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ABSTRACT: The cell cycle is an indispensable process in proliferation
and development. Despite significant efforts, global quantification and
physical understanding are still challenging. In this study, we explored
the mechanisms of the Xenopus laevis embryonic cell cycle by quantifying
the underlying landscape and flux. We uncovered the Mexican hat
landscape of the Xenopus laevis embryonic cell cycle with several local
basins and barriers on the oscillation path. The local basins characterize
the different phases of the Xenopus laevis embryonic cell cycle, and the
local barriers represent the checkpoints. The checkpoint mechanism of
the cell cycle is revealed by the landscape basins and barriers. While
landscape shape determines the stabilities of the states on the oscillation
path, the curl flux force determines the stability of the cell cycle flow.
Replication is fundamental for biology of living cells. We quantify the
input energy (through the entropy production) as the thermodynamic requirement for initiation and sustainability of single cell
life (cell cycle). Furthermore, we also quantify curl flux originated from the input energy as the dynamical requirement for the
emergence of a new stable phase (cell cycle). This can provide a new quantitative insight for the origin of single cell life. In fact,
the curl flux originated from the energy input or nutrition supply determines the speed and guarantees the progression of the cell
cycle. The speed of the cell cycle is a hallmark of cancer. We characterized the quality of the cell cycle by the coherence time and
found it is supported by the flux and energy cost. We are also able to quantify the degree of time irreversibility by the cross
correlation function forward and backward in time from the stochastic traces in the simulation or experiments, providing a way
for the quantification of the time irreversibility and the flux. Through global sensitivity analysis upon landscape and flux, we can
identify the key elements for controlling the cell cycle speed. This can help to design an effective strategy for drug discovery
against cancer.

■ INTRODUCTION

The cell cycle is a periodic process in the biological cell that
duplicates its own components and divides into two daughter
cells. In this process, the genetic material containing DNA
molecule is accurately replicated, and then, the two copies are
separated into the daughter cells during division. Exploring the
mechanism of the cell cycle is important for understanding cell
growth, development, reproduction, and death.1−4 The
complete cell cycle is composed of four phases: the synthesis
of DNA (S phase), mitosis (M phase), and the intervening
phase G1 and G2. The M phase is divided into four subphases:
prophase, metaphase, anaphase, and telophase. Sometimes, the
cell can enter into a state of quiescence called the G0 phase in
which the cell temporarily or reversibly stops dividing. To
ensure the proper progression of the cell division, the cell cycle
checkpoints control the ordering of the cell cycle. This leads to
the starting of each phase dependent on the completion of the
previous one. It is now believed that the cell cycle process is
tightly controlled by the underlying gene regulatory network.
With the increasing understanding of the biology, mathematical

models have been proposed to uncover the mechanisms.2,5,6

The key of these models is the activity of cyclin-dependent
kinases (CDKs) and their associated cyclin protein, which
jointly dominate the process of the cell cycle.7

It is still challenging to see exactly how the underlying gene
regulatory network controls the cell cycle progress because of
the complexity of the network. In addition, there are intrinsic
fluctuations from the finite number of molecules and extrinsic
fluctuations from inhomogeneous environments in the living
cells.8,9 Therefore, the stochastic nature must be considered in
studying the cell cycle.10−15 Although the stochastic nature of
the gene regulatory network has been studied, it is still
challenging to have global quantifications and physical
explanations for the cell cycle to reveal its underlying
mechanisms.
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In this work, we explore the mechanisms of the Xenopus
laevis embryonic cell cycle controlled by the underlying gene
regulatory network. We do so by the quantifications of the
underlying landscape and the flux.16−21 The different gene
expression patterns in the cell cycle can be represented in the
state space of the underlying gene regulatory network. There
are many such states in the state space. Not every state is
equally probable. The weight of occurrence for every gene
expression pattern can be described by the probability
distribution in state space. The higher probability means a
higher chance of appearance which can be observed in the
experiments. The specific functional states or phases of the cell
correspond to the specific gene expression patterns, often with
higher probabilities (or lower potential valleys) on the
landscape. By quantifying the topography of the potential
landscape through the barrier heights and kinetics between
different basins as well as the underlying curl flux, we can
identify the driving force of the cell cycle and explore the global
stabilities of the oscillation states and the flow of the Xenopus
laevis embryonic cell cycle. Furthermore, we can quantify the
energy dissipation of the cell cycle and investigate the origin of
the curl flux and the speed of the Xenopus laevis embryonic cell
cycle. We show that cell replication cannot proceed without
energy input. Therefore, energy input is a necessary condition
for replication and life. We quantify the input energy (through
the entropy production) as the thermodynamic energy
requirement for initiation and sustainability of single cell life.
We also quantify the curl flux originated from the energy input
as the driving force for the dynamical requirement of the
emergence of a new stable phase (cell cycle). This can provide a
new quantitative insight for the origin of single cell life. By
exploring the relationship between the entropy production rate
(energy cost) as well as the curl flux and speed of the cell cycle,
we can understand this at the quantitative level. We characterize
the quality of the cell cycle by the coherence time and found it
is supported by the flux and energy cost. We are also able to
quantify the degree of time irreversibility by the cross
correlation function forward and backward in time from the
stochastic traces in the simulation or experiments. This
provides a way for the quantification of time irreversibility
and the flux. Through the global sensitivity analysis of the
regulation parameters on the landscape topography in terms of
the barrier height, the curl flux, and the speed of cell cycle, we
can identify the key regulatory elements required for the
normal function of the frog cell cycle. Some are consistent with
the previous experimental studies. Others are the predicted
ones waiting to be tested. The cell cycle speed is a hallmark of
cancer. The cancer cells have a much faster speed of cell cycle
than the normal cells. We can identify certain predicted key
regulatory elements as the potential targets for controlling the
cell cycle speed against cancer.

