) g (x,t)IE!} p(5xv)

Py(x,7) = mBI (v —ug(x,1))
R (14)

®(v—up(x,1)) fp(t, x,v)d'v.
It follows from Eq. (12) that the divergence of the
full stress tensor divﬁﬁ (x,?) is the sum of the volume

ug (x,7) =

density of the inertia force mgdiv(ngug ® ug) and the

divergence of the pressure tensor divﬁﬁ :

(15)

The summation of Eq. (11) with regard to (15) leads
to the following equation

divl:[B = deiv(nBuB ® uB) + divf’ﬁ.

2
en

m

, en

, en

e

—e(E +[u, x B+ m,div(nu, ®u,) N diVPej’} (16)
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which is often called the generalized Ohm’s law. We introduce the following notation for the convenience of fur-

ther analysis:

ot

m m

p e m

e

. 2 2 . 2 2
E B

(%) = —ediv(n,u, ®u,) + ediv(nu, ®u,), (ﬂ) = £ divP, - idivlsp.
in P

Considering the latter, Eq. (16) takes the following

form
-3, +(3) .+,
ot \dt/g | ot R otlin \0t/p

It is convenient to use the decomposition of the
electric field into the potential E , (x,7) and solenoidal
E, (x,7) parts in the considered modeling domain €:
E(x,t)=E,(x,7)+E,(x,7), E,(x,) =-Vo(x,?

divE, (x,7) =0, xe Q.

Such a decomposition is determined up to a har-
monic gradient in the domain Q of the function:

(18)

)<’19)

E, (x,r) =E, (x,7) + Vw(x,1),

E,(x,1) =-Vo(x,1) - Vw(x,1),
Aw(x,1) =0, x€ Q,

where Aw = divVw is the Laplace operator. To ensure
the uniqueness of such a decomposition, it is neces-
sary to use boundary conditions, which usually follow
from the specifics of a considered problem.

It should be noted that SMIs observed near current
sheets in the heliosphere form a highly inhomoge-
neous plasma system in which the magnetic field and
the density oscillate in antiphase. Such a system can
contain both subregions with the increased magnetic
field with respect to its intensity in the surrounding
solar wind and the reduced plasma pressure as well
as similar subregions with the weakened magnetic
field and the increased plasma pressure. In order to
show that the inductive electric field generated in
the system of oscillating islands can be large and is
not compensated by the ambipolar electric field of
charge separation, we estimate the terms in the gen-
eralized Ohm’s law (16) using the following charac-
teristic values: the amplitude of the magnetic field
oscillations in the island AB = 5 nT, the oscillation
period ® ~ 300 s, the island size L, ~ 108 m, the den-
sity n, = n, ~ 1-10 cm™ =10°-10" m™, the electron
temperature 7, =12 €V, and the proton temperature
T, = 8 eV. Such values of the parameters are quite typi-

cal for SMIs in the rippled HCS observed by space-
craft at 1 AU. From the quasi-neutrality condition

n, = n,, it follows that

% (17)
ot m, m,
. 2 2 2 2
(ﬂ) =20y Cle g |y M g o € g 00)
ot/ m, m, m, m, m,

In the slow processes under consideration, the dis-
placement current in Maxwell’s equation (10) is negli-
gible, and it goes into the Ampere’s equation

curlB(x,7) = Woj(x,7). (21

For simplification, one can assume that the SMI is
generated by two current systems with the same mag-
nitude but oppositely directed dipole moment and
with a characteristic size of a nonuniformity of the

orderof L ~ 0.1, ~ 10" m. The estimate follows from
Eq. (21):
] curlB(x,7
Mo HoL

Time differentiation of Ampere equation (21) and
accounting for (22) make it possible to obtain an esti-
mate for the time derivative of the current

~107" A/(m2 s)

~5x10° A/m’. (22)

g _ Lcurla—B ~
ot W, ot

AB
Lo LAt

(23)

It follows from the quasineutrality condition
n, = n,, formulas (13) and estimate (22) that

J -
u, —u, ~—-—~0.1-1 km/s.
P e /

e

(24)

This estimate, taking into account together with
the quasi-neutrality condition and an estimate of

u, ~u, ~ V™ ~ 400 km/s, leads to the conclusion
that the velocity of protons in the moving coordinate
system is as follows:

u, = u, ~ V" ~100 km/s. (25)
Hence,
aj) -4 2 dj
A ~15x107" A/(m*s) > . 26
(az 8 fm’s ot 20

From (24) and (25), it follows that the third terms
in each bracket in (16) are close in magnitude and
SOLAR SYSTEM RESEARCH  Vol. 53
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opposite in sign, i.e., their sum is very small compared
with each of them:

(%) = —ediv(n,u, ®u,) + ediv(nu, ®u,)

i 5 (27)
~ el 1071077 A/(m?s) - 4.
L ot
If we assume that the magnetic field is B ~ 2-10 nT,
and the temperatures of electrons and protons are
T, =12eVand T, = 8 eV in the quiet solar wind and in
the SMI, then their characteristic gyroradius
(rs =V / o, ) and gyroperiods (6,5 = 21'5/ o , Where
W = |€B|B/m[3 is the
Vie = €Ty / my, is the thermal velocity of B-particles)
arer,, = 30-100 km, 7, = 1-4 kmand 0, = 21 — 107 s,
0., = 0.003-0.02 s, respectively. Note that in this case
thermal electrons are strongly magnetized, and their

gyrofrequency, and

pressure tensor must be gyrotropic: f’e (x,t) =
Doy (X,0)1 + (Do (X,1) = Doy (%,7))b(x,7) ® b(x,7).
Here, p,, and p, are the orthogonal and longitu-

dinal pressures of electrons, I is the unit tensor, and
b(x,?) = B(X,t)/|B(X, t)| is the unit vector along the
magnetic field. The divergence of this tensor is given
by the following formula:

divP, = Vp,, +b(b,V(pe - Per))
+ (Pey = Per)((b, V)b + bdivh).

The last terms in each bracket on the right side of
(16) for electrons and protons can be estimated in the

(28)

approximation of isotropic pressure 133 = pﬁi:

. oY T
divP, Vp, =M -~ _10° V/m
en, en,  en, L (29)
dive, Vp, _V(enl)) T, |y V/m.
en, en, en, L
Therefore,
(ﬁ) = 2| divP, - ZedivP,
otlp  m, m, (30)
~ £ divP, ~ 107 A/(m2 s) > ﬁ.
" ot

e

It follows from (23), (26), (27), (29), and (30) that
for the SMI in both the steady case and the case of
oscillations, the following estimates are correct:

A (%) () ()
Jr \ot/g azB dot/p

2 N
:%(E+[uexB]+%j ~ 0,
m en

e e

(31)
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which means that an approximate electron equilib-
rium (hydrostatics) takes place. As a result, we obtain
the following formula for the electric field:

divP,
éen

e

E ~ —[u, xB] - (32)

Therefore, also using (28), it is possible to estimate
the longitudinal (screening) component of the electric

field £, = (E,b), caused by charge separation:

Ey =~ ——(divP,,b)
I en, (33)
(b, Vl’en) + (Pen - peJ_)diVb ~10°° V/m.
en

e

On the other hand, the estimate of the maximum
deviation from electroneutrality in the inhomoge-
neous plasma is known (see, for example, (Lifshits and
Pitaevsky, 1979, p. 186)), which in the case under con-
sideration has the following form, taking into account
the designations in (5):

I Ao )2

—(n, —n,) ~| =21, 34

Ln )~ (2 G4
where L is the size of the inhomogeneity,

Ape = Vre/w,, is the Debye length, ®,, = e/n,/(gym,)
is the plasma frequency, and Vi, = /eT, / m, is the

electron thermal velocity. The characteristic values of
the parameters indicated above (20) and (22), give the

value of the Debye length Ay, ~ 10 m in the solar
wind. The following equation is obtained for the

potential part of the electric field E, (x,7) = -V (x,7)
from Poisson equation (9)

divE, (x,7) = p(x,1) /e, .

