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sufficiently large with respect to d. These special values have arithmetic significance in
the context of the Bloch—Kato conjecture. We focus on applications to symmetric
powers of semistable elliptic curves over Q. Using the Rodriguez-Villegas transform, we
use these results to construct large classes of “zeta-polynomials” (in the sense of Manin)
arising from symmetric powers of semistable elliptic curves; these polynomials have a
functional equation relating s — 1 — s, and all of their zeros on the line Ri(s) = 1/2.

1 Introduction and statement of results

Let f(z) = Y ooy ag(n)q” be a normalized holomorphic cuspidal modular form of even
weight k > 2 and level N, and trivial nebentypus. Assume further that f is an eigenform
for the Hecke operators T), for p { N and U), for all p | N. We call such a modular form a
newform. The L-function L(s, ) associated to a newform f, which is given by

L(s, f) == = , 1.1
(s.f) }; ns I!I_A[[ 1—ar(p)p—* pl)[_][\[ 1 —ap(p)p=s + pk=1=% (L.1)

has an analytic continuation to C. The completed L-function

VN

2

S
A6f) = (5—) TEL6S) (12)
is an entire function of order one and satisfies the functional equation A(s, f) = e(f)A(k —
s, f), where e(f) € {—1, 1}. The completed L-function arises as a period integral of f:

Alsf) = N2 /0 Fliyydy. (L3)
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One defines the period polynomial associated with f by r¢(z) := éoof(t)(t — 2)f2dx,
which is a polynomial of degree at most k — 2 in z. Using (1.3), we expand (t — 2% 2 to
obtain

PN S ) .
=(—— iZzV/NYA(k — 1 —j,f). 14
@ =) g( ; )(zz YAk —1-jf) (14)

By expressing A(s, f) in terms of L(s, f) via (1.2), we see that r7(z) is a generating function
for the critical values L(L, f), L(2,f), . . ., L(k — 1, f). For additional background and details,
see [12] and the sources contained therein.

It follows from the functional equation for A(s, f) that r¢(z) satisfies a functional equation
of its own, relating rf(#ﬁ) to ’"f(ﬁﬁ) and fixing the unit circle S = {z € C: |z] = 1}.In
analogy with the expected behavior of the non-trivial zeros of the Riemann zeta function
¢ (s) or the non-trivial zeros of L(s, f), one might expect that all of the zeros of rf(#ﬁ)
lie on S'. Because of the similarity with the Riemann hypothesis, this has been called the
Riemann hypothesis for period polynomials. Conrey et al. [7] proved a result of this sort for
the odd part of rf(#ﬁ), and the Riemann hypothesis for the period polynomials associated
to newforms of level 1 and even weight k > 2 was established by EI-Guindy and Raji [10].
The Riemann hypothesis for period polynomials is now a theorem due to Jin et al. [12]
for all newforms of weight k > 2 with trivial nebentypus; furthermore, they proved that if
either k or N is sufficiently large, then the zeros of rf(ﬁﬁ) are equidistributed on S!.

The truth of the Riemann hypothesis for period polynomials, along with the statement
of equidistribution, introduces strong conditions on the sizes of the critical values L(1, f),
L(2,f),..., L(k — 1,f); these values have significance in algebraic number theory and
arithmetic geometry. For newforms f* of weight 2 associated with elliptic curves, ry(z)
is a constant polynomial with a nonzero factor of L(1, f). If the Birch and Swinnerton—
Dyer conjecture is true, then L(1,f) encapsulates much of the arithmetic of the elliptic
curve, including order of the Tate—Shafarevich group and whether or not the rank of
the Mordell-Weil group is positive. Unfortunately, the results in [12] cannot provide
insight into the Birch and Swinnerton—Dyer conjecture, because for k = 2, the period
polynomial is constant. Thus the Riemann hypothesis for period polynomials when k = 2
is trivially satisfied without shedding light on L(L, f). If k > 4, the critical values hold
similar importance in the context of the Bloch—Kato conjecture [3], which generalizes of
the Birch and Swinnerton-Dyer conjecture.

