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Abstract

LetM be a pure motive over Q of odd weight w ≥ 3, even rank d ≥ 2, and global
conductor N whose L-function L(s,M) coincides with the L-function of a self-dual
algebraic tempered cuspidal symplectic representation of GLd (AQ). We show that a
certain polynomial which generates special values of L(s,M) (including all of the critical
values) has all of its zeros equidistributed on the unit circle, provided that N or w are
sufficiently large with respect to d. These special values have arithmetic significance in
the context of the Bloch–Kato conjecture. We focus on applications to symmetric
powers of semistable elliptic curves over Q. Using the Rodriguez–Villegas transform, we
use these results to construct large classes of “zeta-polynomials” (in the sense of Manin)
arising from symmetric powers of semistable elliptic curves; these polynomials have a
functional equation relating s �→ 1 − s, and all of their zeros on the line �(s) = 1/2.

1 Introduction and statement of results
Let f (z) = ∑∞

n=1 af (n)qn be a normalized holomorphic cuspidal modular form of even
weight k ≥ 2 and level N , and trivial nebentypus. Assume further that f is an eigenform
for the Hecke operators Tp for p � N and Up for all p | N . We call such a modular form a
newform. The L-function L(s, f ) associated to a newform f , which is given by

L(s, f ) :=
∞∑

n=1

af (n)
ns

=
⎛

⎝
∏

p|N

1
1 − af (p)p−s

⎞

⎠
∏

p�N

1
1 − af (p)p−s + pk−1−2s , (1.1)

has an analytic continuation to C. The completed L-function

�(s, f ) =
(√

N
2π

)s
�(s)L(s, f ) (1.2)

is an entire function of order one and satisfies the functional equation�(s, f ) = ε(f )�(k−
s, f ), where ε(f ) ∈ {−1, 1}. The completed L-function arises as a period integral of f :

�(s, f ) = Ns/2
∫ ∞

0
f (iy)ys−1dy. (1.3)
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One defines the period polynomial associated with f by rf (z) :=
∫ i∞
0 f (τ )(τ − z)k−2dτ ,

which is a polynomial of degree at most k − 2 in z. Using (1.3), we expand (τ − z)k−2 to
obtain

rf (z) =
( i√

N

)k−1 k−2∑

j=0

(
k − 2
j

)

(iz
√
N )j�(k − 1 − j, f ). (1.4)

By expressing �(s, f ) in terms of L(s, f ) via (1.2), we see that rf (z) is a generating function
for the critical values L(1, f ), L(2, f ), . . . , L(k−1, f ). For additional background and details,
see [12] and the sources contained therein.
It follows from the functional equation for�(s, f ) that rf (z) satisfies a functional equation

of its own, relating rf ( z
i
√
N
) to rf ( 1

iz
√
N
) and fixing the unit circle S1 = {z ∈ C : |z| = 1}. In

analogy with the expected behavior of the non-trivial zeros of the Riemann zeta function
ζ (s) or the non-trivial zeros of L(s, f ), one might expect that all of the zeros of rf ( z

i
√
N
)

lie on S1. Because of the similarity with the Riemann hypothesis, this has been called the
Riemann hypothesis for period polynomials. Conrey et al. [7] proved a result of this sort for
the odd part of rf ( z

i
√
N
), and the Riemannhypothesis for the period polynomials associated

to newforms of level 1 and even weight k ≥ 2 was established by El-Guindy and Raji [10].
The Riemann hypothesis for period polynomials is now a theorem due to Jin et al. [12]
for all newforms of weight k ≥ 2 with trivial nebentypus; furthermore, they proved that if
either k or N is sufficiently large, then the zeros of rf ( z

i
√
N
) are equidistributed on S1.

The truth of the Riemann hypothesis for period polynomials, along with the statement
of equidistribution, introduces strong conditions on the sizes of the critical values L(1, f ),
L(2, f ), . . . , L(k − 1, f ); these values have significance in algebraic number theory and
arithmetic geometry. For newforms f of weight 2 associated with elliptic curves, rf (z)
is a constant polynomial with a nonzero factor of L(1, f ). If the Birch and Swinnerton–
Dyer conjecture is true, then L(1, f ) encapsulates much of the arithmetic of the elliptic
curve, including order of the Tate–Shafarevich group and whether or not the rank of
the Mordell–Weil group is positive. Unfortunately, the results in [12] cannot provide
insight into the Birch and Swinnerton–Dyer conjecture, because for k = 2, the period
polynomial is constant. Thus the Riemann hypothesis for period polynomials when k = 2
is trivially satisfied without shedding light on L(1, f ). If k ≥ 4, the critical values hold
similar importance in the context of the Bloch–Kato conjecture [3], which generalizes of
the Birch and Swinnerton-Dyer conjecture.
In this paper, we use the ideas in [12] to study special values of motivic L-functions

(which will include all critical values). It is well known that each modular L-function
L(s, f ) is attached to a certain pure motive over Q of weight k − 1, conductor N , and
rank 2; furthermore, L(s, f ) is the L-function of a certain cuspidal automorphic repre-
sentation of GL2(AQ). (Here, AQ denotes the ring of adeles of Q). The critical values of
motivic L-functions carry similar arithmetic significance in the context of the Bloch–Kato
conjecture. When motivic L-functions coincide with automorphic L-functions, they have
important analytic properties which generalize those of L(s, f ). However, there does not
appear to be a canonical generating polynomial for critical values of motivic L-functions
that generalizes the properties of rf (z). Thus we construct a polynomial pM(z) [see (3.1)]
which mimics rf ( z

i
√
N
) and prove the following.
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Theorem 1.1 Let M be a pure motive over Q of odd motivic weight w = 2m + 1 ≥ 3,
even rank d ≥ 2, global conductor N , and Hodge numbers hν for 0 ≤ ν ≤ m (see Sect. 2).
Suppose that the L-function L(s,M) of M coincides with the L-function of an algebraic,
tempered, cuspidal symplectic representation of GLd(AQ). Let pM(z) be the polynomial
defined in (3.1).

