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A three-dimensional photonic topological insulator
using a two-dimensional ring resonator lattice with a
synthetic frequency dimension
Qian Lin1, Xiao-Qi Sun2, Meng Xiao3, Shou-Cheng Zhang2, Shanhui Fan3,4*

In the development of topological photonics, achieving three-dimensional topological insulators is of notable interest
since it enables the exploration of new topological physics with photons and promises novel photonic devices that are
robust against disorders in three dimensions. Previous theoretical proposals toward three-dimensional topological in-
sulators use complex geometries that are challenging to implement. On the basis of the concept of synthetic dimension,
we show that a two-dimensional array of ring resonators, which was previously demonstrated to exhibit a two-
dimensional topological insulator phase, automatically becomes a three-dimensional topological insulator when the
frequencydimension is taken into account.Moreover, bymodulating a fewof the resonators, a screwdislocation along
the frequency axis can be created, which provides robust one-way transport of photons along the frequency axis.
Demonstrating the physics of screw dislocation in a topological system has been a substantial challenge in solid-state
systems. Our work indicates that the physics of three-dimensional topological insulators can be explored in standard
integrated photonic platforms, leading to opportunities for novel devices that control the frequency of light.
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INTRODUCTION
The discovery of two-dimensional (2D) topological photonic systems
expands the scope of topological materials from fermions to bosons
and enables new ways for controlling the propagation of electro-
magnetic waves (1–13). A natural next step is the experimental realiza-
tion of photonic 3D topological insulators (14, 15). However, existing
proposals (16, 17) to realize 3D photonic topological insulators require
complex geometries. Here, we propose to explore such 3D topological
physics using a 2D array of ring resonators, which is directly implemen-
table in a standard integrated photonic platform. A wide variety of
topological phases can be created using 2D arrays of ring resonators
(4, 5, 9, 10). Moreover, since a ring supports a discrete set of resonant
modes forming a frequency comb (18–21), one can consider a ring to
have a synthetic dimension along the frequency axis. As a result, a 2D
array of ring resonators that behaves like a 2D topological insulator near
the resonant frequency of a single ring will naturally become a 3D
topological insulator when the additional synthetic dimension is
considered. The 3D topological order in this system can be revealed
by modulating the rings. For example, by modulating a few resonators
in the array, a screw dislocation parallel to the frequency axis can be
created, which supports topologically protected one-way transport
(22) along the frequency axis and serves as a spectral probe for the
3D topological order in our proposed system.

3D topological insulators are characterized by four indices (23): a
scalar n0 and a triad (n1, n2, n3) that defines a reciprocal lattice vector
Gn. n0 classifies 3D topological insulators into two general classes: weak
and strong. The strong class has n0 ≠ 0, and gapless surface states exist
on any 2D surface of the sample. On the other hand, weak topological
insulators have n0 = 0 but Gn ≠ 0. Since Gn, which characterizes the
topology of aweak topological insulator, depends on crystal orientation,
the existence of gapless surface states in aweak topological insulator also
depends on the orientation of the surface. Originally assumed to be less
robust than their strong counterpart, weak 3D topological insulators
have been recently shown to have rich physics and unexpectedly strong
protection against disorders (24). In theory, weak topological insulators
can be realized by simply stacking multiple layers of 2D topological in-
sulators. However, in typical electronic or photonic systems, when
stacking multiple layers together in real space, it is difficult to control
the interlayer coupling such that the 2D topological gap, which is usually
very small, is still preserved in 3D.Here, we show that a 2D array of ring
resonators with a synthetic frequency dimension naturally realizes a
weak 3D topological insulator with minimal interlayer coupling, pro-
viding a clean and versatile platform to study the physics of 3D to-
pological insulators.