In this paper, we use the ideas in [12] to study special values of motivic L-functions
(which will include all critical values). It is well known that each modular L-function
L(s,f) is attached to a certain pure motive over QQ of weight k — 1, conductor N, and
rank 2; furthermore, L(s, f) is the L-function of a certain cuspidal automorphic repre-
sentation of GLy(Ag). (Here, Ag denotes the ring of adeles of Q). The critical values of
motivic L-functions carry similar arithmetic significance in the context of the Bloch—Kato
conjecture. When motivic L-functions coincide with automorphic L-functions, they have
important analytic properties which generalize those of L(s, f). However, there does not
appear to be a canonical generating polynomial for critical values of motivic L-functions
that generalizes the properties of r¢(z). Thus we construct a polynomial p r(2) [see (3.1)]

which mimics ’"f(#ﬁ) and prove the following.
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Theorem 1.1 Let M be a pure motive over Q of odd motivic weight w = 2m + 1 > 3,
even rank d > 2, global conductor N, and Hodge numbers h, for 0 < v < m (see Sect. 2).
Suppose that the L-function L(s, M) of M coincides with the L-function of an algebraic,
tempered, cuspidal symplectic representation of GL;(Ag). Let p(z) be the polynomial
defined in (3.1).

(1) If m = 1 and hy € {0, 1}, then the zeros of p(z) lie on S' and tend to be equidis-
tributed as N — oo.

@) Ifm > 2,2m" > 1+ 1/m)", and N > Afn [where A, is defined by ((4.4))], then
the zeros of pa(2) lie on S* and tend to be equidistributed as N — oo.

(3) If m is sufficiently large, then nearly all of the zeros of p(z) lie on S'. (See Theorem
5.1 for a more precise statement.)

Remark 1f L(s, M) is the L-function of a newform of (modular) weight k > 4, then p z4(z)

reduces to a constant multiple of rf(#ﬁ), whose zeros are studied in [12].

It is unclear how to ensure that all of the zeros lie on S! while maintaining uniformity
in d when m > 2 and d is large compared to log N. Despite this setback, we already have
a result that is strong enough to address a natural family of examples, namely the odd
symmetric power L-functions L(s, Sym”f) of the newforms f considered in [12] that do

not have complex multiplication (CM). The next result follows from Theorem 1.1 in case
of M = Sym”f and n odd.

Corollary 1.2 Letn > 3 bean odd integer and f a non-CM newform of even integral weight
k > 2, squarefree level N > 13, trivial nebentypus, and integral Fourier coefficients. We
assume that N > 46 if (k, n) = (2,5) and N > 17 if (k, n) € {(2,7), (4, 3)}. If L(s, Sym"f) is
the L-function of an algebraic tempered cuspidal symplectic representation of GL,41(Ag),
then all of the zeros of psymn(2) lie on SY. The zeros tend to be equidistributed as n or N

goes to Q.

We find the most interesting case of Corollary 1.2 to be where k = 2. In this case, the
period polynomial of f is constant, and the results in [12] are trivial. When considering
the odd symmetric power L-functions L(s, Sym”f), we see that L(s, Sym”f) has only one
critical value at s = ”TH but many special values. By numerically checking the cases that

are not covered by Corollary 1.2, we obtain the following result.

Theorem 1.3 Let E/Q be a non-CM elliptic curve of squarefree conductor N, and let
n > 3 be an odd integer. If L(s, Sym"E) is the L-function of an algebraic, tempered, cuspidal
symplectic representation of GL,+1(Aq), then all of the zeros of psym»g(2) given by (3.1) lie
on S, The zeros tend to be equidistributed as n or N goes to oo.

