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We improve the Chebotarev variant of the Brun—Titchmarsh theorem proven by Lagarias,
Montgomery, and Odlyzko using the log-free zero density estimate and zero repulsion
phenomenon for Hecke L-functions that were recently proved by the authors. Our result
produces an improvement for the best unconditional bounds toward two conjectures of
Lang and Trotter regarding the distribution of traces of Frobenius for elliptic curves and
holomorphic cuspidal modular forms. We also obtain new results on the distribution of

primes represented by positive-definite integral binary quadratic forms.

1 Introduction and Statement of Results

Let n(x; q,a) denote the number of primes p < x such that p = a (mod q). The Siegel-
Walfisz theorem states that if (a,q) = 1 and there exists some constant A > 0 such that

g < (logx)4, then

1
n(x;q,a) ~ ——Li(x), (1.1)
¢(q@)
where Li(x) = [ 1(% ~ loz- Assuming the generalized Riemann hypothesis, the range

of g extends to g < x¥/?7¢ for any € > 0. A sufficiently strong unconditional improvement
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4992 J. Thorner and A. Zaman

in the range of g would preclude the existence of a real Landau-Siegel zero for the L-
functions of real Dirichlet characters. Since this seems to be beyond the reach of current
techniques, it is often useful to trade asymptotic equality in (1.1) for upper and lower
bounds of the correct asymptotic order which hold in improved ranges of x.

The first lower bound of this form follows from Fogels’ improvements [6] to the
ideas of Linnik [15]. These ideas were substantially improved by Heath-Brown [7] and

Maynard [16], the latter of whom proved that if g is sufficiently large, then

logg x

f 8, 1.2
¢v(q)/qlogx orx =4 1.2

T(x;q9,a) >

(All implied constants in this article are effectively computable. Unless specifically men-
tioned otherwise, all implied constants in this paper are also absolute.) To describe
upper bounds in improved ranges of g, we define § = (log q)/log x. Titchmarsh [25] used

Brun's sieve to show that if & < 1, then

( a) K ! x (1.3)

7(X;q, . .
1 1 -0 ¢(q) logx

The implied constant can be made explicit and has been estimated by various authors.

The strongest result in this direction for all ranges of g is due to Montgomery and

Vaughan [17]; they used the large sieve inequality to prove that if § < 1, then

(g < —r— % (1.4)
T(x;q,a) < —————. .

! —0 ¢(q)logx

Since the factor of 2 is unlikely to be improved using current techniques, many

authors have improved the 6-dependence. To summarize, if q is sufficiently large, then

_ €O +01) x

n(X;q,a) < .
(i 0@  logx

where

2-(59%/(1—-0) if2/3<0<1,

8/(6 — 76) if9/20 <6 < 2/3,

c®) = (1.5)
16/(8 — 30) if 1/8 <0 < 9/20,
2 if0<6<1/8,

the last line being recently proven by Maynard [16]. (See [16] and the sources contained

therein for a thorough overview of the problem.) While progress on (1.3) has typically
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followed from advances in sieve theory and exponential sums, Maynard’s proof builds
on Heath-Brown's analysis in [7] and uses a log-free zero density estimate for Dirichlet
L-functions and careful analysis of Landau-Siegel zeros.

In this article, we consider analogous questions for the distribution of prime
ideals in the context of the Chebotarev density theorem. Let L/F be a finite Galois exten-
sion of number fields with Galois group G, and let C C G be a conjugacy class. Let D,
denote the absolute value of the discriminant of L/Q. To each prime ideal p of F that
does not ramify in L, there corresponds a certain conjugacy class of automorphisms in
G which are attached the prime ideals of L lying above p. We denote this conjugacy class
L/F

P

by the Artin symbol [*=]. For a fixed conjugacy class C C G, let

wec(x,L/F) :=# {p : p unramified in L, [Ig} = C, Ngjgp < X}. (1.6)

The Chebotarev density theorem, in the effective version proven by Lagarias and Odlyzko
[13], states that if x > exp(10[L : Q](log D;)?), then

ICl .
nc(x,L/F) ~ ﬁLl(X). (1.7)

This subsumes many results in the distribution of primes including the distribution
of quadratic nonresidues modulo D for any D, primes in arithmetic progressions, and
prime ideals for any number field. As such, we are interested in upper and lower bounds
of n¢(x,L/F) of the correct order of magnitude with an improved range of x.

Alower bound on 7¢(x, L/F) with the correct order of magnitude (in the x-aspect)
follows from the work of Weiss [27], which was recently made explicit by Thorner and
Zaman [24]. Let H C G be a largest abelian subgroup such that H N C is nonempty, and
let K be the fixed field of H. For a character x in the dual group H, let f, be the conductor
of x, and define

Q(L/K) = max{Ngof, : x € H}. (1.8)

Thorner and Zaman proved that if x > D**Q(L/K)**! + DZ*Q(L/K)**[K : Q]*°¥¥, then

1 X
(Dx Q(L/K)[K : QK5 [L, : K]log x

we(x,L/F) >

provided that Dx Q(L/K)[K : QX% is sufficiently large. When this is applied to arith-

metic progressions (in which case L = Q(e?"/9) for q sufficiently large and F = K = Q),
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4994 J. Thorner and A. Zaman

this yields the bound

1 X
n(x;q,a) >» ———— forx > g°*.

q° ¢(q) logx -

Up to the quality of the exponents, this is comparable to (1.2).

In analogy with (1.3), Lagarias et al. [12] proved that

me(x,L/F) < %Li(x» logx > (log D;)(loglog D;)(logloglog e*Dy).  (1.9)
(Serre [22] showed that e?° can be replaced with 6.) There are several large sieve inequal-
ities yielding Brun-Titchmarsh type results for counting prime integers in the ring of
integers of a number field (e.g., [10, 21]) and for counting prime ideals lying in arithmetic
progressions (e.g., [9]), but it appears that (1.9) is the only Brun-Titchmarsh type bound
that counts prime ideals with effective field dependence. While the range of x in (1.9)
is noticeably less restrictive than the range of x for which (1.7) holds, the range still
depends poorly on L; this can be prohibitive for many applications. It does not seem
to be the case that sieve methods can produce a range of x that is comparable to (1.4).
Using the log-free zero density estimate and zero repulsion results proved by Thorner

and Zaman in [24], we improve the range of x in (1.9).

Theorem 1.1. Let L/F be a Galois extension of number fields with Galois group G with
L # Q. Let C be any conjugacy class of G and let H be an abelian subgroup of G such
that H N C is nonempty. If K is the subfield of L fixed by H and Q = Q(L/K) is given by
(1.8), then

we(x,L/F) < ELi(x)

|G
provided that
x> D12<46Q185 +D?{2 QISO[K : @]246[1{:@]‘ (110)

O

Remark. For the valid range of x, one can minimize the exponents of Dx and Q at the

expense of a less desirable dependence on [K : Q)Y and vice versa. In particular, the
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same upper bound for n¢(x, L/F) holds when

X >> D11{64 QIZS + D?{S Q87 [K . Q]GS[K:Q] +D§{Q2[K : Q]14,000[K:@]' (111)
See the remarks at the end of Section 6 for details. O

Our result always gives an improvement over (1.9). Choosing H to be the cyclic
group generated by a fixed element of C, we have that Di/‘H‘ < DgQ < D,V“’“HD (see [27,
Section 6]). Moreover, by the classical work of Minkowski, we have that [K : Q] «
log Dx < logD;. Therefore, Theorem 1.1 holds when logx > (logD;)(loglog D;), which
is a modest unconditional improvement over (1.9). However, one usually obtains a more
significant improvement. For most fields K, the bound [K : Q] « (logDx)/loglog Dx
holds. In this case, we may take logx > log(DxQ) in Theorem 1.1. Thus Theorem 1.1
holds when logx > (log D;)/¢(|H|), which noticeably improves (1.9).

Building on [16], we obtain an implied constant that is essentially sharp (short
of precluding the existence of Landau-Siegel zeros) when x is sufficiently large in terms
of L/F.

