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We improve theChebotarev variant of theBrun–Titchmarsh theoremprovenbyLagarias,

Montgomery, and Odlyzko using the log-free zero density estimate and zero repulsion

phenomenon for Hecke L-functions that were recently proved by the authors. Our result

produces an improvement for the best unconditional bounds toward two conjectures of

Lang and Trotter regarding the distribution of traces of Frobenius for elliptic curves and

holomorphic cuspidal modular forms. We also obtain new results on the distribution of

primes represented by positive-definite integral binary quadratic forms.

1 Introduction and Statement of Results

Let π(x;q,a) denote the number of primes p ≤ x such that p ≡ a (mod q). The Siegel–

Walfisz theorem states that if (a,q) = 1 and there exists some constant A > 0 such that

q ≤ (log x)A, then

π(x;q,a) ∼ 1

ϕ(q)
Li(x), (1.1)

where Li(x) = ∫ x
2

dt
log t ∼ x

log x . Assuming the generalized Riemann hypothesis, the range

of q extends to q ≤ x1/2−ε for any ε > 0. A sufficiently strong unconditional improvement
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4992 J. Thorner and A. Zaman

in the range of q would preclude the existence of a real Landau–Siegel zero for the L-

functions of real Dirichlet characters. Since this seems to be beyond the reach of current

techniques, it is often useful to trade asymptotic equality in (1.1) for upper and lower

bounds of the correct asymptotic order which hold in improved ranges of x.

The first lower bound of this form follows from Fogels’ improvements [6] to the

ideas of Linnik [15]. These ideas were substantially improved by Heath-Brown [7] and

Maynard [16], the latter of whom proved that if q is sufficiently large, then

π(x;q,a) � log q

ϕ(q)
√
q

x

log x
for x ≥ q8. (1.2)

(All implied constants in this article are effectively computable. Unless specifically men-

tioned otherwise, all implied constants in this paper are also absolute.) To describe

upper bounds in improved ranges of q, we define θ = (log q)/ log x. Titchmarsh [25] used

Brun’s sieve to show that if θ < 1, then

π(x;q,a) 	 1

1 − θ

x

ϕ(q) log x
. (1.3)

The implied constant can be made explicit and has been estimated by various authors.

The strongest result in this direction for all ranges of q is due to Montgomery and

Vaughan [17]; they used the large sieve inequality to prove that if θ < 1, then

π(x;q,a) ≤ 2

1 − θ

x

ϕ(q) log x
. (1.4)

Since the factor of 2 is unlikely to be improved using current techniques, many

authors have improved the θ-dependence. To summarize, if q is sufficiently large, then

π(x;q,a) ≤ (C(θ)+ o(1))

ϕ(q)

x

log x
,

where

C(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(2 − ( 1−θ
4 )

6)/(1 − θ) if 2/3 ≤ θ < 1,

8/(6 − 7θ) if 9/20 < θ < 2/3,

16/(8 − 3θ) if 1/8 < θ ≤ 9/20,

2 if 0 < θ ≤ 1/8,

(1.5)

the last line being recently proven by Maynard [16]. (See [16] and the sources contained

therein for a thorough overview of the problem.) While progress on (1.3) has typically
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 4993

followed from advances in sieve theory and exponential sums, Maynard’s proof builds

on Heath-Brown’s analysis in [7] and uses a log-free zero density estimate for Dirichlet

L-functions and careful analysis of Landau–Siegel zeros.

In this article, we consider analogous questions for the distribution of prime

ideals in the context of the Chebotarev density theorem. Let L/F be a finite Galois exten-

sion of number fields with Galois group G, and let C ⊂ G be a conjugacy class. Let DL

denote the absolute value of the discriminant of L/Q. To each prime ideal p of F that

does not ramify in L, there corresponds a certain conjugacy class of automorphisms in

Gwhich are attached the prime ideals of L lying above p. We denote this conjugacy class

by the Artin symbol [ L/F
p

]. For a fixed conjugacy class C ⊂ G, let

πC(x,L/F) := #
{
p : p unramified in L,

[
L/F

p

]
= C, NF/Qp ≤ x

}
. (1.6)

TheChebotarev density theorem, in the effective version provenbyLagarias andOdlyzko

[13], states that if x ≥ exp(10[L : Q](logDL)
2), then

πC(x,L/F) ∼ |C|
|G|Li(x). (1.7)

This subsumes many results in the distribution of primes including the distribution

of quadratic nonresidues modulo D for any D, primes in arithmetic progressions, and

prime ideals for any number field. As such, we are interested in upper and lower bounds

of πC(x,L/F) of the correct order of magnitude with an improved range of x.

A lower bound on πC(x,L/F)with the correct order of magnitude (in the x-aspect)

follows from the work of Weiss [27], which was recently made explicit by Thorner and

Zaman [24]. Let H ⊂ G be a largest abelian subgroup such that H ∩ C is nonempty, and

let K be the fixed field of H . For a character χ in the dual group Ĥ , let fχ be the conductor

of χ , and define

Q(L/K) = max{NK/Qfχ : χ ∈ Ĥ}. (1.8)

Thorner and Zaman proved that if x ≥ D694
K Q(L/K)521 + D232

K Q(L/K)367[K : Q]290[K:Q], then

πC(x,L/F) � 1

(DKQ(L/K)[K : Q][K:Q])5
x

[L : K] log x

provided that DKQ(L/K)[K : Q][K:Q] is sufficiently large. When this is applied to arith-

metic progressions (in which case L = Q(e2π i/q) for q sufficiently large and F = K = Q),
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4994 J. Thorner and A. Zaman

this yields the bound

π(x;q,a) � 1

q5

x

ϕ(q) log x
for x ≥ q521.

Up to the quality of the exponents, this is comparable to (1.2).

In analogy with (1.3), Lagarias et al. [12] proved that

πC(x,L/F) 	 |C|
|G|Li(x), log x � (logDL)(log logDL)(log log log e

20DL). (1.9)

(Serre [22] showed that e20 can be replaced with 6.) There are several large sieve inequal-

ities yielding Brun–Titchmarsh type results for counting prime integers in the ring of

integers of a number field (e.g., [10, 21]) and for counting prime ideals lying in arithmetic

progressions (e.g., [9]), but it appears that (1.9) is the only Brun–Titchmarsh type bound

that counts prime ideals with effective field dependence. While the range of x in (1.9)

is noticeably less restrictive than the range of x for which (1.7) holds, the range still

depends poorly on L; this can be prohibitive for many applications. It does not seem

to be the case that sieve methods can produce a range of x that is comparable to (1.4).

Using the log-free zero density estimate and zero repulsion results proved by Thorner

and Zaman in [24], we improve the range of x in (1.9).

Theorem 1.1. Let L/F be a Galois extension of number fields with Galois group G with

L 
= Q. Let C be any conjugacy class of G and let H be an abelian subgroup of G such

that H ∩ C is nonempty. If K is the subfield of L fixed by H and Q = Q(L/K) is given by

(1.8), then

πC(x,L/F) 	 |C|
|G|Li(x)

provided that

x � D246
K Q185 + D82

K Q130[K : Q]246[K:Q]. (1.10)

�

Remark. For the valid range of x, one can minimize the exponents of DK and Q at the

expense of a less desirable dependence on [K : Q][K:Q] and vice versa. In particular, the
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 4995

same upper bound for πC(x,L/F) holds when

x � D164
K Q123 + D55

K Q87[K : Q]68[K:Q] + D2
KQ2[K : Q]14,000[K:Q]. (1.11)

See the remarks at the end of Section 6 for details. �

Our result always gives an improvement over (1.9). Choosing H to be the cyclic

group generated by a fixed element of C, we have that D1/|H |
L ≤ DKQ ≤ D1/ϕ(|H |)

L (see [27,

Section 6]). Moreover, by the classical work of Minkowski, we have that [K : Q] 	
logDK ≤ logDL. Therefore, Theorem 1.1 holds when log x � (logDL)(log logDL), which

is a modest unconditional improvement over (1.9). However, one usually obtains a more

significant improvement. For most fields K, the bound [K : Q] 	 (logDK)/ log logDK

holds. In this case, we may take log x � log(DKQ) in Theorem 1.1. Thus Theorem 1.1

holds when log x � (logDL)/ϕ(|H |), which noticeably improves (1.9).

Building on [16], we obtain an implied constant that is essentially sharp (short

of precluding the existence of Landau–Siegel zeros) when x is sufficiently large in terms

of L/F .

Theorem 1.2. Let L/F be a Galois extension of number fields with Galois group G and

let C be any conjugacy class of G. Let H be an abelian subgroup of G such that H ∩ C is

nonempty. If K is the subfield of L fixed by H and Q = Q(L/K) is given by (1.8), then

πC(x,L/F) <
{
2 + O

(
[K : Q]x− 1

166[K:Q]+327
)} |C|

|G|Li(x)

for

x � D695
K Q522 + D232

K Q367[K : Q]290[K:Q] (1.12)

provided that DKQ[K : Q][K:Q] is sufficiently large. If any of the following conditions also

hold, then the error term can be omitted:

• There exists a sequence of number fields Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K such

that Kj+1/Kj is a normal extension for all j = 0, 1, . . . ,n− 1.