In [15], Manin speculated on the existence of zeta-polynomials Z(s) which [in analogy
with expected behavior of the Riemann zeta function and L(s, f)] satisfy a functional
equation of the form Z(s) = +Z(1 —s) and have all of their zeros lie on the line 9i(s) = 1/2.
Furthermore, there should be a “nice” generating function for the sequence {Z(—n)};2 ;
along with an arithmetic-geometric interpretation of Z(—#). Manin constructed zeta-
polynomials by applying the “Rodriguez-Villegas transform” [20] to the odd part of the
period polynomial of a newform using the results in [7]; he suggests that these polynomials
arise from non-Tate motives and geometric objects lying below Spec Z but not over ;.
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Manin asked whether there exist zeta-polynomials which can be canonically constructed
from the full period polynomial. Ono et al. [18] recently used the results in [12] to address
this question, producing a large class of zeta-polynomials canonically constructed from
the critical values of classical newforms f. Assuming the Bloch—Kato conjecture, these
zeta-polynomials encode further Galois cohomological structure of Selmer groups for
Tate-twists that have been assembled as Stirling complexes. Moreover, in analogy with
the Maclaurin expansion

ny
! 1—5+tkamﬂt%

-1 2

the zeta-polynomials Z¢(s) constructed in [18] satisfy
(_‘/N>k71 re(—2=) 00
i f i N ¢
= Ze(—0)z".
(1 — )kt ;0 7=t

Using Theorem 1.3, we construct zeta-polynomials arising from the special values of
odd symmetric power L-functions of semistable elliptic curves over Q. Using the Bloch—
Kato conjecture, one can express the coefficients of these zeta-polynomials in terms of
Tamagawa numbers and generalized Shafarevich—Tate groups of the symmetric powers.

Theorem 1.4 Let E/Q be a non-CM elliptic curve, and let n > 3 be odd. Suppose that
L(s, Sym"E) is the L-function of an algebraic, tempered, cuspidal symplectic representation
of GLy+1(Aq). Let Zsymng(s) be the polynomial defined by (7.1). The following are true.

(1) Foralls € C, we have that Zsyng(s) = &(Sym”E)Zg (1 — s), where e(Sym"E) is
the sign of the functional equation for L(s, Sym"E).

2) [fZSym”E(p) =0, thenf(p) =1/2.

(3) We have the Maclaurin expansion

PsymE(@)
0o = 2 Zeme(=02"
£=0

We review motivic L-functions and their conjectured analytic properties in Sect. 2. In
Sect. 3, we prove some lemmas that are needed for the proofs of Theorem 1.1, which
we prove in Sects.4 and 5. We then discuss symmetric power L-functions and prove
Theorems 1.3 and 1.4 in Sects. 6 and 7.

2 Motivic L-functions
We begin by recalling the conjectural properties of motivic L-functions. For more details,
see Serre [22] and Iwaniec and Kowalski [11, Chapter 5].

2.1 Conjectured analytic properties
Define a pure motive M over Q of weight w, rank d, and global conductor N by specifying
Betti, de Rham, and ¢-adic realizations (for each prime ¢)

Hp(M), Har(M), He(M)

which are vector spaces of dimension d over Q, Q, and Q, respectively; each is endowed
with additional structures and comparison isomorphisms as in [5, 8]. In particular, Hg(M)
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admits an involution pg, Hy(M) is a Gal(Q/Q)-module, and there is a Hodge decompo-
sition into C-vector spaces

HpM)®C = @ HY(M).
i+j=w
ij>0
The involution pp acts on H% (M) by pg(H" (M)) = H/(M). When w is even, this tells
us that H"/%>%/2(M) is invariant under pg; when w is odd, we take H"/>"/2(M) = {0}.
If w is even and H"/>"/2(M) # {0}, then the involution pg acts on H"/>"/2(M) by
a € {—1, 1}; we then define the quantity b*(M) by

b*(M) := dimc{x € HY/?>"2(M) : pp(x) = a(—1)"%x},  « € {-1,1}
We denote by p; the representation which induces the Gal(Q/Q)-module structure on
Hy(M).
For any prime p, let Frob, € Gal(Q/Q) be the Frobenius element at p, which is defined

modulo conjugation and modulo the inertia subgroup I, C G, C Gal(Q/Q) of the decom-
position group G,. Define

L d
Ly p(X, M) := det (1 —X-p (Frob1;1> |HZ(M)11,) o [Ta - emb&p)X)".
j=1

One typically assumes (and expects) that Ly , (X, M) and @ p4(j, £, p) are in fact independent
of ¢; as such, we write L,(X, M) and o (j, p) instead of Ly, (X, M) and anq(j ¢, p) for
convenience. (If this is not true, our results are only affected notationally). The Euler
product and Dirichlet series representations of L(s, M) are now given as