Our system is ideal for studying screw dislocations in 3D topological
insulators, which represents the interaction of two types of topology: the
topology of band structures in reciprocal space and the topology of lat-
tices in real space. It has been predicted that a dislocation line in a 3D
topological insulator traps an integer number of 1D topologically
protected states (22). However, observing this effect in a condensed
matter system is extremely difficult because creating a single dislocation
line in solid-state materials is technically challenging and energetically
unfavorable (25). Our photonic system based on the synthetic
dimension provides an experimentally feasible way to controllably real-
ize a single dislocation in a 3D topological insulator using dynamic
modulation and to observe the topologically protected states.Moreover,
unlike previous studies of topological photonics in the synthetic
dimension (18, 19, 21) that requires modulating a large number of
optical elements, here the dislocation is implemented with only a few
modulated rings. Thus, our proposal presents a great opportunity to
harness the benefits of topological photonics in the synthetic frequency
dimension, to achieve useful effects such as robust one-way frequency
conversions, for experiments and future applications.
RESULTS AND DISCUSSION
Constructing a 3D topological insulator
We start by constructing an array of ring resonators that supports 2D
topological states. As an example, we use a 2D array that exhibits the
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quantum spin Hall effect (QSHE) (4), although the results generalize to
all ring array configurations supporting photonic topological states
(5, 9, 20). Consider a generic tight-binding Hamiltonian describing the
QSHE on a square lattice

H2D ¼ �t ∑
x;y;s

a†xþ1;y;sax;y;s þ eisxfa†x;yþ1;sax;y;s þ h:c:
� �

ð1Þ

where t is the strength of nearest-neighbor coupling, (x, y) labels the
lattice sites, s = ±1 represent two pseudospins, and h. c. is short for
Hermitian conjugate. In this Hamiltonian, the two pseudospins
are decoupled. A particle with s = +1 spin sees a directional phase
of + xf (−xf) when hopping up (down) along the y direction. This
corresponds to a uniformmagnetic flux of f in each unit cell. A particle
with s = −1 spin sees the opposite directional coupling phase and thus a
uniform magnetic flux of −f per unit cell. Therefore, this Hamiltonian
describes a boson subject to a pseudospin-dependent out-of-plane
uniform magnetic field and exhibits the QSHE.

The photonic structure that implements this Hamiltonian consists
of a square lattice of identical site rings coupled to their nearest
neighbors through identical link rings (4), as shown in Fig. 1B. Here,
the (x, y) labels in Eq. 1 are pairs of half-integers representing the centers
of site rings, with the origin of the coordinate system defined at the
center of the array. The circumferences of the rings are chosen such that
the resonance of the site rings matches the antiresonance of the link
rings, and photons are strongly confined in the site rings. The resulting
photonic band structure near the resonance of the site ring can be well
captured by a tight-binding model. In the absence of backscattering in
the waveguides forming the rings, the clockwise and counterclockwise
propagating modes in the site ring, representing the two spins in the
QSHE, are degenerate and decoupled. To obtain a pseudospin-
dependent effective magnetic field for photons, the centers of the
Lin et al., Sci. Adv. 2018;4 : eaat2774 19 October 2018
y-coupling link rings are shifted away from the line segments that con-
nect the center of two adjacent site rings. As a result, the left and right
branches of a link ring differ in length.When a photon in the clockwise
mode of a site ring hops to the adjacent site ring in the negative y direc-
tion, it acquires a smaller phase than that when it hops in the positive
y direction. Thus, the photon acquires direction-dependent hopping
phase proportional to the amount of shift of the link ring. The shifts
of the link rings vary from one column of the array to the next to
provide the ±xf directional coupling phase in the QSHE Hamiltonian
in Eq. 1.

We confirm the existence of the 2D topological bandgap in this array
of ring resonators by computing the topological edge states on a stripe of
the array that is finite in the x direction and infinite in the y direction.
The shifts of the link rings are chosen to produce a uniform magnetic
field of 1/3 flux quanta through each square unit cell. We model our
system using the transfer-matrix method (see the Supplementary
Materials) (9), which is more accurate than the tight-binding model,
because it accounts for the differentwaveguidemodal amplitudes in dif-
ferent parts of a ring.We numerically solve for the eigenfrequencies and
eigenstates of the transfer-matrix model for the clockwise mode in the
site rings, and the results are plotted in Fig. 2. The band structure shown
in Fig. 2A exhibits three magnetic bands near the resonant frequency of
the site rings and a large bandgap for a frequency detuning from the
resonance dw between 0 and −0.08 W. A pair of edge states with op-
posite propagation directions span the bandgap, and their eigenstate
wave functions are localized on opposite edges of the stripe, as shown
in Fig. 2 (B and C).