■ MATERIALS AND METHODS
The dynamics of the gene regulatory network can often be
described by a set of ordinary different equations. The cell cycle
control dynamics realized by the underlying gene regulatory
network can be described by ODEs. However, the deterministic
description is not complete for the fluctuating environments of
the gene regulatory networks. The intrinsic statistical
fluctuations from the finite number of molecules inside of the
cell and external fluctuations from cellular environments have
significant impacts on the network dynamics. In bacterial cells,
the intrinsic statistical fluctuations from the finite number of

molecules in the cells can be significant. For the frog cell we
study here, the number of molecules is large in the cell so the
intrinsic statistical fluctuations from the molecular numbers are
expected to be small. Most of the fluctuations here can be
captured by the extrinsic fluctuations rather than the intrinsic
fluctuations. We only consider extrinsic fluctuations in this
study which can be added to the deterministic concentration
dynamical equations, resulting in the stochastic concentration
dynamical equations. Therefore, it is necessary for the dynamics
of the regulatory network to be formulated as the stochastic

different equations with the noise η= +F x( )
t
xd
d

, where x is

the concentration or expression levels of the substance and
F(x) is the driving force of the system. η is the Gaussian white
noise term with zero mean, and its autocorrelation function is
given as ⟨η(t)η(0)⟩ = 2Dδ(t). D is the diffusion coe cient.
This characterizes the intensity of the intrinsic and cellular
environmental fluctuations. The process is similar to Brownian
dynamics, and the diffusion coe cient can be dependent on the
concentration.
The time evolution of the expression or concentration

dynamics is not deterministic because of the stochastic nature.
A more appropriate quantitative description can be obtained by
the probability distribution. One can do statistical analysis and
calculate out the probability distribution at steady state from
the simulated trajectories of the underlying stochastic dynamics.
On the other hand, the probability evolution follows the
diffusion equations for the continuous case.22 The equation is
also called the Fokker−Plank equation which can be written in
the form of probability conservation: ∂P/∂t + ·J = 0, where J
is defined as the probability flux, J = FP − D P. The equation
states that the increase or decrease of the local probability is
equal to the net input flux. When the divergence of the
probability flux Jss is zero ( ·J = 0), the nonequilibrium system
attains the steady state. We can solve out the steady state
probability distribution Pss from the Fokker−Plank equation. In
the 2-variable system, we constructed the landscape by directly
solving the Fokker−Plank equation and obtained the steady
state distribution. For the 33-variable system, we performed the
statistical joint histogram analysis and computed the 2-variable
marginal probability distribution at steady state from the long
time simulated trajectories of the underlying stochastic
Langevin dynamics for the protein concentrations or the gene
expressions. We define the potential U = −ln Pss which
resembles the Boltzmann law under equilibrium conditions. If
the local flux is equal to zero, then the detailed balance
condition is satisfied and the system is in equilibrium state.
When the local flux is not equal to zero, the detailed balance is
broken and the system is in nonequilibrium steady state; we see
that F = −D· U + Jss/Pss. Thus, we have decomposed the force
driving the dynamics of the system into two terms. The first is
related to the gradient of the potential U, and the second term
is the steady state probability flux Jss (velocity current) divided
by the steady-state probability Pss (density). The steady state
flux is divergent free at steady state and therefore rotational
termed as curl flux. The nonequilibrium dynamics is analogous
to a moving electron in the electric and magnetic field.
The nonequilibrium system is an open system with

exchanges in energy, materials, and information to the
environments. The system will generate energy consumption
and dissipation. The dissipation as a global physical character-
istic can be used to measure the degree of the nonequilibrium
away from the equilibrium. The energy dissipation is associated
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with the entropy production rate in the steady state of the
nonequilibrium system.23,24 The system entropy can be written
as S = − P(x, t) ln P(x, t) dx. By differentiating the above
expression, the change rate of the system entropy can be
formulated as follows: S ̇ = (J·D−1·J)/P dx − (J·D−1·(F − ·
D)) dx, where (J·D−1·J)/P dx = ep = S ̇̇tot is the entropy
production rate (EPR). It represents the total entropy change
rate (including both system and environment). (J·D−1·(F −
·D)) dx = hd = S ̇env is the rate of the heat dissipation or the

entropy change rate from the environment. When the
nonequilibrium system is in a steady state, the change rate of
the system entropy S ̇ is equal to zero. Therefore, the entropy
production rate is equal to the heat dissipation from the
environment in the steady state. According to the equation, the
energy dissipation quantified by entropy production ep and hd is
associated directly with the curl flux J. The equation can also be
written as Ṡtot = S ̇ + S ̇env. This gives the first law of
nonequilibrium thermodynamics. The entropy production is
always larger or equal to zero. This gives the second law of
nonequilibrium thermodynamics.23