Lis M) =[] Ly~ M) =) A (n)
»

S
n>1

with A aq(n) € C. Both the Euler product and the Dirichlet series converge absolutely in
the half plane Re(s) > w/2 4 1.
Define the v-th Hodge number of M by h, := dimcH"" " "(M). Let I'r(s) =
77521 (s/2) and T'c(s) = 2(2w)~*T'(s), and define
Loo(s, M) = Ti(s — w/2)? “MTg(s +1— w2 M [T Tels— ).
0<v<w/2

Because we consider M over Q, the degree of L(s, M) also equals

d=b"(M)+b" (M) +2 Y b, (2.1)

0<v<w/2
We now describe the hypotheses for L(s, M) which are crucial to our arguments.

Hypothesis 2.1 Let M be a self-dual motive of weight w > 1, rank d > 1, and global
conductor N. Let L(s, M) be the L-function of M. The following are true.

(1) Self-duality: For all n > 1, we have that A pq(n) € R.

(2) The generalized Ramanujan conjecture (GRC): We have that | A pq(n)| < d(n)n"/? for
every n > 1, where d(n) is the usual divisor function.

(3) Analytic continuation: The function A(s, M) = N3/2Loo (s, M)L(s, M) is entire of
order 1.
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(4) Functional equation: There exists e(M) € {—1, 1} such that for every s € C, we have
that A(s, M) = e(M)A(w + 1 — 5, M). We call e(M) the root number of M.
(5) We have A(WTH, M) = 0.

Property 5 follows from the generalized Riemann hypothesis for L(s, M), and it is known
unconditionally in many cases. Every other property of Hypothesis 2.1 is immediately
satisfied when L(s, M) coincides with the L-function L(s, m o) of an algebraic, self-dual,
tempered, cuspidal automorphic representation ma¢ of GL;(Ag), where 4 is the rank
of M. This is predicted by the Langlands program but is known unconditionally for a
small (though highly important and useful) collection of motivic L-functions, such as
the L-functions associated to newforms. In what follows, we will always assume that
L(s, M) = L(s, maq) for some mpq in A,(Q), the set of all algebraic, self-dual, tempered,
cuspidal automorphic representations of GL;(Ag), where d is the rank of M.

2.2 C(ritical values and Hodge numbers

Following Deligne [8], we define an integer #n to be critical for M if neither Lo (s, M)
nor Loo(w + 1 — s, M) has a pole at s = u; if n is critical for M, then we call L(n, M) a
critical value of L(s, M). With this definition, the critical integers are purely dictated by
the Hodge numbers. The simplest situation occurs when 5% (M) and 5~ (M) both equal
zero; then the set of integers # which are critical for M are precisely those which lie in

the interval

max v, w— max Vv |. (2.2)
hy#0 hy#0
0<v<w/2 0<v<w/2

(When M corresponds with a newform f of (modular) weight k, thenw = k — 1, by = 1,
and h, =0foralll <v < k%l Thus the critical values of L(s, f) are L(n, f) for integers
1 < n < k — 1.) On the other hand, if at least one of b* (M) and b~ (M) is nonzero,
then the distribution of critical integers is slightly more complicated. Briefly stated, if
just one of b* (M) and b~ (M) are nonzero, then the critical integers of M will not be
consecutive integers; if both 5™ (M) and b~ (M) are nonzero, then L(s, M) has no critical
values. For simplicity, we only consider motives M such that w is odd and 4, > 1 for
some 0 < v < w/2. Thus b (M) = b~ (M) = 0, the integers that are critical for M
are symmetric about the critical line for L(s, M), and d > 2. We will study polynomials
that generate the special values L(1, M), L(2, M), ..., L(w, M), which, by our hypotheses,
includes all of the critical values.

