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a b s t r a c t

We propose a distributed output-feedback model predictive control approach for achieving consensus
among multiple agents. Each agent computes a distributed control action based on an output-feedback
measurement of a local neighborhood tracking error and communicates information only to its
neighbors, according to a communication network modeled as a directed graph. Each agent computes
its distributed control action by solving a local min–max optimization problem that simultaneously
computes a local state estimate and control input under worst-case assumptions on unmeasured
input disturbances and measurement noise. Under easily verified controllability and observability
assumptions, this distributed output-feedback model predictive control approach provides an upper
bound on the group consensus error, thereby ensuring practical consensus in the presence of
unmeasured disturbances and noise. A numerical example with four agents connected in a directed
graph is given to illustrate the results.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

With the increasing availability of devices with communi-

cation and computational capabilities, the number of applica-

tions for distributed control is growing dramatically. Centralized

control schemes often confront intractable computational bur-

dens, lack necessary system-wide knowledge, and raise privacy

concerns. Distributed control approaches, on the other hand, dis-

tribute the computational burden, only require local/partial in-

formation of the system, can mitigate problems due to flaws

in communication, and can maintain privacy. One distributed

control problem, multi-agent consensus, has found many appli-

cations in computer science, sensor networks, and multi-vehicle

coordination problems such as rendezvous, formation control,

cooperative search, attitude alignment, and flocking [1,2]. In these

problems, there is a communication network with directed infor-

mation sharing, and the objective is to achieve consensus among

all of the agents by performing local control actions using only

local information as feedback.

Many distributed control approaches have been studied, but

in this work, we focus on distributed model predictive control

(MPC). MPC is an optimal control approach that performs an

open-loop optimization at each time step in order to find a
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sequence of future control actions and corresponding predic-
tions of the future states [3,4]. Distributed MPC involves multiple
agents each solving a local MPC problem in order to determine
a local action to take with the goal of achieving desired global
behavior (see, e.g., [4–7]). Distributed MPC has been used in nu-
merous applications; several examples include chemical process
control for a four-tank system [8,9], power system load-frequency
control [10] and automatic generation control [11], and vehicle
platooning [12].

MPC schemes often assume full state feedback, but output-
feedback approaches must be considered in many practical ap-
plications where the full state is not known or is not available
for feedback. Several output-feedback approaches for multi-agent
consensus exist [13–16]. However, fewer results are available for
distributed output-feedback MPC; in fact, the authors of [6] high-
lighted output-feedback MPC as a direction for future work. When
considering linear systems, distributed MPC approaches can in-
clude an observer, such as a Kalman filter [17,18] or Luenberger
observer [19], for (decentralized) state estimation. In this work,
we propose a distributed output-feedback MPC approach that
employs moving horizon estimation (MHE) [20], explicitly han-
dles input constraints, and is robust to worst-case disturbances
and measurement noise.

Specifically, in this work, we present a distributed output-
feedback MPC approach for achieving multi-agent consensus for
agents with linear discrete-time dynamics. We consider a
strongly connected graph structure for the communication of

https://doi.org/10.1016/j.sysconle.2019.04.005
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the agents and specifically investigate leader–follower consen-
sus [21]. We extend results for the estimation and control ap-
proach proposed in [22,23], which simultaneously solves MHE
and MPC problems as a single min–max optimization problem,
to the distributed multi-agent consensus problem. In order to
do this, we use the concept of local neighborhood error, as
in [24,25], and assume that only partial noisy measurements of
this local error are available for feedback. In addition to these
partial local noisy measurements, we only assume that each agent
has knowledge of its own dynamics and the dynamics of its
neighbors, and it communicates past and future computed inputs
only to its neighbors. In this way, each agent only has access to
local information to perform simultaneous state estimation and
control computation at each time step. Communication of state
estimates and full input trajectories is common in distributed
MPC approaches, and depending on the algorithm used, this data
may be communicated multiple times within each time step to
iteratively converge to a solution [6].

Under appropriate local controllability and observability as-
sumptions, we show that the local neighborhood tracking error
for each agent converges to a small value in the presence of
input disturbances and noise. We combine this result with re-
sults from [24], which shows that the group consensus error can
be made arbitrarily small by decreasing the local neighborhood
tracking errors, in order to prove that the group consensus error
is bounded. Thus, we prove practical multi-agent consensus in the
presence of input disturbances and measurement noise.

The remainder of the paper is organized as follows. Next we
introduce some notation used throughout the paper. The problem
is formulated in Section 2, the proposed estimation and control
approach is described in Section 3, the main results are given
in Section 4, a numerical example is provided in Section 5, and
finally, conclusions are discussed in Section 6.

Notation. We denote the set of real numbers as R, the set of
non-negative integers as Z≥0, and by Z

b
a the set of consecutive

integers {a, . . . , b}. Given a discrete-time signal z : Z≥0 → R
nz

and two times t0, t ∈ Z≥0 with t0 ≤ t , we denote by zt0:t the
sequence {zt0 , zt0+1, . . . , zt}. With a slight abuse of notation, we
write zt0:t ∈ Z to mean that each element of zt0:t belongs to
the set Z . Finally, given a matrix R ∈ R

nz×nz and denoting the
transpose of zt as z⊤

t , we denote by ‖zt‖
2
R the operation z⊤

t Rzt .