We obtain the following estimate from this equa-
tion and (34):

en, 1 en, (Ape >
E,~L2=1% (s, —n,)~ L—e(ﬁ)
g € N, g\ L (35)
= e ()P =Le 2107 v/m
8OL( De) L / s

which, as one can see, coincides with the estimate
of the electric field appearing due to the divergence of
the electron pressure tensor. Note that as follows from
(35) and (32), the orthogonal part of the hydrody-

namic velocity of electrons u,; should be sufficiently
small in the steady case.

Therefore, (33) and (35) show that the longitudinal

screening electric field is £ ~ 10°° V/ m due to order-
of-magnitude charge separation in the SMI. If the
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SMI oscillates, according to Faraday’s equation (8),
the inductive field appears

-9
L% ~10"x 219~ 55107 v/m,  (36)

100

which is two orders of magnitude larger than the
screening field, as follows from estimate (36). In this
case, the part of the inductive electric field orthogonal
to B in approximate equation (32) is compensated by
the term [u, X B]. Summarizing, the inductive electric
field generated in the oscillating SMI is sufficiently
large, and the charge separation (screening) field can-
not compensate it. As a result, the inductive electric
field can effectively accelerate charged particles
injected into SM1s.

E, ~

MODEL OF THE MAGNETIC AND ELECTRIC
FIELDS IN THE MAGNETIC ISLAND

Self-consistent modeling of distribution of the
magnetic and electric field and plasma parametersin a
SMI in the solar wind near the Earth’s orbit is a large
and complex problem that lies far beyond the scope of
this paper. It is difficult to build a reasonable model of
the potential electric field. Estimates (35), (36) show
that it is approximately two orders of magnitude
smaller than the inductive electric field arising due to
oscillations of a SMI. Therefore, we do not take into
account the potential electric field E,(x,7) and
assume that the electric field in a SMI is purely induc-
tive in our simple analytical model. Therefore, the
fields are determined by the vector potential A(x, ?):

B(x,7) = Bse, + B,e, +curlA(x,1),
ot

In this case, the electroneutrality condition is for-
mally satisfied:

(37)

diVE(x,t) =0, (38)
which is tantamount to a condition
divA (x,7) = 0. 39)

It is convenient to set the vector potential for auto-
matic fulfillment of conditions (38) and (39) in the
following form

A(x,7) = LB,curl (y, (x,1) Vi, (x))
= LB, [V, (x,1)x Vy, (x)],

where L is the model parameter which has the dimen-
sion of length, and B,, is the model parameter that has
the dimension of the magnetic field. (40) suggests that
the vector potential is determined by its Eulerian
potentials, namely by the time-dependent first poten-
tial v, (x,7) and the steady second potential v, (x)
which should be independent of each other, i.e., their
gradients should not be parallel. (40) and (37) imply

(40)

the following expressions for the fields expressed
through the functions v, (x,7) and y, (x):
B(x,7) = Be, + B,e, + curlA(x,7)
= xoex + Byoey
+ LB, curlcurl (y, (x,7) Vy, (x)),

41
B 1) = 24080 @
LB, [sz (x) % VW}.

We assume that the SMI starts to oscillate at the
time 7; with the period ©. It is convenient to present
time in the following form: ¢t = T + n,® + 1, where T is
the current phase of island oscillations, and
n, =[(t-T,)/©]e Z is an integer. The parametriza-
tion of an ellipsoid with semiaxes oscillating around
their mean values L,, L,, L, with a period © = 27t/ 0]

can be chosen as the first potential y, (x,7):

v, (x,7)
2 2 2
=exp(—|Sx (X,T)| _|Sy (,V,T)| _|Sz (Z,T)| )’
where
S (x,1 :ﬁ,
(%) L. —A,sinmt 42)
S ,T = - y_yO 5
»(r7) L, -\, sinot
S.(z,7 = "%
:(27) L, —\_sinot

Here, x, = (xy, ¥y, %) is the coordinates of the cen-
ter of the SMI, A_,A,, A, is the amplitude of oscilla-

x> fhys fve
tions of the semiaxes, which must satisfy the condition

O < 7\'/( < Lk/z, k = x,y,z.
Itis possible to choose the following function as the
second potential:

Wy(x) = %(X —x,), ie. Vy,(x)=x—x, (43)

We have examined osicllations of a SMI of the
three possible spatial sizes L=L.: L = 105

1.5%10% 2x10° m, in our calculations of the energy
obtained by particles. The remaining spatial model
parameters were determined as follows:
L, =1L, :L/2, A=A, =0, A, :Ly/2 :L/4. An
island in the form of an ellipsoid elongated in the X
direction was considered in which only the semiaxis in
the Y direction oscillates. The components of the
magnetic field of the solar wind had the values of

B,y = B, =5 nT. Three variants were considered for

X

the amplitude of oscillations of the magnetic field of
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the SMI: B, =0.5B,y; 0.75B,; B, as well as two
variants of the oscillation period

© = 21/® = 300; 600 s.

The origin of the frame of reference K" can be con-
veniently placed in the center of the island, therefore

x, = 0. It is also reasonable to introduce dimension-
less variables X = x/L, y=y/L, Z=z/L and the
parameter A = A, JL=1/4.

The following expressions for the electric and mag-
netic field components can be obtained from formulas
(3), (41)—(43):

W (1) =
i (x.1) = exp(-%" — 47" - 47°y, (1)),
Bx (X, t) = on + 4Bm\|11 (X, t)
X % (11227 + 2y, (1) (1+ 25 (1 - 4y, (1))
X §(5— 28" = 322" + 8y, (1) (42° + 27 - 1)),
B, (x.1) = 2B,y (x.1)Z (65 = 7 + 4y, (1
x (1= 3243y, () (1 - Asin 1) sin 1))

(1-2Asin 0)1:)72 ,
(44)

(45)

320L B, \j cos »T

Ey(x,7) = —
0( ) (1—2}»sin03’c)3

(46)

Vi (x%,1),

E.(x,1) = Ey(x,1)

x Z (1= 32835y, () (1 - Asin o1)sin o1),
E,(x,t) = =3E,(x,1) X7,

E (x.t) = Ey(x,1) % (5 (4y, (1) = 1) — 1).

Note that (45)—(47) suggest the existence of the
significant longitudinal electric field in the main
region of the elliptic SMI for the practically entire
oscillation period

[x:(x* +4y" + 4z2)/L2 <1]

(47)

MODELING TECHNIQUE

It is necessary to solve the Cauchy problem numer-
ically for the system of equations of the charge motion
in the electromagnetic field (so-called Newton—
Lorentz system) to calculate the trajectory of a particle
with the charge e and the rest mass m,. It has the fol-
lowing form in the SI system in the relativistic case:

dx(t) =v(r), p(v)= m—on’
i JI=IvP/e (48)
dp(v(1))

=e(E(x(1),1) +[v(r)xB(x(),1)]),

dt
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where c is the speed of light in vacuum, and p is the
momentum. This system in the classical limit |y]| / c<1
takes the following form

ax(r) _
o "

] (49)
o = (B(().0) +[v () < B(x(0) )

The initial conditions are as follows:

X<I0> = XO, v(to) =v' (50)

The kinetic energy in electron-volts W (v) is tied to
the velocity modulus v = |y| by the following expres-

sions:
myc’ 1
W) =" -1,
e |J1-2/c
vl _ |[eW | eW
c 2

/ moc

In the classical limit, it transforms into the kinetic
energy for the classical approximation:

W (v) = 2lm0v2 for ¥ — 0. Note that Egs. (48) and
e c
(51) imply the following equation

(31

WD _ (1 (x(1,0),v (1),

To save computational resources during simula-
tions of the particle trajectory, we employ the time step
within the classical system of equations (49) if the
parameter 3 = |v|/ ¢ < B, =0.02 (which corresponds

to the kinetic energy of W, = 188 keV) during the cal-
culation of the trajectory, the time step within classical
system of equations (49) is used to save computational
resources; and if B > 3, = 0.02, the time step is in the
relativistic system of equations (48). The numerical
method for the proton trajectory calculations within
the classical and the relativistic system of equations is
given in detail in APPENDIX.