Theorem 1.2. Let L/F be a Galois extension of number fields with Galois group G and
let C be any conjugacy class of G. Let H be an abelian subgroup of G such that H N C is
nonempty. If K is the subfield of L fixed by H and Q = Q(L/K) is given by (1.8), then

1\,
7e(x,LJF) < {2 + 0([1{ - Qlx 166[K:@1+327)} GHe

for
X >> DI6{95 Q522 + DIZ{SZ Q367 [K . Q]ZQO[K:QJ (112)

provided that Dx Q[K : Q]¥*¥ is sufficiently large. If any of the following conditions also

hold, then the error term can be omitted:

* There exists a sequence of number fields Q = K, C K; C --- C K,, = K such

that Kj.,/K; is a normal extension forallj =0,1,...,n — 1.
¢ (2[K : QD&Y « DeQV2,
e x>[K: Q]334[K:Q]2- O

In the special case where L/Q is an abelian Galois extension, we may take K = Q in

Theorem 1.2. Since Q/Q is trivially a normal extension, the error term in Theorem 1.2 can
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be omitted, and we recover Maynard’s result in (1.5) for 6 < 1/522. (See the remark at the
end of Section 7 for details.) Another interesting set of primes for which the normal tower
condition in Theorem 1.2 applies is the set of primes represented by binary quadratic
forms. Suppose Q(X,Y) is a positive-definite primitive binary integral quadratic form
with discriminant —D. It is well known that such forms, up to SL,-equivalence, form
a group which is isomorphic to the ring class group of the imaginary quadratic field
QG/—D) (see, e.g., [3, Theorem 7.1]). Further, a rational prime p is represented by Q(X, Y)
if and only if there exists a prime ideal p in Q(+/—D) such that its norm equals p and
p belongs to the corresponding class of Q(X,Y). It follows by the Chebotarev density
theorem that

Li(x)

Qm as x — o0, (113)

#{p < x : p is represented by Q(X,Y)} ~ §
where §o = 1/2 if Q(X,Y) is properly equivalent to its opposite and 8o = 1 otherwise,
and h(—D) is the number of such forms of discriminant —D up to SL;-equivalence. To
obtain an upper bound for the number of such primes, we let F = Q(v/—D), and we let
L be the ring class field of the order of the discriminant —D. Thus Gal(L/F) is abelian.
Applying (1.11) and Theorem 1.2 to L/F, with C equal to the singleton conjugacy class in
G corresponding to Q(X,Y), we obtain the following.

Corollary 1.3. Let Q(X,Y) be a positive-definite primitive binary integral quadratic
form with discriminant —D, and let h(—D) be the number of such quadratic forms up to

SL,-equivalence. For x > D'64,

Li(x)
h(-D)

#{p < x: p is represented by Q(X,Y)} « (1.14)

with an absolute implied constant. Also, if D is sufficiently large, then for x > D%,

#{p < x: p is represented by Q(X, Y)} < 2§, }I—‘(l(’;))’

where o = 1/2if Q(X,Y) is properly equivalent to its opposite and §, = 1 otherwise. [

Remark. Note that (1.9) also implies (1.14) in the much more restricted range x >
DOPY*) for any fixed € > 0. On the other hand, Corollary 1.3 gives the range x > DOV,
which is comparable (up to the quality of the exponent) to the range x > D'™ predicted
by the generalized Riemann hypothesis for Hecke L-functions. O
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We use Theorem 1.1 to improve the best unconditional upper bounds for two

outstanding conjectures of Lang and Trotter [14]. Let
f2) =) as(n)e’™ (1.15)
n=1

be a holomorphic cusp form of even integral weight kr > 2 and level V¢; for simplicity, we
assume that as(n) € Zforalln > 1. Suppose that f does not have complex multiplication,
that the nebentypus of f is trivial, and that f is a newform (i.e., f is a normalized

eigenform for the Hecke operators T, for p { Ny and U, for p | Ny). Fix a € Z, and let
mr(x,a) =#{p <x:ar(p) = aj. (1.16)
Lang and Trotter conjectured that as x — oo, we have that

Vx(logx)™ if kf =2,
1 if ky > 4,

Tr(X,a) ~ Crq

where cf, > 0 is a certain constant depending on f and a alone.
In the special case where k; = 2, Elkies [5] proved that 77(x,0) <, x%% In all

other cases, Serre proved in 1981 that

X
r(x,a) <<Nf W

for any 6 < 1/4; following the ideas of Murty et al. [19], Wan [26] improved the range of
§1in 1990 to any § < 1. This was further sharpened by Murty [20] in 1997; he proved that

x(loglogx)?

(log x)? (1.17)

mr(x,a) <Lwp
Using Theorem 1.1, we give a modest improvement.

Theorem 1.4. Let f be a newform of even integral weight kr > 2, level N, and trivial

nebentypus with integral coefficients. If 77 (x, a) is given by (1.16), then

x(loglog x)?

O
(log x)*

Remark. Theorem 5.1 of [20] actually claims a stronger result than (1.17), but a step in

the proof seems not to be justified. The best that the argument appears to give is what

6102 AB €0 UO Josn Aieiqr meT piojuels AQ GE8E90E/L66+/91/8L0Z/10BASqE-a[olE/UIY/WOO"dNO"0lWapede//:Ssdny Wwoly papeojumoq



4998 J. Thorner and A. Zaman

we have stated above in (1.17); see Section 9 for details. Note that we recover the claimed
result [20, Theorem 5.11]. O

We also consider a different (but closely related) conjecture of Lang and Trotter
regarding the Frobenius fields of an elliptic curve. Let E/Q be an elliptic curve of con-
ductor Nz without complex multiplication. For a prime p { N, let I1, be the Frobenius
endomorphism of E/F,. Defining ar(p) = p+1—#E(F,), we have that I'If, —ag(p),+p = 0.
By Hasse, we know that |az(p)| < 2,/p, so Q(I1,) in End(E/F,) ®;, Q is an imaginary
quadratic field. For a fixed imaginary quadratic field k with absolute discriminant Dy,
let

mr(x, k) =#{p <x: Q(IT,) = k}. (1.18)

Lang and Trotter conjectured that as x — oo,

Jx
logx'

T[E(Xl k) ~ CE,k

where cgy is a certain constant depending on E and k alone. Using the square sieve,

Cojocaru et al. [2] proved that

x(loglog x)1¥/12

mr(x, k) <Lwg k (log x)%5/24

Using Murty's version of the Chebotarev density theorem and Serre’s method of mixed

representations (see [22]), Zywina [30] improved this bound to

x(loglogx)?

L (1.19)

(X, k) Ly ok
Using Theorem 1.1, we establish a modest improvement to (1.19).

Theorem 1.5. LetE/Qbe an elliptic curve of conductor Nr and let k be a fixed imaginary
quadratic number field. If 7z (x, k) is defined by (1.18) then

xloglogx

0
(log x)?

(X, k) Lngk

Remark. A similar infinite Galois extension problem is described by Theorem 10 in

Section 4.1 of [22], and Theorem 1.1 gives a similar improvement. O
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In Sections 2-5, we discuss necessary results on Hecke L-functions and provide
the analytic setup for the proofs of Theorems 1.1 and 1.2. These results are then proved

in Sections 6-8. Finally, we prove Theorems 1.4 and 1.5 in Section 9.

2 Initial Setup
2.1 Notation

For a number field F, we will use the following notation throughout:

* (Oris thering of integers of F.

* nr=[F:Q]is the degree of F/Q.

* Dy = |disc (F/Q)| is the absolute value of the discriminant of F.
* Ny is the absolute field norm of F.

e r(s) is the Dedekind zeta function of F.

* pisaprime ideal of F.

* nis anintegral ideal of F.

* Ar(n) is the von Mangoldt A-function for F given by

logNr/gp if nis a power of a prime ideal p,
Ar(n) =
0 otherwise.

If it is clear from context, we will write N = Ny, for convenience.

We also adhere to the convention that all implied constants in all asymptotic
inequalities f « g or f = O(g) are absolute. If an implied constant depends on a field-
independent parameter, such as ¢, then we use «. and O, to denote that the implied

constant depends at most on €. All implied constants will be effectively computable.

2.2 Prime ideal counting functions

We briefly recall the definition of an Artin L-function from [18, Chapter 2, Section 2]. Let
L/F be a Galois extension of number fields with Galois group G. For each prime ideal
p of F, and a prime ideal 9 of L lying above p, we define the decomposition group Dy
to be Gal(Ly/F,), where Ly (resp. K,) is the completion of L (resp. K) at p (resp. p). We
have a map Dy to Gal(ky/k,) (the Galois group of the residue field extension), which is
surjective by Hensel’s lemma. The kernel of this map is the inertia group Iy. We thus

have the exact sequence
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The group Gal(ky/k,) is cyclic with generator x — x™°, where Np is the cardinality of k,.
We can choose an element oy € Dy whose image in Gal(kg/k,) is this generator. We call
op a Frobenius element at ‘B; it is well-defined modulo Iy. We have that Iy is trivial for
all unramified p, and for these p, oy is well-defined. For p unramified, we denote by o,
the conjugacy class of Frobenius elements at primes 3 above p.