■ RESULTS AND DISCUSSION

Cell Cycle Model. Mathematical models of the cell cycle
have been proposed.1,2,19,25−29 In this study, we explore the
Xenopus laevis embryonic cell cycle network. The Xenopus eggs
are used extensively in cell cycle studies because they can grow
very large without dividing and can easily be manipulated.
Before fertilization, the eggs stop at the metaphase of meiosis II
(haploid complement of replicated chromosomes aligned on
the spindle). After fertilization, the Xenopus egg finishes meiosis
and then achieves its first mitotic cell cycle. The first mitotic
cycle takes about 85 min, and the subsequent 11 cycles are
about 30 min each. They are synchronous mitotic cycles. These
cell cycles are not size-controlled, and the cells get smaller at
each division. After the 12th division, the period of the somatic
cell becomes much slower.30 The cell cycles oscillate between S
and M phases with G1 and G2 phases significantly shortened.
The Xenopus laevis embryonic cell cycle is quite different from
the yeast cell cycle. Yeast cells are much smaller and can
maintain a constant cell-size distribution by cell-size check-
points in G1 and/or G2. The budding yeast divides by first
forming a bud that starts and grows steadily during the S and
G2 phases, and finally leaves its mother after mitosis.
The core design of biological oscillators invariably consists of

a negative feedback. The gene regulatory network often
involves both positive and negative feedback loops. With
both positive and negative feedback loops, the oscillators
generated can provide a wider range of period and robust
amplitude. The resulting dynamics behaves like a relaxation
oscillator that is established on a hysteretic switch. The
hysteretic response of the Cdk1/Cdc25/Wee1 feedback loop
has been shown in the experimental studies of Xenopus
extracts.30 Moreover, The larger number of molecules and
ultrasensitive negative feedback in the frog cell can resist
intrinsic stochastic noise. We introduce a two-gene model that
includes fewer adjustable parameters. The simpler model is
beneficial to analyze the general nature and compare to other
activator−repressor circuits. This cell cycle gene circuit was
proposed earlier.25 The model was represented by the following
two equations

= −

= + − − ×
−

t
k k

t
k k k

k

d
d
Cyc Cyc

d
d
Cdk1 (Cyc Cdk1) Cdk1

Cdk1

s deg

s cdc Wee1

deg

where the first equation describes the synthesis and degradation
of the moitotic cyclins. ks is a rate constant of cyclin synthesis,
kdeg is a rate constant of cyclin degradation which varied with
the activity of Cdk1 and can be described by the Hill function:

= +
+

k a bdeg deg deg
Cdk1

EC50 Cdk1

n

n n

deg

deg
deg deg

. The second equation de-

scribes the production of active Cdk1. The parameter kcdc
represents the production rate of protein Cdc25C which can
activate Cdk1 by removing phosphate. The parameter kWee1
denotes the production rate of protein kinase Wee1A which can
repress the active Cdk1. Both kcdc and kWee1 are the functions of
the active Cdk1 concentration. Their steady-state response was
determined by experimental studies and can be approximated

by the Hill functions: = + +k a bcdc cdc cdc
Cdk1

EC50 Cdk1

n

n n

cdc

cdc
cdc cdc ,

= + +k a bWee1 Wee1 Wee1
EC50

EC50 Cdk1

n

n n
Wee1
Wee1

Wee1
Wee1 Wee1 .

This two-dimensional model assumed that there is no time
lag between the activation of Cdk1 and regulation of cyclin
degradation. The activation of APC/CCdc20 depends on
Cdk1-dependent phosphorylation events, and the same multi-
step mechanism can also account for the observed time delay.
Thus, the observed steady-state and dynamic behaviors of the
negative feedback loop are consistent with a multistep
phosphorylation/activation mechanism.25 Considering the
realistic time lag into the negative feedback loop, the model
can be expressed with the following equation
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cdc

cdc cdc

Wee1
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where APC has 31 phosphorylated forms and only the final
form is active. The constant c denotes the cooperativity of the
phosphorylation and dephosphorylation reactions.

Landscape and Flux of the Cell Cycle System. On the
basis of the underlying gene regulatory network, we investigate
the associated stochastic dynamics. By following the proba-
bilistic evolution, we can quantify the steady state probability
distribution in the expression state space. We found the
underlying potential landscape of the limit cycle dynamics of
the Xenopus laevis embryonic cell cycle has a Mexican hat shape
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with uneven valleys. Outside the oscillation cycle ring, the
dynamics is attracted to the ring mainly by the negative
landscape gradient, which guarantees the stability of the states
on the oscillation path. Once on the oscillation ring, the driving
force for the Xenopus laevis embryonic cell cycle is then mainly
determined by the curl flux along the cycle along with the
impeding force from the local basins and barriers on the cycle.
We found a few local basins and barriers between the basins
along the Xenopus laevis embryonic cell cycle trajectory. These
local basins on the potential landscape reflect the different
phases of the Xenopus laevis embryonic cell cycle processes. The
saddle points between the basins on the landscape quantify the
checkpoints of different stages of the Xenopus laevis embryonic
cell cycle. These quantifications can be used to uncover the
checkpoint mechanisms of the Xenopus laevis embryonic cell
cycle from physical perspectives. Through the global picture via
the landscapes and flux on cell cycle progression, we can
quantify the global stability and function of the Xenopus laevis
embryonic cell cycle. To complete the cell cycle progression,
the cell cycle process has to overcome the major barriers by
su cient driving force. In other words, the Xenopus laevis
embryonic cell cycle progression must prepare adequately to
pass through each checkpoint. The curl flux provides such a
driving force. While the curl force drives the cycle, because the
cycling trajectory is not in a plane, the gradient force also has an
impact locally impeding and helping the cycle, depending on
the location. Due to the impacts of the local gradient force on
the cell cycle path, only su cient curl force can guarantee stable