(1) If m = 1 and h0 ∈ {0, 1}, then the zeros of pM(z) lie on S1 and tend to be equidis-
tributed as N → ∞.

(2) If m ≥ 2, 2mhm ≥ (1 + 1/m)h0 , and N > Ad
m [where Am is defined by ( (4.4))], then

the zeros of pM(z) lie on S1 and tend to be equidistributed as N → ∞.
(3) If m is sufficiently large, then nearly all of the zeros of pM(z) lie on S1. (See Theorem

5.1 for a more precise statement.)

Remark If L(s,M) is the L-function of a newform of (modular) weight k ≥ 4, then pM(z)
reduces to a constant multiple of rf ( z

i
√
N
), whose zeros are studied in [12].

It is unclear how to ensure that all of the zeros lie on S1 while maintaining uniformity
in d whenm ≥ 2 and d is large compared to logN . Despite this setback, we already have
a result that is strong enough to address a natural family of examples, namely the odd
symmetric power L-functions L(s, Symnf ) of the newforms f considered in [12] that do
not have complex multiplication (CM). The next result follows from Theorem 1.1 in case
ofM = Symnf and n odd.

Corollary 1.2 Let n ≥ 3be an odd integer and f a non-CMnewformof even integralweight
k ≥ 2, squarefree level N ≥ 13, trivial nebentypus, and integral Fourier coefficients. We
assume that N ≥ 46 if (k, n) = (2, 5) and N ≥ 17 if (k, n) ∈ {(2, 7), (4, 3)}. If L(s, Symnf ) is
the L-function of an algebraic tempered cuspidal symplectic representation ofGLn+1(AQ),
then all of the zeros of pSymnf (z) lie on S1. The zeros tend to be equidistributed as n or N
goes to ∞.

We find the most interesting case of Corollary 1.2 to be where k = 2. In this case, the
period polynomial of f is constant, and the results in [12] are trivial. When considering
the odd symmetric power L-functions L(s, Symnf ), we see that L(s, Symnf ) has only one
critical value at s = n+1

2 but many special values. By numerically checking the cases that
are not covered by Corollary 1.2, we obtain the following result.

Theorem 1.3 Let E/Q be a non-CM elliptic curve of squarefree conductor N , and let
n ≥ 3 be an odd integer. If L(s, SymnE) is the L-function of an algebraic, tempered, cuspidal
symplectic representation of GLn+1(AQ), then all of the zeros of pSymnE(z) given by (3.1) lie
on S1. The zeros tend to be equidistributed as n or N goes to ∞.

In [15], Manin speculated on the existence of zeta-polynomials Z(s) which [in analogy
with expected behavior of the Riemann zeta function and L(s, f )] satisfy a functional
equation of the formZ(s) = ±Z(1−s) and have all of their zeros lie on the line�(s) = 1/2.
Furthermore, there should be a “nice” generating function for the sequence {Z(−n)}∞n=1
along with an arithmetic-geometric interpretation of Z(−n). Manin constructed zeta-
polynomials by applying the “Rodriguez-Villegas transform” [20] to the odd part of the
period polynomial of a newformusing the results in [7]; he suggests that these polynomials
arise from non-Tate motives and geometric objects lying below Spec Z but not over F1.
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Manin askedwhether there exist zeta-polynomialswhich canbe canonically constructed
from the full period polynomial. Ono et al. [18] recently used the results in [12] to address
this question, producing a large class of zeta-polynomials canonically constructed from
the critical values of classical newforms f . Assuming the Bloch–Kato conjecture, these
zeta-polynomials encode further Galois cohomological structure of Selmer groups for
Tate-twists that have been assembled as Stirling complexes. Moreover, in analogy with
the Maclaurin expansion

t
et − 1

= 1 − t
2

+ t
∞∑

	=1
ζ (−n) · (−t)	

	!
,

the zeta-polynomials Zf (s) constructed in [18] satisfy
(√

N
i

)k−1
rf ( z

i
√
N
)

(1 − z)k−1 =
∞∑

	=0
Zf (−	)z	.

Using Theorem 1.3, we construct zeta-polynomials arising from the special values of
odd symmetric power L-functions of semistable elliptic curves over Q. Using the Bloch–
Kato conjecture, one can express the coefficients of these zeta-polynomials in terms of
Tamagawa numbers and generalized Shafarevich–Tate groups of the symmetric powers.

Theorem 1.4 Let E/Q be a non-CM elliptic curve, and let n ≥ 3 be odd. Suppose that
L(s, SymnE) is the L-function of an algebraic, tempered, cuspidal symplectic representation
of GLn+1(AQ). Let ZSymnE(s) be the polynomial defined by (7.1). The following are true.

(1) For all s ∈ C, we have that ZSymnE(s) = ε(SymnE)ZSymnE(1 − s), where ε(SymnE) is
the sign of the functional equation for L(s, SymnE).

(2) If ZSymnE(ρ) = 0, then �(ρ) = 1/2.
(3) We have the Maclaurin expansion

pSymnE(z)
(1 − z)n

=
∞∑

	=0
ZSymnE(−	)z	.

We review motivic L-functions and their conjectured analytic properties in Sect. 2. In
Sect. 3, we prove some lemmas that are needed for the proofs of Theorem 1.1, which
we prove in Sects. 4 and 5. We then discuss symmetric power L-functions and prove
Theorems 1.3 and 1.4 in Sects. 6 and 7.