Let p : G — GL,(C) be a representation of G, and let ¥ denote its character. Let
V be the underlying complex vector space on which p acts, and let V™ be the subspace

of V on which Iy acts trivially. We now define

det (I, — p(o,)Np~5)~! if p is unramified in L,
Ly(s, ¥, L/F) = p(o,)Np~) p
det (I, — p(op) |1 Np~5)~! if p is ramified in L.

This is well defined for all p, which allows us to define the Artin L-function

L(s, ¥, L/F) = [ | Ly(s, ¥, L/F)
P

for Re{s} > 1. Now, for a conjugacy class C C G, let gc € C be arbitrary. Define

|C| _ I
Ze(s) = —@ch)z(s,w,um, (2.1)
v
where ¢ runs over irreducible characters of G and L(s, ¢, L/F) is the associated Artin
L-function. Note the definition of Z;(s) does not depend on the choice of g since ¥ is the
trace of the representation p and g is conjugate to any other choice. By orthogonality

relations for characters (see [8, Section 3] for example),

Ze(s) = Y Ar()Oc(n)(Nn)~*, (2.2)
nCOp
where ®¢(n) is supported on integral ideals n which are powers of a prime ideal; in
particular, for prime ideals p unramified in L and m > 1,

1 if[EEmcc,

Oc(p™) = (2.3)

0 otherwise,

and 0 < O¢(p™) < 1 if p ramifies in L. (This discussion and definition of ©,(-) is also

contained in [12, Section 3].) For x > 1, define

Vo) =) Ar()Oc(n), (2.4)

Nn<x
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where the sum is over integral ideals n of F. By standard arguments, this prime ideal
counting function is related to #¢(x, L/F) given by (1.6). Since we are only interested in an

upper bound for 7;(x,L/F), we give a simpler statement that suffices for our purposes.
Lemma 2.1. If x > xy > 3, then

2e(x,L)F) < 1/fc(X)+ T Ye(t)

0gx xo tlog“t

Proof. Lett > 1. We define

Fe(t) =) Oc(p),  6c(t) =) Oc(p)logNp,

Np<t Np<t

where the sums are over all prime ideals p of F. First, observe that, by (2.3), the only
difference between 7:(x) and n¢(x, L/F) is the contribution from the prime ideals p of F
ramified in L. Since 0 < O¢(p) < 1 for such prime ideals, we observe that

so it suffices to estimate 7-(x). Using partial summation, we see that if 3 < x5 < x, then

xo tlog™t

Since there are at most ny prime ideals above a rational prime p, observe that

~ NrX
Fexo) S Y Y 1=mpy 1< 10; ° < npxo. (2.7)

Xo
p<x0 pl(p) Dp<Xxp

Moreover, 0¢(t) < ¥¢(t) for all ¢ > 1. Combining these observations with (2.5) and (2.6)
yields the desired result. [ |

2.3 Choice of weight

Let us define a weight function and describe its properties. This choice of weight can be
regarded as a smoothed version of Maynard's weight [16, Equation (5.6)]. It will be used

to count prime ideals with norm between x/? and x.
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5002 J. Thorner and A. Zaman
Lemma 2.2. For any x > 3,¢ € (0,1/4), and positive integer £ > 1, select

R
~ 2¢logx’

There exists a real-variable function f(t) = f(¢; x, ¢, ¢) such that:

() 0<f(@) <1forallteR,andf(t)=1for; <t<1I.

(ii) The support of f is contained in the interval [; — =, 1 + 1.

logx ' logx

(iii) Its Laplace transform F(z) = [, f(t)e *dt is entire and is given by

1— e(%+2lA)z 1 — e24z\ ¢
F(z) = e~ (1+2tA)z | ( ( ) ' (2.8)

—Z —2Az

(iv) Lets=o0+it € C,0 > 0 and « be any real number satisfying 0 < « < ¢. Then

e’ x° 20\
F(-sl <— = . (1+x?). (=) .
F(=slogx)] < s| log x (L+x77) <€|S|)

(v) Ifs=o0+iteCando > 0, then

|F(—slogx)| <e’x°.

Moreover,
1/2<F(0) <3/4,  F(-ologx) < - ogx"
(vi) Lets=—3+iteC. Then
—-1/4 2 14
F(—slogx)| < 2X <—E) (1/4 + 7). 0
logx \ €

Remark. Ourchoiceis motivated by the works of Weiss[27, Lemma 3.2] and the authors
[24, Lemma 9.1] on the least prime ideal. Namely, the weight function f depends on a
parameter ¢ which will be chosen to be of size O(nk). This forces f to be O(ng)-times
differentiable and hence F(x + iy) will decay like |y|~ "% for fixed x > 0 and |y| — oo.
This decay rate will be necessary when applying log-free zero density estimates such as

Theorem 4.5 to bound the contribution of zeros which are high in the critical strip. O
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5003

For parts (i) and (ii), let 15(-) be an indicator function for the set S C R. For
j > 1, define

1
w(t) = o licaa®), Go®) =111 _1p100m (), and g;(t) = (W x g;-1)(?).

Since [, w(t)dt = 1, one can verify that f = g, satisfies (i) and (ii).

For part (iii), observe the Laplace transform W(z) of w is given by

eAz _ e—Az A 1— e2Az
W) =———=e%. [ ——),
2Az —2Az

and the Laplace transform Gy (z) of g, is given by

—(1/2—tA)z _ o—(1+LA)z _ a(E+208)2
e e 1—e'2
GO(Z) — — e—(1+ZA)z . ( )

VA —Z

Thus (iii) follows as F(z) = Go(z) - W(2)*.
For part (iv), we see by (iii) and the definition of A that

o€ x0 1— e—2Aslogx ¢

_ € . —0€,—0/2
F(=slogx)| < 10— (1+ex )‘—ZAslogX . (2.9)

To bound the above quantity, we observe that

2 1—e\*
< ( > <1 (2.10)

‘1—e‘w

w

a

for w = a + ib with a > 0 and b € R. This observation can be checked in a

straightforward manner. Using (2.10), it follows that

¢ l—a
|oz

‘ 1 — e—ZAslogx ‘ 1 — e—2Aslogx 1— e—2Aslogx

2Aslogx i 2Aslogx

14 x7247 \* 20\
G [ — < | — .
~ \2A]s|logx ~ \€ls|

In the last step, we noted 1+x-24° < 2 and used the definition of A. Combining

2Aslogx

this with (2.9) and observing e ¢ < 1, we deduce the desired bound.
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5004 J. Thorner and A. Zaman

e For part (v), we see by (iii) that

1— e*(%‘FZZA)S logx

1 . 1— e—2Aslogx ¢
|F(—slogx)| < 5+2£A e’ X"-‘ ’

(% + 2¢A)slog x 2Aslogx

o

<e’x°,

where the second inequality follows from an application of (2.10) and the
observation that ; + 2¢A < ; +¢€ < 1. For s = o > 0, observe that F(—o logx)

is real and positive. Thus, by (iii) and (2.10),

F(—ologx) <e”“x7 -

1 _ (G2t < ] _ x-240 )4

ologx 2Ac0 logx

e x° 1 _X—ZAG ¢
< .
~ ologx (2Aa logx)

eOEXO'

IA

ologx’

This completes the proof of all cases of (iv).

e For part (vi), we shall argue as in (iv). Rearranging (iii), notice that

1 - ,
|[F(z)| = ‘e(—%+2m)z [(1—e (g+2td)z 1 — o242 )
z 2Az ’

If r := Re{z} > 0, then

_(1 V4
1 e (2 +2CA)r 1 eszr
F(z)| < eCiv2ear 1 E (L

4 2A|z|
2e(’%+2“)r ( 1 )Z
=< .
4 Alz|

If we substitute z = —slogx = (3 — it) log x, then it follows by the definition
of A that

¢
Floslogx)| < 22X (2t ) aex (2£>£(1/4+t2)€/2
801 = |3 +itllogx \ el +1it]) — logx € '

This yields (vi) since 4e¢/? < 5 for € < 1/4. [ ]
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5005
3 Preliminary Analysis
3.1 A weighted sum of prime ideals

For x > 3,¢ € (0,1/4) and integer £ > 1, use the compactly supported weight f(-) =
f(-;x,¢,¢) defined in Lemma 2.2 and set

(3.1)

S&x) =Spe(x) ==Y AF(n)oc(n>f(
ncOoOp

log Nn)

We reduce our estimation of n¢(x,L/F) given by (1.6) to the smoothed version S(x).