cycle flow against the local landscape barriers. We can also
estimate the energy dissipation required for maintaining the
Xenopus laevis embryonic cell. We found it is correlated with the
curl flux. Therefore, the Xenopus laevis embryonic cell cycle
process requires the energy input through nutrition supply. We
further found the period and coherence of the Xenopus laevis
embryonic cell cycle is strongly correlated with curl flux.
Figure 1a shows the two-dimensional potential landscape of

the 2-variable Xenopus laevis embryonic cell cycle model. We
find the landscape has two valley basins and two saddle points.
The bottom basin has a long and narrow shaped valley. It
represents the G0/G1 phase and S/G2 phase on each side of
the valley, respectively. The saddle point s2 along the cell cycle
path is the G2 checkpoint, which can guarantee that DNA
replication is achieved before reaching the next phase M. The
top basin represents that the cell attains the M phase. When a
cell matures and the division occurs, the cell goes through
saddle point s1 from the phase M back to the G0/G1 phase.
The saddle point s1 is the M checkpoint. Figure 1b show the
three-dimensional potential landscape of the 2-variable Xenopus
laevis embryonic cell cycle model. The figure further represents
the progression of the cell cycle by the landscape and the flux
(white arrow).
Figure 2a shows the two-dimensional landscape of the more

sophisticated 33-variable cell cycle model. The white arrow is
the probability curl flux. The negative gradient of the potential
landscape attracts the system to the oscillation path. On the
oscillation path, the curl flux guarantees the stable cell cycle

Figure 1. (a) Two-dimensional landscape of the 2-dimension cell cycle model. (b) Three-dimensional landscape of the 2-dimension cell cycle model.

Figure 2. (a) Two-dimensional landscape of the 33-dimension cell cycle model. (b) Three-dimensional landscape of the 33-dimension cell cycle
model.
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flow. The landscapes show a similar process of mitosis with
both the 2-variable and 33-variable models, but the total cyclin
and active Cdk1 of the G0/G1 phase are lower in the 33-
variable model. We also see in the 33-variable model that there
is a sharp increase in CDK1 from S/G2 (together with G0/G1
under this parameter range) to the M phase and there is also a
sharp decrease of CDK1 from the M phase back to the G0/G1
phase in contrast to the 2-variable model. Figure 2b show the
three-dimensional potential landscape of the 33-variable
Xenopus laevis embryonic cell cycle model.
By comparisons, we find some differences of the two

landscapes between the 2-variable and 33-variable (multistep
phosphorylation) models. The landscape of the 2-variable
model has less range of variability for the expressions of cyclin
and Cdk1 than the 33-variable model. In other words, when we
consider the realistic time delays by a multistep phosphor-
ylation/activation mechanism, the amplitude and the period of
oscillations can be varied and oscillation stability is more
ensured. The extracts of early Xenopus eggs and embryos lack
an obvious cell cycle checkpoint that keeps anaphase from

occurring before spindle assembly is finished.31 However, the
time lag can ensure that the Cdk1-dependent mitotic processes
are achieved before the Cdk1 inactivation and mitotic exit occur
(from M back to G0/G1). On the landscape of the 33-variable
model, the basin of mitotic phase is narrower than that of the 2-
variable model. This can guarantee the completion of the
mitotic phase before the Cdk1 inactivation. We compare the
landscapes of the Xenopus laevis embryonic cell cycle and the
mammalian cell cycle.26 We can see the landscape of the
mammalian cell cycle has a certain similarity to the landscape of
the 2-variable model here. Both mitotic areas from the 2-
variable model for frogs and the model for the mammalian cell
cycle26 have no obvious barrier as the threshold for the mitotic
completion (from M back to G0/G1). One can see the nature
of the time lag illustrated in the 33-variable model for multistep
phosphorylation as the effective spindle assembly checkpoint in
the Xenopus laevis embryonic cell cycle.
Figure 3 shows the two- and three-dimensional potential

landscapes of the 33-variable Xenopus laevis embryonic cell
cycle network with different parameters from Figure 2. In this

Figure 3. (a) Two-dimensional landscape of the 33-dimension cell cycle model with parameter bdeg = 0.18. (b) Three-dimensional landscape of the
33-dimension cell cycle model with parameter bdeg = 0.18.

Figure 4. (a, e) Entropy production rate with different ks. (b, f) Barrier height versus parameter ks. (c, g) The period (units: minutes) with different
ks. (d, h) The integral of flux along the limit cycle J dl/dl versus parameter ks. (top) 2-Dimension model; (bottom) 33-dimension model.
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parameter setting, the G0/G1 phase and S/G1 phase are in
different attractor basins. This gives a G1 checkpoint between
the G0/G1 phase and the S phase.
The Effects of Some Parameters for the Cell Cycle