2 Motivic L-functions
We begin by recalling the conjectural properties of motivic L-functions. For more details,
see Serre [22] and Iwaniec and Kowalski [11, Chapter 5].

2.1 Conjectured analytic properties

Define a puremotiveM overQ of weightw, rank d, and global conductorN by specifying
Betti, de Rham, and 	-adic realizations (for each prime 	)

HB(M), HdR(M), H	(M)

which are vector spaces of dimension d over Q, Q, and Q	, respectively; each is endowed
with additional structures and comparison isomorphisms as in [5,8]. In particular,HB(M)
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admits an involution ρB, H	(M) is a Gal(Q̄/Q)-module, and there is a Hodge decompo-
sition into C-vector spaces

HB(M) ⊗ C =
⊕

i+j=w
i,j≥0

Hi,j(M).

The involution ρB acts on Hi,j(M) by ρB(Hi,j(M)) = Hj,i(M). When w is even, this tells
us that Hw/2,w/2(M) is invariant under ρB; when w is odd, we take Hw/2,w/2(M) = {0}.
If w is even and Hw/2,w/2(M) �= {0}, then the involution ρB acts on Hw/2,w/2(M) by
α ∈ {−1, 1}; we then define the quantity b±(M) by

bα(M) := dimC{x ∈ Hw/2,w/2(M) : ρB(x) = α(−1)w/2x}, α ∈ {−1, 1}.
We denote by ρ	 the representation which induces the Gal(Q̄/Q)-module structure on
H	(M).
For any prime p, let Frobp ∈ Gal(Q̄/Q) be the Frobenius element at p, which is defined

modulo conjugation andmodulo the inertia subgroup Ip ⊂ Gp ⊂ Gal(Q̄/Q) of the decom-
position group Gp. Define

L	,p(X,M) := det
(
1 − X · ρ	

(
Frob−1

p

)
|H	(M)Ip

)−1 =
d∏

j=1
(1 − αM(j, 	, p)X)−1 .

One typically assumes (and expects) thatL	,p(X,M) andαM(j, 	, p) are in fact independent
of 	; as such, we write Lp(X,M) and αM(j, p) instead of L	,p(X,M) and αM(j, 	, p) for
convenience. (If this is not true, our results are only affected notationally). The Euler
product and Dirichlet series representations of L(s,M) are now given as

L(s,M) :=
∏

p
Lp(p−s,M) =:

∑

n≥1

λM(n)
ns

with λM(n) ∈ C. Both the Euler product and the Dirichlet series converge absolutely in
the half plane Re(s) > w/2 + 1.
Define the ν-th Hodge number of M by hν := dimC Hν,w−ν(M). Let �R(s) =

π−s/2�(s/2) and �C(s) = 2(2π )−s�(s), and define

L∞(s,M) = �R(s − w/2)b
+(M)�R(s + 1 − w/2)b

−(M)
∏

0≤ν<w/2
�C(s − ν)hν .

Because we considerM over Q, the degree of L(s,M) also equals

d = b+(M) + b−(M) + 2
∑

0≤ν<w/2
hν . (2.1)

We now describe the hypotheses for L(s,M) which are crucial to our arguments.

Hypothesis 2.1 Let M be a self-dual motive of weight w ≥ 1, rank d ≥ 1, and global
conductor N . Let L(s,M) be the L-function ofM. The following are true.

(1) Self-duality: For all n ≥ 1, we have that λM(n) ∈ R.
(2) The generalized Ramanujan conjecture (GRC): We have that |λM(n)| ≤ d(n)nw/2 for

every n ≥ 1, where d(n) is the usual divisor function.
(3) Analytic continuation: The function �(s,M) := Ns/2L∞(s,M)L(s,M) is entire of

order 1.
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(4) Functional equation: There exists ε(M) ∈ {−1, 1} such that for every s ∈ C, we have
that �(s,M) = ε(M)�(w + 1 − s,M). We call ε(M) the root number ofM.

(5) We have �(w+1
2 ,M) ≥ 0.

Property 5 follows from the generalized Riemann hypothesis for L(s,M), and it is known
unconditionally in many cases. Every other property of Hypothesis 2.1 is immediately
satisfied when L(s,M) coincides with the L-function L(s,πM) of an algebraic, self-dual,
tempered, cuspidal automorphic representation πM of GLd(AQ), where d is the rank
of M. This is predicted by the Langlands program but is known unconditionally for a
small (though highly important and useful) collection of motivic L-functions, such as
the L-functions associated to newforms. In what follows, we will always assume that
L(s,M) = L(s,πM) for some πM in Ad(Q), the set of all algebraic, self-dual, tempered,
cuspidal automorphic representations of GLd(AQ), where d is the rank ofM.

2.2 Critical values and Hodge numbers

Following Deligne [8], we define an integer n to be critical for M if neither L∞(s,M)
nor L∞(w + 1 − s,M) has a pole at s = n; if n is critical for M, then we call L(n,M) a
critical value of L(s,M). With this definition, the critical integers are purely dictated by
the Hodge numbers. The simplest situation occurs when b+(M) and b−(M) both equal
zero; then the set of integers n which are critical for M are precisely those which lie in
the interval

⎛

⎜
⎝ max

hν �=0
0≤ν<w/2

ν, w − max
hν �=0

0≤ν<w/2

ν

⎤

⎥
⎦ . (2.2)

(WhenM corresponds with a newform f of (modular) weight k , then w = k − 1, h0 = 1,
and hν = 0 for all 1 ≤ ν < k−1