• (2[K : Q])2[K:Q]2 	 DKQ1/2.

• x � [K : Q]334[K:Q]2 . �

In the special case where L/Q is an abelian Galois extension, we may take K = Q in

Theorem 1.2. Since Q/Q is trivially a normal extension, the error term in Theorem 1.2 can
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4996 J. Thorner and A. Zaman

be omitted, and we recover Maynard’s result in (1.5) for θ ≤ 1/522. (See the remark at the

end of Section 7 for details.) Another interesting set of primes forwhich the normal tower

condition in Theorem 1.2 applies is the set of primes represented by binary quadratic

forms. Suppose Q(X ,Y) is a positive-definite primitive binary integral quadratic form

with discriminant −D. It is well known that such forms, up to SL2-equivalence, form

a group which is isomorphic to the ring class group of the imaginary quadratic field

Q(
√−D) (see, e.g., [3, Theorem 7.1]). Further, a rational prime p is represented byQ(X ,Y)

if and only if there exists a prime ideal p in Q(
√−D) such that its norm equals p and

p belongs to the corresponding class of Q(X ,Y). It follows by the Chebotarev density

theorem that

#{p ≤ x : p is represented by Q(X ,Y)} ∼ δQ
Li(x)

h(−D) as x → ∞, (1.13)

where δQ = 1/2 if Q(X ,Y) is properly equivalent to its opposite and δQ = 1 otherwise,

and h(−D) is the number of such forms of discriminant −D up to SL2-equivalence. To

obtain an upper bound for the number of such primes, we let F = Q(
√−D), and we let

L be the ring class field of the order of the discriminant −D. Thus Gal(L/F) is abelian.

Applying (1.11) and Theorem 1.2 to L/F , with C equal to the singleton conjugacy class in

G corresponding to Q(X ,Y), we obtain the following.

Corollary 1.3. Let Q(X ,Y) be a positive-definite primitive binary integral quadratic

form with discriminant −D, and let h(−D) be the number of such quadratic forms up to

SL2-equivalence. For x � D164,

#{p ≤ x : p is represented by Q(X ,Y)} 	 Li(x)

h(−D) (1.14)

with an absolute implied constant. Also, if D is sufficiently large, then for x � D695,

#{p ≤ x : p is represented by Q(X ,Y)} < 2δQ
Li(x)

h(−D) ,

where δQ = 1/2 ifQ(X ,Y) is properly equivalent to its opposite and δQ = 1 otherwise. �

Remark. Note that (1.9) also implies (1.14) in the much more restricted range x �
DO(D1/2+ε ) for any fixed ε > 0. On the other hand, Corollary 1.3 gives the range x � DO(1),

which is comparable (up to the quality of the exponent) to the range x � D1+ε predicted

by the generalized Riemann hypothesis for Hecke L-functions. �
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 4997

We use Theorem 1.1 to improve the best unconditional upper bounds for two

outstanding conjectures of Lang and Trotter [14]. Let

f (z) =
∞∑
n=1

af (n)e
2π inz (1.15)

be a holomorphic cusp form of even integralweight kf ≥ 2 and levelNf ; for simplicity, we

assume that af (n) ∈ Z for alln ≥ 1. Suppose that f does not have complexmultiplication,

that the nebentypus of f is trivial, and that f is a newform (i.e., f is a normalized

eigenform for the Hecke operators Tp for p � Nf and Up for p | Nf ). Fix a ∈ Z, and let

πf (x,a) = #{p ≤ x : af (p) = a}. (1.16)

Lang and Trotter conjectured that as x → ∞, we have that

πf (x,a) ∼ cf ,a

⎧⎨⎩
√
x(log x)−1 if kf = 2,

1 if kf ≥ 4,

where cf ,a ≥ 0 is a certain constant depending on f and a alone.

In the special case where kf = 2, Elkies [5] proved that πf (x, 0) 	Nf x
3/4. In all

other cases, Serre proved in 1981 that

πf (x,a) 	Nf

x

(log x)1+δ

for any δ < 1/4; following the ideas of Murty et al. [19], Wan [26] improved the range of

δ in 1990 to any δ < 1. This was further sharpened by Murty [20] in 1997; he proved that

πf (x,a) 	Nf

x(log log x)3

(log x)2
. (1.17)

Using Theorem 1.1, we give a modest improvement.

Theorem 1.4. Let f be a newform of even integral weight kf ≥ 2, level Nf , and trivial

nebentypus with integral coefficients. If πf (x,a) is given by (1.16), then

πf (x,a) 	Nf

x(log log x)2

(log x)2
. �

Remark. Theorem 5.1 of [20] actually claims a stronger result than (1.17), but a step in

the proof seems not to be justified. The best that the argument appears to give is what
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4998 J. Thorner and A. Zaman

we have stated above in (1.17); see Section 9 for details. Note that we recover the claimed

result [20, Theorem 5.1]. �

We also consider a different (but closely related) conjecture of Lang and Trotter

regarding the Frobenius fields of an elliptic curve. Let E/Q be an elliptic curve of con-

ductor NE without complex multiplication. For a prime p � N , let �p be the Frobenius

endomorphism of E/Fp. Defining aE(p) = p+1−#E(Fp), we have that�2
p−aE(p)�p+p = 0.

By Hasse, we know that |aE(p)| < 2
√
p, so Q(�p) in End(E/Fp) ⊗Z Q is an imaginary

quadratic field. For a fixed imaginary quadratic field k with absolute discriminant Dk,

let

πE(x,k) = #{p ≤ x : Q(�p) ∼= k}. (1.18)

Lang and Trotter conjectured that as x → ∞,

πE(x,k) ∼ cE,k

√
x

log x
,

where cE,k is a certain constant depending on E and k alone. Using the square sieve,

Cojocaru et al. [2] proved that

πE(x,k) 	NE ,k
x(log log x)13/12

(log x)25/24
.

Using Murty’s version of the Chebotarev density theorem and Serre’s method of mixed

representations (see [22]), Zywina [30] improved this bound to

πE(x,k) 	NE ,k
x(log log x)2

(log x)2
. (1.19)

Using Theorem 1.1, we establish a modest improvement to (1.19).

Theorem1.5. Let E/Q be an elliptic curve of conductorNE and let k be a fixed imaginary

quadratic number field. If πE(x,k) is defined by (1.18) then

πE(x,k) 	NE ,k
x log log x

(log x)2
. �

Remark. A similar infinite Galois extension problem is described by Theorem 10 in

Section 4.1 of [22], and Theorem 1.1 gives a similar improvement. �
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In Sections 2–5, we discuss necessary results on Hecke L-functions and provide

the analytic setup for the proofs of Theorems 1.1 and 1.2. These results are then proved

in Sections 6–8. Finally, we prove Theorems 1.4 and 1.5 in Section 9.

2 Initial Setup

2.1 Notation

For a number field F , we will use the following notation throughout:

• OF is the ring of integers of F .

• nF = [F : Q] is the degree of F/Q.

• DF = |disc (F/Q)| is the absolute value of the discriminant of F .

• NF/Q is the absolute field norm of F .

• ζF (s) is the Dedekind zeta function of F .

• p is a prime ideal of F .

• n is an integral ideal of F .

• 
F (n) is the von Mangoldt 
-function for F given by


F (n) =
⎧⎨⎩logNF/Qp if n is a power of a prime ideal p,

0 otherwise.

If it is clear from context, we will write N = NF/Q for convenience.

We also adhere to the convention that all implied constants in all asymptotic

inequalities f 	 g or f = O(g) are absolute. If an implied constant depends on a field-

independent parameter, such as ε, then we use 	ε and Oε to denote that the implied

constant depends at most on ε. All implied constants will be effectively computable.

2.2 Prime ideal counting functions

We briefly recall the definition of an Artin L-function from [18, Chapter 2, Section 2]. Let

L/F be a Galois extension of number fields with Galois group G. For each prime ideal

p of F , and a prime ideal P of L lying above p, we define the decomposition group DP

to be Gal(LP/Fp), where LP (resp. Kp) is the completion of L (resp. K) at P (resp. p). We

have a map DP to Gal(kP/kp) (the Galois group of the residue field extension), which is

surjective by Hensel’s lemma. The kernel of this map is the inertia group IP. We thus

have the exact sequence

1 → IP → DP → Gal(kP/kp) → 1.
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5000 J. Thorner and A. Zaman

The group Gal(kP/kp) is cyclic with generator x �→ xNp, where Np is the cardinality of kp.

We can choose an element σP ∈ DP whose image in Gal(kP/kp) is this generator. We call

σP a Frobenius element at P; it is well-defined modulo IP. We have that IP is trivial for

all unramified p, and for these p, σP is well-defined. For p unramified, we denote by σp

the conjugacy class of Frobenius elements at primes P above p.

Let ρ : G → GLn(C) be a representation of G, and let ψ denote its character. Let

V be the underlying complex vector space on which ρ acts, and let VIP be the subspace

of V on which IP acts trivially. We now define

Lp(s,ψ ,L/F) =
⎧⎨⎩det (In − ρ(σp)Np−s)−1 if p is unramified in L,

det (In − ρ(σP) |
V
IP Np−s)−1 if p is ramified in L.