2. Problem formulation

We consider the problem of achieving consensus, or synchro-
nization, of N + 1 agents. One agent is the leader, and N agents
utilize only local information to compute a local control action in
order to achieve consensus with the leader. We label the leader as
agent 0 and model its dynamics as a linear discrete-time system
without control given as

x0t+1 = Ax0t ,

where x0t ∈ R
nx denotes the leader’s state at time t , and A ∈

R
nx×nx is the system matrix that captures the leader’s dynamics.

In general, these dynamics can be stable or unstable and can
generate a large class of useful command trajectories for multi-
agent systems. We model every other agent i ∈ I := {1, 2, . . . ,N}
as a linear discrete-time system with dynamics given by

xit+1 = Axit + Biu
i
t + Did

i
t , (1)

where xit ∈ R
nx denotes the state of agent i at time t , ui

t ∈ R
nu

denotes the control input of agent i at time t , which is constrained
to belong to the set Ui ⊂ R

nu , and dit ∈ R
nd denotes the

unmeasured disturbance that agent i is subjected to at time t ,
which belongs to the set Di ⊂ R

nd . All of the agents have the same

system matrix A ∈ R
nx×nx , but each agent i may have different

input matrices Bi ∈ R
nx×nu and Di ∈ R

nx×nd , which allows for
inputs and disturbances of agents with different capabilities to
affect their states in different ways.

The objective is to design distributed control inputs ui
t , using

only local information, in order to achieve consensus between
every agent and the leader, that is, for all i ∈ I, limt→∞ ‖xit −
x0t ‖ = 0. In the presence of input disturbances and measurement
noise, it may not be possible to drive this limit to 0, so, instead,
we try to bound it by a small value β , i.e., limt→∞ ‖xit − x0t ‖ ≤ β ,
thereby achieving practical consensus.

2.1. Graphs, error dynamics, and consensus

Let G be a directed graph (digraph) defined as the pair G =
(V , E) with a nonempty finite set of N vertices V = {v1, v2,

. . . , vN}, one for each non-leader agent, and a set of edges E ⊆
V×V , denoting communication links. We assume that G is simple,
i.e., it contains no repeated edges and (vi, vi) 6= E, ∀i (no self-
loops). The connectivity matrix E is defined such that E = [eij]
with eij > 0 if (vj, vi) ∈ E and eij = 0 otherwise. The set of
neighbors of agent i is Ni = {vj : (vj, vi) ∈ E}. A directed path is
a sequence of vertices, e.g., v1, v2, . . . , vr , such that (vi, vi+1) ∈ E ,
i ∈ {1, 2, . . . , r − 1}. A directed tree is a connected digraph in
which every vertex except one, called the root, has in-degree
equal to one. A digraph is said to contain a spanning tree if a
subset of the edges form a directed tree. A digraph is said to be
strongly connected if every vertex is the root of a spanning tree.
Lastly, consider a vertex for the leader agent v0 that is connected
to a small percentage of the vertices in G.

To study the consensus problem on graphs, we define a local
neighborhood tracking error [24,25], denoted as εi

t ∈ R
nε for each

agent i at time t , as

εi
t =

∑

j∈Ni

eij(x
j
t − xit ) + gi(x

0
t − xit ), (2)

where gi ≥ 0 is the pinning gain of agent i, which is nonzero
only if the vertex vi is connected to the leader’s vertex v0. The
dynamics of the local neighborhood tracking error, for every

agent i ∈ I, are given as follows:

εi
t+1 = Aεi

t − (wi + gi)(Biu
i
t + Did

i
t )

+
∑

j∈Ni

eij(Bju
j
t + Djd

j
t ) (3a)

yit = Ciε
i
t + ni

t , (3b)

where wi =
∑

j∈Ni
eij is the weighted in-degree of vertex vi,

and yit ∈ R
ny denotes the measured output of agent i at time

t subjected to the measurement noise ni
t , which belongs to the

set Ni ⊂ R
ny . This measured output depends on the states of

agent i and its in-neighbors and can be computed either by having
each agent take a local measurement of its own state and sending
that measurement to its out-neighbors at every time t or by
taking local measurements of the difference between the states
of neighboring agents.

If we define the weighted in-degree matrix as W = diag{wi},
then the Laplacian matrix L corresponding to the digraph G is
defined as L = W − E. If we also define G = diag{gi}, then the
vector of local neighborhood tracking errors for all agents at time
t is given by

εt = −((L + G) ⊗ Inx )xt + ((L + G) ⊗ Inx )x
0
t , (4)

where the global state vector at time t is xt = [x1t
⊤
, x2t

⊤
, . . . ,

xNt
⊤
]⊤, the vector of local neighborhood tracking errors at time

t is εt = [ε1
t

⊤
, ε2

t

⊤
, . . . , εN

t

⊤
]⊤, x0t = (1 ⊗ Inx )x

0
t , and 1 is the
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N-vector of ones. The symbol ⊗ denotes the Kronecker product,
and Inx denotes the identity matrix with dimensions nx × nx.

Defining the global disagreement (group consensus error) vec-
tor [1,24] at time t as

ηt = (xt − x0t ) ∈ R
nxN , (5)

we can re-write (4) as εt = −((L+G)⊗Inx )ηt . The following result
from [24] provides a bound for the size of the group consensus
error ηt .