System. To study the energy cost of the cell cycle processes,
we compute the entropy production rate with different
parameters. As shown in Figure 4a, the entropy production
rate increases with the increase of cyclin synthesis rate. This
result states that the increasing of the cyclin synthesis rate
requires more energy or nutrition supply. In Figure 4b, we
show the changes of the two barrier heights with different
cyclin synthesis rate constants. One is the barrier height
between the saddle s2 and the bottom basin. It characterizes the
G2 checkpoint and quantifies the degree of di culty of the cell
cycle from the G2 phase to the M phase. The other is the
barrier height between the saddle s1 and the top basin. It
denotes the degree of di culty of the cell cycle from the M
phase back to the G0/G1 phase. We find the first barrier
through s1 decreases with increasing cyclin synthesis rates. It
indicates the division of a cell is likely to be easier under this
condition. The latter barrier increases with increasing synthesis
rate. It states that a cell in the S/G2 phase becomes more
di cult to get to the M phase through the G2 checkpoint. In
Figure 4c, we calculated the period of the cell cycle and find the
period decreases with increasing cyclin synthesis rates. The
period can reflect how fast the cell cycle oscillates and its
growth rate. Thus, the result implies that the increasing cyclin
synthesis rate can accelerate the cell cycle and its growth.32 In
Figure 4d, we computed the integral of flux along the limit cycle
with different cyclin synthesis rates. We find the integral of flux
increases with the cyclin synthesis rate. This reflects that the
flux strengthens upon increasing synthesis rate. The flux and
the entropy production rate have the same tendency with
respect to cyclin synthesis rates. Therefore, the flux of the cell
cycle is closely related to the entropy production rate. With
increasing cyclin synthesis rate, the Xenopus laevis embryonic
cell cycle has a stronger flux and a higher entropy production
rate. This will consume more energy or nutrition supply.
Meanwhile, the cell cycle from maturation to division becomes
faster. It is worthwhile to notice that the barrier height and flux
together determine the dynamics of the cell cycle such as cycle
speed or period. Even though the barrier is higher between the

S/G2 and M phases, the flux can still drive the cell cycle
through the s2 saddle or transition state (G2 checkpoint) with
faster speed.33−35 As shown in Figure 4e−h, similar conclusions
can be drawn from the corresponding more sophisticated 33-
variable network.
As shown in Figure 5a, the entropy production rate decreases

with an increase in the parameter EC50Wee1. The parameter is
the Hill constant or the half-maximum effective concentration
values of Wee1A as the substrate of Cdk1. This result states
that the increase of the parameter EC50Wee1 leads to less energy
cost. In Figure 5b, we show the change of two barrier heights
with different parameters in EC50Wee1. One is the barrier height
between the saddle s2 and the bottom basin. The other is the
barrier height between the saddle s1 and the top basin. They
denote the degree of di culty in the cell cycle from the current
phase to the next phase. We find that the barriers change
smoothly with an increase of the parameter EC50Wee1. This
indicates that changes in this parameter have a moderate impact
on the growth and division of a cell under these conditions. In
Figure 5c, we calculated the period of the cell cycle and found
that the period increases with an increase of this parameter.
Therefore, the trend in cell cycle period shows that an increase
of the parameter EC50Wee1 can decelerate the cell cycle and its
growth. In Figure 5d, we computed the integral of the curl flux
along the Xenopus laevis embryonic cell cycle with different
parameters in EC50Wee1. We find that the integral of flux
declines with the parameter EC50Wee1. Similarly, the flux and
the entropy production rate have the same tendency under the
changes of the parameter EC50Wee1. As shown in Figure 5e−h,
similar conclusions can be drawn from the 33-variable model of
the Xenopus laevis embryonic cell cycle.

The Coherence for the Cell Cycle System. The
coherence can quantify the stability of the oscillation and
measure the degree of persistence of the oscillatory phase.36

The coherence ξ is defined with the following method. N(t) =
n1(t)e1 + n2(t)e2 is a vector at time t. n1(t) and n2(t) are the
measures of the two variables. e1 = (1, 0) and e2 = (0, 1) are the
unit vectors. Then, ϕ(t) is the angle between N(t) and N(t +
τ), where τ is smaller than the deterministic period and larger
than the fast fluctuations. The coherence ξ can be obtained,

ξ = −θ ϕ ϕ
ϕ

∑
∑ | | 1

t t

t

2 ( ( )) ( )

( )
i

i
, where θ(ϕ) = 0 when ϕ(t) 0 and

Figure 5. (a, e) Entropy production rate with different EC50Wee1. (b, f) Barrier height versus parameter EC50Wee1. (c, g) The period (units: minutes)
with different EC50Wee1. (d, h) The integral of flux along the limit cycle J dl/dl versus parameter EC50Wee1. (top) 2-Dimension model; (bottom)
33-dimension model.
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θ(ϕ) = 1 when ϕ(t) > 0, and sums contain every time step of
the trajectory. ξ 0 indicates that the system moves
stochastically with no preferential direction along the oscillation
path. If ξ is close to 1, the oscillation is mostly coherent, since
there is a definite direction for the next movement to follow.
The more periodic the evolution, the larger the coherence ξ.
In Figure 6, we plot the relationship between the cyclin

synthesis rate and the coherence. We find that the coherence

increases with the increase of synthesis rate. Meanwhile, we
know the flux also becomes stronger with increasing synthesis
rate. This states that the enhancement of the flux can improve
the stability and coherence of the periodic oscillation and the
persistence of the cell cycle.
In Figure 7, we draw the change of the coherence with the

parameter EC50Wee1. We find that the coherence declines with
an increase of the parameter EC50Wee1. Meanwhile, the flux also

Figure 6. (a) Coherence versus parameter ks with the 2d model. (b) Coherence versus parameter ks with the 33d model.

Figure 7. (a) Coherence versus parameter EC50Wee1 with the 2d model. (b) Coherence versus parameter EC50Wee1 with the 33d model.