It is convenient to denote the solution of Cauchy
problem (48), (50) for the subsequent presentation as

(52)

x(1) = X(t, tO,XO,vO), v(r) = V(t, to,xo,vo), (53)

where to,xo, and v’ are the initial time, the initial
point, and the initial velocity, respectively, for the
analysis of the dependence of the modeling results on
the initial particle data. The superscript zero denotes
the initial data here and elsewhere. These vector func-
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tions satisfy the following equations and initial condi-
tions:

0X (t, tO,XO,VO)
ot

ov (1,1, x°,v’
= V(t,to,xo,vo), —( )
ot
=e' (E (X (t, to, XO, VO) , t)
+ [V(t,tO,XO,VO)XB(X (t,to,xo,vo),t)]),
X(to,to,xo,vo) = XO, V(to,to,xo,vo) =v'

Note that the electromagnetic field of the SMI
additional to the electromagnetic field in the solar
wind gradually increases from zero to the maximum
value at SMI edges, and the flux of pre-accelerated
protons coming from the HCS ripple can be injected
into any part of the SMI. This happens any time, at
different phases of oscillations of the SMI. Therefore, the

following approach can be used to model possible accel-
eration of protons. A rather wide set of starting points

{xo [k, ]} inside the elliptic SMI is chosen:

Q, :{x:(x2+4y2+4z2)/L2 <1]. (54)
We also set of initial phases of oscillations of the

island t° [k, ] from 0 to © with the step % which corre-

sponds to the set of initial times {to [k]=T, + [k ]} .

V(WO ke | = v
vy [ W ksl | =

For simplicity, time is counted from the beginning of
oscillations of the SMI, i.e. we assume 7, =0 and
identify the initial time and the initial phase:

£ [kt] =1 [kt]‘

The set of options for the initial velocity v’ is con-
structed as follows. The set of initial kinetic energies

w'[k,] in the range from 10 eV to 100 keV is chosen.
The step is 10 eV in the range from 10 eV to 0.5 keV and
0.5 keV in the range from 0.5 to 100 keV. Each initial
energy in eV corresponds to the initial velocity modu-
lus determined by the second formula in (51):

- S

myc” \ mye
The set of Ny = 2N, (N +1) = 360 x 181 initial

+ lj (55)

velocities with the given initial energy W’ and with the
step of 1 degree in the velocity direction angles can be
introduced as

{VO [WO’ka,kBJ, k,=-Ny,+1,...,Ng, (56)
ks =0,...,Ng, N, =N =180}

It is determined by the following formulas for the
components of the initial velocity:

( 0)5111 nkB/NB cos Tck /N
( 0)sm Tk / Ng)sin (ko /Ny,
v

(57)

ve [ W kasdeg | = v° (W) cos (mky / Np).

Therefore, the set of initial conditions is formed
{to [k,],x° [k.], v’ [WU [kw],kwkd}. We employ here

the frame of reference K" moving along with the solar
wind in which the island center is steady and the mag-
netic and electric fields are determined by (44)—(47),
which is described in the “System Geometry” section.
The trajectory control region (the modeling region) is
defined as the rectangular parallelepiped

I = {x:|x/L| <1.25, |y/L| <], <0.75}, (58)

containing the ellipsoid €2, defined according to (4.7).
The proton trajectories are calculated for each

FO[k;](x,t) of the SMI
F? = {B(’) E(’)}) described in the previous section;

chosen (where

and for each initial condition (t X,V ) Cauchy
problem (47), (50) is solved until the particle escape

from the control region I1. As a result, we calculate time
for which the trajectory remains within the control region

I, which we denote by T, 4 (to, xo, VO) , the escape point
coordinate X,,q (to,xo,vo) , and the escape velocity

Vend (t x’ ,V ) The latter gives the following escape
energy (in eV) according to the first formula in (51):

Vl/end (tO,XO, VO)

_ myc” 1

\/1— | Vend (to,xo,vo)/cl2 -

For the initial time to, the starting point xo, and set

(59)

(57) of initial velocities with a given initial energy w’ ,
we analyze below the average energy of particles
SOLAR SYSTEM RESEARCH  Vol. 53
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(Wena) (to, <’ w’ ) and the average time

(7;nd>(t0,x0,W0) that particles spend in the control

region II treating the parameters as the most indica-
tive. Their values can be determined through the
parameters of each trajectory as follows:

<VVend> (10, XO, WO )

35 (60)
NI R
= N(OLB) = k(x:—zN(x+l I/I/end (t , X,V ':W ,k[x’ k[}:|),

<nnd>(t0,X0,W0)
3 61)

SRS 3 T [ k)

N(otB) kg=0 ko=—N+1

B[to,xo,Wo](kg,kg) = arccos(vend,z (to,xo,vo [Wo,kg,kﬂ)/
vonay (15 WKL AL

o [to, xo, WOJ (kg, k[g) = 2arctan

For each initial set of initial times and coordinates
(to,xo), the quantities used in (60) and (61) are func-
tions of one variable, which is the initial energy

W[k, ]. The graphs of these functions clearly demon-
strate the presence of acceleration.
The anisotropy of protons emitted from the control

region IT is also of interest. For a given set (to, XO, w' ) ,
it can be described using the distribution function
f [tO,XO,WOJ(OL,B) of the direction of the escape
velocities v,4 (ZO,XO,VO [Wo,kao,kg ]) over the escape

angles in the spherical coordinate system o € (—TC; n]

and B € [0;xt]. These angles are determined by the fol-
lowing formulas

Vend (to,xo, v [Wo, kg,kg])

)

(62)

which are equivalent to ratios
Vendx = | Vena| SINBCOSOL Vg, = |Vena|sinPsino,
Vend,z = |Vend|COSB'
Values of the function f [IO,XO,WOJ(OL,B) in grid
nodes
Blks] = mhs /Ny, o[ke] = Tk /Ny,
ko ==No+1...,Ny, kg =0,..., N,
Ny = N =180

are determined by the linear weighting according to
the following formulas

F1X W (ko] BlK))

_ f‘, NZ Wl[a[ka]—a[,O’Xo,Wo](kg,kg)J )

Ky =0 ky=—No:+1 Ao

o {B (k] = B[ 1°.X", Wo](kg,kg)}’

AB

where Ao = Tc/ N,
Wi (L) = max (1—A],0).