The microring array discussed above exhibits a quantum spin Hall
(QSH) phase for photons near a resonant frequency w0 of the site ring.
Since each site ring supportsmultiple resonances with different resonant
frequencies separated by the free spectral range of the ringW≪w0, if
we take into account the frequency dimension, the system then
 on O
ctober 23, 2018
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Fig. 1. 3D topological insulator and screw dislocation. (A) 3D lattice formed by stacking layers of 2D QSH states. The set of discrete resonances of a ring forms a
lattice in the synthetic frequency dimension. (B) Microring array implementing (A). Orange and gray rings are site and link rings with the same free spectral range W.
The link rings providing coupling along the y direction are spatially shifted along the x direction to provide directional coupling phases that implement the Landau
gauge. (C and D) Screw dislocations with Burgers vectors B = (0, 0, −1) and B = (0, 0, −2), respectively. One-way topological states spatially localized around the
dislocation flow along the synthetic frequency dimension. (E) Microring array implementing (C) and (D). Orange and blue rings are site rings with the same resonant
frequency but different resonant wave vectors. Gray rings are static link rings providing intralayer couplings. Black rings are dynamic link rings whose refractive index is
modulated at a frequency equal to the free spectral range W. They couple a resonant mode at frequency w0 in the blue ring to a resonant mode at frequency w0 + W in
the orange ring, forming the interlayer links shown in (C) and (D).
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corresponds to layers of decoupled 2D QSH states, each associated
with a resonance of the site ring. The tight-binding Hamiltonian de-
scribing this system is

H3D ¼ ∑
m

wm ∑
x;y;s

a†x;y;m;sax;y;m;s�
�

t ∑
x;y;s

a†xþ1;y;m;sax;y;m;s þ eisxϕa†x;yþ1;m;sax;y;m;s þ h:c:
� ��

ð2Þ

where a†x;y;m;s (ax,y,m,s) is the creation (annihilation) operator for the
mth-order resonant mode of the site ring centered at (x, y). To show
explicitly that Eq. 2 represents the stacking of layers of 2DQSH states, we
definecx;y;m;s ¼ a�iwmtax;y;m;s and transformEq. 2 into the rotating frame

H3D ¼ �t ∑
m;x;y;s

c†xþ1;y;m;scx;y;m;s þ eisxϕc†x;yþ1;m;scx;y;m;s þ h:c:
� �

ð3Þ

Equation 3 describes a 3D system indexed by (x, y,m), which consists
of layers of 2DQSH states stacked along the frequency axis labeled bym
with no interlayer couplings. The 3D system is gapped since the 2D
magnetic bandgaps shown in Fig. 2A are preserved. The reciprocal space
of this 3D lattice is labeled by the wave vectors kx and ky along the two
spatial dimensions and the wave vector kf along the synthetic frequency
dimension.

The triad of weak topological indices of such a system is (23, 26)

n1 ¼ CyzðkxÞ ¼ 0; n2 ¼ CzxðkyÞ ¼ 0; n3 ¼ CxyðkzÞ ¼ C2D ð4Þ

where n3 = Cxy(kz) is a first Chern number for the 3D topological insu-
lator and is defined as the integral of the Berry curvatureFxy(k) in the
kx − ky momentum plane within the first Brillouin zone. n1 and n2 are
similarly defined.

The result in Eq. 4 can be understood as follows. With no interlayer
coupling, the Fourier transform of the Hamiltonian in Eq. 3 is kz
independent. Consequently, the Berry curvature F yz(k) = F zx(k) = 0
for all wave vectors k, and the first two indices vanish. The third index
Cxy(kz) is identical to the 2D QSH Chern number C2D in Eq. 1. For an
Lin et al., Sci. Adv. 2018;4 : eaat2774 19 October 2018
effective magnetic field of + 1/3 (−1/3) flux quanta per unit cell for
the + (−) spin, C2D = ±1 (∓1) for the lower-frequency and higher-
frequency magnetic bandgaps shown in Fig. 2A, respectively (27, 28).
Since the band structure of the bulk is completely gapped, Cxy(kz) can-
not change as a function of kz. The same applies to the other two indices.