Figure 8. (a) Coherence versus parameter bdeg with the 2d model. (b) Coherence versus parameter bdeg with the 33d model.
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becomes weaker with an increase of this parameter. It implies
that less flux can decrease the stability of the oscillation flow
and reduce the cell cycle speed. Flux is thus crucial for
maintaining the cell cycle.
In Figure 8, we draw the change of the coherence with the

degradation parameter bdeg. We find that the coherence declines
with an increase of the parameter bdeg. Meanwhile, the flux also
become weaker with an increase of the degradation parameter
bdeg. Flux is important for the stability of the oscillation flow
and the maintaining of the cell cycle.
The Relationship among the Entropy Production

Rate, the Flux, and the Period: The Implication of the
Origin of Single Cell Life. In Figure 9, we show the change of

the entropy production rate (EPR is defined in the Materials
and Methods) with the flux by an example of parameter ks. We
find the EPR increases with the increase of the flux of limit
cycle. This indicates that the energy cost of the system is closely
related to the flux of the cell cycle. In fact, the thermodynamic
energy supply guarantees the emergence of the flux for driving
the cell cycle dynamics.
Figure 10a shows that the period of the cell cycle decreases

with the increase of the flux. We found that the larger curl flux
leads to the faster cell cycle oscillation. In Figure 10b and c, we
show the cell cycle period versus EPR and the energy cost per
cycle. We see that the cell cycle period monotonically decreases
with the increase of both the EPR and the energy cost per cell
cycle. The faster (smaller period) the cycle oscillation of the cell

growth and division, the more energy per cycle is consumed.
This indicates that a su cient supply of the nutrition or energy
pump is necessary to drive and accelerate replication such as
the cell cycle.
The limit cycle cannot exist without the presence of the curl

flux for driving. In fact, the limit cycle is a new “active” phase
which cannot emerge spontaneously in the equilibrium systems
with detailed balance. As known, the replication is an essential
feature of life. From the evolution standpoint, a single cell
might be the primordial form of life. The cell cycle governs the
life of a single cell. The cell cycle is determined by the limit
cycle dynamics. Since the driving force for the cell cycle flow is
the curl flux, it is in this sense that we state that the curl flux
provides the driving force for the origin of the single cell life at
the dynamical level. Since the curl flux comes from the
nutrition supply or energy input, we can also state that the
energy input is the origin of the life. More precisely, we can
state that the energy input as the thermodynamical requirement
manifests to produce the curl flux which serves as the driving
force for the dynamical emergence of the origin of single cell
life as a new phase of active matter.

Global Sensitivity Analysis of Key Genes and
Regulations for Cell Cycle. The process of the cell cycle is
controlled by the interactions among many genes and gene
regulations. To find the key genes and regulatory wirings in the
cell cycle network, we perform a global sensitivity analysis of
the cell cycle period, the flux integrated along the cell cycle
path, and the landscape barrier upon the moderate changes of
the genes and wirings. By such global sensitivity analysis, we
can identify the key structure elements (genes or gene
regulations) or hot spots for the cell cycle network.
Exploring important structural elements of the network

(synthesis rate or regulation strengths), we show the results of
the global sensitivity analysis in Figure 11. We analyzed the
global sensitivity of the flux, the period, and barrier upon
changes of the 13 parameters in the Xenopus laevis embryonic
cell cycle network. We found certain key parameters in the cell
cycle network from Figure 11. They are ks, bcdc, EC50cdc,
EC50Wee1, and nWee1. ks represents the synthesis rate of the
cyclin. bcdc denotes the maximum rate of phosphorylation of
Cdc25C by Cdk1. EC50cdc is the half-maximum effective
concentration value of Cdc25C and denotes the concentration
demanded of the substrate Cdk1 when Cdc25C achieves half of
the activity. EC50Wee1 is the half-maximum effective concen-
tration value of Wee1A. nWee1 is the Hill coe cient. It
represents the cooperative effect of the Wee1A regulated by

Figure 9. Entropy production rate versus the integral of flux along the
limit cycle.

Figure 10. (a) Period versus the integral of flux along the limit cycle. (b) Period versus the entropy production rate. (c) Period versus the entropy
production per cycle.
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Cdk1 and leads to the rapid decrease of the production rate
with the increase of the substrate Cdk1.
Figure 11a shows the global sensitivity of the flux along the

cell cycle path and the period upon parameter changes. We can
see that certain key parameters have more significant effects on
the flux or oscillation period. Therefore, the network can have a
larger flux and accelerate cell division by adjusting these key
parameters. For example, the B-type cyclin is the most
important protein in mitosis; its synthesis rate is directly
related to the progression of the cell cycle. Therefore, the
synthesis rate parameter ks is one of the key parameters. From
Figure 11a, we can also see the increase of the rate can
significantly decrease the period and increase the flux. Cdc25C
is one of the protein kinases to be phosphorylated by Cdk1. It
can reactivate the cyclin−Cdk1 complexes and then accelerate
the cell cycle. We also found that the increase of the related
maximum synthesis rate bcdc can significantly decrease the
period. Wee1A is an early substrate of Cdk1 and inactivates the
cyclin−Cdk1 complexes. Therefore, it can repress the cell cycle.
From the global sensitivity analysis, we can also see the increase
of the related parameter EC50Wee1 of Wee1A can increase the
period and decrease the flux.
Figure 11b shows the change of the landscape barrier upon