Lemma 1 ([24]). If (L + G) is nonsingular, then

‖ηt‖ ≤ ‖εt‖/σ (L + G), (6)

where σ (L + G) denotes the smallest singular value of (L + G).

Proof. Since (L + G) is nonsingular, σ (L + G) 6= 0, and (4) and
(5) imply (6). �

As stated in [24], if the digraph G contains a spanning tree, and
gi 6= 0 for at least one root vertex i, then (L + G) is nonsingular.
This result implies that the group consensus error can be made
arbitrarily small by driving the local neighborhood tracking errors
to a small value.

3. Estimation and control approach

With the main objective being practical consensus of the
group of agents, the control objective for each agent is to mini-
mize its local neighborhood tracking error given actuation con-
straints and only output-feedback information. Therefore, each
agent must estimate its local neighborhood tracking error and
compute control signals that minimize future predicted errors.
To do this, we propose an approach that formulates and solves
MHE and MPC optimization problems as a single min–max opti-
mization problem, which was proposed for centralized problems
in [22,23].

Specifically, each agent’s control objective is to select the se-
quence of future control signals ui

t:t+T−1 ∈ Ui, so as to minimize
a finite-horizon criterion of the form

J it (ε
i
t−L, u

i
t−L:t+T−1, d

i
t−L:t+T−1, y

i
t−L:t ) :=

t+T−1
∑

s=t

‖εi
s‖

2

Q i + ‖εi
t+T‖

2

Q
i +

t+T−1
∑

s=t

‖ui
s‖

2

Riu

−

t
∑

s=t−L

‖ni
s‖

2

Rin
−

t+T−1
∑

s=t−L

‖dis‖
2

Ri
d

(7)

under worst-case assumptions on the unknown initial local
neighborhood tracking error εi

t−L, unmeasured disturbances dis,
and measurement noise ns, subject to constraints on individual
variables and those imposed by the system dynamics and mea-
surements ys collected up to the current time t . Therefore, the lo-
cal performance criterion (7) depends on agent i’s unknown initial
local neighborhood tracking error εi

t−L, unknown disturbance in-

put sequence dit−L:t+T−1, measured output sequence yit−L:t ,

(known) past control inputs ui
t−L:t−1 that have already been ap-

plied, and future control inputs ui
t:t+T−1 that still need to be

selected. The parameter T ∈ Z>0 is the forward prediction and
control horizon, L ∈ Z>0 is the backward estimation horizon, Q i ∈
R

nε×nε is a positive semidefinite matrix weighting the local neigh-

borhood tracking error, Q
i

∈ R
nε×nε is a positive semidefinite

matrix weighting the error at the end of the prediction horizon,
and Ri

u ∈ R
nu×nu , Ri

n ∈ R
ny×ny , and Ri

d ∈ R
nd×nd are positive

definite matrices that weight the control input, measurement
noise, and input disturbance, respectively, for each agent i ∈ I.

The last two terms on the right-hand-side of (7) are included to
penalize the maximizer for choosing large (unlikely) values for ns

and ds, respectively.

Remark 1 (MHE ‘‘arrival cost’’). In the MHE literature (see, e.g.,
[20]), it is common to include an additional term in the optimiza-
tion criterion, often called the ‘‘arrival cost’’, that can be used to
account for the measurements collected before time t − L. Our
results do not need such a term, but instead they require the past
horizon L to be ‘‘sufficiently large’’ so that Assumption 2 holds. �

3.1. Finite-horizon online optimization

We formulate the combined MPC/MHE problem for each agent
i ∈ I as a finite-horizon min–max optimization problem, to be
solved at each time t , of the form

min
û
i

max
ε̂
i,d̂

i
J it (ε̂

i
, ui, û

i
, d̂

i
, y i) (8)

with cost function J it (·) as defined in (7) and subject to

ε̂i
s+1|t = Aε̂i

s|t − (wi + gi)(Biu
i
s + Did̂

i
s|t )

+
∑

j∈Ni

eij(Bju
j
s + Djd̂

j∗
s|t ), ∀s ∈ Z

t−1
t−L (9a)

ε̂i
s+1|t = Aε̂i

s|t − (wi + gi)(Biû
i
s|t + Did̂

i
s|t )

+
∑

j∈Ni

eij(Bjû
j∗
s|t + Djd̂

j∗
s|t ), ∀s ∈ Z

t+T−1
t (9b)

n̂i
s|t = Ciε̂

i
s|t − yis ∈ Ni, ∀s ∈ Z

t
t−L (9c)

d̂is|t ∈ Di, ∀s ∈ Z
t+T−1
t−L (9d)

ûi
s|t ∈ Ui, ∀s ∈ Z

t+T−1
t , (9e)

where the following shorthand notation has been introduced:

û
i

:= ûi
t:t+T−1|t , d̂

i
:= d̂it−L:t+T−1|t , ε̂

i
:= ε̂i

t−L|t , u
i := ui

t−L:t−1,

y i := yit−L:t . The subscript ·|t denotes that the variable is com-
puted by solving the MPC/MHE optimization at time t . The se-

quence of control inputs that minimizes (8) is defined as û
i∗

:=
ûi∗
t:t+T−1|t ∈ Ui. Similarly, we define the variables that maximize

(8) as d̂
i∗

:= d̂i∗t−L:t+T−1|t ∈ Di and ε̂
i∗

:= ε̂i∗
t−L|t . These can be

thought of as ‘‘worst-case’’ estimates of the past and future dis-
turbance variables and initial local neighborhood tracking error,
respectively.