AB =m/N, and

RESULTS OF THE MODELING
We will discuss below the results of modeling of
particle acceleration in a SMI with the size of

L=10* m, the period of oscillation of ©® = 600 s, and
the amplitude of oscillations of the magnetic field of
SOLAR SYSTEM RESEARCH  Vol. 53
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Vend (IO,XO,VO [WO, kg,kg])‘ + Vend.x (to,xo,v0 [WO, kg,kg]) ’

B, =0.75B,, = 3.75 nT. Figure 4 shows the average
energies of the particles that escape from the plas-
moid, depending on their initial energies W? in keV
plotted along the X axis. Curves /—6 in the three pan-
els of Figure 4 correspond to six different starting
points inside the SMI. One can see that there are
points of effective particle acceleration inside the
island (see curves /—3), and the points of weak or

absent acceleration (curves 4—6). The region Q(to)
characterizes the neighborhood of the starting point

x'/L =(0.50.2,0.25). The set of initial data
[tlo ;tg ] X Q(to) c Rix in their entirety represents the
“acceleration” set of points. Particles injected into

acceleration points gain substantial energy compared
with initial. The average escape energy of such parti-

cles is (W,nq) (to, W ) > 150 keV in the whole con-
sidered range of initial energies. At the same time, the
phase £ = @/ 4 is central in the interval of the “accel-
erating” initial phases [tlo 1 ] ~[©/8;30/8]. There is
either no acceleration outside the “accelerating” set of
starting points (to, XO) ¢ [tlo; tg ] X Q(to) or it is weak
and occurs in a limited range of low initial energies
only. The acceleration region Q(to) can change size in

time, i.e., it is maximal at £ = @/4 and grows smaller

at other 7°. In Fig. 4, curve I corresponds to the center
of the acceleration region. The shape of the curve
shows that the average escape energy of accelerated
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Fig. 4. Average escape energy <Wend>(t0,x0,W0) in keV for several starting points in the SMI with the size L = 108 m, the mag-

netic field B,, = 0.75B, = 3.75 nT, the oscillation period ® = 600 s, and the initial time = ©/4. The initial energies of particles

/4 % inkeVare plotted on the abscissa. Curves /—3 correspond to the starting points x’ / L =(0.5;0.2;0.25); 0/ L= 0 4;0.16;0.2)
and xO/L = (0.6;0.24;0.3) in the acceleration region. Curves 4—6 correspond to the starting points x /L = 0.2;0.1;0.1),
x*/L = (0.7;0.28,0.35) and x/L = (<0.2,-0.1;- 0.1).

> 10 keV exceeds

700 keV and depends weakly on the initial energy W°
of particles injected into the SMI. Curves 2 and 3 cor-
respond to the central part of the acceleration region

particles for the initial energies W

Q(to = @/ 4). One can see that the average escape
energy of particles injected into these regions exceeds
600 keV (curve 2) and 400 keV (curve 3), respectively,

and also depends on initial energies w? very weakly. It
turns out that particles of very different energies (dif-
fering by times and even orders of magnitude) origi-
nating from the same starting point leave the control
region with close final energies.

Let us examine below the points lying outside the

acceleration region Q (to = @/ 4). Curve 5 shows the
dependence of the escape energy of particles that leave
the SMI close to the boundary of the acceleration

region from the starting point xo/ L =(0.7;0.28;0.35).
The average escape energies for such points exceed
150 keV and weakly depend on the initial energy, anal-
ogous to the case of particles injected into the acceler-
ation region. Curves 4 and 6 are shown for particles

with small energies of W’ <10 keV injected into the
two selected starting points XO/L = (0.2;0.1;0.1) and

XO/L = (—0.2;—0.1; —0.1). Such particles are acceler-
ated to average energies of about 100 and 50 keV,

respectively. There is almost no acceleration at higher
L . 0
initial energies W .

Figure 5 shows the average time in minutes
(Tona) (to = @/4,x0, Wo) of the presence of the trajec-
tory in the modeling region for the same trajectories as

shown in Figure 4. An analysis of the behavior of
curves I, 2, and 3 shows that for the dependence of

(End)(to = @/4,X0,W0) on the initial energy W in

the range W’ > 20 keVisalso very weak for the trajec-
tories from the inner part of the acceleration region

Q(to = @/ 4), and the average time of the trajectory

occurrence in the control region is less than 2.7 min.
At the same time, curve 6 shows that particles remain
in the modeling region for quite a long time, from 8 to
13 min. Curves 4 and 5 show that the main differences
in the times that particles spend in the system are
observed mainly at low initial energies (less than
20 keV). The corresponding curves reach approxi-
mately the same values of the gained energy as for large
initial energies.

If one compares different scenarios of SMI oscilla-
tions, the pattern is as follows: as the longitudinal
inductive electric field increases, the interval of the
initial phases at which particles gain energy above
150 keV becomes noticeably wider. Figure 6 shows
results of modeling of particle acceleration in the SMI

with the characteristic scale of L =1.5%x10" m, the
magnetic field B,, =3.75 nT, and the period of oscilla-
SOLAR SYSTEM RESEARCH  Vol. 53
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<Tend>(t0 = ®/4: XO» Wo)
13r

10~ 6 I PN

OF T o S

8_ i, B SR T R

7= "“"-._.,_,__I__I_’__._,,_-.\_.-‘.('

6_.#"--...\*

Sk ~

4t o

3_ e e e Ll e — O —— e S el e e R ——
NN N I I N N Y T T Y N A Y Y N N M T T T T T A |

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98

&
LLERN

Ar
v oy st
» 5 LA LA L

»
v
gt

vy
e
1
A,
]

Vae e e e e
Sl
Laans anaa bl DTN
i g *ig
e v e s TP

——— e s, -

el ot e P e ot ey
T Ty

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98

WO

IO
O O— DI NNICONOO—DNIL

(=)

Fig. 5. Average time <Tend > (to, XO, w' ) in minutes during which the trajectory remains in the control region IT for several starting

points for the scenario with L = 10® m, B,, = 0.75B,y = 3.75 nT, the oscillation period ©® = 600 s, and the initial time P = @/4.

Notations for the curves are the same as in Fig. 4.

tion ® = 300 s. The amplitude of the electric field is
three times larger compared with the first scenario
presented in Figure 4, and the time interval of the
acceleration region becomes [tlo iy ] ~[©/16;07/16].
The center of the acceleration region remains the same
in spatial coordinates, but the region itself expands,
and the average escape energy of particles increases

several times in comparison with the previous case.
Curve 1 in Figure 6 corresponds to the starting point

XO/L = (0.5;0.2;0.25), i.e., to the center of the accel-
eration region in which the average escape energy is
maximum and exceeds 2 MeV being approximately
three times higher than for the first configuration
shown in Figure 4. Curve 2 corresponds to the accel-
eration region (similar to curve 3 in Fig. 4). The aver-
age energy of the particles escaping from this region
increases about four times in comparison with the pre-
vious case. Curve 3 with the starting point

XO/L =(0.4;0.16;0.2) (similar to curve 2 in Fig. 4)
shows ~2.3 times increase in the average escape
energy. Curves 4—8 taken outside the accelerating
region of the SMI show a general increase in the
energy gain of the particles 2—4 times larger compared
with the configuration modeled in Fig. 4. Note that in
this case particles are significantly accelerated even at
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the points where there is no acceleration at all or it is
very weak in the configuration examined in Fig. 4.

Figure 7 shows the average time

(Tend> (to = @/ 4,XO,W0) in minutes during which the
trajectory is in the modeling region starting from the

same points as in Figure 6. A comparison of Figure 7
with Figure 5 shows that the average time spent by the

trajectory in the control region Q(to = G)/ 4) is ~1.6
times smaller for the starting points from the central
part of the acceleration region Il, which indicates

stronger proton acceleration compared with the con-
figuration modeled in Fig. 4.

We analyze below acceleration processes occurring
at the same starting point inside the SMI in depen-
dence on the phases (starting points in time) of the
particles at the start of their motion in the system rep-
resenting a SMI that oscillates with the period
® = 300 s (the remaining parameters are indicated in
the caption for Fig. 6). Figure 8 shows the average

a0) (1%x°,W" ) for different initial

times in the center of the acceleration region Q. The
particles are slightly accelerated in the range of initial

energies W’ <65 keV at the time 1°= 0 (curve I). Sig-

escape energies (W

€
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Fig. 6. Average escape energy <Wend>(t0, xO, WO) (in keV) obtained by particles injected into several starting points as calculated

for the SMI with the following parameters: L =1.5x lO8 m, B, =3.751T, ® =300 s, and to = @/ 4. Curve [ corresponds to the

center of the acceleration region, the starting point xO/L

x*/L = (0.6,0.24;0.3); curve 3, x"/L = (0.4,0.16,0.2); curve 4,

=(0.50.2;0.25), curve 2 corresponds to the starting point

x*/L = (0.7,0.28;0.35); curve 5, x*/L = (0.2:0.1;0.1); curve 6,

x° / L =—(0.5;0.2;0.25), which is symmetrical to the center of the acceleration region; curve 7; x’ / L= (0;0; 0) at the center of the

island, and curve &, xO/L =(0.7;0.3;0.4).

nificant acceleration is detected at small initial ener-

gies W’ <20keVatf’ = @/ 16 (curve 2) and particles
are accelerated weaker in the other initial energies.
Curves 3 and 7show effective acceleration up to 700—
800 keV and higher. Particles obtain the highest energy

increment at 7° = ©/4 (curve 5) and £ = 30/16;50/16
(curves 4, 6). Curves 8—11 (' =30/8,70/16,
©/2,30/4,7©/8) again show relatively weak accelera-

tion with some differences, especially for the initial
energies lower than 50 keV.