This is well defined for all p, which allows us to define the Artin L-function

L(s,ψ ,L/F) =
∏

p

Lp(s,ψ ,L/F)

for Re{s} > 1. Now, for a conjugacy class C ⊆ G, let gC ∈ C be arbitrary. Define

ZC(s) := −|C|
|G|

∑
ψ

ψ(gC)
L′

L
(s,ψ ,L/F), (2.1)

where ψ runs over irreducible characters of G and L(s,ψ ,L/F) is the associated Artin

L-function. Note the definition of ZC(s) does not depend on the choice of gC since ψ is the

trace of the representation ρ and gC is conjugate to any other choice. By orthogonality

relations for characters (see [8, Section 3] for example),

ZC(s) =
∑

n⊆OF


F (n)�C(n)(Nn)−s, (2.2)

where �C(n) is supported on integral ideals n which are powers of a prime ideal; in

particular, for prime ideals p unramified in L and m ≥ 1,

�C(p
m) =

⎧⎨⎩1 if [ L/F
p

]m ⊆ C,

0 otherwise,
(2.3)

and 0 ≤ �C(p
m) ≤ 1 if p ramifies in L. (This discussion and definition of �C( · ) is also

contained in [12, Section 3].) For x > 1, define

ψC(x) :=
∑
Nn<x


F (n)�C(n), (2.4)
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where the sum is over integral ideals n of F . By standard arguments, this prime ideal

counting function is related to πC(x,L/F) given by (1.6). Sincewe are only interested in an

upper bound for πC(x,L/F), we give a simpler statement that suffices for our purposes.

Lemma 2.1. If x > x0 > 3, then

πC(x,L/F) ≤ ψC(x)

log x
+
∫ x

x0

ψC(t)

t log2 t
dt + O(nFx0). �

Proof. Let t > 1. We define

π̃C(t) :=
∑
Np<t

�C(p), θC(t) :=
∑
Np<t

�C(p) logNp,

where the sums are over all prime ideals p of F . First, observe that, by (2.3), the only

difference between π̃C(x) and πC(x,L/F) is the contribution from the prime ideals p of F

ramified in L. Since 0 ≤ �C(p) ≤ 1 for such prime ideals, we observe that

πC(x,L/F) ≤ π̃C(x), (2.5)

so it suffices to estimate π̃C(x). Using partial summation, we see that if 3 < x0 < x, then

π̃C(x) = θC(x)

log x
+
∫ x

x0

θC(t)

t log2 t
dt + π̃C(x0). (2.6)

Since there are at most nF prime ideals above a rational prime p, observe that

π̃C(x0) ≤
∑
p<x0

∑
p|(p)

1 ≤ nF

∑
p<x0

1 	 nFx0

log x0
	 nFx0. (2.7)

Moreover, θC(t) ≤ ψC(t) for all t > 1. Combining these observations with (2.5) and (2.6)

yields the desired result. �

2.3 Choice of weight

Let us define a weight function and describe its properties. This choice of weight can be

regarded as a smoothed version of Maynard’s weight [16, Equation (5.6)]. It will be used

to count prime ideals with norm between x1/2 and x.
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5002 J. Thorner and A. Zaman

Lemma 2.2. For any x ≥ 3, ε ∈ (0, 1/4), and positive integer � ≥ 1, select

A = ε

2� log x
.

There exists a real-variable function f (t) = f (t;x, �, ε) such that:

(i) 0 ≤ f (t) ≤ 1 for all t ∈ R, and f (t) ≡ 1 for 1
2 ≤ t ≤ 1.

(ii) The support of f is contained in the interval [ 12 − ε

log x , 1 + ε

log x ].
(iii) Its Laplace transform F(z) = ∫

R
f (t)e−ztdt is entire and is given by

F(z) = e−(1+2�A)z ·
(
1 − e(

1
2+2�A)z

−z

)(
1 − e2Az

−2Az

)�
. (2.8)

(iv) Let s = σ + it ∈ C, σ > 0 and α be any real number satisfying 0 ≤ α ≤ �. Then

|F(−s log x)| ≤ eσεxσ

|s| log x · (1 + x−σ/2) ·
(

2�

ε|s|
)α

.

(v) If s = σ + it ∈ C and σ > 0, then

|F(−s log x)| ≤ eσεxσ .

Moreover,

1/2 < F(0) < 3/4, F(−σ log x) ≤ eεxσ

σ log x
.

(vi) Let s = − 1
2 + it ∈ C. Then

|F(−s log x)| ≤ 5x−1/4

log x

(
2�

ε

)�
(1/4 + t2)−�/2. �

Remark. Our choice ismotivated by theworks ofWeiss [27, Lemma3.2] and the authors

[24, Lemma 9.1] on the least prime ideal. Namely, the weight function f depends on a

parameter � which will be chosen to be of size O(nK). This forces f to be O(nK)-times

differentiable and hence F(x + iy) will decay like |y|−O(nK ) for fixed x > 0 and |y| → ∞.

This decay rate will be necessary when applying log-free zero density estimates such as

Theorem 4.5 to bound the contribution of zeros which are high in the critical strip. �
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5003

Proof.

• For parts (i) and (ii), let 1S( · ) be an indicator function for the set S ⊆ R. For

j ≥ 1, define

w(t) := 1

2A
1[−A,A](t), g0(t) := 1[ 12−�A,1+�A](t), and gj(t) := (w ∗ gj−1)(t).

Since
∫

R
w(t)dt = 1, one can verify that f = g� satisfies (i) and (ii).

• For part (iii), observe the Laplace transform W(z) of w is given by

W(z) = eAz − e−Az

2Az
= e−Az ·

(
1 − e2Az

−2Az

)
,

and the Laplace transform G0(z) of g0 is given by

G0(z) = e−(1/2−�A)z − e−(1+�A)z

z
= e−(1+�A)z ·

(
1 − e(

1
2+2�A)z

−z

)
.

Thus (iii) follows as F(z) = G0(z) ·W(z)�.

• For part (iv), we see by (iii) and the definition of A that

|F(−s log x)| ≤ eσεxσ

|s| log x · (1 + e−σεx−σ/2)∣∣∣1 − e−2As log x

2As log x

∣∣∣�. (2.9)

To bound the above quantity, we observe that

∣∣∣1 − e−w

w

∣∣∣2 ≤
(
1 − e−a

a

)2

≤ 1 (2.10)

for w = a + ib with a > 0 and b ∈ R. This observation can be checked in a

straightforward manner. Using (2.10), it follows that

∣∣∣∣1 − e−2As log x

2As log x

∣∣∣∣� =
∣∣∣1 − e−2As log x

2As log x
|α·| 1 − e−2As log x

2As log x

∣∣∣�−α
≤
(

1 + x−2Aσ

2A|s| log x
)α

· 1 ≤
(

2�

ε|s|
)α

.

In the last step, we noted 1+x−2Aσ ≤ 2 and used the definition ofA. Combining

this with (2.9) and observing e−σε ≤ 1, we deduce the desired bound.
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5004 J. Thorner and A. Zaman

• For part (v), we see by (iii) that

|F(−s log x)| ≤
(
1

2
+ 2�A

)
eσεxσ ·

∣∣∣1 − e−( 12+2�A)s log x

( 12 + 2�A)s log x

∣∣∣ · ∣∣∣1 − e−2As log x

2As log x

∣∣∣�
≤ eσεxσ ,

where the second inequality follows from an application of (2.10) and the

observation that 1
2 + 2�A < 1

2 + ε < 1. For s = σ > 0, observe that F(−σ log x)

is real and positive. Thus, by (iii) and (2.10),

F(−σ log x) ≤ eσεxσ ·
⎛⎝1 − x−( 12+2�A)σ

σ log x

⎞⎠ ·
(
1 − x−2Aσ

2Aσ log x

)�

≤ eσεxσ

σ log x
·
(
1 − x−2Aσ

2Aσ log x

)�
≤ eσεxσ

σ log x
.

This completes the proof of all cases of (iv).

• For part (vi), we shall argue as in (iv). Rearranging (iii), notice that

|F(z)| =
∣∣∣e(− 1

2+2�A)z ·
(
1 − e−( 12+2�A)z

z

)(
1 − e−2Az

2Az

)� ∣∣∣.
If r := Re{z} > 0, then

|F(z)| ≤ e(−
1
2+2�A)r · 1 + e−( 12+2�A)r

|z| ·
(
1 + e−2Ar

2A|z|
)�

≤ 2e(−
1
2+2�A)r

|z|
(

1

A|z|
)�

.

If we substitute z = −s log x = ( 12 − it) log x, then it follows by the definition

of A that

|F(−s log x)| ≤ 2eε/2x−1/4

| 12 + it| log x

(
2�

ε| 12 + it|

)�
≤ 4eε/2x−1/4

log x

(
2�

ε

)�
(1/4 + t2)−�/2.

This yields (vi) since 4eε/2 < 5 for ε < 1/4. �
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3 Preliminary Analysis

3.1 A weighted sum of prime ideals

For x > 3, ε ∈ (0, 1/4) and integer � ≥ 1, use the compactly supported weight f ( · ) =
f ( · ;x, �, ε) defined in Lemma 2.2 and set

S(x) = S�,ε(x) :=
∑

n⊆OF


F (n)�C(n)f
(
logNn

log x

)
. (3.1)

We reduce our estimation of πC(x,L/F) given by (1.6) to the smoothed version S(x).