Lemma 3.1. Let x, > e*. Suppose there exist constants a,b > 0 and 0 < ¢ < 1/2, all of

1l

which are independent of x, such that S(x) < {a + bx~°}!2lx for all x > x,. Then, for all

|Gl
X Z XOI
e(x,L)F) < {a +2bxC + 0( LS M)} 0. 0
/ X |G|
Proof. Ift > 1, then
Yet)= Y. Ocm)Axm)+ Ye(t"?). (3.2)

tl/ngn<t

The sum in (3.2) is bounded by S(t) in (3.1) because of Lemma 2.2(i), while the secondary

term in (3.2) is estimated much like (2.7). Thus, we have that
Ye(t) < S(t) + O(npt'/?). (3.3)

We substitute (3.3) into Lemma 2.1 and deduce that

X S t 1/2
1 0gx X0 tlog*t logx

From our assumption on S(t) for t > xq, it follows that

IC] ICI x g npx'/?
L/F —L dt (0] . 3.4
ne(x,L/F) < a|G| ix)+b |G| |:logX + . logz ; ] + ( Tog x + ngXxo (3.4)

Note that if 0 < ¢ < 1/2, then t!~¢/ log2 t is an increasing function of ¢ for ¢t > e*. Since
Xo > e* and Li(x) > @ for x > e*, we conclude that
X g * gl-c dt xt=¢ *¥dt x'=¢

dt = — < < x °Li(x). (3.5)
x log’t o log?t t 10ng o t  logx )

The desired result follows from (3.4), (3.5), and the identity n;, = [L : F]ny = |G|ng. [ |
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5006 J.Thorner and A. Zaman
3.2 Reduction to Hecke L-functions

By Mellin inversion, (3.1), and (2.2), it follows that
IOgX 2+i00
S(x) = —— Zc(s)F(—slogx)ds. (3.6)
271 2—ic0

To shift the contour, we must rewrite Z(s), defined by (2.1), in terms of L-functions
which exhibit an analytic continuation to the left of Re{s} = 1.

To this end, let H C G be an abelian subgroup such that H N C is nonempty, and
choose g¢ in Section 2.2 so that g € HNC. Let K = L¥ be the subfield of L fixed by H. By

standard arguments (see [4, Theorem 3.7] and [12, Section 3]), we have that

icl

_, I
G DTG (s, 1, L/K), (3.7)

xX€H

Ze(s) = —

where the sum runs over certain primitive Hecke characters x of K satisfying

w=x([4)

for prime ideals B of K that are unramified in L. Substituting (3.7) into (3.6), we conclude
that

|C| o logX 2-+ioc0 /
= — ——(s,x,L/K)F(-s1 ds. .
S(x) |G|2ij<gc) R /Hw (5, %, L/K)F (—slog x)ds (3.8)

Henceforth, any sum over x is overall x € H. These are equivalently the Hecke characters

attached to the abelian extension L/K by class field theory.

3.3 Hecke L-functions

For a more detailed reference on Hecke L-functions, see [13] for example. Suppose L/K is
an abelian extension, so all irreducible representations of Gal(L/K) are 1-dimensional

primitive Hecke characters y satisfying

s ([4)

for prime ideals f of K that are unramified in L. The Hecke L-function of x is defined by

-1
L(s, x,L/K) = Y x(OONN"* =] (1 - @) (3.9)

S
NSOk RY N
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5007

for Re{s} > 1, where the sum is over integral ideals 9t of K and the product is over prime
ideals P of K. For this subsection only, we write L(s, x) = L(s, x,L/K) and suppress
the implicit dependence of quantities on the extension L/K. Define the completed Hecke

L-function &(s, x) by

£(s, x) = (s(s — 1))’XD3 %y, (s)L(s, x), (3.10)

where D, = DgNf,, the K-integral ideal f, is the conductor of x, §(x) is the indicator

function for the trivial character, and y, (s) is the gamma factor of x defined by

Vi (8) = [n‘gr (%)]am : [ﬂ_%r (Ser 1)]b<x> |

Here a(x) and b(x) are certain nonnegative integers satisfying

a(x) +b(x) = ng. (3.11)

It is well known that £(s, x) is entire of order 1 and satisfies the functional equation

S, ) =w(OEN —5,7%),

where w(y) € C is the root number of x satisfying [w(x)| = 1. The zeros of &(s, x) are
the nontrivial zeros p of L(s, x) and are known to satisfy 0 < Re{p} < 1. The trivial zeros

w of L(s, x) are given by

a(x) —6(x) ifw=0,
osgg L(s, x) = {b(x) ifwo=-1,-3,-5,..., (3.12)
a(x) ifo=-2-4,-6,...,

and arise as poles of the gamma factor of L(s, x).

3.4 Shifting a contour integral

Next we shift the contour (3.8) and bound S(x) in terms of the nontrivial zeros of Hecke
L-functions. Henceforth write S = S(x) for simplicity. Recall f depends on the arbitrary

quantities x > 3,¢ € (0,1/4) and an integer £ > 1.

Lemma 3.2. Assume ¢ > 2. Then

G| S logx B -
C| ex =1+ o x ;ZU’(—[)X logx)| + O (n.x ' logx +x~%*(2¢/€)" log D), (3.13)

Px
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5008 J. Thorner and A. Zaman

where the outer sum is over all Hecke characters x of the abelian extension L/K and the

inner sum runs over all nontrivial zeros p, of L(s, x, L/K), counted with multiplicity. O

Proof. Shift the contour in (3.8) to the line Re{s} = —1. This picks up the nontrivial
zeros of L(s, x,L/K), the simple pole at s = 1 when x is trivial, and the trivial zero at
s =0 of L(s, x,L/K) of order r(x). Overall, we see that

G
15 —10gx | F(—1ogx) - > %XGe) Y F(—p,logx) + 0 (Z r(x)IF(O)I>
X Py

C] .
(3.14)
—1/2+ioc0 ’

. ——(s, x,L/K)F(—slogx)ds,

271 )i L( X, L/K)F( gXx)

where the sum over p = p, is over all nontrivial zeros of L(s, x,L/K), counted with mul-
tiplicity. From (3.11) and (3.12), we see that r(x) < ng. Hence, it follows by Lemma 2.2(v)
that

€

=, and Y r(IFO)] < [L: Klng = ;.

F(—logx) < €
logx

X

For the remaining contour, by [13, Lemma 6.2] and the primitivity of x, we have that

!

L
_z(sl XIL/K) < logDX + ng log(|s| + 3)!

for Re{s} = —1/2, where D, is defined in (3.10). It follows by Lemma 2.2(vi) that

log x ~1/2+4ic0 7
o —f(s,x,L/K)F(—s log x)ds

1/2—ic0

CLa (20\" [ logD, + nglog(t| + 3) i (20\°
«<x (?) / X(1/4Ij-t2)e/2 dt < x (?) log Dy,

because nx « logDx < logD, and ¢ > 2. Summing over x and using the conductor-

discriminant formula yields

- —1/2+ic0 / 20 ¢
logx E X(gc,) ——(s, x,L/K)F(—slogx)ds « x~'/* (—) logD;.
P 271 J 1 jamico L €

Taking absolute value of both sides in (3.14), multiplying both sides by (e‘x)~!, and

combining all of these observations yields the desired result. |

To analyze the sum over zeros in Lemma 3.2, we require some information about

the distribution of zeros of Hecke L-functions.

6102 AB €0 UO Josn Aieiqr meT piojuels AQ GE8E90E/L66+/91/8L0Z/10BASqE-a[olE/UIY/WOO"dNO"0lWapede//:Ssdny Wwoly papeojumoq



A Chebotarev Variant of the Brun-Titchmarsh Theorem 5009
4 Distribution of Zeros of Hecke L-Functions

In this section, we record various results about L-functions L(s, x, L/K) where the exten-
sion L/K is abelian and hence x is a Hecke character of K by class field theory. Associated
notation and classical results can be found in Section 2. Henceforth, any sum ZX or

product [], is over all characters x of L/K unless otherwise specified.