Screw dislocation and robust one-way frequency conversion
To probe the topological states in a weak topological insulator, one
needs to break its crystal symmetry by cutting a surface or introducing
a dislocation. In our system, in the absence of dynamic modulation,
there is a complete lack of interlayer coupling since the frequency does
not change. Such a lack of coupling provides an ideal weak 3DTI with a
large topological bandgap in the bulk. However, it also means that any
measurable surface topological signature is intrinsically 2D. To demon-
strate a genuinely 3D signature of the topological phase, we propose to
modulate a few rings in the array to introduce a single screw dislocation
line into our 3DTI. It has been predicted that a single dislocation line in
a 3DTI can trap 1D topologically protectedmodes (22, 26, 29, 30). For a
3D TI characterized by Gn (23), the number of 1D topologically
protected modes trapped by a dislocation with a Burgers vector B is
Gn ⋅B/2p. In contrast to previous studies of screw dislocations thatmostly
focused on their signature in scattering of electrons in the far field (31–33),
in our system, one can isolate and probe a single dislocation line and dem-
onstrate its interaction with the topology of photonic bands.

To introduce a screw dislocation as shown in Fig. 1C, we replace a
few in-plane coupling terms in Eq. 3 with interlayer coupling terms

c†xþ1;y;m;scx;y;m;s þ h:c:→c†xþ1;y;m�1;scx;y;m;s þ h:c :;

∀x ¼ �0:5; y < 0 ð5Þ

This introduces a branch cut at x = 0, y < 0. Away from this branch
cut, the Hamiltonian is unchanged from Eq. 3. Across the branch cut,
tunneling toward +x (−x) is associated with moving down (up) one layer
along the frequencydimension.This represents a screwdislocation located
at (0, 0).

Amicroring array that implements a screw dislocation in the above-
mentioned 3DTI is shown in Fig. 1E. The structure is similar to Fig. 1B,
which exhibits a 2D QSH phase. In particular, all the rings have the
same free spectral rangeW, and all the site rings have the same resonant
frequency, which coincides with the antiresonance of the static link
/

ky (2 /a)

BA

C

Fig. 2. 2D QSHE in a microring array. (A) Band structure and (B and C) edge states of a 2D stripe of rings with an effective magnetic flux of 1/3 flux quanta per unit cell
for the clockwise mode in the site rings. The stripe is infinite along the y direction and has 12 site rings along the x direction. In (A), the color scale for the band structure
represents the difference of eigenstate modal intensity between the rings on the left and right edges of the structure. Thus, the orange and blue lines are edge states
localized on the left and right edges of the stripe, respectively. The orange and blue dots represent the states plotted in (B) and (C), respectively. (B and C) Modal intensities
in the rings for the two edge states, shown for three periods along the y direction. The scattering amplitude at each site ring to the link ring coupler is gs = 0.75.
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rings. The differences from the 2DQSH configuration are as follows: (i)
The waveguide forming the site rings at x > 0 (blue) and x < 0 (orange)
has different wave vectors for the same resonant frequency. This can be
achieved in the waveguides if the blue and orange site rings have differ-
ent refractive indices or cross-section dimensions. (ii) We replace the
static link rings (gray) on the branch cutwith dynamic link rings (black).
The details of one of these modified link rings are provided in Fig. 3A
and in the SupplementaryMaterials. A dynamic link ring is formed by a
slot waveguide that supports an even mode and an odd mode. Direct
photonic transition between these twomodes is induced by dynamically
modulating the refractive index of the waveguide at the frequency W,
which is equal to the free spectral range of the rings (34, 35). Outside
of the modulation region, the air gap in the slot waveguide is tapered
down so that the wave vectors of the even and odd modes differ. The
oddmode is phasematched to the orange site rings,while the evenmode
is phasematched to the blue site rings. The phase-mismatched couplings
are minimized. Consequently, the dynamic link ring couples the mth
resonant modes in the blue ring to the (m + 1)th resonant modes in
the orange ring (Fig. 3B). Hopping counterclockwise around a closed
path encircling the center of the array in Fig. 1E decreases the frequen-
cy byW. Thus, a screw dislocation with a Burgers vectorB = (0, 0, −1)
is created at the center of the array. Practical design considerations for
the rings and an example are provided in the Supplementary Materials.