Lemma 3.1. Let x0 > e4. Suppose there exist constants a,b ≥ 0 and 0 ≤ c ≤ 1/2, all of

which are independent of x, such that S(x) <
{
a+ bx−c} |C|

|G|x for all x ≥ x0. Then, for all

x ≥ x0,

πC(x,L/F) <
{
a+ 2bx−c + O

(
nL

x1/2
+ nLx0 log x

x

)} |C|
|G|Li(x). �

Proof. If t > 1, then

ψC(t) =
∑

t1/2≤Nn<t

�C(n)
K(n)+ ψC(t
1/2). (3.2)

The sum in (3.2) is bounded by S(t) in (3.1) because of Lemma 2.2(i), while the secondary

term in (3.2) is estimated much like (2.7). Thus, we have that

ψC(t) ≤ S(t)+ O(nFt
1/2). (3.3)

We substitute (3.3) into Lemma 2.1 and deduce that

πC(x,L/F) ≤ S(x)

log x
+
∫ x

x0

S(t)

t log2 t
dt + O

(
nFx1/2

log x
+ nFx0

)
.

From our assumption on S(t) for t ≥ x0, it follows that

πC(x,L/F) < a
|C|
|G|Li(x)+ b

|C|
|G|

[
x1−c

log x
+
∫ x

x0

t−c

log2 t
dt
]

+ O
(
nFx1/2

log x
+ nFx0

)
. (3.4)

Note that if 0 ≤ c ≤ 1/2, then t1−c/ log2 t is an increasing function of t for t > e4. Since

x0 > e4 and Li(x) > x
log x for x > e4, we conclude that∫ x

x0

t−c

log2 t
dt =

∫ x

x0

t1−c

log2 t

dt

t
≤ x1−c

log2 x

∫ x

x0

dt

t
≤ x1−c

log x
< x−c Li(x). (3.5)

The desired result follows from (3.4), (3.5), and the identity nL = [L : F ]nF = |G|nF . �
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5006 J. Thorner and A. Zaman

3.2 Reduction to Hecke L-functions

By Mellin inversion, (3.1), and (2.2), it follows that

S(x) = log x

2π i

∫ 2+i∞

2−i∞
ZC(s)F(−s log x)ds. (3.6)

To shift the contour, we must rewrite ZC(s), defined by (2.1), in terms of L-functions

which exhibit an analytic continuation to the left of Re{s} = 1.

To this end, let H ⊆ G be an abelian subgroup such that H ∩ C is nonempty, and

choose gC in Section 2.2 so that gC ∈ H ∩C. Let K = LH be the subfield of L fixed by H . By

standard arguments (see [4, Theorem 3.7] and [12, Section 3]), we have that

ZC(s) = −|C|
|G|

∑
χ∈Ĥ

χ(gC)
L′

L
(s,χ ,L/K), (3.7)

where the sum runs over certain primitive Hecke characters χ of K satisfying

χ(P) = χ

([
L/K

P

])
for prime ideals P of K that are unramified in L. Substituting (3.7) into (3.6), we conclude

that

S(x) = |C|
|G|

∑
χ

χ(gC)
log x

2π i

∫ 2+i∞

2−i∞
−L′

L
(s,χ ,L/K)F(−s log x)ds. (3.8)

Henceforth, any sumover χ is over all χ ∈ Ĥ . These are equivalently theHecke characters

attached to the abelian extension L/K by class field theory.

3.3 Hecke L-functions

For a more detailed reference on Hecke L-functions, see [13] for example. Suppose L/K is

an abelian extension, so all irreducible representations of Gal(L/K) are 1-dimensional

primitive Hecke characters χ satisfying

χ(P) = χ

([
L/K

P

])
for prime ideals P of K that are unramified in L. The Hecke L-function of χ is defined by

L(s,χ ,L/K) =
∑

N⊆OK

χ(N)NN−s =
∏
P

(
1 − χ(P)

NPs

)−1

(3.9)
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5007

for Re{s} > 1, where the sum is over integral ideals N of K and the product is over prime

ideals P of K. For this subsection only, we write L(s,χ) = L(s,χ ,L/K) and suppress

the implicit dependence of quantities on the extension L/K. Define the completed Hecke

L-function ξ(s,χ) by

ξ(s,χ) = (s(s− 1))δ(χ)Ds/2
χ γχ(s)L(s,χ), (3.10)

where Dχ = DKNfχ , the K-integral ideal fχ is the conductor of χ , δ(χ) is the indicator

function for the trivial character, and γχ(s) is the gamma factor of χ defined by

γχ(s) =
[
π

− s
2�
( s
2

)]a(χ)
·
[
π

− s+1
2 �

(
s+ 1

2

)]b(χ)
.

Here a(χ) and b(χ) are certain nonnegative integers satisfying

a(χ)+ b(χ) = nK . (3.11)

It is well known that ξ(s,χ) is entire of order 1 and satisfies the functional equation

ξ(s,χ) = w(χ)ξ(1 − s,χ),

where w(χ) ∈ C is the root number of χ satisfying |w(χ)| = 1. The zeros of ξ(s,χ) are

the nontrivial zeros ρ of L(s,χ) and are known to satisfy 0 < Re{ρ} < 1. The trivial zeros

ω of L(s,χ) are given by

ord
s=ω L(s,χ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(χ)− δ(χ) if ω = 0,

b(χ) if ω = −1,−3,−5, . . . ,

a(χ) if ω = −2,−4,−6, . . . ,

(3.12)

and arise as poles of the gamma factor of L(s,χ).

3.4 Shifting a contour integral

Next we shift the contour (3.8) and bound S(x) in terms of the nontrivial zeros of Hecke

L-functions. Henceforth write S = S(x) for simplicity. Recall f depends on the arbitrary

quantities x > 3, ε ∈ (0, 1/4) and an integer � ≥ 1.

Lemma 3.2. Assume � ≥ 2. Then

|G|
|C|

S

eεx
≤ 1 + log x

eεx

∑
χ

∑
ρχ

|F(−ρχ log x)| + O
(
nLx

−1 log x + x−5/4(2�/ε)� logDL

)
, (3.13)
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5008 J. Thorner and A. Zaman

where the outer sum is over all Hecke characters χ of the abelian extension L/K and the

inner sum runs over all nontrivial zeros ρχ of L(s,χ ,L/K), counted with multiplicity. �

Proof. Shift the contour in (3.8) to the line Re{s} = − 1
2 . This picks up the nontrivial

zeros of L(s,χ ,L/K), the simple pole at s = 1 when χ is trivial, and the trivial zero at

s = 0 of L(s,χ ,L/K) of order r(χ). Overall, we see that

|G|
|C|S = log x

⎡⎣F(− log x)−
∑
χ

χ(gC)
∑
ρχ

F(−ρχ log x)+ O

(∑
χ

r(χ)|F(0)|
)⎤⎦

+ log x
∑
χ

χ(gC)

2π i

∫ −1/2+i∞

−1/2−i∞
−L′

L
(s,χ ,L/K)F(−s log x)ds,

(3.14)

where the sum over ρ = ρχ is over all nontrivial zeros of L(s,χ ,L/K), counted with mul-

tiplicity. From (3.11) and (3.12), we see that r(χ) ≤ nK . Hence, it follows by Lemma 2.2(v)

that

F(− log x) ≤ eεx

log x
, and

∑
χ

r(χ)|F(0)| ≤ [L : K]nK = nL.

For the remaining contour, by [13, Lemma 6.2] and the primitivity of χ , we have that

−L′

L
(s,χ ,L/K) 	 logDχ + nK log(|s| + 3),

for Re{s} = −1/2, where Dχ is defined in (3.10). It follows by Lemma 2.2(vi) that

log x

2π i

∫ −1/2+i∞

−1/2−i∞
−L′

L
(s,χ ,L/K)F(−s log x)ds

	 x−1/4

(
2�

ε

)� ∫ ∞

−∞

logDχ + nK log(|t| + 3)

(1/4 + t2)�/2
dt 	 x−1/4

(
2�

ε

)�
logDχ ,

because nK 	 logDK ≤ logDχ and � ≥ 2. Summing over χ and using the conductor-

discriminant formula yields

log x
∑
χ

χ(gC)

2π i

∫ −1/2+i∞

−1/2−i∞
−L′

L
(s,χ ,L/K)F(−s log x)ds 	 x−1/4

(
2�

ε

)�
logDL.

Taking absolute value of both sides in (3.14), multiplying both sides by (eεx)−1, and

combining all of these observations yields the desired result. �

To analyze the sum over zeros in Lemma 3.2, we require some information about

the distribution of zeros of Hecke L-functions.
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4 Distribution of Zeros of Hecke L-Functions

In this section, we record various results about L-functions L(s,χ ,L/K)where the exten-

sion L/K is abelian and hence χ is aHecke character ofK by class field theory. Associated

notation and classical results can be found in Section 2. Henceforth, any sum
∑

χ or

product
∏

χ is over all characters χ of L/K unless otherwise specified.