The constraints (9a)–(9b) ensure that the local neighborhood
error dynamics in (3a) are satisfied. These constraints depend

on the solutions of agent i’s neighbors, i.e., û
j∗

and d̂
j∗

for all
j ∈ Ni. Constraint (9c) makes sure the output equation in (3b) and
constraint on the measurement noise are satisfied, and (9d) and
(9e) enforce constraints on the disturbance and control inputs,
respectively.

The optimization (8) is repeated at each time step t , and, for
every agent, we use as the control input the first element of the

sequence û
i∗

that minimizes (8), leading to the following control
law:

ui
t = ûi∗

t|t , ∀t ∈ Z≥0. (10)

More details on this combined MPC/MHE approach can be found
in [22,23], and its application for adaptation and learning of
systems with parametric uncertainty is discussed in [26].

3.2. Distributed implementation

In this approach, a cooperative, communication-based dis-
tributed algorithm, similar to those considered in, e.g., [27], may
be used to iteratively find a solution to (8). In this way, at each
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time step t , each agent i computes a solution and communicates
that solution to its neighbors multiple times in order to converge
to a solution to (8). Specifically, within each time step, for each
iteration p, every agent i ∈ I has knowledge of its neighbors’

solutions d̂
j∗(p−1)
t−L:t+T−1|t ∈ Dj and û

j∗(p−1)
t:t+T−1|t ∈ Uj from iteration p − 1

and solves the following optimization:

min
û
i(p)

max
ε̂
i(p),d̂

i(p)
J̄ it (ε̂

i(p)
, ui, û

i(p)
, d̂

i(p)
, y i) (11)

with the new local cost function J̄ it (·), which should be related to

(7), and subject to

ε̂
i(p)
s+1|t = Aε̂

i(p)
s|t − (wi + gi)(Biu

i
s + Did̂

i(p)
s|t )

+
∑

j∈Ni

eij(Bju
j
s + Djd̂

j∗(p−1)
s|t ), ∀s ∈ Z

t−1
t−L (12a)

ε̂
i(p)
s+1|t = Aε̂

i(p)
s|t − (wi + gi)(Biû

i(p)
s|t + Did̂

i(p)
s|t )

+
∑

j∈Ni

eij(Bjû
j∗(p−1)
s|t + Djd̂

j∗(p−1)
s|t ), ∀s ∈ Z

t+T−1
t (12b)

n̂
i(p)
s|t = Ciε̂

i(p)
s|t − yis ∈ Ni, ∀s ∈ Z

t
t−L (12c)

d̂
i(p)
s|t ∈ Di, ∀s ∈ Z

t+T−1
t−L (12d)

û
i(p)
s|t ∈ Ui, ∀s ∈ Z

t+T−1
t (12e)

with the new notation û
i(p)

:= û
i(p)
t:t+T−1|t , d̂

i(p)
:= d̂

i(p)
t−L:t+T−1|t ,

ε̂
i(p)

:= ε̂
i(p)
t−L|t . We define the sequence of control inputs that

minimizes (11) as û
i∗(p)

:= û
i∗(p)
t:t+T−1|t ∈ Ui and the variables that

maximize (11) as d̂
i∗(p)

:= d̂
i∗(p)
t−L:t+T−1|t ∈ Di and ε̂

i∗(p)
:= ε̂

i∗(p)
t−L|t .

Definition 1 (Convergent Distributed Algorithm).We say that a dis-
tributed algorithm for this approach is convergent if the following

holds: Given ρi := ‖û
i∗(p)

− û
i∗(p−1)

‖2 and a scalar tolerance δ,
if each time step t is long enough for the agents to iterate to
convergence such that ρi < δ, for all agents i ∈ I and a small
δ, then in the limit as p → ∞, ρi → 0, and the solution to (11)
converges to that of (8). �

Any distributed algorithm that satisfies Definition 1 can be
implemented, and the results in the remainder of the paper will
hold.

Remark 2 (Communication and Computation). With simultaneous
state estimation and control computations, more information
may be required to be shared among agents than, e.g., in an
approach using state feedback. However, depending on the algo-
rithm used, this approach may require more or less information
sharing and computation than other approaches. For instance,
in the cooperative distributed MPC with output-feedback ap-
proaches in [17,18], information is shared multiple times, and
both distributed state estimation and MPC are iteratively solved,
within a single time step. Also, in other sequential or iterative dis-
tributed MPC approaches (see, e.g., [6,28]), full input trajectories
are shared among multiple neighbors several times within a time
step. Furthermore, we consider a directed communication graph,
so less data is communicated compared to an undirected graph.
When communication or computation capabilities of the agents
are limited, rather than iteratively solving (11) and implementing
control law (10) at each time step t , multiple elements of the

sequence û
i∗

may be implemented while iteratively solving (11)
to find solutions for a future time step. �

4. Main results

In this section, we show that practical group consensus of all
agents i ∈ I can be achieved using the proposed distributed
MPC/MHE approach. First, we present necessary assumptions.