Consider a 12 × 12 array of microrings with a screw dislocation at
the center. We assume that the resonant modes extend infinitely along
the frequency axis and use periodic boundary conditions along the x
and y directions. The resulting spectrum for the clockwise mode as a
function of the wave vector kf along the dislocation line is plotted in
Lin et al., Sci. Adv. 2018;4 : eaat2774 19 October 2018
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Fig. 4A. The three groups of bulk bands (gray lines) and the topological
bandgap can be clearly distinguished andhave a frequency range similar
to that of the 2D QHE state shown in Fig. 2A. The dislocation line at
(0, 0) supports a mode that spans the topological bandgap and propa-
gates unidirectionally down the frequency axis, as shown by the red line
in Fig. 4A. The corresponding eigenstate wave function shown in Fig.
4B is localized on the rings immediately surrounding the dislocation line
at the center of the array and is minimally affected by the finite-size ef-
fect at the edges of the array. As an artifact of the periodic boundary
condition, a second dislocation line with an opposite Burgers vector
is present on the boundary of the array. It supports a one-way state
in the topological bandgap propagating in the opposite direction, as
shown by the blue line in Fig. 4A, with an eigenstate localized around
the dislocation center at (0, 6) (Fig. 4C).

Multimode one-way photonic waveguides can increase the capacity
of the unidirectional guiding channel and enable new devices and func-
tionalities (36, 37). In our system, the number of topological modes
supported by the dislocation is Gn ⋅ B/2p (22, 26, 30). A multimode
one-way waveguide can be realized in our system by increasing either
the amplitude of dislocation or the Chern number. We can double the
value ofB bymodulating the dynamic link ring at a frequency 2W. Each
dynamic link ring then connects states that are two resonances apart in
the orange and blue site rings, and we effectively have two interleaved
copies of the spiral surface, as shown in Fig. 1D. Each supports a 1D
topological state at the dislocation line. This is confirmed by the band
diagram shown in Fig. 4C where two pairs of one-way states span the
topological bandgap. The wave functions projected onto the x – y plane
are similar to Fig. 4 (B andC) for both pairs. Alternatively, one can access
amagnetic bandgapwith a higherChernnumber by choosing a different
magnetic flux (27, 28), for example, f = 1/5 flux quanta. This can be
accomplished by changing the spatial gradient of the shifts of the link
rings. In this case, themultiple localized states in the topological bandgap
have orthogonal spatial wave functions and similar band dispersions.

The topological states localized on the screw dislocation can be ex-
perimentally probed by coupling a single-frequency signal, whose fre-
quency detuning dw from the resonance of the rings w0 falls within the
magnetic bandgap, into one of the site rings around the dislocation
through an external waveguide. Here, we numerically simulate what
can be probed in such an experiment. We consider an 8 × 8 array of
site rings with a single dislocation at the center of the array at (0, 0).
A continuous wave input at a frequency detuning dw = −0.03W from
a resonance is coupled into the site ring at (−0.5, 0.5) using an external
waveguide. Figure 5 plots the spectral and spatial power distribution of
the steady-state solution in the presence of a small loss in the wave-
guides. Figure 5A shows the static-state power distribution in different
frequency sidebands. The input at them= 0 sideband is unidirectionally
transported to lower resonance frequencies. Thus, the structure enables
one-way frequency conversion. In our simulation, a 5 % round-trip
power loss is assumed for each ring; thus, the total power decays while
traveling down the frequency axis. To test the robustness of the one-way
frequency conversion, we introduce random fluctuations into the reso-
nant frequencies and the inter-ring coupling strengths. We first intro-
duce a random detuning of the resonance frequency w0 for each ring.
The detuning is drawn from a normal distributionwith amean of 0 and
an SD of 0.05W, i.e., Dw0;i=W e Nð0; 0:05Þ, where i labels individual
rings in the array. Figure 5B shows themean (orange dots) and SD (gray
area) of the spectral power distribution averaged over 20 randomly
generated configurations. The unidirectionality of the frequency con-
version is well preserved.We then introduce a random variation into the
1 0