2 . Thus the critical values of L(s, f ) are L(n, f ) for integers
1 ≤ n ≤ k − 1.) On the other hand, if at least one of b+(M) and b−(M) is nonzero,
then the distribution of critical integers is slightly more complicated. Briefly stated, if
just one of b+(M) and b−(M) are nonzero, then the critical integers of M will not be
consecutive integers; if both b+(M) and b−(M) are nonzero, then L(s,M) has no critical
values. For simplicity, we only consider motives M such that w is odd and hν ≥ 1 for
some 0 ≤ ν < w/2. Thus b+(M) = b−(M) = 0, the integers that are critical for M
are symmetric about the critical line for L(s,M), and d ≥ 2. We will study polynomials
that generate the special values L(1,M), L(2,M), . . . , L(w,M), which, by our hypotheses,
includes all of the critical values.
When w is odd, we see that d must be even [see (2.1)]. Now, consider now the exterior

square representation Ext2(πM) and the Euler product

L(s,Ext2(πM)) =
∏

p
Lp
(
p−s,Ext2(πM)

)
,

where at each prime p � N we have

Lp(p−s,Ext2(M)) =
∏

1≤j<k≤n

(
1 − αM(j, p)αM(k, p)p−s)−1 . (2.3)

We know that L(s,Ext2(πM)) has a meromorphic continuation toCwith no poles outside
of the set {w′

2 ,
w′
2 + 1}, where w′ is the weight of Ext2(πM) [17]. If L(s,Ext2(πM)) has



Löbrich et al. Res Math Sci (2017) 4:26 Page 7 of 16

a pole at s = w′
2 + 1, then πM is a cuspidal symplectic representation of GLd(AQ); let

As
d(Q) denote the set of such representations. For any πM ∈ As

d(Q), Lapid and Rallis [14]
proved that �(w+1

2 ,πM) ≥ 0. (This vastly generalizes a result of Waldsuprger [24] for
L-functions of newforms.) Therefore, the hypotheses of Theorem 1.1 succinctly describe
the most natural class of motivic L-functions for which the methods in [12] can be used
for studying special and critical values.
In Theorem 1.1, we require that 2mhm ≥ (1 + 1/m)h0 . This is not true of all M. In

fact, for any integer m ≥ 0 and any collection of nonnegative integers h0, . . . , hm, there
exists a motive of weight 2m + 1 with Hodge numbers h0, . . . , hm; see Arapura [1] and
Schreieder [21] for explicit constructions. However, for newforms and their symmetric
powers (see Sect. 6) as well as many other interesting cases, we have hν ∈ {0, 1} for each
1 ≤ ν ≤ m.

3 Preliminary lemmas and setup
Let M be a pure motive over Q of rank d ≥ 2 with global conductor N , odd weight
w = 2m + 1 ≥ 3, root number ε = ε(M), and Hodge numbers hν for 0 ≤ ν ≤ m. (It
will be more notationally convenient for us to use m instead of w.) For convenience, we
let S1 := {z ∈ C : |z| = 1} and D := {z ∈ C : |z| < 1}.
We now define our analogue of (1.4) by letting

pM(z) :=
2m∑

j=0

[ m∏

ν=0

(
2m − ν

m − |m − j|
)hν
]

�(2m + 1 − j,M)zj. (3.1)

Using the functional equation of �(s,M) in Part (3) of Hypothesis 2.1, we have that

pM(z) = εzm(PM(z) + εPM(1/z)), (3.2)

where

PM(z) := 1
2

[ m∏

ν=0

(
2m − ν

m

)hν
]

�(m + 1,M)

+
m∑

j=1

[ m∏

ν=0

(
2m − ν

m − j

)hν
]

�(m + 1 + j,M)zj.

If z = eiθ ∈ S1, then PM(z) + εPM(1/z) is a trigonometric polynomial in either cos(θ )
or sin(θ ) (depending on the sign of ε). Therefore, to prove that the zeros of pM(z) are
equidistributed on S1, we find the correct number and placement of sign changes of
PM(z) + εPM(1/z) as θ varies along [0, 2π ).
Since �(s,M) is an entire function of order one, there exist constants A = AM and

B = BM such that �(s,M) has the Hadamard factorization

�(s,M) = eA+Bs
∏

ρ

(
1 − s

ρ

)
es/ρ , (3.3)

where the product runs over the zeros ρ of �(s,M). Self-duality and the functional equa-
tion of�(s,M) imply that if ρ is a zero of�(s,M), then so are ρ̄ andw+1−ρ. Self-duality



Löbrich et al. Res Math Sci (2017) 4:26 Page 8 of 16

also implies that�(s,M) is real-valued on the real line, and in view of the functional equa-
tion of�(s,M), we have thatB is real-valued andB = −∑ρ Re(ρ−1) = −∑ρ Re(ρ)|ρ|−2.
Thus, if s ∈ R, then

�(s,M) = eA
⎡

⎣
∏

ρ∈R

(
1 − s

ρ

)
⎤

⎦ ·
⎡

⎣
∏

Im(ρ)>0

∣
∣
∣1 − s

ρ

∣
∣
∣
2
⎤

⎦ . (3.4)

Lemma 3.1 The function�(s,M) is monotonically increasing for s ≥ m+3/2; moreover,

0 ≤ �(m + 1,M) ≤ �(m + 2,M) ≤ �(m + 3,M) ≤ �(m + 4,M) ≤ . . .

If ε = −1, then �(m + 1,M) = 0 and

0 ≤ �(m + 2,M) ≤ 1
2
�(m + 3,M) ≤ 1

3
�(m + 4,M) ≤ . . .