Note that there is no acceleration or it is weak for

other initial times ° > @/ 2. It is also possible to dis-
tinguish a similar time interval when particle accelera-

tion is most effective for the second half of the period
of oscillations of the SMI (©/2;©).

Therefore, the results of our modeling show that
there is not only a spatial but also a time interval
([tl0 ;13 ] =~ [G)/ 16;7@/ 16]) in which the interaction of
the inductive electric field of an oscillating SMI with
plasma particles is very effective, i.e., this mechanism
can play a significant role in additional energization of
pre-accelerated protons in magnetically inhomoge-
neous medium near the HCS. In this regard, one can
suggest the resonant nature of particle acceleration
inside an oscillating SMI similar to the phenomenon
of parametric resonance.

SOLAR SYSTEM RESEARCH  Vol. 53
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points for the configuration with L =1.5x 10 m, B, = 0.75B, = 3.75 T, the oscillation period ® = 300 s, and the initial time

L= @/4. Notations for the curves are the same as in Fig. 6.

At the next step, we will analyze the spatial distri-
bution of the velocities of escaping particles. Figures 9
and 10 show plasma distribution functions depending
on the velocity direction angles o, 3 (see (62), (63)) in
the spherical coordinate system.

Figure 9 is given for the first modeled island that
oscillates with the period of ® = 600 s. Figure 10
shows the results of the analysis for the second SMI
configuration with ® = 300 s. A comparison of the
two figures indicates the similarity of the overall struc-
ture of the distribution function regardless of the ini-
tial particle energies in the plasma. One can find that
the flux of escaping particles has a clear spatial anisot-
ropy showing maxima at certain azimuthal and latitu-
dinal angles. A characterization of the direction of
plasma escaping the SMI, in general, can be given as
follows: particles leave the SMI with azimuthal angles
of 60° < B < 120°, concentrating around 3 ~ 90°. This
means that the main particle escape zone is concen-
trated near the equatorial region of the magnetic bub-
ble shown in Figure 2. On the other hand, the distribu-
tion of escaping particles is concentrated in the two
symmetric regions with respect to the angle oo ~ —30°,
namely at o0 ~ 60° and o, ~ —120°. This means that

SOLAR SYSTEM RESEARCH  Vol. 53
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the particle escape is nonuniform and does not occur
diffusely in all directions near the equator but is
directed in the form of two beams occurring at 180° to
each other. A comparison of Figures 9a and 9f shows
that the pattern of distributions of escape directions
becomes more and more complex with increasing par-
ticle energies. The boundaries of the picture of distri-
butions become blurred, and it becomes complex in
the velocity space.

The nature of the distribution function of escaping
particles shown in Figure 10 for the case of the more
rapidly oscillating SMI is similar to Figure 9. A com-
parison of Figures 9 and 10 shows that the distribution

function f [to, x’, Wo](oc, B) has a pronounced anisot-

ropy for a given set of starting points [to, xO, Wo}. Since

pre-accelerated particles that fall into an oscillating
SMI possess energies from a rather limited range, one
can expect that their acceleration also leads to forma-
tion of the anisotropic spatial distribution of velocities,
similarly to one that can be obtained from the addition
of different anisotropic distributions. Obviously, this
nontrivial problem deserves a further detailed study.
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Fig. 8. Average escape energy <Wend>(t0,x0,Wo) (keV) for different initial times {° for the variant with L =1.5x10° m,

B,, =0.75B, = 3.75 1T, the oscillation period of ® = 300 s for the starting point XO/L =(0.5,0.2; 0.25) , the center of the accel-
eration region. Curves /—11 correspond to the initial times: (1) ° = 0, (2, 3) £° = 0/16, (4 PO = 0/8, (5) £ = 30/16, (6)
1 =50/16, (7 1 =30/8, (8 * =70/16, (9) 1* = ©/2, (10) * = 36/4,and (11) * = 7©/8.

RESULTS AND DISCUSSION ated protons gain energy effectively, and Q(’L‘O) is the

acceleration region of the starting points. At the same

The results of our study show that the examined
system demonstrates the diverse and complex behav-
ior similar to parametric resonance. The behavior of
the system can change dramatically with small changes
in both the scenario and the input parameters. The
modeling results show that protons pre-accelerated in
the HCS obtain further acceleration in an oscillating
SMI ifthey are injected into the acceleration set of ini-

tial positions (IO,XO) € [t,o ;tg } X Q(’L‘O), where [t,o ;tg }
is the interval of initial phases in which pre-acceler-

time, pre-accelerated protons should fall into the
region of the center x' of the accelerating region of

the starting points Q('co) in order to achieve the maxi-
mum possible escape energy. Maximal acceleration
occurs at time close to the oscillation phase in a quar-
ter of the period, ie., to the position

(1:0, XO) = (%,x(c)). As one can see in Figures 5 and 7,

the average escape energy decreases several times and

SOLAR SYSTEM RESEARCH Vol. 53 No.1 2019
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Fig. 9. Logarithm of the distribution function log(l + f [IO,XO,WOJ(OL, B)) (see the MODELING TECHNIQUE section)

obtained for six initial energies w? depending on the directions of particle escape velocities for the slowly oscillating plasmoid

(® =600 s) corresponding to Fig. 4. The starting point Xo / L= (

0.5;0.2; 0.25) is selected at the center of the acceleration region.

The initial time ’= 6)/4. The distribution functions are shown for the following energies: (a) w'= 5, (b) w'= 15, (c) 25, (d) 50,

(e) 75, and (f) 95 keV.

further by an order of magnitude as the deviation from
the initial position in which the acceleration is most
effective increases.

Our estimates based on the generalized Ohm’s law
show that the potential electric field of the order of

E,~ 10°¢ V/m can appear in an oscillating SMI due
to small charge separation (see the “System geome-
try...” section). The maximum values of the longitudi-

nal inductive electric field turn out to be of the order

of £, ~ 107 V/m, and the spatial distribution of the

maxima E| is significantly nonuniform. The used
inductive electric field taken at the upper boundary of
SOLAR SYSTEM RESEARCH  Vol. 53
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possible values makes it possible to model the process
of multiple interaction of particles with SMIs of the
whole system via a single calculation of a single inter-
action of a pre-accelerated proton with one SMI. If
the proton preaccelerated by magnetic reconnection at
the HCS interacts with a SMI, it is scattered by inho-
mogeneities of the magnetic field and accelerated by
the longitudinal electric field. Many of pre-acceler-
ated protons can experience multiple (from 10 to 100)
interactions with different islands of the system, as a
result of which they can obtain significant acceleration
to energies several orders of magnitude greater than
initial, similarly to the collective acceleration process
in SMIs described in (Zank et al., 2014; 2015a; 2015b;



48

MINGALEYV et al.