/

A B

Fig. 3. Design of the dynamic link ring. (A) Dynamic link ring formed by a slot
waveguide. It supports two modes with even and odd transverse profiles, respec-
tively. The yellow pads are radio-frequency modulators that dynamically vary the
refractive index of the waveguide. This drives a direct photonic transition be-
tween the even and odd modes. The width of the air gap in the slot waveguide
at the modulated region is chosen such that the frequency separation between
the even and odd modes matches the modulation frequency. At the waveguide
coupler to the site rings, this air gap is tapered down to provide phase-matched
coupling to the site rings. (B) Waveguide dispersion and resonant modes of the
site rings and the dynamic link ring. W is the free spectral range of the rings, and B
is the wave vector difference between adjacent resonances in each ring. The orange
line corresponds to the dispersion of waveguide mode in the orange site ring and
the odd mode in the dynamic link ring at the waveguide coupler region. The blue
line corresponds to the dispersion of the waveguide mode in the blue site ring and
the even mode in the dynamic link ring at the waveguide coupler region. The black
lines correspond to the dispersion of the even and odd waveguide modes of the
dynamic link ring at the modulator region. Dots indicate the resonances of each
ring. Black arrows show the coupling of a lower frequency mode in the blue site
ring to a higher-frequency mode in the orange site ring through a driven transition
in the dynamic link ring.
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inter-ring coupling strength g0 for each pair of adjacent rings such that
Dg〈ij〉=g0 e Nð0; 0:1Þ for each adjacent pair of rings. g〈ij〉 = Dg〈ij〉 + g0 is
capped to bewithin between 0 and 1. The result shown in Fig. 5C again
demonstrates the robustness of the one-way frequency conversion. The
perturbations we introduce are comparable to the size of the topological
bandgap.

Last, we examine the spatial power distribution at different frequen-
cy sidebands. As shown in Fig. 5D, the power is concentrated on the
rings immediately surrounding the dislocation line and propagates
counterclockwise around it. In our simulation, we imposed a hard fre-
quency boundary condition atm = ±5 similar to that shown in Fig. 1A.
Lin et al., Sci. Adv. 2018;4 : eaat2774 19 October 2018
When the signal reaches the bottom frequency layer atm = −5, it travels
along the branch cut defined by the dynamic link rings andmerges into
a clockwise edge state at the boundary of the array (Fig. 5D), in agree-
ment with our theoretical analysis. This unrealistic hard cutoff in fre-
quency is added for ease of simulation and is required for experiments
aiming to probe the topological states in our system.

In summary, we have shown that existing implementation of 2D
topological photonic states based on 2D microring arrays can be
readily extended to implement 3D topological insulators. This allows
us to study 3D topological effects using an integrated photonic plat-
form, bypassing the difficulty of constructing complex 3D optical
A B C D

Fig. 4. 1D topological state trapped by a screw dislocation. Calculated for the lattice with a screw dislocation shown in Fig. 1, using a 12 × 12 array of site rings.
Assume infinite resonant modes along the synthetic frequency dimension and periodic boundary conditions in both the x and y directions. (A and D) Band diagram for
a lattice with B = (0, 0, −1) and B = (0, 0, −2), respectively. Color scale represents the difference of eigenstate modal intensity between rings surrounding the dislocation
lines centered at (0, 0) and (0, 6). Red lines are one-way states localized on the dislocation centered at (0, 0). Blue lines are one-way states localized on the dislocation
centered at (0, 6), as a result of the periodic boundary condition. The red and blue dots represent the states plotted in (B) and (C). (B and C) Eigenstate intensity
distribution. For simplicity, only six columns closest to the center are shown. The dashed line indicates the location of dynamic link rings. For the dynamic link ring, the
intensity of the even and odd modes is simply added together for display.
A B C

D

Fig. 5. Probing the dislocation state. A screw dislocation is created in an 8 × 8 array of site rings. A single-frequency input is coupled into a site ring at the center
through an external waveguide. Eleven sidebands are used, with hard truncation along the frequency boundary (18). m is the order of sidebands, where m = 0 is the
input frequency. The input frequency is in the lower magnetic bandgap with a detuning dw = −0.03W from the site ring resonance. The orange arrows in (A) and (D)
indicate the frequency sideband of the input resonant mode and spatial location of the input ring. (A) Steady state aggregated intensity at each sideband. One-way
frequency downconversion is observed. (B) Adding a normal distributed noise to the resonance of all rings with SD s = 0.05 for dw/W. Orange dots show the mean
intensity, and gray areas show the SD. Averaged over 20 configurations. (C) Adding a normal distributed noise to the coupling strength between all rings with SD s =
0.1 for the ratio to the original value. Orange dots show the mean intensity, and gray areas show the SD. Averaged over 20 configurations. A.U., arbitrary units. (D)
Spatial intensity distribution at three different sidebands. Power is largely localized at the rings immediately surrounding the dislocation line. When the power reaches
the bottom edge (m = −5), it continues along the branch cut and merges into an edge state of the stripe.
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comparable to its 2D counterpart, which provides a clean platform to
study the interaction of crystallographic defect with band topology. As
an example, our system can be used to demonstrate a robust uni-
directional 1D waveguide pinned by a screw dislocation in a 3D TI,
which performs one-way frequency conversion for the input signal.
The dislocation is implemented through dynamically modulating a
few microrings, substantially reducing the experimental challenge
for studying lattice and band topology in the synthetic frequency
dimension.
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MATERIALS AND METHODS
The numerical calculation of band structures and wave functions in
this work used the transfer matrix method, which accounts for wave-
guide modal amplitudes at different parts of each ring. Here, we pro-
vide a brief summary of the transfer matrix method. A more detailed
account is presented in the Supplementary Materials.