Proof All of the zeros in the product (3.4) lie in the vertical strip |m+1−Re(s)| < 1/2, and
we see that |1 − s/ρ| is increasing for s ≥ m + 3/2. Thus by (3.4), we have that �(s,M)
is increasing for s ≥ m + 3/2. Moreover, |1 − m+1

ρ
| ≤ |1 − m+2

ρ
|, so �(m + 1,M) ≤

�(m + 2,M). When ε = −1, we apply the same reasoning and take into account that
�(s,M) has a zero of odd order at s = m + 1. ��

Lemma 3.2 For 0 < a < b, we have
L(m + 3/2 + a,M)
L(m + 3/2 + b,M)

≤
(ζ (1 + a)

ζ (1 + b)

)d
,

where ζ (s) is the Riemann zeta function.

Proof The Euler product for L(s,M) gives rise to the function �M(n) which is defined by
the Dirichlet series identity

−L′

L
(s,M) =

∞∑

n=1

�M(n)
ns

.

One sees that |�M(n)| ≤ dnw/2�(n) for all n ≥ 1, where �(n) is the usual von Mangoldt
function; this estimate follows from Part (4) of Hypothesis 2.1.
Let 0 < a ≤ t ≤ b. By the above discussion,

∣
∣
∣− L′

L
(m + 3/2 + t,M)

∣
∣
∣ ≤

∞∑

n=1

∣
∣
∣

�M(n)
n1+t+w/2

∣
∣
∣ ≤ d

∞∑

n=1

�(n)
n1+t = −d

ζ ′

ζ
(1 + t).

Consequently,

L(m + 3/2 + a,M)
L(m + 3/2 + b,M)

= exp
( ∫ b

a
−L′

L
(m + 3/2 + t,M)dt

)

≤ exp
(

− d
∫ b

a

ζ ′

ζ
(1 + t)dt

)
,

which equals the right-hand side of the desired inequality. ��

We will also use the following lemma due to Pólya [19] and Szegö [23] on the zeros of
trigonometric polynomials.
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Lemma 3.3 If 0 ≤ a0 ≤ a1 ≤ · · · ≤ an−1 < an, then the polynomial
∑n

j=0 an cos(nθ )
has exactly one zero in each interval ( 2j−1

2n+1π ,
2j+1
2n+1π ) for 1 ≤ j ≤ n. Also, the polynomial

∑n
j=1 an sin(nθ ) has a zero at θ = 0 and exactly one zero in each interval ( 2j

2n+1π ,
2(j+1)
2n+1 π )

for 1 ≤ j ≤ n − 1.

4 Proof of Theorem 1.1 when N is large
Our proof of Theorem1.1 is broken into two cases. First we consider the casewhenm = 1,
in which case PM(z) is linear. Then we consider the case wherem ≥ 2.

4.1 Case 1:m = 1

We have PM(z) = �(3,M)z + 2h0−1�(2,M). If ε = −1, then

pM(z) = zm(PM(z) + εPM(1/z)) = (z2 − 1)�(3,M).

Since −1 and 1 are the roots and they are clearly equidistributed on S1, Theorem 1.1 is
proven for all d and all N .
On the other hand, if ε = 1 and z = eiθ for some θ ∈ [0, 2π ), then

zm(PM(z) + εPM(1/z)) = 2eiθ (cos(θ )�(3,M) + 2h0−1�(2,M)). (4.1)

Since �(2,M) < �(3,M) by Lemma 3.1, (4.1) has two roots for θ ∈ [0, 2π ); these are the
two values of θ for which cos θ = −2h0−1�(2,M)/�(3,M), provided that h0 ∈ {0, 1}.
This places the roots of pM(z) on S1.
Wenowshow that the zeros of (4.1) are equidistributedwhenN is large. By thedefinition

of �(s,M) and Lemma 3.1, we have that �(3,M) � N 3/2, whereas

�(2,M) ≤ sup
t∈R

|�(5/2 + ε + it,M)| � N 5/4+ε

for any ε > 0. (This uses the Phragmén-Lindelöf convexity bound for L(s,M) in the
critical strip is given by [11, Eq. 5.21]). Therefore, �(2,M)/�(3,M) � N−1/4+ε , and so
the corresponding values of θ tend to π/2 and 3π/2. Thus if ε = 1, then the zeros of
pM(z) are ±i + O(N−1/4+ε).

4.2 Case 2:m ≥ 2

We will show that if N is sufficiently large and 2mhm ≥ (1 + 1/m)h0 , then the zeros of
pM(z) are equidistributed onS1. This follows as soon aswe show thatwe can apply Lemma
3.3 to the real and imaginary parts of PM(eiθ )+ εPM(e−iθ ). So that we may apply Lemma
3.3, we will verify that

[ m∏

ν=0

(
2m − ν

m − j

)hν
]

�(m + 1 + j,M) <

[ m∏

ν=0

(
2m − ν

m − (j + 1)

)hν
]

�(m + 2 + j,M)

for all 1 ≤ j ≤ m − 1 and

1
2

[ m∏

ν=0

(
2m − ν

m

)hν
]

�(m + 1,M) ≤
[ m∏

ν=0

(
2m − ν

m − 1

)hν
]

�(m + 2,M).

By the definitions of �(s,M) and d, this is equivalent to

1
(m − j)d/2 L(m + j + 1,M) <

(
N

(2π )d

)1/2
L(m + j + 2,M) (4.2)
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for each 1 ≤ j ≤ m − 1 and

1
2

[ m∏

ν=0

1
mhν

]

�(m + 1,M) ≤
[ m∏

ν=0

1
(m + 1 − ν)hν

]

�(m + 2,M). (4.3)

By Lemma 3.2, we have
L(m + j + 1,M)
L(m + j + 2,M)

≤
(ζ (j + 1/2)

ζ (j + 3/2)

)d
.