(a) WO=5keV (b) W= 15keV
180 180 3.0
160 |- 160 |
140 | 140 | pe 2.5
120 Fs < 120 ‘ 2.0
100 |- ' 100 |- \

B 201 \ 1} ! 201 » ) / 1.5
60 F J (’J 60 | F 1.0
40 - 40|
20/ 20| 0.5

0 1 1 1 1 1 0 1 1 1 1 1 0
180 —120 —60 0 60 120 180 —180 —120 —60 0 60 120 180
() W0=25keV (d) W°=50keV
180 180 3.0
160 |- 160 |- e :
140 | ’ 140 | 2.5
120 120 2.0

g 100 100 |- . s
80 - S0F = ) Pl ik :
60 - 7 o 60 | S ‘ . 1.0
40| 40|
20 20 , 0.5

0 1 1 1 1 1 O 1 1 1 1 1 0

180 —120 —60 0 60 120 180 —180 —120 —60 O 60 120 180

(e) WO=75keV (f) WP=95keV

180 180 3.0
160 - 160 |- .
140 ) 140 - 22
120 . G 120} \ 7 2.0
100 e = ; 100 | ; I\ / s

Bsof o - 80 v g >4 :
60 - | 60 |- ; ( 1.0
40 - A 40 '1
20k 0L LN 0.5

0 1 1 1 1 1 O 1 1 1 1 1 0
180 —120 —60 0 60 120 180 —180 —120 —60 0 60 120 180
o o

Fig. 10. Function log (1 + f [IO, xo, W0:|(OL, B)) of the distribution function f [to, XO, WOJ(OC, B) of the direction of escape velocities

for escape angles calculated for the scenario with L =1.5X% 108 m, B,, = 0.75B,¢ = 3.75 nT, the oscillation period of ® = 300 s

for the starting point xO / L= (0.5;0.2; 0.25) ,i.e., the center of the acceleration region of the starting points, and the best for accel-
erating the initial time /° = ©/4 for six initial energies W°. (a) W’ =5, 0) W° =15, () W° =25, () W =50, (e) W" =75,

and () W° = 95 keV.

Zhou et al., 2015; le Roux et al., 2015; 2016). This sim-
plified approach makes it possible to identify the main
qualitative features of the acceleration process by the
longitudinal electric field in SMIs and to compare the
results with spacecraft observations.

So far, it becomes clear that such behavior of the
SMI system is in good agreement (at the qualitative
and quantitative level) with in situ measurements of
energetic protons locally accelerated to energies rang-
ing from hundreds of keV to several MeV obtained
during passages of spacecraft through SMIs near the
HCS (Khabarova et al., 2015a; 2015b; 2016). The
problem posed and solved in this paper is important

because the considered situation does not require any
additional sources of disturbances in addition to the
surface waves at the HCS, which are observed in quiet
conditions and have been well known for several
decades (Musielak et al., 1988; Ruderman, 1990;
Yamauchi et al., 1997). A similarity of propagation of
such waves with a harmonic oscillator was especially
noted in (Ruderman, 1998). The HCS topology quite
often assumes the presence of relatively small ripples
in which from one to several SMIs occur with sizes of
~0.001-0.01 AU. The primary acceleration of ener-
getic particles by magnetic reconnection at strong cur-
rent sheets in the solar wind can reach hundreds of
SOLAR SYSTEM RESEARCH  Vol. 53

No.1 2019
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keV, while trajectories of accelerated particles signifi-
cantly depend on initial energies and the topology of
the magnetic field around the neutral plane (Zharkova
and Khabarova, 2012; 2015). In general, particles
accelerated in this manner create clouds of different
shapes around the current sheet. It is possible to iden-
tify angles and energies of the entry of pre-accelerated
protons into a SMI only modeling specific situations
observed in the solar wind, which currently goes
beyond the scope of the problem we solve but is
planned to be investigated in the future. Therefore, the
“current sheet—SMI” system is extremely sensitive to
topological factors which partly can be explained by
the irregularity of detections of particles accelerated to
MeV near current sheets in the solar wind.

Note that we also carried out calculations for the
model of the electric and magnetic fields in an oscil-
lating SM1 in which the electric field is strictly orthog-
onal to the magnetic field. As expected, no average
acceleration or deceleration is observed for such a con-
figuration. However, the escape energy differs very lit-
tle from the initial energy for the overwhelming major-
ity of trajectories. The escape energy differs from the
initial energy by more than 5% only for an insignifi-
cantly small fraction of the trajectories. Meantime,
there is the most important population of particles

with energies 0.7 < W, 4 / W < 1.5. This underlines
the decisive role of the longitudinal electric field in the
acceleration of charged particles.

CONCLUSIONS

A possibility of the additional acceleration of pro-
tons in an oscillating SMI trapped in the ripple of the
HCS has been analyzed. It is assumed that protons are
initially pre-accelerated by magnetic reconnection.
The solar wind, energetic particle and magnetic/elec-
tric field parameters typical for crossings of the HCS
at 1 AU are taken to simulate particle acceleration. It
has been shown that the efficiency of the extra accel-
eration of protons depends on the initial injection
energy, the size of an island, the oscillation phase, and
the localization of the point to which pre-accelerated
particles are injected.

For each “SMI size—initial energy—oscillation
phase” configuration there is a set of points inside a
SMI, injection to which leads to additional proton
acceleration by an order of magnitude. Acceleration is
weak or absent outside this region.

An interesting fact is that accelerated particles
escaping from a SMI form an anisotropic cloud mainly
in the equatorial region, directed towards the HCS.
Physically, it means that these particles may subsequently
be captured by the HCS and involved in the magnetic
reconnection process over and over again. We will con-
sider this scenario in the future. Note that observations
also show signatures of anisotropy of energetic protons

SOLAR SYSTEM RESEARCH  Vol. 53
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accelerated locally in the regions filled with SMIs
(Khabarova et al., 2015a; 2015b; 2016).

The unequal efficiency of acceleration of particles
with initially low and high energies is also a significant
result. As noted in the Introduction, the acceleration
mechanism for contraction/merging of SMIs pro-
posed by (Zank et al., 2014) suggests that higher-
energy particles are accelerated more effectively than
lower-energy particles. This effect is indeed observed
in the solar wind, but an inversion occurs below a cer-
tain threshold energy, and acceleration of the lowest-
energy particles becomes most efficient. Our results
show that, most likely, this is a manifestation of
another mechanism of particle acceleration, namely
the resonant pumping investigated in this study.

Summarizing, we have obtained the following
main results, studying the behavior of particles in an
oscillating SMI.

(1) A model of a SMI oscillating in the ripple of the
reconnecting HCS with a period of several minutes is
constructed. Different conditions of particle injection
and SMI oscillation are considered. The modeling of
extra acceleration of seed protons pre-accelerated to
keV by magnetic reconnecting includes testing the sys-
tem behavior at different phases of oscillations and
suggests injection into different points inside a SMI.
The maximum possible longitudinal electric field
(~10~*=1073 V/m) is taken for modeling. This opens a
technical opportunity of describing the motion of parti-
clesin a single SMI within a configuration most favorable
for particle behavior, imitating the particle acceleration in
a system of a sufficiently large number of SMIs with
smaller values of the longitudinal electric field.

(2) The modeling results show that a single oscillat-
ing in the background homogeneous magnetic field
and the significant longitudinal inductive electric field
can effectively accelerate charged particles pre-accel-
erated via another mechanism outside the SMI. The
energy of accelerated protons can reach several MeV
under favorable conditions.

(3) It can be suggested that resonant pumping
effects arising from SMI oscillations are responsible
for the previously observed phenomenon of the so-
called “inversely ordered amplification factor” (Zank
et al., 2015b) when particles with initially lower energies
are accelerated more efficiently than particles with higher
energies. As a result, all particles reach a certain energy
threshold above which there is no acceleration. This cut-
off energy appears to be at the level of 1—2 MeV for the
system of SMIs in ripples of the HCS, which is consis-
tent with observations (Khabarova et al., 2015a; 2015b;
2016; 2017). The stochastic mechanism at which par-
ticles with higher energies are accelerated (Zank et al.,
2014; 2015a; 2015b) goes into action above this energy.