4.1 Logarithmic quantity
Let §o > 0 be fixed and sufficiently small. For the remainder of the article, denote

Sng

sng 1
P (3 4 80) log Dx + (32 + 80) log Q + (& + do)ng logng if ne® > DZQs,

(1 + 80) log Dg + (2 + 89) log Q + Sonx log nx otherwise,
where Q = O(L/K) = max({Nf, : x € éz;l(L/K)}. Notice that
& > (1+8)logDx + (2 +80)log Q + Song logng  and &£ > (S +8)nglogng  (4.2)
unconditionally. We exhibit a bound on the degree of the extension L/K in terms of .Z.
Lemma 4.1. [L:K] « e*?/® and n;, « Le**/3. O

Proof. Let f= f;/x be the Artin conductor attached to L/K by class field theory. Let I(f)
be the group of fractional ideals of K relatively prime to f. By class field theory, there
exists a homomorphism ¢ : I(f) — Gal(L/K). Thus I(f)/ ker ¢ is isomorphic to Gal(L/K).

This induces an isomorphism between their respective character groups and therefore,
Q(L/K) = max(Nf, : x € Gal(L/K)} = max{Nj, : x € I())/ ker ¢}.

By our previous observations, |I(f)/ ker¢| = |Gal(L/K)| = [L : K]. For ¢, > O fixed and
sufficiently small, we have by [24, Lemma 2.11] that |I(f)/ ker ¢| < %0 ™ DY*T0 Q1+

e*?/3 as desired. To bound n;, observe that n; = [L : K|ng and nx < .Z. [ |

4.2 Low-lying zeros

Next, we specify some important zeros of [ [ L(s, x, L/K) which will be used in Section 6

to 8. For the remainder of the article, let n > 0 be sufficiently small and arbitrary.
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5010 J. Thorner and A. Zaman

Consider the multiset of zeros given by

2:=1peC: [0, x,L/K) = 0,0 < Refp} < 1, |Im(p)| = 77_2}- @.3)

X

We select three important zeros of Z as follows:

e Choose p; € Z such that Re{p;} is maximal. Let x; be its associated Hecke
character so L(p,, x1,L/K) = 0. Denote

: A M1
— +1 — 1 - — + 1—,
P =h n ( .i”) Z

where 8, = Re{p1}, 1 =Im{p;},A; > 0, and pu; € R.

e Choose p’ € Z\{p1, p1} satisfying L(p’, x1,L/K) = 0 such that Re{p’} is maximal
with respect to these conditions. (If p; is real then p’ € Z \ {p;} instead, with
the other conditions remaining the same.) Similarly denote

/ IB/ + . 7 1 )", + -/’L/
= 1l = —_ l—.
1Y Y 7 7
¢ Choose p, € Z\ Z, such that Re{p,} is maximal and where Z; is the multiset of
zeros of L(s, x,,L/K) contained in Z. Let x; be its associated Hecke character
S0 L(pz, x2,L/K) = 0. Similarly, denote

, A2 , 2
= = ]_ —_—— —_—
P2 =P+ 1y2 ( ,,2”) Ty

If A, < n then we henceforth refer to p, as an n-Siegel zero. The proof of Theorem 1.2 will
be divided according to whether an 7-Siegel zero exists or not.
4.3 Zero-free regions

Here we record the current best-known explicit result regarding zero-free regions of

Hecke L-functions; see also [1, 11] for earlier results.

Theorem 4.2 (Zaman). For .Z sufficiently large depending on n, min{A’, 1,} > 0.2866.
Furthermore, if A, < 0.0875 then p, is a simple real zero of ]_[X L(s, x,L/K) and is

associated with a real character yx;. O

Proof. When L is a narrow ray class field of K to a given modulus and n = 1 in (4.3),

this is implied by [28, Theorems 1.1 and 1.3] since .Z satisfies (4.2). For general abelian
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5011

extensions L/K and any fixed n € (0,1), one may easily modify [28] to obtain the cited
result by following the outline in [24, Section 8]; see [29] for details. [ |

4.4 Zero repulsion

Here we record two explicit estimates for zero repulsion when an exceptional zero exists,

also known as “Deuring-Heilbronn phenomenon".

Theorem 4.3 (Zaman). Let .Z be sufficiently large depending on 5. If A; < 0.0875, then
min{)\’, A,} > 0.44. If n < A; < 0.0875, then min{A’, A,} > 0.2103 log(1/A;). O

Proof. Again, when L is a narrow ray class field of K to a given modulus and n = 1, this
isimplied by [28, Theorem 1.4] since .Z satisfies (4.2). Similar to the proof of Theorem 4.2,
one may modify [28] as outlined in [24, Section 7] to deduce the same theorem for general

abelian extensions L/K and 5 € (0, 1); see [29] for details. [ |

Theorem 4.3 is unable to handle exceptional zeros p; extremely close to 1 due to
the requirement A; > n. Thus, we include a version of Deuring-Heilbronn phenomenon

[24, Theorem 8.3] which repels zeros in the entire critical strip.

Theorem 4.4 (Thorner-Zaman). Let T > 1 be arbitrary. Suppose x; is a real character
and p, is a real zero. For any character x of L/K, let p = 8+ iy # p; be a nontrivial zero
of L(s, x,L/K) satisfying 1/2 < 8 < 1 and |y| < T. For .Z sufficiently large, there exists

an absolute effectively computable constant ¢; > 0 such that

(4]
lo
ho1_ g((l—ﬁ1>(z+nKlogT)> .
81.7 + 25nglog T '

4.5 Log-free zero density estimates

Let x € @(L/K) be a Hecke character. Define
N(o,T,x):=#p=B+1iy:Lp,x,L/K)=0,0 < B < 1,|y| < T}
for0 <o < 1and T > 1. Further denote

N(o,T) := ZN((;, T, %). (4.4)
X
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5012 J. Thorner and A. Zaman

Amongst all of the results recorded herein on zeros of Hecke L-functions, the proof
of Theorem 1.1 only requires the following log-free zero density estimate, which we
emphasize does not assume . is sufficiently large. This is a rephrasing of the authors’
result [24, Theorem 3.2] using the definition of .# in (4.1).

Theorem 4.5 (Thorner-Zaman). ForO <o <land T > 1,N(o,T) « (e'62Z T8lnk+162)1-0
([l

The proof of Theorem 1.2 also requires a completely explicit zero density

estimate for “low-lying" zeros. Define for 0 < A < .Z,

N =) N1 —-Z,77% ). (4.5)
X

Theorem 4.2 states that A(0.0875) < 1 and AN (0.2866) < 2 for .¥ sufficiently large

depending on 5. For larger values of A, we use the following:

Theorem 4.6 (Thorner-Zaman). Assume .Z is sufficiently large depending on 7. Let
€9 > 0 be fixed and sufficiently small. If 0 < A < ¢,-Z then

N()\‘) < 6162A+188.
The bounds for N'(1) in [24, Table 1] are superior when 0 < A < 1. O
Proof. See [24, Theorem 8.6] for details. [ |

5 Zeros Outside a Low-Lying Rectangle

From Lemma 3.2, it remains to estimate a sum over all nontrivial zeros of all Hecke
L-functions L(s, x, L/K). In this section, we demonstrate that the contribution of zeros is
negligible if the zeros are either high lying or far from the line Re{s} = 1. Throughout, we
assume 1 < B < 1000 is a fixed absolute constant. We begin by considering high-lying

Zeros.
Lemma 5.1. Let T, > 1 be arbitrary. Let 0 < E < 2B be fixed. Let

B>162+E, (>82ng+162, 1 >e>4lx"/® (5.1)
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5013

For x > ef¥,

logx 1
F(—pl — 2
2 2 |FCplognl< o (5.2)

X P
Im{p}|>Tx

O

Proof. Write p = 8+ iy withf=1— £.If T > 1, then Lemma 2.2(iv) with « = £(1 — B)

and our choices of our conditions on ¢, £, and x imply that

logx 2e‘xP1 (24
|F(—plogx)| < ——— T

=g 4
S _e—(B—E)A(ZT)—(SZnK+162)x/$. (53)
X T T

Using Theorem 4.5 via partial summation, we see that

TIo8XS Y IF(—plogx)

X o0
x T<[Im{p}|<2T
g~ (B-E-162)2 e log(2T z
< W + <B —E+ %) / 37(37}57162”(211)411{)\/3(1)L <1,
0

since B > 162 + E. Overall, this implies that the LHS of (5.2) is

o0

< lofx YO Y IF(=plogxn)l TLZ% < Ti

x k=0

P
2k T, <tm{p}<2k+iT,

as desired. [ ]

As we shall see in the next section, an appropriate combination of Lemma 3.2,
Theorem 4.5, and Lemma 5.1 suffices to establish Theorem 1.1. For Theorem 1.2, we must

also show low-lying zeros far to the left of Re{s} = 1 contribute a negligible amount.