When w is odd, we see that d must be even [see (2.1)]. Now, consider now the exterior
square representation Ext?(ir() and the Euler product

L(s, Ext*(mp1) = [ [ L (P75 Ext* (1)) s
P

where at each prime p t N we have
1

L Ex?(M) =[] (1-ambpamkpp™)” (2.3)

1<j<k<n

We know that L(s, Ext?( o¢)) has a meromorphic continuation to C with no poles outside
of the set {WT/, WT/ + 1}, where w’ is the weight of Ext?(mw ) [17]. If L(s, Ext?(ma4)) has
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a pole at s = WT, + 1, then w4 is a cuspidal symplectic representation of GL;(Aq); let
A%(Q) denote the set of such representations. For any m ¢ € A%(Q), Lapid and Rallis [14]
proved that A(WTH, wa) > 0. (This vastly generalizes a result of Waldsuprger [24] for
L-functions of newforms.) Therefore, the hypotheses of Theorem 1.1 succinctly describe
the most natural class of motivic L-functions for which the methods in [12] can be used
for studying special and critical values.

In Theorem 1.1, we require that 2mhm > 1+ l/m)ho. This is not true of all M. In
fact, for any integer m > 0 and any collection of nonnegative integers hy, . . ., /1, there
exists a motive of weight 2m + 1 with Hodge numbers Ay, . . ., /1,,; see Arapura [1] and
Schreieder [21] for explicit constructions. However, for newforms and their symmetric
powers (see Sect.6) as well as many other interesting cases, we have h, € {0, 1} for each

1<v<m.

3 Preliminary lemmas and setup
Let M be a pure motive over Q of rank d > 2 with global conductor N, odd weight
w = 2m + 1 > 3, root number ¢ = (M), and Hodge numbers %, for 0 < v < m. (It
will be more notationally convenient for us to use m instead of w.) For convenience, we
letSt:={zecC:|z|=1}andD:={z € C: |z] < 1}.

We now define our analogue of (1.4) by letting

2m m _ hy )
pmlz) = Z |:H <m2_m|m ij|> :| AQCm+1—j, M)Z. (3.1)
j=0 Lv=0

Using the functional equation of A(s, M) in Part (3) of Hypothesis 2.1, we have that

pm(2) = 2" (Pa(2z) + ePpq(1/2)), (3.2)
where
12 r2m—v\™
Pp(z) == 3 [g( " ) i|A(m+1,M)
" " om— v hy .
+> []_[ ( m_j) ]A(m+1+j,M)z1.
j=1 Lv=0

If z = e e S, then Pry(z) + ePprq(1/2) is a trigonometric polynomial in either cos(6)
or sin(9) (depending on the sign of ¢). Therefore, to prove that the zeros of pr((z) are
equidistributed on S!, we find the correct number and placement of sign changes of
P(z) + ePaq(1/z) as O varies along [0, 277).

Since A(s, M) is an entire function of order one, there exist constants A = A4 and
B = B such that A(s, M) has the Hadamard factorization

Als, M) = eA1Bs 1_[ (1 — %)es/p, (3.3)
o

where the product runs over the zeros p of A(s, M). Self-duality and the functional equa-
tion of A(s, M) imply that if p is a zero of A(s, M), then so are p and w+1 — p. Self-duality
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also implies that A (s, M) is real-valued on the real line, and in view of the functional equa-
tion of A(s, M), we have that B is real-valuedand B = — Zp Re(p™1) = — Zp Re(p)|p|~2.
Thus, if s € R, then

Al M) = e ]_[(1—5) : ‘ ——‘ (3.4)
peR P Im<p>>0

Lemma 3.1 The function A(s, M) is monotonically increasing for s > m+ 3/2; moreover,
O<Am+1LM)<Am+2, M) <Am+3M)<Am+4 M) <...

Ife = —1, then A(m+ 1, M) = 0 and
1 1
0<Am+2,M)< 5A(m+3,/\/l) < gA(m—HL,M) <

Proof All of the zeros in the product (3.4) lie in the vertical strip [+ 1 —Re(s)| < 1/2,and
we see that |1 — s/p| is increasing for s > m + 3/2. Thus by (3.4), we have that A(s, M)
is increasing for s > m + 3/2. Moreover, |1 — mTH| <1- ”’THL so Alm + 1, M) <
A(m + 2, M). When ¢ = —1, we apply the same reasoning and take into account that
A(s, M) has a zero of odd order at s = m + 1. O

Lemma 3.2 For0 < a < b, we have

Lim+3/2+a, M) - (§(1+a))d
Lm+3/2+b M)~ \c(1+b)

where ¢ (s) is the Riemann zeta function.