4.1. Assumptions

Assumption 1. For all i ∈ I, there exists a saddle-point solution

to the min–max optimization (8). Specifically, for every time t ∈
Z≥0, past control input sequence ui ∈ Ui, and past measured

output sequence y i, there exist a finite scalar J i∗t ∈ R, a future

control input sequence ui∗ ∈ Ui, a disturbance sequence di∗ ∈ Di,

and a noise sequence ni∗ ∈ Ni, such that

J i∗t = J it (ε̂
i∗
, ui, û

i∗
, d̂

i∗
, y i) (13a)

= max
ε̂
i,d̂

i
J it (ε̂

i
, ui, û

i∗
, d̂

i
, y i) (13b)

= min
û
i

J it (ε̂
i∗
, ui, û

i
, d̂

i∗
, y i). � (13c)

If we define A := A, B := −(wi + gi)Bi, and Di := −(wi + gi)Di,

then the constraints (9a)–(9b) can be re-written as

ε̂i
s+1|t = Aε̂i

s|t + Biu
i
s + Did̂

i
s|t + hi

s, ∀s ∈ Z
t−1
t−L (14a)

ε̂i
s+1|t = Aε̂i

s|t + Biû
i
s|t + Did̂

i
s|t + hi

s, ∀s ∈ Z
t+T−1
t (14b)

where hi
s =

∑

j∈Ni
eij(Bju

j
s + Djd

j
s). Then the optimization in

(8) looks just like a classic affine-quadratic zero-sum dynamic

game [29] with forward and backward horizons. Thus, since we

consider linear systems and quadratic costs, Assumption 1 is

satisfied if the system is observable and the weighting matrices

in (7) are chosen such that Q i ≥ 0, Q
i
≥ 0, Ri

u > 0, and Ri
n > 0

and Ri
d > 0 are sufficiently large [30].

Assumption 2 (Observability). For all i ∈ I, there exists a bounded

set Npre ⊂ R
n such that, for every time t ∈ Z≥0, every error

sequence ε̂i
t−L:t , every disturbance sequence d̂it−L:t ∈ Di, and every

noise sequence n̂i
t−L:t ∈ Ni that are compatible with the applied

control input ui
s, s ∈ Z≥0, and the measured output yis, s ∈ Z≥0, in

the sense that, for all s ∈ {t − L, t − L + 1, . . . , t − 1},

ε̂i
s+1 = Aε̂i

s + Biu
i
s + Did̂

i
s + hi

s, (15a)

yis = Ciε̂
i
s + n̂i

s, (15b)

there exist a ‘‘predecessor’’ error estimate ε̂i
t−L−1, disturbance

estimate d̂it−L−1 ∈ Di, and noise estimate n̂t−L−1 ∈ Npre such that

(15a)–(15b) also hold for time s = t − L − 1. �

This assumption is satisfied if the error dynamics (3) are

observable and the set Npre is chosen sufficiently large [23].

Assumption 3 (ISS-Control Lyapunov Function). The terminal cost

‖εi
t‖

2

Q
i acts as an input-to-state-stability (ISS) control Lyapunov

function in the sense that, for all i ∈ I and every t ∈ Z≥0, εi
t ,

there exist a control ui
t ∈ Ui and weighting matrices Q

i
, Q i, Ri

u,
and Ri

d such that, for all dit ∈ Di,

‖εi
t+1‖

2

Q
i − ‖εi

t‖
2

Q
i ≤ −‖εi

t‖
2
Q i − ‖ui

t‖
2

Riu
+ ‖dit‖

2

Ri
d

. � (16)

Assumption 3 requires the terminal cost to be a control Lya-

punov function for the closed-loop [3], which is a common as-

sumption in MPC. Without dit , the terminal cost could be viewed

as a control Lyapunov function that decreases along system tra-

jectories for an appropriate control input ui
t [31]. With dit , the

terminal cost should be viewed as an ISS-control Lyapunov func-

tion that satisfies an ISS condition for the disturbance input dit
and an appropriate control input ui

t [32].

Given these three assumptions, we are now ready to present

the main results.
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4.2. Practical stability/consensus

Theorem 1 (Local Error Bound). Suppose that Assumptions 1, 2, and

3 hold. Along any trajectory of the closed-loop system defined by the

error dynamics (3) and the control law (10), we have that

‖εi
t‖

2

Q i ≤ J i∗L − ‖ui
t‖

2

Riu
+

t−L−1
∑

s=0

‖d̃is‖
2

Ri
d

+

t−L−1
∑

s=0

‖ñi
s‖

2

Rin

+

t
∑

s=t−L

‖ni
s‖

2

Rin
+

t
∑

s=t−L

‖dis‖
2

Ri
d

, ∀t ∈ Z≥L, (17)

for appropriate sequences d̃i0:t−L−1 ∈ Di, ñ
i
0:t−L−1 ∈ Npre.