Therefore, the model of magnetic/electric fields in
a SMI oscillating in the solar wind proposed in this
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work reproduces some of known properties of ener-
getic proton flux enhancements in the energy range
from hundreds of keV to several MeV associated with
SMIs near the HCS.

APPENDIX:

METHOD FOR CALCULATING PROTON
TRAJECTORIES

System of equations (47) and (48) should be repre-
sented in an optimal dimensionless (normalized) form
to reduce computational costs and also for conve-
nience. For this purpose, it is necessary to chose the

scales é =e|, m = m,, Vv = ¢, as well as the arbitrary

value of any of the following scales: 7, X, é, E, and
determine the rest of them from the ratios X = cf,
f= mo/(eﬁ), E=cB. As a result, if we denote the

dimensionless charge by e' = sign (e) = £1 and tradi-
tionally denote the dimensionless impulse by u:

w=p=p/(me) = v/ {1-NP/e" = v/ -P,

then we obtain the following dimensionless forms of
systems (48) and (49) (primes are omitted below):

ax (1) =v(t), u

dt

(A.1)

(A.2)
=¢'(E(x(1),1) +[v() * B(x(7),1)]).
If the parameter B = |y|/c < B, = 0.02 (which cor-

responds to the kinetic energy of W, = 188 keV) during
the calculation of the trajectory, the time step within
the classical system of equations (A.2) is used to save
computational resources, and if a particle is acceler-

ated at 3 > 3, = 0.02, the time step within relativistic
system of equations (A.1) is taken.

To solve the Cauchy problem (A.2), (50), at the
initial part of the particle trajectory we use a method
based on the exact solution of the problem for a non-
relativistic case for the electric and magnetic field con-
stant in time and space, which was developed by us
and showed a very high efficiency. This algorithm ana-
lytically takes into account rotation in the magnetic
field, has no phase error, and removes the condition of
the necessity of the sufficiently large number of time
steps for calculations for the particle cyclotron rotation
period. In the case of smoothly varying fields and a
sufficiently strong magnetic field, the algorithm allows
using a time step of tens or more cyclotron rotation
periods, which makes it possible to significantly
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reduce computational costs. The algorithm developed
by us has the second order accuracy, supports a variable
time step, has explicit and implicit variants, and is based
on the exact solution of the Cauchy problem (A.2), (50)
for the case of E = const, B = const. This solution is
shown below as a function of time and initial data in
the notation of (53), using standard notations:

E
=28 v, :M, , =[B|, E, = (E;b)b,

B |B| (A.3)

vi=(vib)b, v, =v—v =V T =t-1,
which can be represented as
2
0_0_0 0 0 T

X(t,t ,X L,V )zx +(VE+V”)’L'+EeE”

0 bxv)
+ YLsin (1) - e'u(l —cos(0:7)),L (A4

('OC (DC
V(t,to,xo,vo) =v,+ vﬁ + 1e'E,

+ v)cos (1) — €' [b X v(ﬂ sin (®,T).
Let us discuss the algorithm in terms of the layer-
by-layer transition #° — 7' = /° + tin the fields E (x,7)
and B(x,7), given at any point at all times ¢ > . We

denote tl/2 =t°+*c/2, and introduce the notation
f*= 70" and F* = F(x(“).1"), o= 0,%,1 for
functions of the form of f(#) and F(x,?) .

1. Starting iteration
I. 1. Find the fields E = E(x",¢"), B’ = B(x",/),
after which one can find bO, vg, 0)3, E|(|) = (Eo;bo)bo,

Vl(l) = (vo;bo)bo, vy =v'— vﬁ) - vg, using the obtained
fields and (A.3).

I. 2. Find xl/z(o) =X<t1/2,t0,x0,v0) in constant

fields E°, B” using the first formula in (A.4):

2
XI/Z(O) =x"+ (V?E + Vl(l))g + %e'El(l)

0 0 bO % VO 0
+ V—Lsin(Mj—e'—[ - L][l—cos(wﬂD.
O‘)C 2 O)C 2
Find /2" = E(XI/Z(O) ,1/2) B2 _ B(XI/Z(O) tl/z)
and then find b 2(0), v 15/ 2(0), (x)cl/ 2(0),
Elll/z(o) _ (El/z(o);bl/z(o))bl/z(o)’ v|1|/2(0) _ (Vo;bl/z(o))bl/z(o)’
VZZ(O) —v'_ v|1|/2(0) _y zz(o)

and formulas (A.3).

, using the obtained fields
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I. 3. Find x'” = X(tl,to,xo,vo) in constant fields

EV® B sing the first formula in (A.4)

1/2 1/2
x'™ = x +(vé (K)+v”/ (K))11+

1/2
/ (©) 1/2(1)
1/2(1() sin (O) 1:)

1/2(1<) 1/2(x)
[ v ](l_cos( )

0)1- 2(1)
where k=0. Then, find fields E'” =
B =B(x".7).

I. 4. Find E

1/2(1<)
|

+ (A.5)

_e'

1/2(x+1) _ l
2

%(BO + BI(K)) , for kK = 0. Next, use the obtained fields
and formulas in (A.3) to find b
1/2(x+1 1/2(k+1 1/2(x+1 0, 4.1/2(x+1 1/2(x+1
(0c/ (x ), ”/ (x )’ VII/ (k+l)  _ (v ;b/ (1 ))b/ (1c+1)

1/2(k+1)
=V

B1/2(1<+1)

(E° + El(“)),

1/2(x+1) v 1/2(x+1)
’ E

b
b
1/2(k+1 0
VL/( ) v

ng(xﬂ)‘

Then, find
x'V = X(tl,to,xo,vo) in constant fields E]/z(l), Bl/z(]) for
k=1, using Eq. (A.5). Next, find the fields
g zE(Xl(l),tl), B'" zB(Xl(l),tl) as well as the

iteration, or if the number of iterations exceeds the
specified maximum allowable number ¥, then the
current time step T is halved: T — 1:/2, and the
described process starts all over again.

III. Step completion unit. Set x' =x'**",

E' =™, B'=B'"™. Then find the fields
EV = i(EO +E'), B = L(B"+B'). Next, use the
obtained fields and the formulas from (A.3) to find
b1/2’ V1/2 1/2 Eiﬂ’ VI1|/2 ( O;bl/z)bl/2,
v =y v v,‘g/2 Then, find v' = V(7% x° v°) in
constant ﬁeldsE/ , 1/ : by the second formula in (A.4)

1 1/2 1/2 ol/2 1/2 1/2
v :VE/ +v||/ +’ceE|/ +VL/ cos((o/‘c)

I:I/ZXV1/2:|SIH( 1/2 )

The time step is over at this point.