Therefore, (4.2) is satisfied when N > Ad
m, where

Am := max
1≤j≤m−1

2π
m − j

·
(ζ (j + 1/2)

ζ (j + 3/2)

)2
. (4.4)

Since �(m + 1,M) ≤ �(m + 2,M), (4.3) is satisfied when 2mhm ≥ (1 + 1/m)h0 , as can
be seen using term-by-term comparison. This completes the proof.
It is straightforward to compute A2 ≤ 23.83, A3 ≤ 11.92, Am ≤ 8 for m ≥ 4, and

limm→∞ Am = 2π . Thus the above proof cannot produce a lower bound for N better
than (2π )d ; we must handle the cases where N ≤ Ad

m differently.

5 Proof of Theorem 1.1 whenm is large
On the unit circle, rf (z) is well approximated by an exponential function [12, Sect. 6], but
if M is arbitrary, then pM(z) is well approximated on the unit circle by a certain gener-
alized hypergeometric function. Unfortunately, it is computationally intractable to locate
the zeros of the real and imaginary parts of generalized hypergeometric functions, and
Rouché’s Theorem only gives us the zeros of the real and imaginary part simultaneously.
Therefore, we can only prove that “most” zeros (depending on d and N ) lie on the unit
circle as the weight becomes large.
Let d be fixed. If we define

QM(z) := zm
m−1∑

j=0

1

(j!)
d
2

(2π )
dj
2

(
√
Nz)j

L(2m + 1 − j,M)
L(2m + 1,M)

+ 1
2(m!)d/2

(
(2π )d/2

√
N

)m
L(m + 1,M)
L(2m + 1,M)

, (5.1)

then we may write PM(z) as

PM(z) =
[ m∏

ν=0
((2m − ν)!)hν

]( √
N

(2π )d/2

)2m+1

L(2m + 1,M)QM(z). (5.2)

Define

Fd,N (z) :=
∞∑

j=0

1
(j!)d/2

(
(2π )d/2

√
N

z
)j

, (5.3)

which we approximate by its partial sums Tm,d,N (z) :=
∑m

j=0
1

(j!)d/2 (
(2π )d/2√

N
z)j .

Now we decompose QM(z) into the sum

QM(z) = zmTm,d,N (1/z) + S(z) + 1
2(m!)d/2

(
(2π )d/2

√
N

)m
L(m + 1,M)
L(2m + 1,M)

(5.4)



Löbrich et al. Res Math Sci (2017) 4:26 Page 11 of 16

with

S(z) := zm
m−1∑

j=0

1
(j!)d/2

(
(2π )d/2
√
Nz

)j (
L(2m + 1 − j,M)
L(2m + 1,M)

− 1
)

.

It follows from [10, Theorem 2.2] that pM(z) has as many zeros on S1 asQM(z) has inside
D. Thus Part 3 of Theorem 1.1 follows from the following statement.

Theorem 5.1 Let cd,N denote the number of zeros of Fd,N (z) inside D. If m is sufficiently
large, then QM(z) has m − cd,N zeros inside D.

Proof We use Rouché’s Theorem. First, for |z| = 1, we estimate with Lemma 3.2

|S(z)| ≤
m−1∑

j=0

1
(j!)d/2

(
(2π )d/2

√
N

)j (
L(2m + 1 − j,M)
L(2m + 1,M)

− 1
)

≤
m−1∑

j=0

1
(j!)d/2

(
(2π )d/2

√
N

)j (

ζ
(
m + 1

2
− j
)d − 1

)

The function x �→ 2x(ζ ( 12 + x)d − 1) is monotonically decreasing for x ≥ 1, so

|S(z)| ≤
m−1∑

j=0

4
(j!)d/2

( (2π )d/2
√
N

)j
2j−m(ζ (3/2)d − 1) < 22−m(ζ (3/2)d − 1)Fd,N (2). (5.5)

Furthermore,

1
2(m!)d/2

( (2π )d/2
√
N

)m L(m + 1,M)
L(2m + 1,M)

� 1
(m!)d/2

( (2π )d/2
√
N

)m
. (5.6)

If d is fixed, then both (5.5) and (5.6) can bemade arbitrarily small ifm is sufficiently large.
We first assume that Fd,N has no zeros on S1. SinceTm,d,N (z) converges to Fd,N (z) locally

uniformly asm tends to infinity, we have

min
z∈S1

∣
∣zmTm,d,N (1/z)

∣
∣ = min

z∈S1

∣
∣Tm,d,N (z)

∣
∣ >

1
2
min
z∈S1

∣
∣Fd,N (z)

∣
∣

form large enough.Weconclude for thesem, the functionsQM(z) and zmTm,d,N (1/z) have
the same number of zeros inside D by Rouché’s Theorem. Every zero of zmTm,d,N (1/z)
inside D is the inverse of a zero of Tm,d,N (z) outside D. Again using locally uniform
convergence, we see that, if m is sufficiently large, then Fd,N (z) and Tm,d,N (z) have the
same number of zeros inside D, namely cd,N . This implies that zmTm,d,N (1/z), and hence
QM(z), hasm − cd,N zeros inside D.
If Fd,N has zeros on S1, then we choose an r > 1, such that all the zeros of Fd,N in

the region {r−1 ≤ |z| ≤ r} lie on S1 and slightly modify the argument above by applying
Rouché’s Theorem to the circle {|z| = r}. ��

By taking d = 2, we have that F2,N (z) = exp( 2π√
N
z). Since F2,N (z) has no zeros in D,

we have that cd,N = 0; thus pM(z) has all of its zeros on S1, as shown in [12]. However,
for d = 4, the situation already becomes noticeably more complicated; when d = 4, we
have that F4,N (z) = I0(4πN−1/4√z), where I0 denotes the I-Bessel function.When d ≥ 6,
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Fd,N (z) is a generalized hypergeometric function. To illustrate the difficulty when d ≥ 4,
we directly compute

c4,N =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if N = 1,

3 if 2 ≤ N ≤ 4,

2 if 5 ≤ N ≤ 26,

1 if 27 ≤ N ≤ 745,

0 if 746 ≤ N,

c6,N =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 if N = 1,

4 if 2 ≤ N ≤ 6,

3 if 7 ≤ N ≤ 37,

2 if 38 ≤ N ≤ 494,

1 if 495 ≤ N ≤ 45606,

0 if 45607 ≤ N.