Proof. The proof of Theorem 1 follows the proof of Theorem 1

in [23] with the particular cost function (7), the local dynamics

(14), Assumptions 1, 2, and 3, and the result in Lemma 2. The full

proof is given in Appendix. �

This bound depends on the value of the local cost function

J i∗L at time L, the actual past noise and disturbance sequences

ni
t−L:t and dit−L:t , respectively, and the terms

∑t−L−1
s=0 ‖d̃is‖

2

Ri
d

and
∑t−L−1

s=0 ‖ñi
s‖

2

Rin
that can be thought of as the ‘‘arrival cost’’ that ap-

pears in the MHE literature to capture the quality of the estimate

at the beginning of the current estimation window [20].

The bound in (17) will be finite in the case of ‘‘vanishing’’

future noise and disturbance signals, in the sense that

∞
∑

s=t−L

‖ni
s‖

2

Rin
< ∞,

∞
∑

s=t−L

‖dis‖
2

Ri
d

< ∞, (18)

or when exponentially time-weighted functions of the noise and

disturbance signals are employed in the criterion (7). For more

details, see [23].

Remark 3. The bound on the local neighborhood tracking error

in (17) can be used to find a bound on the size of the group

consensus error. Denoting the right-hand-side of (17) as αi
t , and

choosing Q i ≥ Inε , we get the inequality

‖εi
t‖ ≤ ‖εi

t‖Q i ≤
(

αi
t

)1/2
.

Then, utilizing the triangle inequality, we can derive a bound on

the size of the vector of local neighborhood tracking errors as

‖εt‖ ≤
∑

i∈I

‖εi
t‖ ≤

∑

i∈I

(

αi
t

)1/2
. � (19)

Corollary 1 (Group Practical Stability/Consensus). Suppose that As-

sumptions 1, 2, and 3 hold. Then, given the state-space model (1),

the local neighborhood error dynamics (3), and the control law (10),

for all i ∈ I, the size of the group consensus error at time t ∈ Z≥0

is bounded as follows:

‖ηt‖ ≤

∑

i∈I

(

αi
t

)1/2

σ (L + G)
. (20)

Proof. The proof follows directly from the result in (6) and the

bound in (19). �

Therefore, the group consensus error is bounded, and the

agents achieve practical consensus in the presence of unmeasured

disturbances and measurement noise when using the distributed

control law (10).

Fig. 1. Graph communication structure with four agents. Agent 0 is the leader.

5. Numerical example

Fig. 1 depicts the strongly connected graph considered in
this example. The objective is for agents 1, 2, and 3 to achieve
consensus with the leader agent 0 by using the distributed esti-
mation and control approach proposed in Section 3, while being
subjected to unmeasured input disturbances and measurement
noise.

The matrices and weights defining each agent’s dynamics, as
in (1), and local neighborhood tracking error dynamics, as in (3),
are given as

A =

[

0 1
−1 0

]

, B1 =
[

2 1
]⊤

,

B2 =
[

1 −1
]⊤

, B3 =
[

2 −2
]⊤

,

D0 = B0, D1 = B1, D2 = B2, D3 = B3,

C1 = C3 =
[

0 1
]

, C2 =
[

1 0
]

,

g1 = 2, g2 = g3 = 0, wi = 1 for all i, and eij = 1
for all i and j. Therefore, the agents’ dynamics are unstable,
and only partial, noisy measurements of the local neighborhood
tracking errors are available for feedback. The actual noise and
disturbances were normally distributed random variables given
as ni

t ∼ N (0.05, 0.12) and dit ∼ N (0, 0.032), respectively, for all
i ∈ I and all t ∈ Z≥0.

A distributed implementation, as discussed in Section 3.2, was
used with J̄ it = J it as defined in (7). The forward and backward
horizons were chosen as T = 5 and L = 5, respectively. The
other parameters and constraint sets included in optimization

(11) were chosen as Q i = 1, Q
i
= 1, Ri

u = 1, Ri
d = 100, Ri

n = 1000,
Ui := {ui

t ∈ R : −0.5 ≤ ui
t ≤ 0.5}, Di := {dit ∈ R : −0.1 ≤

dit ≤ 0.1}, and Ni := R for all i ∈ I. The tolerance described in
Definition 1 was chosen as δ = 10−6.

Figs. 2, 3, and 4 show the results. Fig. 2 shows that the
states of all agents converge close to those of the leader agent
0; therefore practical consensus is achieved. Fig. 3 shows the
distributed control actions, implemented according to (10), that
each agent applied, as well as the actual unmeasured distur-
bances and noise that each agent was subjected to. Finally, Fig. 4
shows the local neighborhood tracking errors for each agent;
these errors converge to a small value, so the agents achieve
practical consensus.

6. Conclusions and future work

We presented a distributed output-feedback model predictive
control approach for achieving consensus in multi-agent systems.
The agents only have knowledge of local information determined
by a communication network modeled as a directed graph. Each
agent computes a local control input by solving a min–max op-
timization based on the output-feedback measurement of its
neighborhood tracking error. Using this approach, we were able
to prove a bound on the size of the group consensus error, thereby
ensuring practical consensus in the presence of unmeasured input
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Fig. 2. The states xt (1) and xt (2) of all agents converge close to those of the

leader, thereby achieving practical consensus.

Fig. 3. ut applied, actual dt , and actual nt for all three agents.