Lemma5.2. Let0O <R < %.i” be arbitrary. Assume (5.1) holds. For x > €<,

logx

Z Z, |[F(—plogx)| < x (B-E-162R/BZ

X P

X

where the marked sum Y ' runs over zeros p = B + iy of L(s, x,L/K), counting with
multiplicity, satisfying0 < 8 <1—R/.¥ and |y| < e L. O

Proof. From our choices of €, ¢ in (5.1) and Theorem 4.5, it follows that

N(l _ %,G_l) <« 81621(1/6)(81n1{+162))»/££ < elGZAXE)L/BfK < X(162+E))»/B££
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5014 J. Thorner and A. Zaman

for 0 < A < .Z, where N(o,T) is given by (4.4). Write p = B+ iy with g =1 — é for
some nontrivial zero p appearing in the marked sum. By Lemma 2.2(iv) with « = 0 and

Lemma 2.2(v), it follows that

logx xHMZ for |p| > 1/4,
& [F(—plogx)| < (5.4)
x3/*logx for|p| < 1/4.

X

To clarify the second inequality, we observe by Lemma 2.2(v) that |F(—plogx)| < x# «

x'/% for |p| < 1/4. Thus, by (5.4) and partial summation, we have that

logx / _s-E-162 logx (% _—e-r_162
BEN Y F—plogx)| < x5 +% x Tz da
X lpl=1/4 R

< x~(B-E-162)R/BL

Moreover, by (5.4), a crude application of [12, Lemma 2.1], and Lemma 4.1, it follows that

logx

ol

Z Z IF(—plogx)| < [L:K1.Zx ¥*logx <« x ¥*e*“logx « x i*5.

X

X o
IpI<1/4

Combining these estimates yields the desired result since, by our assumptions on B and
R X—(BfE7162)R/B$ > Xf(B—E7162)/ZB > Xfl/Z > X73/4+3/162 > X73/4+3/B. ]

We package these lemmas into the following convenient proposition.
Proposition 5.3. Let 0 <R < 1.# be arbitrary. Let 0 < E < 2B be fixed. Assume that
B>162+E, €>82ng+162,  I>e>40x "%, (5.5)

If x > e and S(x) is given by (3.1), then

@S(x) - logx
IC| ex — e‘x

Z Z, F(—plogx)| + O(e +X_(B—E—162)R/B$), (5.6)
X

P

where the sum Y " indicates a restriction to nontrivial zeros p of L(s, x,L/K), counted

with multiplicity, satisfying 1 — R/.Z < Re{p} < 1 and |Im{p}| < . O
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5015

Proof. Let T, = 1/e. It follows from our hypothesis (5.5) along with Lemma 3.2,

Lemma 5.1, and Lemma 5.2 that

|G| S logx *
—— =<1 F(—pl
C| eéxf + o x E E |F(—plogx)]

X P (5.7)

+ 0 (e +x B EIDREL 4y xogx + x*(20/€) log Dy).

It remains to bound the third and fourth expressions in the error term by €. Since E < B
and ¢ > 244, we see that

€ > x E/BU S 1/t o y—1/244

Moreover, n; = ng[L : K] €« Ze*? « x%152 by Lemma 4.1 and (4.2). Similarly, since
logD; = ZX logD, <[L:K]log(DxQ), it follows that

(2t/€) log D, <« xB L[L : K] « x*3.Le*% « x?/33/162,

Applying these estimates in (5.7) yields (5.6). [

6 Proof of Theorem 1.1

In comparison to Theorem 1.2, the proof of Theorem 1.1 is quite simple, requiring only
the log-free zero density estimate of Hecke L-functions given by Theorem 4.5. Recall
this result is uniform over all extensions L/F and therefore we do not assume .# is suf-

ficiently large.

Proof of Theorem 1.1. Select

B=2445, E =821, (=82ng+162, ¢=1/8, and R=0. (6.1)
Let M, > O be a sufficiently large absolute constant. For x > x, := %45 4 Mon2*%,

we claim these are valid choices to invoke Proposition 5.3. It suffices to check ¢ = = >

1
8
4¢x /B¢ for x > x,. We need only show (32¢0)8“F < x,. This is visible from the fact that

2445
2445 8ong +162) .
(SZE)BZ/E <« nKsz.1 K g0nK) < n12(44 Sng < Xo,

after enlarging M, if necessary. This proves the claim.
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5016 J. Thorner and A. Zaman

Therefore, by Proposition 5.3, we have that S(x) « %X for x > x,, because
the corresponding restricted sum ) * is empty whenever R = 0. Let M > 1 denote the
implicit absolute constant in the above estimate for S(x). Thus, by Lemma 3.1 with

Xo = e*45Z Mon12{44‘5"K, a=M and b = ¢ = 0, we have that

nglogx

me(x,L/F) < {M +O0(nyx ' +
X

§ Cl_.
(6244'5‘“‘0 + n?{44-5n1<))} %Ll(x)

for x > xy. By Lemma 4.1 and (4.1), notice that n;, < €*4/® « DZQ?niX. Thus, the desired
result follows for x > e%9< + DZ Q2n12{46"K . [ |

Remark.

e If one wishes to minimize the value of B and hence minimize the exponents

of Dk and Q in (1.10) then one may alternatively select

B=162.01, E=0.95 (¢=82ng+162, ¢=1/8, andR=0

in place of (6.1). Taking xo = €620 4 Myn,>**"¥ it follows that

162.01
(82ng+162) 13,999
(BZE)BZ/E «n 0.95 K EO(nK) <«n ng < Xo.

Arguing as above, one deduces n¢(x,L/F) < %Li(x) for x >» e'®% 4
D2 Q%*n """ as claimed in the remark following Theorem 1.1 based on (4.1).
 Similarly, to minimize the exponents of ngX in (1.10), one may alternatively

select
B=359.5 E=197, (=82ng+162, ¢=1/8, andR=0

in place of (6.1). Taking x, = €3°9%%, it follows by (4.2) that

359.5
g7 (82ng+162) 149.65
(320)PYF & m 97 TTE T 0K) g K < kg,

since 359.5 x 15—2 > 149.7. Arguing as above, one deduces n¢(x,L/F) < %Li(x)

for x >» %6097 > ¢4¥/3¢3995< 3¢ claimed in the remark following Theorem 1.1.
(I

The following two sections consist of the proof of Theorem 1.2 which is divided into

cases depending on how close the zero p;, defined in Section 4.2, is to Re{s} = 1. The
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5017

main steps are similar to the above proof for Theorem 1.1 but need a more refined

analysis.

7 Proof of Theorem 1.2: 5-Siegel Zero Exists

Let n > 0 be arbitrary and sufficiently small and let . be sufficiently large depending
only on 5. The proof of Theorem 1.2 is divided into Sections 7 and 8 by whether p; is an

n-Siegel zero or not.

For this section, we consider the case when 1; < n. By Theorem 4.2, it follows

that p, =8 =1— %) is a simple real zero and y; is a real Hecke character. Suppose
B =692, E = 344, ¢ =82ng + 162, 4px—344/0920 < ¢~ 1/4, (7.1)

With these choices, we claim for x > e%9%% that 4¢x34/692¢ — (1) as ¥ — oo. If ng is
uniformly bounded while .Z — oo then this is immediate, so we may assume ng — oo.
By (4.2), notice that £ = 82ng + 162 < {196.8 + 0(1)}10511{ < 19710§LK for ng sufficiently
large. Thus, for ng sufficiently large and x > €592¢, we have that

_ _ —344 _
40x~HO2 @I/ @ TH loBIK 0T

Hence, 4¢x~344/692¢

= 0o(1) as ng — oo. This proves the claim, which implies the condition
on € in (7.1) is nonempty for .# sufficiently large.
Now, let1 < R < %.,2” be arbitrary. By Proposition 5.3, for x > €%2%, we have

that

|G| S(x) -1 x 1= logx
IC| esx — B1 e‘x

Z Z, IF(—plogx)| + Ofc + x19R/692%), (7.2)

X P#EPL

where Y * runs over nontrivial zeros p # p; of L(s, x,L/K), counted with multiplicity,

satisfying
1 -R/Z < Re{p} <1, Im{p}| < e .