4.1 Logarithmic quantity

Let δ0 > 0 be fixed and sufficiently small. For the remainder of the article, denote

L :=
⎧⎨⎩( 13 + δ0) logDK + ( 1936 + δ0) logQ + ( 5

12 + δ0)nK lognK if n
5nK
6

K ≥ D
4
3
KQ 4

9 ,

(1 + δ0) logDK + ( 34 + δ0) logQ + δ0nK lognK otherwise,
(4.1)

where Q = Q(L/K) = max{Nfχ : χ ∈ Ĝal(L/K)}. Notice that

L ≥ (1 + δ0) logDK + ( 34 + δ0) logQ + δ0nK lognK and L ≥ ( 5
12 + δ0)nK lognK (4.2)

unconditionally. We exhibit a bound on the degree of the extension L/K in terms of L .

Lemma 4.1. [L : K] 	 e4L/3 and nL 	 L e4L/3. �

Proof. Let f = fL/K be the Artin conductor attached to L/K by class field theory. Let I(f)

be the group of fractional ideals of K relatively prime to f. By class field theory, there

exists a homomorphism φ : I(f) → Gal(L/K). Thus I(f)/ker φ is isomorphic to Gal(L/K).

This induces an isomorphism between their respective character groups and therefore,

Q(L/K) = max{Nfχ : χ ∈ Ĝal(L/K)} = max{Nfχ : χ ∈ ̂I(f)/ker φ}.

By our previous observations, |I(f)/ker φ| = |Gal(L/K)| = [L : K]. For ε0 > 0 fixed and

sufficiently small, we have by [24, Lemma 2.11] that |I(f)/ker φ| 	 eOε0 (nK )D1/2+ε0
K Q1+ε0 	

e4L/3 as desired. To bound nL, observe that nL = [L : K]nK and nK 	 L . �

4.2 Low-lying zeros

Next, we specify some important zeros of
∏

χ L(s,χ ,L/K)which will be used in Section 6

to 8. For the remainder of the article, let η > 0 be sufficiently small and arbitrary.
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5010 J. Thorner and A. Zaman

Consider the multiset of zeros given by

Z :=
{
ρ ∈ C :

∏
χ

L(ρ,χ ,L/K) = 0, 0 < Re{ρ} < 1, |Im(ρ)| ≤ η−2

}
. (4.3)

We select three important zeros of Z as follows:

• Choose ρ1 ∈ Z such that Re{ρ1} is maximal. Let χ1 be its associated Hecke

character so L(ρ1,χ1,L/K) = 0. Denote

ρ1 = β1 + iγ1 =
(
1 − λ1

L

)
+ i

μ1

L
,

where β1 = Re{ρ1}, γ1 = Im{ρ1}, λ1 > 0, and μ1 ∈ R.

• Choose ρ ′ ∈ Z\{ρ1, ρ1} satisfying L(ρ ′,χ1,L/K) = 0 such that Re{ρ ′} is maximal

with respect to these conditions. (If ρ1 is real then ρ ′ ∈ Z \ {ρ1} instead, with

the other conditions remaining the same.) Similarly denote

ρ ′ = β ′ + iγ ′ =
(
1 − λ′

L

)
+ i

μ′

L
.

• Choose ρ2 ∈ Z \Z1 such that Re{ρ2} is maximal andwhereZ1 is themultiset of

zeros of L(s,χ1,L/K) contained in Z. Let χ2 be its associated Hecke character

so L(ρ2,χ2,L/K) = 0. Similarly, denote

ρ2 = β2 + iγ2 =
(
1 − λ2

L

)
+ i

μ2

L
.

If λ1 < η then we henceforth refer to ρ1 as an η-Siegel zero. The proof of Theorem 1.2 will

be divided according to whether an η-Siegel zero exists or not.

4.3 Zero-free regions

Here we record the current best-known explicit result regarding zero-free regions of

Hecke L-functions; see also [1, 11] for earlier results.

Theorem 4.2 (Zaman). For L sufficiently large depending on η, min{λ′, λ2} > 0.2866.

Furthermore, if λ1 < 0.0875 then ρ1 is a simple real zero of
∏

χ L(s,χ ,L/K) and is

associated with a real character χ1. �

Proof. When L is a narrow ray class field of K to a given modulus and η = 1 in (4.3),

this is implied by [28, Theorems 1.1 and 1.3] since L satisfies (4.2). For general abelian
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5011

extensions L/K and any fixed η ∈ (0, 1), one may easily modify [28] to obtain the cited

result by following the outline in [24, Section 8]; see [29] for details. �

4.4 Zero repulsion

Herewe record two explicit estimates for zero repulsionwhen an exceptional zero exists,

also known as “Deuring–Heilbronn phenomenon".

Theorem 4.3 (Zaman). Let L be sufficiently large depending on η. If λ1 < 0.0875, then

min{λ′, λ2} > 0.44. If η ≤ λ1 < 0.0875, then min{λ′, λ2} > 0.2103 log(1/λ1). �

Proof. Again, when L is a narrow ray class field of K to a given modulus and η = 1, this

is implied by [28, Theorem 1.4] sinceL satisfies (4.2). Similar to the proof of Theorem 4.2,

one maymodify [28] as outlined in [24, Section 7] to deduce the same theorem for general

abelian extensions L/K and η ∈ (0, 1); see [29] for details. �

Theorem 4.3 is unable to handle exceptional zeros ρ1 extremely close to 1 due to

the requirement λ1 ≥ η. Thus, we include a version of Deuring–Heilbronn phenomenon

[24, Theorem 8.3] which repels zeros in the entire critical strip.

Theorem 4.4 (Thorner–Zaman). Let T ≥ 1 be arbitrary. Suppose χ1 is a real character

and ρ1 is a real zero. For any character χ of L/K, let ρ = β + iγ 
= ρ1 be a nontrivial zero

of L(s,χ ,L/K) satisfying 1/2 ≤ β < 1 and |γ | ≤ T . For L sufficiently large, there exists

an absolute effectively computable constant c1 > 0 such that

β < 1 −
log

(
c1

(1 − β1)(L + nK logT)

)
81L + 25nK logT

. �

4.5 Log-free zero density estimates

Let χ ∈ Ĝal(L/K) be a Hecke character. Define

N(σ ,T ,χ) := #{ρ = β + iγ : L(ρ,χ ,L/K) = 0, σ < β < 1, |γ | ≤ T}

for 0 < σ < 1 and T ≥ 1. Further denote

N(σ ,T) :=
∑
χ

N(σ ,T ,χ). (4.4)
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5012 J. Thorner and A. Zaman

Amongst all of the results recorded herein on zeros of Hecke L-functions, the proof

of Theorem 1.1 only requires the following log-free zero density estimate, which we

emphasize does not assume L is sufficiently large. This is a rephrasing of the authors’

result [24, Theorem 3.2] using the definition of L in (4.1).

Theorem 4.5 (Thorner–Zaman). For 0 < σ < 1 and T ≥ 1, N(σ ,T) 	 (e162LT81nK+162)1−σ .

�

The proof of Theorem 1.2 also requires a completely explicit zero density

estimate for “low-lying" zeros. Define for 0 < λ < L ,

N (λ) :=
∑
χ

N(1 − λ

L
, η−2,χ). (4.5)

Theorem 4.2 states that N (0.0875) ≤ 1 and N (0.2866) ≤ 2 for L sufficiently large

depending on η. For larger values of λ, we use the following:

Theorem 4.6 (Thorner–Zaman). Assume L is sufficiently large depending on η. Let

ε0 > 0 be fixed and sufficiently small. If 0 < λ < ε0L then

N (λ) ≤ e162λ+188.

The bounds for N (λ) in [24, Table 1] are superior when 0 < λ ≤ 1. �

Proof. See [24, Theorem 8.6] for details. �

5 Zeros Outside a Low-Lying Rectangle

From Lemma 3.2, it remains to estimate a sum over all nontrivial zeros of all Hecke

L-functions L(s,χ ,L/K). In this section, we demonstrate that the contribution of zeros is

negligible if the zeros are either high lying or far from the line Re{s} = 1. Throughout, we

assume 1 ≤ B ≤ 1000 is a fixed absolute constant. We begin by considering high-lying

zeros.

Lemma 5.1. Let T� ≥ 1 be arbitrary. Let 0 < E < 2
3B be fixed. Let

B > 162 + E, � ≥ 82nK + 162, 1
4 > ε ≥ 4�x−E/(B�). (5.1)
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5013

For x ≥ eBL ,

log x

x

∑
χ

∑
ρ

|Im{ρ}|>T�

|F(−ρ log x)| 	 1

T�
. (5.2)

�

Proof. Write ρ = β + iγ with β = 1 − λ

L
. If T ≥ 1, then Lemma 2.2(iv) with α = �(1 − β)

and our choices of our conditions on ε, �, and x imply that

log x

x
|F(−ρ log x)| ≤ 2eεxβ−1

T

(
2�

εT

)�(1−β)
≤ 4

T
e−(B−E)λ(2T)−(82nK+162)λ/L . (5.3)

Using Theorem 4.5 via partial summation, we see that

T log x

x

∑
χ

∑
ρ

T≤|Im{ρ}|≤2T

|F(−ρ log x)|

	 e−(B−E−162)L

(2T)nK
+
(
B− E + nK log(2T)

L

)∫ L

0
e−(B−E−162)λ(2T)−nKλ/Ldλ 	 1,

since B > 162 + E. Overall, this implies that the LHS of (5.2) is

≤ log x

x

∑
χ

∞∑
k=0

∑
ρ

2kT�≤Im{ρ}<2k+1T�

|F(−ρ log x)| 	 1

T�

∞∑
k=0

1

2k
	 1

T�
,

as desired. �

As we shall see in the next section, an appropriate combination of Lemma 3.2,

Theorem 4.5, and Lemma 5.1 suffices to establish Theorem 1.1. For Theorem 1.2, wemust

also show low-lying zeros far to the left of Re{s} = 1 contribute a negligible amount.