Proof The Euler product for L(s, M) gives rise to the function A r(n) which is defined by
the Dirichlet series identity

L o A p(n)
RV e
n=1
One sees that |A v((n)| < dn*/?> A(n) for all n > 1, where A () is the usual von Mangoldt
function; this estimate follows from Part (4) of Hypothesis 2.1.
Let 0 < a <t < b. By the above discussion,

I/ Am(n) A(") ¢
_f(m+3/2+tM‘<Z‘n1+t+w/2‘— n1+t - d?(l—i't)‘

Consequently,

Lim +3/2+ a, M) /h L

- 3/2+1¢ dt
Lom+3/2+ b, M) eXp( (m+3/2+5 M) )
< eXP d/ —(1 + t)dt

which equals the right-hand side of the desired inequality. o

We will also use the following lemma due to Pélya [19] and Szegé [23] on the zeros of
trigonometric polynomials.
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Lemma3.3 If0 <ay <a; <--- < ay_1 < ay then the polynomial Zf:o a, cos(nb)

has exactly one zero in each interval (ﬂﬂ', M71) or 1 <j < n. Also, the polynomial
Y 217" 2t 1 J e poiyn

Z;’Zl ay, sin(nb) has a zero at 0 = 0 and exactly one zero in each interval (2311 T, 22(2111) )

forl<j<mn-—1

4 Proof of Theorem 1.1 when N is large
Our proof of Theorem 1.1 is broken into two cases. First we consider the case whenm = 1,
in which case P,(z) is linear. Then we consider the case where m > 2.

4.1 Casel:m=1
We have Ppq(z) = A3, M)z + 2M0~1A(2, M). If ¢ = —1, then

prm(@) = 2" (Pp(2) + ePrq(1/2)) = (z° — 1)A(3, M).

Since —1 and 1 are the roots and they are clearly equidistributed on S!, Theorem 1.1 is
proven for all 4 and all N.
On the other hand, if ¢ = 1 and z = €% for some 6 € [0, 277), then

2" (Pa(2) + ePrqa(1/2)) = 267 (cos(0) A (3, M) + 201 A(2, M)). (4.1)

Since A(2, M) < A(3, M) by Lemma 3.1, (4.1) has two roots for 6 € [0, 27r); these are the
two values of 6 for which cos§ = —2"0~1A(2, M)/A(3, M), provided that &y € {0,1}.
This places the roots of pr((z) on S'.

We now show that the zeros of (4.1) are equidistributed when N islarge. By the definition
of A(s, M) and Lemma 3.1, we have that A(3, M) > N3/2, whereas

A, M) < sup |A(5/2 + € + it, M)| « N>/4F€
teR

for any € > 0. (This uses the Phragmén-Lindelof convexity bound for L(s, M) in the
critical strip is given by [11, Eq. 5.21]). Therefore, A(2, M)/A(3, M) « N~Y/4+¢ and so
the corresponding values of 6 tend to 7 /2 and 37 /2. Thus if ¢ = 1, then the zeros of
pm(2) are £i + O(N~1/4F€),

4.2 Case2:m > 2

We will show that if N is sufficiently large and 2mPm > (1 + 1/m)", then the zeros of
pm(2) are equidistributed on S!. This follows as soon as we show that we can apply Lemma
3.3 to the real and imaginary parts of P () + eP (™). So that we may apply Lemma
3.3, we will verify that

- 2m—v)h“]A ) |:
) m+14+;M) <
e

foralll <j <m —1and

1| & (2m—v hy " om— v hy
5[]1( o ) j|A(m+1,M)§|:££(m_l> i|A(m+2,M).