parameter change. The barriers1/M and barriers2/S respectively
characterize the M checkpoint and G1 checkpoint. Therefore,
the network can increase (or decrease) the checkpoint barrier
by adjusting certain key parameters. For example, Cdc25C
proteins are known to control the cell progression from G1 to S
phase and G2 to M phase from biologic studies.37,38 Our
analysis shows that the increase of the related maximum
synthesis rate bcdc and the half-maximum effective concen-

tration value EC50cdc of Cdc25C can change the activity of
Cdc25C and decrease the barrier between s2 and S/G2. This
implies that the increase of these regulation parameters can
help the cell to go over the G2 checkpoint and accelerate the
cell cycle. Wee1A is a key regulator of cell cycle progression and
a component of a cell size checkpoint.39 It can inhibit the entry
into mitosis. The related parameter EC50Wee1 can significantly
influence the activity of Wee1A. From the figure, we see that it
increases the barrier between s2 and S/G2, and increases the
barrier between s1 and M. Therefore, this can slow down the
cell cycle. The above analysis on the key genes and regulations
is consistent with the findings of Xenopus laevis embryonic cell
cycle studies.40−42 In addition, the current approach can
provide predictions for further experimental testing. For
example, nWee1 represents the cooperative effect of the
Wee1A regulated by Cdk1. From Figure 11, we can see that
it significantly increases the period, the barrier between s2 and
S/G2, and the barrier between s1 and M. Therefore, we can
predict that the increase of ultrasensitivity in the inhibition can
significantly slow down the cell cycle. Another predicted key
element is the effective positive regulation strength (acdc, bcdc)
of the Cyc on Cdk1 through Cdc25C. The increase of this
regulation strength can give a wider range of the period and
robust amplitude for the cell cycle oscillations.

Phase Diffusion and Phase Coherence Associated
with the Flux and Energy Cost. A way of quantifying the
quality of the limit cycle is through monitoring the phase
dynamics and its associated phase coherence time scale. For
stochastic dynamics, there is a chance that the phase oscillations
may not be coherent. After certain times, the oscillations can
lose the memory or track of the previous dynamics. This makes
it harder to maintain the periodicity. The phase coherence can
be quantified by the time scale involved in the autocorrelation
function. C(t) = ⟨X(t)X(t )⟩ − ⟨X(t)⟩⟨X(t )⟩. For the
underlying Markovian process, one can fit the correlation
function with an exponential, ⟨X(t)X(t )⟩ − ⟨X(t)⟩⟨X(t )⟩
exp[−(t −t)/τ0], or exponentials, where τ0 represents the time
scale of the memory of the phase dynamics. Figure 12a shows
the simulated trajectory of the cyclin. We can see that the

Figure 11. (a) Global sensitivity analysis in terms of the flux and
period when parameters are changed. (b) Global sensitivity analysis in
terms of the barrier (barrier between s1 and M, barrier between s2 and
S) when parameters are changed. The x coordinate (1−13) is
corresponding to the 13 parameters: 1, ks; 2, adeg; 3, bdeg; 4, EC50deg; 5,
ndeg; 6, acdc; 7, bcdc; 8, EC50cdc; 9, ncdc; 10, aWee1; 11, bWee1; 12,
EC50Wee1; 13, nWee1.

Figure 12. (a) Trajectory of the cyclin. (b) Two-point autocorrelation
function and its fit function.
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oscillation is less robust and inaccurate as a result of the phase
fluctuations in the noisy environments. Figure 12b shows the
autocorrelation function and its fit function. We can see the
autocorrelation function in the network follows a damped
oscillation form C(t) = exp(−t/τ0) cos(2πt/T), where τ0
denotes a coherence time for the oscillation,43,44 In Figure
13a, we plotted the coherence time τ0 versus the EPR.
Meanwhile, we plotted the coherence time τ0 versus the flux in
Figure 13b. We found that, as the EPR or the flux increases, the
coherence time increases. This implies that the flux and energy
cost are required for the long coherence of the cell cycle. Due
to the phase fluctuations, the cell cycle cannot be perfectly
completed in the noisy environments. Longer coherence times
can decrease the phase diffusion to sustain the stable and
coherent cell cycle. In other words, the energy input can
elongate the time scale for coherence memory and therefore
the quality of the replication. This prevents the rapid phase
diffusion and loss of the phase coherence of the limit cycle.
Therefore, the stability and coherence of the cell cycle
oscillations come from the flux for driving the dynamics and
the input energy cost for sustaining the thermodynamic
stability.
Quantifications of the Time Irreversibility and the

Flux from the Stochastic Time Traces. A way for
quantifying the degree of the detailed balance breaking and
time irreversibility is from the differences of the two-point cross
correlation function forward and backward in times.45,46 To
show that, one notices that for the cross correlation function
can be defined as

∑τ τ τ= ⟨ ⟩ =C X Y X Y P P( ) (0) ( ) ( )XY
i j

i ij
ss

(1)

Here X and Y represent signals. Pij(τ) is the probability from
state i to state j at time τ. Pi

ss is the steady state probability being
at state i. If the signals X and Y are specific to the states A and
B, then

τ τ τ τ− = −C C X Y P P P P( ) ( ) [ ( ) ( )XY YX
A B

A
ss

AB B
ss

BA (2)

For a small time interval τ, τPij(τ) kijτ and

− = ≠P k P k J 0i ij j ji ij
ss ss ss

(3)

Jij
ss is exactly the nonequilibrium steady state probability flux
from state i to j. Therefore, the difference between the forward
and backward cross correlation functions is directly related to
the flux Jij

ss

τ τ τ− =C C X Y J( ) ( )XY YX
A B

AB
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(4)

and

τ τ
τ

= −
τ→J

X Y
C C1

lim
( ) ( )XY YX

AB
ss

A B 0 (5)

Therefore, from either the simulated or experimental
concentration or expression stochastic trajectories, we can
compute the difference in the forward and backward cross
correlation functions and obtain the quantitative measure of the
time irreversibility and the flux.
Figure 14a shows the simulated trajectories of the cyclin and

Cdk1. Figure 14b shows the cross correlation functions

Figure 13. (a) Entropy production rate versus coherence time τ0. (b) Integral of flux along the limit cycle versus the coherence time τ0.