Lemma 5.2. Let 0 ≤ R ≤ 1
2L be arbitrary. Assume (5.1) holds. For x ≥ eBL ,

log x

x

∑
χ

∑′

ρ

|F(−ρ log x)| 	 x−(B−E−162)R/BL ,

where the marked sum
∑′ runs over zeros ρ = β + iγ of L(s,χ ,L/K), counting with

multiplicity, satisfying 0 < β ≤ 1 − R/L and |γ | ≤ ε−1. �

Proof. From our choices of ε, � in (5.1) and Theorem 4.5, it follows that

N(1 − λ

L
, ε−1) 	 e162λ(1/ε)(81nK+162)λ/L 	 e162λxEλ/BL 	 x(162+E)λ/BL
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5014 J. Thorner and A. Zaman

for 0 < λ < L , where N(σ ,T) is given by (4.4). Write ρ = β + iγ with β = 1 − λ

L
for

some nontrivial zero ρ appearing in the marked sum. By Lemma 2.2(iv) with α = 0 and

Lemma 2.2(v), it follows that

log x

x
|F(−ρ log x)| 	

⎧⎨⎩x−λ/L for |ρ| ≥ 1/4,

x−3/4 log x for |ρ| ≤ 1/4.
(5.4)

To clarify the second inequality, we observe by Lemma 2.2(v) that |F(−ρ log x)| 	 xβ 	
x1/4 for |ρ| ≤ 1/4. Thus, by (5.4) and partial summation, we have that

log x

x

∑
χ

∑′

|ρ|≥1/4

|F(−ρ log x)| 	 x
−(B−E−162)

B + log x

L

∫ L

R
x

−(B−E−162)λ
BL dλ

	 x−(B−E−162)R/BL .

Moreover, by (5.4), a crude application of [12, Lemma 2.1], and Lemma 4.1, it follows that

log x

x

∑
χ

∑′

ρ
|ρ|≤1/4

|F(−ρ log x)| 	 [L : K]L x−3/4 log x 	 x−3/4e2L log x 	 x− 3
4 + 3

B .

Combining these estimates yields the desired result since, by our assumptions on B and

R, x−(B−E−162)R/BL � x−(B−E−162)/2B � x−1/2 � x−3/4+3/162 � x−3/4+3/B. �

We package these lemmas into the following convenient proposition.

Proposition 5.3. Let 0 ≤ R ≤ 1
2L be arbitrary. Let 0 < E < 2

3B be fixed. Assume that

B > 162 + E, � ≥ 82nK + 162, 1
4 > ε ≥ 4�x−E/(B�). (5.5)

If x ≥ eBL and S(x) is given by (3.1), then

|G|
|C|

S(x)

eεx
≤ 1 + log x

eεx

∑
χ

∑�

ρ

|F(−ρ log x)| + O
(
ε + x−(B−E−162)R/BL

)
, (5.6)

where the sum
∑� indicates a restriction to nontrivial zeros ρ of L(s,χ ,L/K), counted

with multiplicity, satisfying 1 − R/L < Re{ρ} < 1 and |Im{ρ}| ≤ ε−1. �
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5015

Proof. Let T� = 1/ε. It follows from our hypothesis (5.5) along with Lemma 3.2,

Lemma 5.1, and Lemma 5.2 that

|G|
|C|

S

eεx
≤ 1 + log x

eεx

∑
χ

∑�

ρ

|F(−ρ log x)|

+ O
(
ε + x−(B−E−162)R/BL + nLx

−1 log x + x−5/4(2�/ε)� logDL

)
.

(5.7)

It remains to bound the third and fourth expressions in the error term by ε. Since E < B

and � ≥ 244, we see that

ε > x−E/B� > x−1/� > x−1/244.

Moreover, nL = nK [L : K] 	 L e2L 	 x3/162 by Lemma 4.1 and (4.2). Similarly, since

logDL = ∑
χ logDχ ≤ [L : K] log(DKQ), it follows that

(2�/ε)� logDL 	 xE/BL [L : K] 	 x2/3L e2L 	 x2/3+3/162.

Applying these estimates in (5.7) yields (5.6). �

6 Proof of Theorem 1.1

In comparison to Theorem 1.2, the proof of Theorem 1.1 is quite simple, requiring only

the log-free zero density estimate of Hecke L-functions given by Theorem 4.5. Recall

this result is uniform over all extensions L/F and therefore we do not assume L is suf-

ficiently large.

Proof of Theorem 1.1. Select

B = 244.5, E = 82.1, � = 82nK + 162, ε = 1/8, and R = 0. (6.1)

Let M0 > 0 be a sufficiently large absolute constant. For x ≥ x0 := e244.5L + M0n
244.5nK
K ,

we claim these are valid choices to invoke Proposition 5.3. It suffices to check ε = 1
8 ≥

4�x−E/B� for x ≥ x0. We need only show (32�)B�/E ≤ x0. This is visible from the fact that

(32�)B�/E 	 n
244.5
82.1 (82nK+162)
K eO(nK ) 	 n244.5nK

K ≤ x0,

after enlarging M0 if necessary. This proves the claim.
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5016 J. Thorner and A. Zaman

Therefore, by Proposition 5.3, we have that S(x) 	 |C|
|G|x for x ≥ x0, because

the corresponding restricted sum
∑� is empty whenever R = 0. Let M ≥ 1 denote the

implicit absolute constant in the above estimate for S(x). Thus, by Lemma 3.1 with

x0 = e244.5L +M0n
244.5nK
K ,a = M and b = c = 0, we have that

πC(x,L/F) <
{
M + O

(
nLx

−1/2 + nL log x

x
(e244.5L + n244.5nK

K )
)} |C|

|G|Li(x)

for x ≥ x0. By Lemma 4.1 and (4.1), notice that nL 	 e4L/3 	 D2
KQ2nnK

K . Thus, the desired

result follows for x � e245.9L + D2
KQ2n246nK

K . �

Remark.

• If one wishes to minimize the value of B and hence minimize the exponents

of DK and Q in (1.10) then one may alternatively select

B = 162.01, E = 0.95, � = 82nK + 162, ε = 1/8, and R = 0

in place of (6.1). Taking x0 = e162.01L +M0n
13,999nK
K , it follows that

(32�)B�/E 	 n
162.01
0.95 (82nK+162)

K eO(nK ) 	 n13,999nK
K ≤ x0.

Arguing as above, one deduces πC(x,L/F) 	 |C|
|G|Li(x) for x � e164L +

D2
KQ2n14,000nK

K as claimed in the remark following Theorem 1.1 based on (4.1).

• Similarly, to minimize the exponents of nnK
K in (1.10), one may alternatively

select

B = 359.5, E = 197, � = 82nK + 162, ε = 1/8, and R = 0

in place of (6.1). Taking x0 = e359.5L , it follows by (4.2) that

(32�)B�/E 	 n
359.5
197 (82nK+162)
K eO(nK ) 	 n149.65nK

K ≤ x0,

since 359.5× 5
12 > 149.7. Arguing as above, one deduces πC(x,L/F) 	 |C|

|G|Li(x)

for x � e360.9L ≥ e4L/3e359.5L as claimed in the remark following Theorem 1.1.

�

The following two sections consist of the proof of Theorem 1.2 which is divided into

cases depending on how close the zero ρ1, defined in Section 4.2, is to Re{s} = 1. The
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5017

main steps are similar to the above proof for Theorem 1.1 but need a more refined

analysis.

7 Proof of Theorem 1.2: η-Siegel Zero Exists

Let η > 0 be arbitrary and sufficiently small and let L be sufficiently large depending

only on η. The proof of Theorem 1.2 is divided into Sections 7 and 8 by whether ρ1 is an

η-Siegel zero or not.

For this section, we consider the case when λ1 < η. By Theorem 4.2, it follows

that ρ1 = β1 = 1 − λ1
L

is a simple real zero and χ1 is a real Hecke character. Suppose

B = 692, E = 344, � = 82nK + 162, 4�x−344/692� ≤ ε < 1/4. (7.1)

With these choices, we claim for x ≥ e692L that 4�x−344/692� = o(1) as L → ∞. If nK is

uniformly bounded while L → ∞ then this is immediate, so we may assume nK → ∞.

By (4.2), notice that � = 82nK + 162 ≤ {196.8 + o(1)} L
lognK

≤ 197 L
lognK

for nK sufficiently

large. Thus, for nK sufficiently large and x ≥ e692L , we have that

4�x−344/692� 	 nKe
−344L/� 	 nKe

−344
197 lognK 	 n−0.7

K .