Note that the B; term in (7.2) arises from bounding F(—o logx) in Lemma 2.2(v) with

o = B;. We further subdivide our arguments depending on the range of 1;.
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5018 J. Thorner and A. Zaman

2L
Togx =< ll < ”)

7.1 X; very small (

Here selecte = n?andR = min{é log(ci /A1), 1.2} for some fixed sufficiently small ¢; > 0.
Since 4¢x344/892¢ — (1) as ¥ — oo, it follows that this choice of ¢ satisfies (7.1) for .¥
sufficiently large depending only on 7.

Hence, by Theorem 4.4, these choices imply that the restricted sum > " in (7.2) is

empty for . sufficiently large depending only on n. Moreover, we see that

_ _186
x186R/693L _ o= YR logler/r) )wf < 1’

as x > e%2< and 186/82 > 2. Further, we have that

x—(-BD

B = efxllogX/z{l +0M/ L) <1—n+ O(Uz)r
1

since % <M <nande?t < 1-—1t/2for0 <t < 1. Overall, we conclude that S(x) <

(2—-n+ O(nZ)}%X for x > €%2%<, By Lemmas 3.1 and 4.1, we conclude that
IC]

me(x,L/F) < {2—n+0(n* + ZLe'** (x'/* + *®“x ' logx))}

for x > e%%2<. Hence, in this subcase, Theorem 1.2 (with no error term) follows for

694.5.%

x>e after fixing n > 0 sufficiently small and recalling .# is sufficiently large.

0L < n)

7.2 ) extremely small (1, < Togx =

Here select

. < C 4 1
— 4€ —344/692¢ d R — 1 . , _g
€= an n { 817 + 25ng log(1/e) © (Al 7+ g log(l/e)) 2 }

—344/692¢ — (1) as .¥ — oo, it follows

for some sufficiently small ¢; > 0. Again, since 4{x
that € < 1/4 for . sufficiently large so this choice of ¢ satisfies (7.1).
Now, from our choice of R and Theorem 4.4, the restricted sum in (7.2) is empty.

For the main term, observe for .# sufficiently large and n > 0 sufficiently small that

x—(1-BD (1 Allogx> 14+ A <1- MlOgX,
B 2.7 z 37

as i < f:g“i ande’® <1—1t/2for0 <t <1.Tobound the error term in (7.2), notice that
81 344 .- 25ng 185.9
81.Z + 25ng log(1 < —1logx logx log x,
+25niclog(1/e) = an 108X + 5o ane + 162) 08X = oz 08
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5019

6922

3 : 693.%
by our choice of € and ¢ and since x > e . Consequently, R > T85.910g%

log(hclljgx) for

some sufficiently small ¢ > 0, implying

186
x186R/692% <)‘1 logx) 1859 & y/200 ()»1 1OgX>
g r

120”5 and 2= < 5. Combining these observations into (7.2) implies that

since A; <

@S(x) 5 _ A logx

A logx
2% 4o 12000 2120 ) 9 1004, + O
ICl ex sz T <6+" 7 )= 1+ 0(€)

as 7 is sufficiently small. Rearranging and substituting the choice of € and ¢, we see that

I c
S(X) < [2 — 100)\1 =+ O(nKX 166nK+327)} %X

for x > %%, Now, if x > %949 then, by Lemma 4.1, we have that

nL6692$X—1 ].OgX < nKEGQSAEX—l IOgX < nKX—1‘5/694.9 IOgX < nKX_l/(lﬁﬁnK+327).
Similarly, n;x~Y? « ngx~Y/(166nx+327) Thus, by the previous inequality and Lemma 3.1,
it follows that
1 __1|C|..
e(x,LF) < {2 — 1004, + O(ngxx 166"K+327)} G e (7.3)
for x > e%949%, As §;, in (4.1) is sufficiently small, this completes the proof of Theorem 1.2

when an 5-Siegel zero exists. [
Remark.

* In (7.1), we could instead take B = 502 and E = 198 to establish (7.3) except
with an error term of O(ngx~1/(208nx+41Dy To improve the error term, we chose
the largest values of B and E which did not reduce the valid range of x in
Theorem 1.2. This range of x is limited by the case addressed in Section 8.3.

* As stated in Theorem 1.2, we obtain the sharper bound n¢(x,L/F) < Z%Li(x)
from (7.3) with good effective lower bounds for A;. To see this, notice the error

term in (7.3) is < A} provided

166ng+327
Can> © x
. &1y

x> <A%.001
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5020 J. Thorner and A. Zaman

where ¢; > 0is some absolute constant. If the above holds then (7.3) becomes

me(x,L/F) < {2 —1004; + 0.1} %Li(x).

As A, < n, this implies n¢(x,L/F) < Z%Li(x) by fixing n sufficiently small.

Hence, any effective upper bound on x; translates to a range of x where the
sharper bound for n¢(x,L/F) holds. From the proof of Theorem 1’ in Stark
[23], we have that 1, > min{g(nK)*l,D,}””K Q- Y2k} where g(ng) equals 1 if K
has a normal tower over Q and equals (2ng)! otherwise. If nx < 10 and DxQ

is sufficiently large then we have that
X < (1/)\‘1)167n1{+328 <« D11<67+328/nK Q84+164/nK < D?;]SQZ% < X,

for x satisfying (1.12), as desired. Thus, we may assume ng > 10 in which

case we have that

167n 167 328
X L g K (1 ) RS
167+4328/n 841164 167n, 167n 167 328
&« Dy K Q8o MK 4 ny MK g(ng) KT

167 167
< D[Z{OOQlOan ng + Ny an(nK)167nK+328.

Therefore, if K has a normal tower over Q or (2ng)! < D}{/n’{ Q2" then
200 ~H101.,167ng O(ng) 200 ~H101.,168ng
X1 KDy Q9  ng re LDy Q9 " ng <L X,

for x satisfying (1.12) and DxQn;X sufficiently large. Otherwise, g(ng) <

(2nk)! < (2ng)?"® which implies that

2
200 101, 167ng 333ng
X LD Q ng T +nyg

2
unconditionally. Thus, imposing x > n?%K in addition to (1.12) also yields

the sharper estimate for n¢(x,L/F). This completes all cases. O

8 Proof of Theorem 1.2: »-Siegel Zero Does Not Exist

In this section, we assume A; > 5 for sufficiently small > 0 and we will show The-
orem 1.2 holds with no error term. Recall .Z is sufficiently large depending only on 7.

Assume A* > 0 satisfies

A < min{)/, A,}, (8.1)
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5021

where )’ and A, are defined in Section 4.2. Select
B>360, E=198, (=82ng+162, e=1n? (8.2)

and let R = R(n) be sufficiently large. We claim these choices satisfy the assumptions of
Proposition 5.3. Since .Z is sufficiently large depending only on 7, it suffices to show, for
x > ePZ that 4x £/ = 0(1) as ¥ — oo. We shall argue as in Section 7. If ng is bounded
while ¥ — oo then this is immediate, so we may assume nx — oco. By (4.2), notice that
0 = 82ng + 162 < {196.8 + o(1)}—%— < 197—2— for ng sufficiently large. Thus, for ng

logng logng
sufficiently large and x > €%, we have that

198 —
4ZX—E/B[ <« nKeflg&Z/Z <« nKefmlognK < nK1/197‘

Hence, 4¢x7E/B¢ = 0(1) for x > e®%, as nx — oo. This proves the claim.