Figure 14. (a) Trajectories of the cyclin and Cdk1. (b) The time
forward (black) and time reverse (blue) cross correlation function
between the cyclin and Cdk1. (c) The difference of the forward and
backward cross correlation functions.
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between the cyclin and the Cdk1 forward in time and backward
in time. Figure 14c shows the difference of the cross correlation
functions between the cyclin and the Cdk1 forward in time and
backward in time. In Figure 15, we plotted the difference of
cross correlation functions ΔC2 versus the EPR and flux along

the limit cycle, where ∫ τ τ τΔ = −C C C( ( ) ( )) d
t

t
XY YX2

1
0

2
f

f

can be used to represent the difference in cross correlation
functions between forward in time and backward in time. Since
the forward cross correlation function is equal to the backward
cross correlation function when the flux is zero, one expects
that their nonzero difference measures the degree of the
nonequilibrium characterized by the detailed balance breaking
through the magnitude of the flux, as mentioned above.45,46

From Figure 15, indeed we see the difference in cross
correlations forward and backward in time is positively
correlated to the flux and EPR. Therefore, on the basis of
trajectories of the expression or concentrations either from the
simulations or the experimental real time traces, we can directly
quantify the difference in cross correlations forward and
backward in time, from which we can quantify the degree of
the time irreversibility and the steady state probability flux for
driving the cell cycle flow. The energy input for sustaining the
cell cycle gives the emergence of the curl flux for driving the cell
cycle dynamics. This breaks explicitly the detailed balance and
the time reversible symmetry. Therefore, the degree of the
detailed balance breaking and time reversible symmetry
breaking are intimately related. They are originated from the
energy input manifested in the nonequilibrium dynamics
through the curl flux. The time reversal symmetry breaking
also creates a stable new phase of active matter, the limit cycle
which is supported by the thermodynamic energy input and the
dynamical driving from the flux, beyond the equilibrium
systems.

■ CONCLUSIONS

In this study, we explored the underlying mechanisms of the
Xenopus laevis embryonic cell cycle through uncovering the
underlying landscape and flux. First, we quantified the
underlying landscape of the cell cycle controlled by the gene
regulatory network. The potential landscape has a Mexican hat
shape with uneven valleys. Second, we uncovered the
relationship between the different phases of the Xenopus laevis
embryonic cell cycle and the landscape basins on the cycle. We

identified the locations and quantified the potential barriers
along the oscillation ring as the checkpoints of the Xenopus
laevis embryonic cell cycle. This provides a physical
quantification of the checkpoint mechanism of the Xenopus
laevis embryonic cell cycle. Third, we uncovered the driving
forces for the dynamics of the Xenopus laevis embryonic cell
cycle, the underlying landscape, and the curl flux which
measures the degree of detailed balance breaking. While the
landscape leads to the stability of the states on the Xenopus
laevis embryonic cell cycle, the curl flux drives the persistent
oscillation of the Xenopus laevis embryonic cell cycle. The
potential barriers separate the oscillation into different phases
and impede the progression of the cell cycle. Finally, we want
to emphasize that the replication is fundamental for biology of
living systems. The replication requires a certain energy cost to
initiate and sustain in the form of the cell cycle flow. The curl
flux originated from the nutrition supply, and the correspond-
ing energy consumption drives and completes the cell cycle
process. Our study provides a quantitative statement rather
than a qualitative statement on the origin of single cell life. The
contribution of the input energy to the cell cycle is quantified
by the entropy production rate. The single cell life is quantified
by the limit cycle dynamics with the quantified underlying
landscape and curl flux for driving the cell cycle dynamics.
Energy input/dissipation is shown to be quantitatively
correlated to the speed of the cell cycle. This provides the
thermodynamic origin of the single cell life as well as the
associated sustainability and stability. Curl flux is shown to be
quantitatively correlated to the speed of the cell cycle. This
provides the dynamical origin of the single cell life in the form
of a new active matter phase, and the limit cycle guarantees the
associated stable flow. We quantify the quality of the cell cycle
by the coherence time and found it is supported by the flux and
energy cost. We are also able to quantify the degree of time
irreversibility by the cross correlation functions forward and
backward in time from the stochastic traces in the simulations
or the experiments, providing a way for the quantification of
time irreversibility and flux. Through global sensitivity analysis
upon landscape and flux, we can identify several key elements
for controlling the cell cycle speed. The speed of the cell cycle
is a hallmark of cancer. This study can help to design an
effective strategy for drug discovery against cancer.

Figure 15. (a) Difference of the forward and backward cross correlation functions ΔC2 with different entropy production rates. (b) Difference of the
forward and backward cross correlation functions ΔC2 versus the integral of flux along the limit cycle.
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