Hence, 4�x−344/692� = o(1) as nK → ∞. This proves the claim, which implies the condition

on ε in (7.1) is nonempty for L sufficiently large.

Now, let 1 ≤ R ≤ 1
2L be arbitrary. By Proposition 5.3, for x ≥ e692L , we have

that

|G|
|C|

S(x)

eεx
≤ 1 + x−(1−β1)

β1
+ log x

eεx

∑
χ

∑�

ρ 
=ρ1
|F(−ρ log x)| + O

(
ε + x−186R/692L

)
, (7.2)

where
∑� runs over nontrivial zeros ρ 
= ρ1 of L(s,χ ,L/K), counted with multiplicity,

satisfying

1 − R/L < Re{ρ} < 1, |Im{ρ}| ≤ ε−1.

Note that the β1 term in (7.2) arises from bounding F(−σ log x) in Lemma 2.2(v) with

σ = β1. We further subdivide our arguments depending on the range of λ1.
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5018 J. Thorner and A. Zaman

7.1 λ1 very small ( 2ηL
log x ≤ λ1 < η)

Here select ε = η2 andR = min{ 1
82 log(c1/λ1),

1
2L } for some fixed sufficiently small c1 > 0.

Since 4�x−344/692� = o(1) as L → ∞, it follows that this choice of ε satisfies (7.1) for L

sufficiently large depending only on η.

Hence, by Theorem 4.4, these choices imply that the restricted sum
∑� in (7.2) is

empty for L sufficiently large depending only on η. Moreover, we see that

x−186R/693L ≤ e− 186
82 log(c1/λ1) 	 λ21 	 η2,

as x ≥ e692L and 186/82 > 2. Further, we have that

x−(1−β1)

β1
= e−λ1 log x/L{1 + O(λ1/L )} < 1 − η + O(η2),

since 2ηL
log x ≤ λ1 < η and e−t < 1 − t/2 for 0 ≤ t ≤ 1. Overall, we conclude that S(x) <

{2 − η + O(η2)} |C|
|G|x for x ≥ e692L . By Lemmas 3.1 and 4.1, we conclude that

πC(x,L/F) < {2 − η + O
(
η2 + L e1.4L(x−1/2 + e693Lx−1 log x)

)} |C|
|G|Li(x)

for x ≥ e692L . Hence, in this subcase, Theorem 1.2 (with no error term) follows for

x ≥ e694.5L after fixing η > 0 sufficiently small and recalling L is sufficiently large.

7.2 λ1 extremely small (λ1 <
2ηL
log x ≤ η)

Here select

ε = 4�x−344/692� and R = min
{

L

81L + 25nK log(1/ε)
log

(
c1
λ1

· L

L + nK log(1/ε)

)
,
1

2
L

}
for some sufficiently small c1 > 0. Again, since 4�x−344/692� = o(1) as L → ∞, it follows

that ε < 1/4 for L sufficiently large so this choice of ε satisfies (7.1).

Now, from our choice of R and Theorem 4.4, the restricted sum in (7.2) is empty.

For the main term, observe for L sufficiently large and η > 0 sufficiently small that

x−(1−β1)

β1
<

(
1 − λ1 log x

2L

)(
1 + λ1

L

)
≤ 1 − λ1 log x

3L
,

as λ1 <
2ηL
log x and e−t < 1 − t/2 for 0 ≤ t ≤ 1. To bound the error term in (7.2), notice that

81L + 25nK log(1/ε) ≤ 81

692
log x + 344 · 25nK

692(82nK + 162)
log x <

185.9

692
log x,
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5019

by our choice of ε and � and since x ≥ e693L . Consequently, R ≥ 692L
185.9 log x log(

c′
1L

λ1 log x ) for

some sufficiently small c′
1 > 0, implying

x−186R/692L 	
(
λ1 log x

L

) 186
185.9 	 η1/2000

(
λ1 log x

L

)
,

since λ1 <
2ηL
log x and 0.1

185.9 <
1

2000 . Combining these observations into (7.2) implies that

|G|
|C|

S(x)

eεx
< 2 − λ1 log x

3L
+ O

(
ε + η1/2000 · λ1 log x

L

)
< 2 − 100λ1 + O(ε)

as η is sufficiently small. Rearranging and substituting the choice of ε and �, we see that

S(x) <
{
2 − 100λ1 + O

(
nKx

− 1
166nK+327

)} |C|
|G|x

for x ≥ e692L . Now, if x ≥ e694.9L then, by Lemma 4.1, we have that

nLe
692Lx−1 log x 	 nKe

693.4Lx−1 log x 	 nKx
−1.5/694.9 log x 	 nKx

−1/(166nK+327).

Similarly, nLx−1/2 	 nKx−1/(166nK+327). Thus, by the previous inequality and Lemma 3.1,

it follows that

πC(x,L/F) <
{
2 − 100λ1 + O

(
nKx

− 1
166nK+327

)} |C|
|G|Li(x) (7.3)

for x ≥ e694.9L . As δ0 in (4.1) is sufficiently small, this completes the proof of Theorem 1.2

when an η-Siegel zero exists. �

Remark.

• In (7.1), we could instead take B = 502 and E = 198 to establish (7.3) except

with an error term ofO(nKx−1/(208nK+411)). To improve the error term, we chose

the largest values of B and E which did not reduce the valid range of x in

Theorem 1.2. This range of x is limited by the case addressed in Section 8.3.

• As stated in Theorem 1.2, we obtain the sharper bound πC(x,L/F) < 2 |C|
|G|Li(x)

from (7.3) with good effective lower bounds for λ1. To see this, notice the error

term in (7.3) is 	 λ1.0011 provided

x �
(
c1nK

λ1.0011

)166nK+327

=: x1,
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5020 J. Thorner and A. Zaman

where c1 > 0 is some absolute constant. If the above holds then (7.3) becomes

πC(x,L/F) <
{
2 − 100λ1 + O(λ1.0011 )

} |C|
|G|Li(x).

As λ1 ≤ η, this implies πC(x,L/F) < 2 |C|
|G|Li(x) by fixing η sufficiently small.

Hence, any effective upper bound on x1 translates to a range of x where the

sharper bound for πC(x,L/F) holds. From the proof of Theorem 1’ in Stark

[23], we have that λ1 � min{g(nK)
−1,D−1/nK

K Q−1/2nK } where g(nK) equals 1 if K

has a normal tower over Q and equals (2nK)! otherwise. If nK ≤ 10 and DKQ
is sufficiently large then we have that

x1 	 (1/λ1)
167nK+328 	 D167+328/nK

K Q84+164/nK 	 D495
K Q248 	 x,

for x satisfying (1.12), as desired. Thus, we may assume nK ≥ 10 in which

case we have that

x1 	 n167nK
K (1/λ1)

167nK+328

	 D167+328/nK
K Q84+164/nKn167nK

K + n167nK
K g(nK)

167nK+328

	 D200
K Q101n167nK

K + n167nK
K g(nK)

167nK+328.

Therefore, if K has a normal tower over Q or (2nK)! 	 D1/nK
K Q1/2nK then

x1 	 D200
K Q101n167nK

K eO(nK ) 	 D200
K Q101n168nK

K 	 x,

for x satisfying (1.12) and DKQnnK
K sufficiently large. Otherwise, g(nK) ≤

(2nK)! ≤ (2nK)
2nK which implies that

x1 	 D200
K Q101n167nK

K + n
333n2K
K

unconditionally. Thus, imposing x � n
334n2K
K in addition to (1.12) also yields

the sharper estimate for πC(x,L/F). This completes all cases. �

8 Proof of Theorem 1.2: η-Siegel Zero Does Not Exist

In this section, we assume λ1 ≥ η for sufficiently small η > 0 and we will show The-

orem 1.2 holds with no error term. Recall L is sufficiently large depending only on η.

Assume λ� > 0 satisfies

λ� < min{λ′, λ2}, (8.1)
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5021

where λ′ and λ2 are defined in Section 4.2. Select

B > 360, E = 198, � = 82nK + 162, ε = η2, (8.2)

and let R = R(η) be sufficiently large. We claim these choices satisfy the assumptions of

Proposition 5.3. Since L is sufficiently large depending only on η, it suffices to show, for

x ≥ eBL , that 4�x−E/B� = o(1) as L → ∞. We shall argue as in Section 7. If nK is bounded

while L → ∞ then this is immediate, so we may assume nK → ∞. By (4.2), notice that

� = 82nK + 162 ≤ {196.8 + o(1)} L
lognK

≤ 197 L
lognK

for nK sufficiently large. Thus, for nK

sufficiently large and x ≥ eBL , we have that

4�x−E/B� 	 nKe
−198L/� 	 nKe

− 198
197 lognK 	 n−1/197

K .

Hence, 4�x−E/B� = o(1) for x ≥ eBL , as nK → ∞. This proves the claim.