The authors have developed an implicit scheme of
the second order of accuracy to solve the Cauchy
problem (A.1), (50) numerically in the relativistic
case. It is necessary to introduce the following func-
tion to formulate the problem in terms of the layer-by-

layer transition P i ="+1

accuracy parameter 9, = |x'®) _ ,'(O|. If the specified u) = D S = =P (A.6)
accuracy 9: §, < § is reached, then the process is com- (V) VI lul
plete. Otherwise, a regular iteration is performed. and present system (64) as follows
II. Regular iteration « — k+1. Find x'®", ax (1) ()
E'™* B'™" as well as the relative accuracy parame- );’—t =T (u(?))u(r), l;,—t (A7)
ter 8., = [x'®*) _ x!®)|| and the convergence param- '
=e'(E t),t)+T 1 1)XB 1)t
eter Yo, = O, — 0, by performing actions described ¢ (E(x(r),0)+ T (u(n)[u(r) * B(x(1).0)]),
in I. 4., using the obtained x'™®, E'™, B'™. Iterations and use the following equations arising from it:
are performed until the specified relative accuracy
8., < O is reached. If the convergence condition of m =—¢'(I'(u (1)))3 (u(t);E(x(1),1)), (A.8)
the process Y,,, = 0,,; — O, < 0 is violated at a certain dt
d’x (t , dl (u(z?
X0 _ () (€ (x(0).0) + @) () xBx(0).0]) + LD, A9
The scheme is based on the following finite differ- 10
ence relations: L Sk M (@) (du) + 0( ) (A.11)
T 2\ \dt dt
1. Starting iteration.
x —x’ _ %(rouo " Flul) I. 1. Find E’ = E(xo,to), B’ = B(xo,to), and then
T

12(@?} [f”xj}r()( ) (A.10)
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use the obtained fields and formulas (A.6)—(A.9) to

0 2.\°
find (a’u) (ﬂ) , ax)\ .
dt! "\dt) \ ar



52 MINGALEYV et al.

1(-)

I. 2. Find x'” with an accuracy of 0(13) and I

with an accuracy of 0(1:2), using the following extrap-
olations:

1(0) 0 0.0 . T d2X0
x'=x +1u +—| ==
2\ dt

2) +0(T),

r'e =r° +r(dr) + 0.
dr

Next, find E” =E(x'"".¢), B'” =B(x'".7)
with an accuracy of 0(13), using x'©.
I. 3. Find u'” with an accuracy of 0(13) as follows.

One can obtain the following vector equation for u':
from (A.11) and the second equation in (A.7)

u' + geT1 [Bl X ul] =W+ 0(’:3), where

(A.12)

W=W +W. W=u +2(d“)

dt

w'=1.E"
2

This equation can be represented in the form of a

system of linear equations with the matrix (i +®):

W=wW +W?

1(0
u© =

1
WO —

W - ge'r“‘) [Bx W]+ (g rl“))2 (W:B"”)B"”

(i + (i)) u=W,
where I is the identity matrix and
Qu = [o X u].

(A.13)

The inverse matrix (i + (i))_1 has the following form
1
T+ lol
o ® o is the dyad formed by the vector w.

(i+d)) ——[(-@®+0®w) Where

Therefore, the solution of vector equation (A.13) is
given by the following formula
u=(I+@)"'W

(W-[oxX W]+ (W;0)o). (A.14)

_ 1
1+ o

We obtain an expression for u' through the remain-
ing terms by applying this formula to Eq. (A.13) for

o =1I"B,
2

1
u

2
w-LT| B xw]+(3r‘) (W:B')B'
=2 2 +0(T).
1+(I g )
Y
We obtain the following formulas by substituting
the already found Fl(_), B'”

(A.15)

, El(o), into this formula:

T,E©

B

(A.16)
+0(T).

(1 + (I e ‘B“O)‘)zJ
2

I. 4. Find T'© by formula (A.6) using the obtained

u'® and BI(O), El(o), with the accuracy of 0(1:3) as well

du\'” d’x ©

as (—) by formula (A.7) and [ j by formula
dt dr’

(A.9). Assign §, = 1.

II. Regular iteration x — x+1. Let x'¥, u'®,

o gl gl (@)I(K) (&

(x)
7 p 2J be known with an
t t

accuracy of 0(1:3).

IL. 1. Find x'** with the accuracy of 0(':4) from
relation (A.10):

XI(KH) =x"+2 (FOuO+F ))
2
2 2. \!(¥)
e
12{ \ dt dr’

El(K+1) _ E(XI(K+1),t1),
B =p (XI(KH), tl) with the accuracy of 0(’54).

Next, find
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I1. 2. Find u'®"" with the accuracy of 0(13), using formula (A.11) completely similar to finding (A.16):

W= w4+ Wl(K+1)’ WD %e.El(KH)’

ul D

W — gevrl(m |:B1(K+l) % W] + (g FI(K))Z (BI(KH);W) BIx+D

(1 + (g o ‘BI(KH)

II. 3. Find Fl(K+1), employing formula (A.6) and

using the obtained u'®*” and B'™", E'™* with the
)1(K+1)

accuracy 0(173) aswell as (d_u , using formula (A.7)
t

N
and (d_);j , using formula (A.9).
1

II. 4. Find the relative accuracy parameter
81 = [[x'*D _ x!®)| and the convergence parameter

Yer1 = Oy — O, Iterations are performed until the

specified relative accuracy is reached 8,,, < 8. If the
convergence condition of the iteration process

Yes1 = Os — O, < 0 isviolated at some iteration or the
number of iterations exceeds the specified maximum

allowable number x,,, then the current time step T is
halved, T — 17/ 2, and the iteration process starts over.
At the end, perform the following assignment

1 1(K+1 1 1(c+1 1 1(k+1 1 1(K+1
X:X( ), u:u(K+)’ 1—*:1—*('(‘*'), E:E(K )

1
B‘ _ Bl(KH) (@)1 _ (@)1(1@1) & _ (&jl(ml)
\at dt "\ ar? dr’ '

Note that the described algorithm for solving the
Cauchy problem (49), (50) in the nonrelativistic case
has been widely used since 2000 (see, for example,
Borodachev et al., 2003; Mingalev et al., 2006; 2007;
2009; 2012; Malova et al., 2015), thoroughly tested
and proved its correctness and effectiveness in prac-
tice. Therefore, it is necessary to test only the new
implicit scheme for the relativistic case. The exact
solution of the Cauchy problem (47), (50) is best
suited for this testing in the case of constant magnetic
and electric fields parallel to each other when a
charged particle is accelerated by the electric field.
Note that this solution was discussed in (Landau and
Lifshits, 2012), but only a special case in which the ini-
tial charge velocity is orthogonal to the magnetic field
was considered there. Also, an unsuitable parametri-
zation which gives only an implicit relation for the
solution and does not allow to obtain a solution explic-
itly was chosen by (Landau and Lifshits, 2012). The
authors could not find the discussed exact solution in
available literature sources. Therefore, we have

b
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+O(T).

/)
obtained the solution ourselves in an explicit vector
form and for arbitrary initial conditions.

Let us consider the Cauchy problem for dimen-
sionless system (A.6), (A.7) in the case of constant and

parallel fields B =const, E = Eb =const (where
b= B/ |B|). It can be represented as follows

dx (t) _ u(r)
a ie(of

[u()x B]
Ji+u t)|2}’ 1

Let us denote
T(u) =1+ = ﬁ, uy = (wh),
—lv

ll‘|=(ll,b)b, llL=ll—ll||, T:t_to

(A.18)

It is convenient to present the exact solution of
problem (A.17) obtained by us in the following form.
‘We obtain the following formula for the Lorentz factor

F(w) = 7() = 1+ + () + e Br)
- \/(YO)Z +e'Et(2u) + €' Eyt),

where Y’ =1+ "

The following formulas are obtained for the cyclo-
tron rotation phase

(A.19)

do(t) _ B
d b
’ . Y(T) (A.20)
D(1) = e'Hln i eOE”TJgY(T) )
E u+y

For a dimensionless impulse, we obtain a formula
similar to the formula for the velocity in (A.4):

u(f) = u +e'Eb +

+ulcos(@ (1) —e[bxul fin(@(m).
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The following formula is obtained for the coordi-
nate

x () = x° +%“(y(r) ~7")b

0 [b xu) ] (422
+ |%|Sin (P(1)—¢ |T|l(1 —cos(®@(1))).

Calculations were carried out for solving the Cau-
chy problem (A.17), using the implicit second-order
scheme (A.10), (A.11) described above in a wide
range of relativistic initial conditions and parameter

values E/[B| for the time 7 =400, where

0
0, = 211:/ dd;(O) = ZT];Y . These calculations showed
T

that in the case of a sufficiently small time step, the
numerical solution corresponds to the exact solution
of (A.19)—(A.22) with a high accuracy.
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