Fig. 4. Local neighborhood tracking errors, εt (1) and εt (2), for all three agents.

disturbances and measurement noise. A numerical example was
given showcasing these results.

In future work, an example of a provably convergent dis-
tributed algorithm will be developed. Furthermore, the results
could be extended for the case of nonlinear dynamics, or a model-
free approach could be considered that, for instance, includes a
reinforcement learning algorithm.
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Appendix

The proof of Theorem 1 follows very closely the proof of
Theorem 1 in [23].

Before proving Theorem 1 (practical stability of the error dy-
namics (3)), we introduce a key technical lemma that establishes
a monotonicity-like property of the sequence {J i∗t : t ∈ Z≥0}
computed along solutions to the closed loop.

Lemma 2. Suppose that Assumptions 1, 2, and 3 hold. Along any

trajectory of the closed-loop system defined by the error dynamics

(3) and the control law (10), the sequence {J i∗t : t ∈ Z≥0}, whose

existence is guaranteed by Assumption 1, satisfies

J i∗t+1 − J i∗t ≤ ‖ñi
t−L‖

2

Rin
+ ‖d̃it−L‖

2

Ri
d

, ∀t ∈ Z≥L (21)

for appropriate sequences d̃i0:t−L−1 ∈ Di, ñ
i
0:t−L−1 ∈ Npre. �

The following notation will be used in the remainder of the
proof to denote the solution to process (3): given a past control
input sequence, as previously denoted ui, and a past disturbance
input sequence dit−L:t−1, we denote by

ϕi
t (t − L, εi

t−L, u
i, dit−L:t−1)

the solution εi
t of the system (3) at time t for the given inputs and

initial condition εi
t−L.

Proof of Lemma 2. From (13c) in Assumption 1 at time t + 1,
we conclude that there exist an initial condition ε̂i∗

t−L+1|t+1 and

sequences d̂i∗t−L+1:t+T |t+1 ∈ Di, n̂
i∗
t−L+1:t+1|t+1 ∈ Ni such that

J i∗t+1 = min
ûi
t+1:t+T |t+1

J it+1(ε̂
i∗
t−L+1|t+1, u

i
t−L+1:t ,

ûi
t+1:t+T |t+1, d̂

i∗
t−L+1:t+T |t+1, y

i
t−L+1:t+1). (22)

From Assumption 3 at time t + T , with dit+T = d̂i∗t+T |t+1 and

εi
t+T = ε̂i∗

t+T |t+1 := ϕi
t+T (t − L + 1, ε̂i∗

t−L+1|t+1,

ui
t−L+1:t , û

i∗
t+1:t+T |t+1, d̂

i∗
t−L+1:t+T |t+1),

we conclude that there exists a control ũi
t+T ∈ Ui such that

‖ε̂i∗
t+T+1|t+1‖

2

Q
i − ‖ε̂i∗

t+T |t+1‖
2

Q
i
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+‖ε̂i∗
t+T |t+1‖

2
Q i + ‖ũi

t+T‖
2

Riu
− ‖d̂i∗t+T |t+1‖

2

Ri
d

≤ 0. (23)

Moreover, we conclude from Assumption 2, that there exist vec-
tors ε̃i

t−L, d̃
i
t−L ∈ Di, ñ

i
t−L ∈ Npre such that

ε̂i∗
t−L+1|t+1 = Aε̃i

t−L + Biu
i
t−L + Did̃

i
t−L + hi

t−L, (24)

yit−L = Ciε̃
i
t−L + ñi

t−L,

Using now (13b) in Assumption 1 at time t , we conclude that

there also exist a finite scalar J i∗t ∈ R and a sequence û
i∗

∈ Ui

such that

J i∗t = max
ε̂
i,d̂

i
J it (ε̂

i
, ui, û

i∗
, d̂

i
, y i). (25)

Going back to (22), we then conclude that

J i∗t+1 ≤ J it+1(ε̂
i∗
t−L+1|t+1, u

i
t−L+1:t , û

i∗
t+1:t+T−1|t , ũ

i
t+T ,

d̂i∗t−L+1:t+T |t+1, y
i
t−L+1:t+1) (26)

because the minimization in (22) with respect to ûi
t+1:t+T |t+1 ∈ Ui

must lead to a value no larger than what would be obtained by
setting ûi

t+1:t+T−1|t+1 = ûi∗
t+1:t+T−1|t and ûi

t+T |t+1 = ũi
t+T .

Similarly, we can conclude from (25) that

J i∗t ≥ J it (ε̃
i
t−L, u

i, û
i∗
, d̃it−L, d̂

i∗
t−L+1:t+T−1|t+1, y

i)

= J it (ε̃
i
t−L, u

i
t−L:t , û

i∗
t+1:t+T−1|t ,

d̃it−L, d̂
i∗
t−L+1:t+T−1|t+1, y

i),

(27)

because the maximization in (25) with respect to ε̂
i
and d̂

i
must

lead to a value no smaller than what would be obtained by setting

ε̂
i
= ε̃i

t−L, d̂
i
t−L|t = d̃it−L and d̂it−L+1:t+T−1|t = d̂i∗t−L+1:t+T−1|t+1. The

last equality in (27) is obtained by applying the control law (10).
Combining (26), (27), and (24) leads to

J i∗t+1 − J i∗t

≤ J it+1

(

Aε̃i
t−L + Biu

i
t−L + Did̃

i
t−L + hi

t−L,

ui
t−L+1:t , û

i∗
t+1:t+T−1|t , ũ

i
t+T , d̂

i∗
t−L+1:t+T |t+1, y

i
t−L+1:t+1

)

− J it

(

ε̃i
t−L, u

i
t−L:t , û

i∗
t+1:t+T−1|t , d̃

i
t−L, d̂

i∗
t−L+1:t+T−1|t+1, y

i
t−L:t

)

.