The electric field E inside the waveguide forming a ring can be
written as

Eðt; r⊥; zÞ ¼ ∑
m
Emðt; zÞEmðr⊥Þe�iðwmþdwÞt

Here, r⊥ and z represent the transverse and propagation directions in
the ring, respectively, and t represents time.E(r⊥) is the transversemodal
profile in thewaveguide.wm andEm(t, z) are the resonant frequency and
the modal amplitude of the mth sideband, respectively. dw is a small
frequency detuning from the resonance.

In a continuous section of the waveguide, in the absence of any
modulators or couplers, the steady-state solution of the modal ampli-
tude Em(t, z) is

EmðzÞ ¼ Emðz0ÞeibðwmþdwÞ⋅ðz�z0Þ ð6Þ

where b(wm + dw) is the wave vector of the waveguide mode at the fre-
quencywm + dw. When the waveguide dispersion is nearly linear with a
frequency-independent group velocity of vg, b(wm + dw) is linear with
respect to m and dw, i.e., b(wm + dw) ≈ b(w0) + (mW + dw)/vg.

A waveguide coupler between the site ring and the link ring in our
system, as shown in fig. S1, was characterized by a 2 × 2 scattering
matrix relating the two input waveguide modes to two output wave-
guide modes

E1;out
m

E2;out
m

� �
¼ r ig

ig r

� � E1;in
m

E2;in
m

� �
ð7Þ

Here, the indices 1 and 2 represent twowaveguides that belong to two
rings. g represents the inter-waveguide coupling, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ r2

p
¼ 1

owing to energy conservation.
Similarly, amodulator in the dynamic link ringwas characterized by

a scattering matrix connecting the different frequency sidebands at the
input and output. For a generic modulator, this scattering matrix may
have very high dimensions since multiple frequency sidebands can be
generated from a single-frequency input. However, for the specific mod-
ulator design shown in Fig. 3 and fig. S1, mode conversion only occurs
between a lower-frequency evenmode and a higher-frequency oddmode
Lin et al., Sci. Adv. 2018;4 : eaat2774 19 October 2018
with the same wave vector. Thus, this modulator was characterized
by a 2 × 2 scattering matrix

Eeven;out
m

Eodd;out
mþ1

� �
¼ cosC i sinC

i sinC cosC

� � Eeven;in
m

Eodd;in
mþ1

� �
ð8Þ

Here, C represents the coupling between the two modes and is pro-
portional to the strength of the refractive index modulation.

The set ofmodal amplitudes Em in themicroring array is related by a
set of linear equations based on Eqs. 6 to 8. With the proper choice of
the reference point z0 in Eq. 6 in each waveguide section, the system of
equations can be shown to have the form

�E ¼ eidw⋅T=4S⋅�E ð9Þ

where �E is a vector of all the independent modal amplitudes in the mi-
croring arrays.T is the round-trip time in themicroring. The factor of 1/4
enters because each site ring is separated into four continuous sections of
waveguide by the waveguide couplers to the linkrings. The scattering
matrix S captures the different device geometries andmodulation config-
urations. The eigenfrequency dw and eigenstates �E of the system can be
obtained by solving the eigenvalue problem of the scattering matrix S.
The results presented in Figs. 2 and 4 were obtained this way.

When the system is coupled to external waveguides, the external
input results in an additional inhomogeneous term �B to Eq. 9

�E ¼ eidw⋅T=4S⋅�E þ �B

where S is also modified to include the coupling to external waveguides
as the photons go through round trips in the ring. Thus, S incorporates
loss of photons due to external coupling. The steady-state solution �E
can be calculated as

�E ¼ ðI � eidw⋅T=4SÞ�1�B

where I is an identity matrix. The results presented in Fig. 5 was ob-
tained this way.
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