To see how these compare with those of the previous section, we observe that 746 ≈
1
2 (2π )

4 and 45607 ≈ 3
4 (2π )

6. Thus it appears that the weight aspect of the results in [12]
do not readily generalize to our setting when d is large.

6 Symmetric power L-functions and the Proof of Theorem 1.3
6.1 Symmetric power L-functions of non-CM newforms

Let f be a non-CM newform of even weight k ≥ 2, squarefree level N , and trivial neben-
typus. It is well known that L(s, f ) is a motivic L-function satisfying Hypothesis 2.1 with
weightw = k−1, rank d = 2, and global conductorN (see [12] and the sources contained
therein).
For each prime 	, Deligne proved that there exists a representation ρ	 : Gal(Q̄/Q) →

GL2(Z	) with the property that if p is a prime not dividing 	N and Frobp is the Frobenius
automorphism of Gal(Q̄/Q) at p, then the characteristic polynomial of ρd(Frobp) is x2 −
af (p) + pk−1. By Deligne’s proof of the Weil Conjectures (which establishes Part 2 of
Hypothesis 2.1), we know that |af (p)| ≤ 2p(k−1)/2. Thus the roots of the characteristic
polynomial are αpp(k−1)/2 and βpp(k−1)/2, where βp = ᾱp and αpβp = 1. We recast the
Euler product of L(s, f ) in (1.1) as

L(s, f ) =
⎛

⎝
∏

p|N

1
1 − af (p)p−s

⎞

⎠
∏

p�N

1∏

j=0

1
1 − α

j
pβ

1−j
p p(k−1)/2−s

,

When N is squarefree, the Euler product of the n-th symmetric power of f , which we
denote by Symnf , is given by

L(s, Symnf ) =
⎛

⎝
∏

p|N

1
1 − af (p)np−s

⎞

⎠
∏

p�N

n∏

j=0

1
1 − α

j
pβ

n−j
p pn(k−1)/2−s

.

(See Cogdell and Michel [6, Sect. 1.1].) This is the L-function attached to the 	-adic real-
izations ofM = SymnH1(f ); note that L(s, Sym0f ) = ζ (s) and L(s, Sym1f ) = L(s, f ). The
symmetric power L-functions of newforms determine the distribution of af (p)/(2p(k−1)/2)
in [−1, 1], but very little is unconditionally known their analytic properties (cf. [2,16], for
example). Their critical values are important in the context of the Bloch–Kato conjecture,
much like those of L(s, f ). (See [9] for an accessible overview along with some convincing
computations.) Theweight of Symnf is n(k−1), the rank is n+1, and the global conductor
is Nn. (This expression for the global conductor of Symnf is essential to the arguments
that follow, and it is guaranteed by the hypothesis thatN is squarefree.) When n = 2r + 1
is odd, the integers which are critical for Sym2r+1f are r(k − 1) + j for 1 ≤ j ≤ k − 1.
The Hodge numbers all lie in {0, 1}; see [6] for an exact expression for L∞(s, Symnf ). From
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this, we can check that the conditions of Theorem 1.1 (1) or (2) are satisfied under the
assumptions of Corollary 1.2.
Conjecturally, we have Symnf ∈ An+1(Q) for each n ≥ 0, and Symnf ∈ As

n+1(Q)
for each odd n ≥ 1. Unconditionally, we know that Symnf ∈ An+1(Q) for each n ≤ 8
(see Clozel and Thorne [4], Cogdell and Michel [6], and the sources contained therein).
Moreover, as part of the celebrated proof of the Sato–Tate conjecture [2], we know that
L(s, Symnf ) can be analytically continued to the line �(s) = 1 for each n ≥ 1. It follows
from the Euler product representation of L(s, Symnf ) and (2.3) that if n ≥ 1 is odd, then

L(s,Ext2(Symnf )) = ζ (s)

n−1
2∏

j=1
L(s, Sym4j f ).

In particular, if n is odd and Sym4j f ∈ A4j+1(Q) for all j ≤ n−1
2 , then L(s,Ext2(Symnf )) has

a pole at s = 1. Thus by Lapid and Rallis [14], we have that �(n(k−1)+1
2 , f ) ≥ 0. Regardless

of whetherN is squarefree, we expect that L(s,Ext2(Symnf )) has a pole at s = 1 for all odd
n ≥ 1, in which case Symnf ∈ As

n+1(Q) and we obtain the desired non-vanishing at the
central critical point.

6.2 Proof of Theorem 1.3

By the modularity theorem, if E is a semistable elliptic curve of squarefree conductor N ,
then E corresponds to a weight 2 newform of level N , trivial nebentypus, and integral
Fourier coefficients. Thus L(s, SymnE) = L(s, Symnf ). By Corollary 1.2, the only cases left
to check are

n = 5, 11 ≤ N ≤ 43

and

n = 7, 11 ≤ N ≤ 15.