Therefore, by Proposition 5.3, it follows that

|G|
|C|

S(x)

eεx
≤ 1 + log x

eεx

∑
χ

∑�

ρ

|F(−ρ log x)| + O(η2),

for x ≥ eBL and where the sum
∑� runs over nontrivial zeros ρ of L(s,χ), counted with

multiplicity, satisfying β > 1 − R/L and |γ | ≤ η−2. For a nontrivial zero ρ of a Hecke

L-function, write ρ = β + iγ = 1 − λ

L
+ i μ

L
. By Lemma 2.2, we see that

log x

eεx
|F(−ρ log x)| ≤ x−(1−β) ≤ e−Bλ,

since x ≥ eBL . Extracting ρ1 and ρ1 (or simply ρ1 if ρ1 is real) from
∑�, we deduce by our

choice of λ� in (8.1) that

|G|
|C|

S(x)

eεx
≤ 1 +m(ρ1)e

−Bλ1 +
∑
χ

∑
λ�≤λ≤R
|γ |≤η−2

e−Bλ + O(η2), (8.3)

where m(ρ1) = 2 if ρ1 is complex and m(ρ1) = 1 if ρ1 is real. To bound the remaining

quantities, we must select λ� for which we further subdivide into cases.

8.1 λ1 small (η ≤ λ1 < 10−3)

By Theorem 4.2, ρ1 is a simple real zero attached to a real character χ1, implyingm(ρ1) =
1. Select B = 361 and choose λ� = 0.2103 log(1/λ1), which satisfies (8.1) by Theorem 4.3.

Arguing as in [24, Section 10.1.2] and using Theorem 4.6, we may conclude by (8.3) that
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5022 J. Thorner and A. Zaman

S(x) < {2 − η + O(η2)} |C|
|G|x for x ≥ e361L . As in the final arguments of Section 7.1, we use

Lemma 3.1 to establish Theorem 1.2 for x ≥ e363L .

8.2 λ1 medium (10−3 < λ1 ≤ 0.0875)

One argues similar to the previous casewith someminor changes. Namely, selectB = 593

and choose λ� = 0.44, and follow [24, Section 10.1.1] to deduce Theorem 1.2 for x ≥ e595L .

8.3 λ1 large (λ1 ≥ 0.0875)

Select B = 693 and λ� = 0.2866 as per Theorem 4.2. Noting m(ρ1) ≤ 2 unconditionally,

one may argue similarly as per the previous cases and follow [24, Section 11] to deduce

Theorem 1.2 for x ≥ e694.9L . As δ0 in (4.1) is sufficiently small, this yields the desired

range of x in Theorem 1.2, completing the proof in all cases. �

9 Proof of Theorems 1.4 and 1.5

First, we state a slightly weaker (but more convenient) reformulation of Theorem 1.1.

Theorem 9.1. Let L/F be a Galois extension of number fields with Galois group G, and

let C be any conjugacy class of G. Let H be an abelian subgroup of G such that H ∩ C

is nonempty, and let K be the subfield of L fixed by H . Let P(L/K) be the set of rational

primes p such that there is a prime ideal p of K with p | p and p ramifies in L, and set

M(L/K) = [L : K]D1/nK
K

∏
p∈P(L/K)

p.

If log x � nK log(M(L/K)nK), then πC(x,L/F) 	 |C|
|G|Li(x). �

Proof. If L/K is abelian, then [19, Proposition 2.5] states that

Q(L/K) ≤
⎛⎝[L : K]

∏
p∈P(L/K)

p

⎞⎠2nK

.

Using the definition of M(L/K), we see that (1.10) is

	 (DKQ(L/K)nnK
K )246 	 (nKM(L/K))

500nK .

The claimed result now follows immediately from Theorem 1.1. �
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9.1 Proof of Theorem 1.4

Fix a newform f (cf. Section 1) of even integral weight kf ≥ 2, level Nf , and trivial

nebentypus with integral Fourier coefficients, and fix an integer a. For each prime p, we

define ωp = (af (p)2 − 4pkf −1)1/2. We know from Deligne’s proof of the Weil conjectures

that |af (p)| ≤ 2p(kf −1)/2 for all p, so Q(ωp) is an imaginary quadratic extension of Q. Set

πf (x,a; �) = #{p ≤ x: af (p) ≡ a (mod �) and � splits in Q(ωp)}.

Let �1 < �2 < · · · < �t be any t odd primes, each less than exp( log x2t ). By [26, Corollary 4.2],

if t ∼ (4/ log 2) log log x, then

πf (x,a) 	
t∑

j=1

πf (x,a; �j)+ x

(log x)2
	 (log log x)max

1≤j≤t
πf (x,a; �j)+ x

(log x)2
. (9.1)

We proceed to bound πf (x,a; �), where � ≤ exp((log 2)(log x)/(8 log log x)).

Let � be prime, let F� be the field of � elements, and let Frobp be the Frobenius

automorphism of Gal(Q/Q) at p. For each �, there is a representation

ρf ,� : Gal(Q/Q) → GL2(F�) (9.2)

which is unramified outside Nf � such that for all primes p � Nf �, we have that

tr(ρf ,�(Frobp)) ≡ af (p) (mod �) and det(ρf ,�(Frobp)) ≡ pkf −1 (mod �). We have that ρf ,� is

surjective for all but finitely many �. Let L = L� be the subfield of Q fixed by ker ρf ,�. If

� is sufficiently large, then L/Q is a Galois extension, unramified outside of Nf �, whose

Galois group is G = {g ∈ GL2(F�) : det g ∈ (F×
� )

kf −1}.
Define C = {A ∈ G: tr(A) ≡ a (mod �) and tr(A)2 − 4 det(A) ∈ F� is a square}. Let B

denote the upper triangular matrices in GL2(F�) ∩G, and let LB be the subfield of L fixed

by B. Let U be the unipotent elements of B, and let LU be the subfield of L fixed by U .

Note that U is a normal subgroup of B and that B/U ∼= Gal(LU/LB) is abelian. Let C ′ be

the image of C ∩ B in B/U . If x is sufficiently large, then by [30, Lemmas 2.7 and 4.3],

πf (x,a; �) 	 πC′(x,LU/LB)+ nLB

( √
x

log x
+ logM(LU/LB)

)
.

Applying Theorem 9.1 to the Chebotarev prime counting functions for each conjugacy

class in C ′, we have that if log x � nLB log(M(L
U/LB)nLB), then

πf (x,a; �) 	 |C ′|
|B/U |

x

log x
+ nLB

( √
x

log x
+ logM(LU/LB)

)
.
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By [30, Lemma4.4], we have |C ′|/|B/U | 	 1/�,nLB 	 �, and logM(LU/LB) 	Nf log �.

Combining all of our estimates, we find that

πf (x,a; �) 	 1

�

x

log x
+ �

√
x

log x
+ � logNf �, log x � � logNf �. (9.3)

Thus, taking � ∼ c′ log x/ log(Nf log x) for some sufficiently small absolute constant

c′ > 0,

πf (x,a; �) 	 x log(Nf log x)

(log x)2
. (9.4)

Now, as before, let t ∈ Z satisfy t ∼ 4/(log 2) log log x, and let �1 < �2 < · · · < �t be

t consecutive primes with �1 ∼ c′ log x/ log(Nf log x). By the prime number theorem,

�j ∈ [�1, 2�1] for all 1 ≤ j ≤ t. Therefore, if c′ is made sufficiently small, we have that

max
1≤j≤t

πf (x,a; �j) 	 x log(Nf log x)

(log x)2
. (9.5)

Theorem 1.4 now follows from inserting the inequality (9.5) into the inequality (9.1).

Remark. Using the Cauchy–Schwarz and Polya–Vinogradov inequalities, Murty [20,

Page 304] proved that

πf (x,a) 	 max
�∈[y,2y]

πf (x,a; �)+
(
πf (x,a)x log y

y

)1/2

. (9.6)

Using [20, Theorem 4.6], it is subsequently shown that if � ∈ [y, 2y] and y =
c′(log x)/(log log x)2 for some sufficiently small absolute constant c′ > 0, then

πf (x,a; �) 	 x(log log x)2

(log x)2
. (9.7)

It is then claimed in [20] that (9.6) and (9.7) imply πf (x,a) 	Nf x(log log x)
2/(log x)2. It is

not clear to us how to deduce this estimate for πf (x,a) using (9.6) and (9.7). In particular,

if πf (x,a) � x/(log x)2, then the aforementioned choice of y forces the secondary term

in (9.6) to be � x/(log x)3/2. By inserting (9.7) into (9.1) instead of (9.6), one obtains the

weaker statement (1.17). The source of our improvement over [20] stems solely from the

log log x savings over (9.7), which can be seen from (9.4). �
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9.2 Proof of Theorem 1.5

The proof of Theorem 1.5 is nearly identical to the proof of [30, Theorem 1.3(ii)] except

that we use Theorem 1.1 to bound the ensuing Chebotarev prime counting function

instead of using [30, Theorem 2.1(ii)]. The analytic details are very similar to the above

proof of Theorem1.4, but the particular Galois extension towhichTheorem1.1 is applied

is different. Following [30, Section 5.2], we apply Theorem 1.1 instead of [30, Theorem

2.1(ii)], which allows us to choose

y = c

hk

log x

log(Dkhk log x)

(where Dk is the absolute discriminant of k and hk is the class number of k) for some

sufficiently small absolute constant c > 0. This yields the claimed result.
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