(28)

A crucial observation behind this inequality is that both terms
J it+1(·) and J it (·) on the right-hand side of (28) are computed along
a trajectory initialized at time t − L with the same initial state
ε̃i
t−L and share the same control input sequence ui

t−L:t , û
i∗
t+1:t+T−1|t

and the same disturbance input sequence d̃it−L, d̂
i∗
t−L+1:t+T−1|t+1.

We shall denote this common state trajectory by ε̃i
s, s ∈ {t −

L, . . . , t + T }, and the shared control and disturbance sequences
by

d̃is := d̂i∗s|t+1, ∀s ∈ {t − L + 1, . . . , t + T − 1},

ũi
s :=

{

ui
s s ∈ {t − L, . . . , t}

ûi∗
s|t s ∈ {t + 1, . . . , t + T − 1}.

The vectors ũi
t+T and d̃it−L have been previously defined, but we

now also define d̃it+T := d̂i∗t+T |t+1, ε̃i
t+T+1 := Aε̃i

t+T + Biũ
i
t+T +

Did̃
i
t+T + hi

t+T , and ñi
s := yis − Ciε̃

i
s, s ∈ {t − L, . . . , t}. All of these

definitions enable us to express both terms J it+1(·) and J it (·) on the
right-hand side of (28) as follows:

J i∗t+1 − J i∗t ≤

t+T
∑

s=t+1

(

‖ε̃i
s‖

2

Q i + ‖ũi
s‖

2

Riu

)

+ ‖ε̃i
t+T+1‖

2

Q
i

−

t+1
∑

s=t−L+1

‖ñi
s‖

2

Rin
−

t+T
∑

s=t−L+1

‖d̃is‖
2

Ri
d

−

t+T−1
∑

s=t

(

‖ε̃i
s‖

2
Q i + ‖ũi

s‖
2

Riu

)

− ‖ε̃i
t+T‖

2

Q
i

+

t
∑

s=t−L

‖ñi
s‖

2

Rin
+

t+T−1
∑

s=t−L

‖d̃is‖
2

Ri
d

= ‖ε̃i
t+T‖

2
Q i + ‖ũi

t+T‖
2

Riu
+ ‖ε̃i

t+T+1‖
2

Q
i

−‖ε̃i
t+T‖

2

Q
i − ‖d̃it+T‖

2

Ri
d

+ ‖ñi
t−L‖

2

Rin

+‖d̃it−L‖
2

Ri
d

− ‖ε̃i
t‖

2
Q i − ‖ũi

t‖
2

Riu
− ‖ñi

t+1‖
2

Rin
.

Eq. (21) follows from this, (23), and the fact that ‖ε̃i
t‖

2
Q i , ‖ũi

t‖
2

Riu

and ‖ñi
t+1‖

2

Rin
are all non-negative. �

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Using (13b) in Assumption 1, we conclude
that

J i∗t = max
ε̂
i,d̂

i
J it (ε̂

i
, ui, û

i∗
, d̂

i
, y i)

≥ J it (ε
i
t−L, u

i, û
i∗
, dit−L:t , 0t+1:t+T−1, y

i)

= J it (ε
i
t−L,u

i
t−L:t , û

i∗
t+1:t+T−1|t ,d

i
t−L:t , 0t+1:t+T−1,y

i).

The first inequality results from the maximum leading to a value

no smaller than what would have been obtained by setting ε̂
i

equal to the true state εi
t−L, setting d̂it−L:t equal to the true (past)

disturbances dit−L:t and setting d̂it+1:t+T−1 equal to zero. The final
equality results from applying the control law (10).

To proceed, we replace J it (·) by its definition in (7), while
dropping all ‘‘future’’ positive terms in ‖εi

s‖
2

Q i , ‖ui
s‖

2

Riu
, for s > t ,

and ‖εi
t+T‖

2

Q
i . This leads to

J i∗t ≥ ‖εi
t‖

2

Q i + ‖ui
t‖

2

Riu
−

t
∑

s=t−L

‖ni
s‖

2

Rin
−

t
∑

s=t−L

‖dis‖
2

Ri
d

. (29)

The future controls ûi∗
t+1:t+T−1|t disappeared because we dropped

all the (positive) terms involving the value of the state for times
s > t , and the summation over future disturbances also disap-

peared since we set the sequence d̂it+1:t+T−1 to zero.
Adding both sides of (21) in Lemma 2 from time L to time t−1,

leads to

J i∗t ≤ J i∗L +

t−L−1
∑

s=0

‖d̃is‖
2

Ri
d

+

t−L−1
∑

s=0

‖ñi
s‖

2

Rin
, ∀t ∈ Z≥L. (30)

The bound in (17) follows directly from (29) and (30). �
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