We observe that in all of these exceptional cases except for (n,N ) ∈ {(5, 37), (5, 43)},
corresponding to the isogeny classes 37.a and 43.a in Cremona’s table, the root number
ε(Symnf ) is−1; these are stored on the L-function andModular FormDatabase (LMFDB)
Web site at http://www.lmfdb.org.
In the cases with ε(Symnf ) = 1 (resp. n = 7), we explicitly compute the zeros of PSym5f

(resp. PSym7f ) and observe that all of them lie in the open unit disk. For this, we use the
critical value L(3, Sym5f ) and the Dirichlet coefficients of L(s, Sym5f ) (resp. L(s, Sym7f )),
which are stored in the Lcalc files on http://www.lmfdb.org.
If n = 5 and ε(Sym5f ) = −1, we have

PSym5f (z) = �(5, Sym5f )z2 + 24�(4, Sym5f )z,

so PSym5f has all zeros inside the unit disk, if
∣
∣
∣
24�(4, Sym5f )
�(5, Sym5f )

∣
∣
∣ ≤ 1.

This can again be checked by computing L(4, Sym5f ) and L(5, Sym5f ) in these cases.

7 Proof of Theorem 1.4
We first present some corollaries of the results in [20]. LetU (z) be a polynomial of degree
e with U (1) �= 0. Consider the rational function V (z) := U (z)(1 − z)−(e+1). It is easily
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shown that there exists a polynomialH (z) of degree e such thatH (	) = 1
	!

d	

dz	V (z)
∣
∣
z=0 for

each integer 	 ≥ 0. Define Z(s) := H (−s).

Theorem 7.1 (Rodriguez-Villegas) If all of the roots of U lie on S1, then all of the roots
of Z(s) lie on the line �(s) = 1/2. Moreover, if U has real coefficients and U (1) �= 0, then
Z(s) satisfies the functional equation Z(1 − s) = (−1)eZ(s).

Wenowshow that under thehypotheses ofTheorem1.3,pSymnE(z) satisfies thehypothe-
ses of Theorem 7.1.

Lemma 7.2 Let E/Q be a semistable elliptic curve, and suppose that SymnE satisfies the
hypotheses of Theorem 1.3. If ε(SymnE) = 1, then pSymnE(1) �= 0. If ε(SymnE) = −1, then
pSymnE(z) has a simple zero at z = 1.

Proof Let n ≥ 3 be odd, let m = n−1
2 , and let ε = ε(SymnE). By (3.2) and the fact that

L(s, SymnE) is self-dual, we have that pSymnE(1) equals
[ m∏

ν=0

(
2m − ν

m

)hν
]

�(m+1, SymnE) + 2
m∑

j=1

[ m∏

ν=0

(
2m − ν

m − j

)hν
]

�(m+1+j, SymnE)

if ε = 1 and pSymnE(1) = 0 if ε = −1.
When ε = 1, it follows from Lemma 3.1 and Hypothesis 2.1 (both of which hold

whenever SymnE satisfies the hypotheses of Theorem 1.3) that the sum defining pSymnE(1)
has only nonnegative terms. If pSymnE(1) = 0, then it would follow that all Deligne periods
of SymnE would equal zero. This implies that theDeligne periods ofE are both zero, which
is not true. (For the relationship between the periods of E and the periods of SymnE, see
[9], for example.) Thus pSymnE(1) �= 0.
Now, suppose that ε = −1.Note that the sumdefiningp′

SymnE(z) is a sumof non-positive
terms. Much like the case where ε = 1, if all of these terms equal zero simultaneously,
then all of the Deligne periods of E are zero, which cannot happen. Thus pSymnE(z) has a
simple zero at z = 1. ��

Define s(m, n) by
∏n

j=0(x − j) =∑n
m=0 s(n,m)xm. Let

MSymnE(j) := 1
(n − 1)!

n−1∑

m=0

⎡

⎢
⎣

n−1
2∏

ν=0

(
n − 1 − ν

n−1
2 − |n−1−2m

2 |
)hν

⎤

⎥
⎦�(m + 1, SymnE)mj

and

ZSymnE(s) := ε

n−1∑

h=0
(−s)h

n−1−h∑

j=0

(
h + j
h

)

s(n − 1, h + j)MSymnE(j). (7.1)

Proof of Theorem 1.4 If n ≥ 1 is an integer, then we have the Maclaurin expansion

(1 − z)−n =
∞∑

	=0

(
n − 1 + 	

n − 1

)

z	.

Sending j to n − 1 − j in the sum defining pSymnE(z), using the functional equation for
�(s, SymnE), and sending 	 to 	 + j − (n − 1) yields the identity
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pSymnE(z)
(1 − z)n

= ε

∞∑

	=0
z	

⎛

⎜
⎝

n−1∑

j=0

⎡

⎢
⎣

n−1
2∏

ν=0

(
n − 1 − ν

n−1
2 − |n−1−2j

2 |
)hν

⎤

⎥
⎦�(j + 1, SymnE)

(
	 + j
n − 1

)
⎞

⎟
⎠ .

(7.2)

Let h	 be the coefficient of z	 in (7.2). With s(n − 1, m) defined above, we have

h	 = ε

(n − 1)!

n−1∑

h=0

⎡

⎢
⎣

n−1
2∏

ν=0

(
n − 1−ν

n−1
2 −|n−1

2 − j|
)hν

⎤

⎥
⎦�(j+1, SymnE)

n−1∑

m=0
s(n − 1, m)(	 + j)m

which equals ZSymnE(−	) (see [18] for a similar manipulation). This proves Part 3.
Let

p̂SymnE(z) = pSymnE(z)
(1 − z)−δ−1,ε

,

where δi,j is the Kronecker delta function. By Theorem 1.3 and Lemma 7.2, we see that
p̂SymnE(z) is a polynomial of degree n − 1 − δ−1,ε , all of whose roots lie on S1. Moreover,
p̂SymnE(1) �= 0. Thus

pSymnE(z)
(1 − z)n

= p̂SymnE(z)
(1 − z)n−δ−1,ε

.

Parts 1 and 2 follow from an application of Part 3 and Theorem 7.1 with e = n−1− δ−1,ε .
��
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