Therefore, by Proposition 5.3, it follows that

|G| S(x) log x . )
= <14 === F(—pl (0] ,
Clex =17 ox Z; IF(—plogx)| + O(n*)

for x > e#* and where the sum ) " runs over nontrivial zeros p of L(s, x), counted with
multiplicity, satisfying 8 > 1 — R/ and |y| < n~2. For a nontrivial zero p of a Hecke

L-function, write p = 8 +iy =1 — é +1%. By Lemma 2.2, we see that

logx

B
'

—|F(—plogx)| <x "7 <e
e‘x

since x > €. Extracting p, and p; (or simply p, if p; is real) from }_*, we deduce by our
choice of A* in (8.1) that

G| S
G139 1t mene™ +3 Y e+ 00, 8.9
|C| ex X A*<A<R

lyl<n~?2

where m(p;) = 2 if p; is complex and m(p;) = 1 if p; is real. To bound the remaining

quantities, we must select A* for which we further subdivide into cases.

8.1 A;small(n<ir <107%)

By Theorem 4.2, p; is a simple real zero attached to a real character yx;, implying m(p,) =
1. Select B = 361 and choose A* = 0.21031og(1/2;), which satisfies (8.1) by Theorem 4.3.
Arguing as in [24, Section 10.1.2] and using Theorem 4.6, we may conclude by (8.3) that
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5022 J. Thorner and A. Zaman

Sx)<{2—-n+ O(nz)}%x for x > e%!%, As in the final arguments of Section 7.1, we use

Lemma 3.1 to establish Theorem 1.2 for x > 363,

8.2 A; medium (102 < A; < 0.0875)

One argues similar to the previous case with some minor changes. Namely, select B = 593

and choose A* = 0.44, and follow [24, Section 10.1.1] to deduce Theorem 1.2 for x > €595,

8.3 1 large (A; > 0.0875)

Select B = 693 and A* = 0.2866 as per Theorem 4.2. Noting m(p;) < 2 unconditionally,
one may argue similarly as per the previous cases and follow [24, Section 11] to deduce
Theorem 1.2 for x > e54%%, As §, in (4.1) is sufficiently small, this yields the desired

range of x in Theorem 1.2, completing the proof in all cases. |

9 Proof of Theorems 1.4 and 1.5

First, we state a slightly weaker (but more convenient) reformulation of Theorem 1.1.

Theorem 9.1. Let L/F be a Galois extension of number fields with Galois group G, and
let C be any conjugacy class of G. Let H be an abelian subgroup of G such that HN C
is nonempty, and let K be the subfield of L fixed by H. Let P(L/K) be the set of rational

primes p such that there is a prime ideal p of K with p | p and p ramifies in L, and set

ML/K)=[L:KID{™ ] p.
peP(L/K)

If logx > ng log(M(L/K)ng), then ¢ (x,L/F) < %Li(x). O

Proof. If L/K is abelian, then [19, Proposition 2.5] states that

2ng

ow/k) < |IL:k1 [ p

pPeP(L/K)

Using the definition of M(L/K), we see that (1.10) is
< (DK Q(L/K)nIZK)Z‘LS < (nKM(L/K))SOOnK

The claimed result now follows immediately from Theorem 1.1. |
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5023
9.1 Proof of Theorem 1.4

Fix a newform f (cf. Section 1) of even integral weight kr > 2, level N¢, and trivial
nebentypus with integral Fourier coefficients, and fix an integer a. For each prime p, we
define w, = (as(p)* — 4p"~")V/2. We know from Deligne's proof of the Weil conjectures

that |as(p)| < 2p* /2 for all p, so Q(w,) is an imaginary quadratic extension of Q. Set
wr(x,a;0) = #{p < x: ar(p) = a (mod ¢) and ¢ splits in Q(wp)}.

Let ¢; < €3 <--- < {; be any t odd primes, each less than exp(lozgtx). By [26, Corollary 4.2],
if t ~ (4/log2)loglog x, then

t
Tp(x,a) K Y (X, 4) +

X
> < (loglogx) Ilna)§ wr(x,a;4) + ———. (9.1)
- <j<

j=1

X
(log x) (log x)?
We proceed to bound n¢(x, a; £), where ¢ < exp((log 2)(logx)/(8loglogx)).

Let ¢ be prime, let F, be the field of ¢ elements, and let Frob, be the Frobenius

automorphism of Gal(Q/Q) at p. For each ¢, there is a representation

pfe - Gal(Q/Q) — GLy(Fy) (9.2)

which is unramified outside Ny¢ such that for all primes p { N¢¢, we have that
tr(ps,(Frob,)) = ar(p) (mod £) and det(pr,(Frob,)) = pkf_1 (mod ¢). We have that pr, is
surjective for all but finitely many ¢. Let L = L, be the subfield of Q fixed by ker ofe. If
¢ is sufficiently large, then L/Q is a Galois extension, unramified outside of N¢¢, whose
Galois group is G = {g € GL,(FF;) : detg € (IE‘Z)kf’l}.

Define C = {A € G: tr(A) = a (mod ¢) and tr(4)? — 4 det(A) € F, is a square}. Let B
denote the upper triangular matrices in GL,(F,;) N G, and let L? be the subfield of L fixed
by B. Let U be the unipotent elements of B, and let LY be the subfield of L fixed by U.
Note that U is a normal subgroup of B and that B/U = Gal(LU/L®) is abelian. Let C’ be
the image of CN B in B/U. If x is sufficiently large, then by [30, Lemmas 2.7 and 4.3],

Vx

nr(x,a; ) < e (x, LY /LP) + s ( + logM(LU/LB)>.

logx

Applying Theorem 9.1 to the Chebotarev prime counting functions for each conjugacy
class in C’, we have that if log x > n;z log(M (LY /L®)n;s), then

Ic'l x VX -
; — —— +logM(L"/L7) ).
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5024 J. Thorner and A. Zaman

By [30, Lemma 4.4], we have |C'|/|B/U| < 1/¢,n;s < £,and log M (LY /L?) <, logt.
Combining all of our estimates, we find that
1 x Lyx

¢logx * logx

p(x,a; ) K + ¢log Nye, logx > ¢log Ny¢. (9.3)
Thus, taking ¢ ~ c'logx/log(Nrlogx) for some sufficiently small absolute constant

c >0,

x log(Ny log x)

(log x)? (94)

(X, a;0) K
Now, as before, let t € Z satisfy t ~ 4/(log2)loglogx, and let ¢; < ¢, < --- < {; be
t consecutive primes with ¢; ~ c¢'logx/log(Nrlogx). By the prime number theorem,

¢; € [€y,2¢,] for all 1 <j <t. Therefore, if ¢’ is made sufficiently small, we have that

xlog(Nylog x)

(log x)2 ©:5)

max mr(x, a; {;) <
1<j<t
Theorem 1.4 now follows from inserting the inequality (9.5) into the inequality (9.1).

Remark. Using the Cauchy-Schwarz and Polya-Vinogradov inequalities, Murty [20,
Page 304] proved that

1/2
(M) . (9.6)

7r(x,a) < max mr(x,a; ) +
Lely .2yl

Using [20, Theorem 4.6], it is subsequently shown that if ¢ € [y,2y] and y =

c'(logx)/(loglog x)? for some sufficiently small absolute constant ¢’ > 0, then

x(loglogx)?

Togx)? 9.7)

p(x,a;l) K

It is then claimed in [20] that (9.6) and (9.7) imply ¢ (x, a) <y x(loglogx)?/(log x)%. It is
not clear to us how to deduce this estimate for ns(x, a) using (9.6) and (9.7). In particular,
if 77 (x,a) > x/(logx)?, then the aforementioned choice of y forces the secondary term
in (9.6) to be > x/(log x)%?2. By inserting (9.7) into (9.1) instead of (9.6), one obtains the
weaker statement (1.17). The source of our improvement over [20] stems solely from the

loglog x savings over (9.7), which can be seen from (9.4). O
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A Chebotarev Variant of the Brun-Titchmarsh Theorem 5025
9.2 Proof of Theorem 1.5

The proof of Theorem 1.5 is nearly identical to the proof of [30, Theorem 1.3(ii)] except
that we use Theorem 1.1 to bound the ensuing Chebotarev prime counting function
instead of using [30, Theorem 2.1(ii)]. The analytic details are very similar to the above
proof of Theorem 1.4, but the particular Galois extension to which Theorem 1.1 is applied
is different. Following [30, Section 5.2], we apply Theorem 1.1 instead of [30, Theorem

2.1(ii)], which allows us to choose

_c logx
Y= log(]}f—]’: log x)

(where Dy is the absolute discriminant of k and hj; is the class number of k) for some

sufficiently small absolute constant ¢ > 0. This yields the claimed result.
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