By the definitions of A(s, M) and d, this is equivalent to

m

_ hy
I1 (mzi”(i +”1)) } AGn+2+4), M)

v=0

1
m = )77

1/2
L(m+j+1,/\/l)<< ) Lim+j+2 M) (4.2)

(@2n)?
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foreachl <j <m —1and
m

%[H#]A(V;H—L/\/l)s[

v=0

m

1
1_[(W1+1—v)hv

] A(m + 2, M). (4.3)
v=0

By Lemma 3.2, we have
Lim+j+1LM) _ (c(j + 1/2)>d'
Lim+j+2, M) = \¢(j+3/2)
Therefore, (4.2) is satisfied when N > Afn, where

2
A, = max (

1<j<m-1m —j

é“(i+1/2)>2.

(G +3/2) @4

Since A(m + 1, M) < A(m + 2, M), (4.3) is satisfied when 2m" > (1 4+ 1/m)"™, as can
be seen using term-by-term comparison. This completes the proof.

It is straightforward to compute A, < 23.83, A3 < 11.92, A, < 8 for m > 4, and
lim,;,—, 00 Ay = 27. Thus the above proof cannot produce a lower bound for N better
than (2n)d ; we must handle the cases where N < Afn differently.

5 Proof of Theorem 1.1 when mis large

On the unit circle, r¢(z) is well approximated by an exponential function [12, Sect. 6], but
if M is arbitrary, then pr((z) is well approximated on the unit circle by a certain gener-
alized hypergeometric function. Unfortunately, it is computationally intractable to locate
the zeros of the real and imaginary parts of generalized hypergeometric functions, and
Rouché’s Theorem only gives us the zeros of the real and imaginary part simultaneously.
Therefore, we can only prove that “most” zeros (depending on d and N) lie on the unit
circle as the weight becomes large.

Let d be fixed. If we define

. m—1 1 (27.[)% L(2m +1 —j, M)
Qm(2) =z ; (]’1)% (vNzy L2m+1,M)

N 1 @n)2\" Lon +1, M) 5.1)
2myd2\ YN | Lem+1,M) '
then we may write Pa4(z) as
m «/ﬁ 2m+1
— hy
Pp(z) = |:v1:£((2m — )l } (W L2m + 1, M)Qum(2). (5.2)
Define
1 [(@2n)d” 4
Fin(z) == —— | —=z] (5.3)
AN ; (j1)472 < JN
which we approximate by its partial sums T}, 4 n(2) := erio W(%z)ﬁ
Now we decompose Q¢(z) into the sum
1 @m)2\" Lim +1, M)
= 2" T, an(1 S 5.4
Qm(2) = 2" Typan(1/2) + S(2) + 20T ( i Lam L M) (5.4)

Page 10 0of 16



Lobrich et al. Res Math Sci(2017)4:26 Page 11 of 16

with

; @n)42\ (Lem+1—j, M)
S(z) ==z Z |)d/2( JNz ) < L2m+ 1, M) _1)‘

It follows from [10, Theorem 2.2] that p v(z) has as many zeros on S! as Qr(z) has inside

D. Thus Part 3 of Theorem 1.1 follows from the following statement.

Theorem 5.1 Let ¢, denote the number of zeros of Fn(z) inside D. If m is sufficiently
large, then Qaq(z) has m — cy N zeros inside D.

Proof We use Rouché’s Theorem. First, for |z| = 1, we estimate with Lemma 3.2

=l (o2 (Lem+1— M)

j=0

m—1 ZJT)d/Z J 1 ’d
- :)d/z Ni% <§(m+§_’> _1)

]

The function x — 2"({(% +x)% —1)is monotonically decreasing for x > 1, so

m—

d/2
S < Z ’ ((23% )2 e 32~ 1) < 27 3/2) ~ DEan (@), 65)

Furthermore,
1 (2n)d/2 m L(m+ 1, M) 1 (27.[)51/2 m 6
2(m!)4/? ( VN ) L(2m + 1, M) (m!)d/2 ( JN ) .

If d is fixed, then both (5.5) and (5.6) can be made arbitrarily small if 7 is sufficiently large.
We first assume that F,; ; has no zeros on S'. Since T, 4 n (z) converges to F,; 5 (z) locally
uniformly as m tends to infinity, we have

1
min |Zm m,d,N(l/Z)| = min iTm,d,N(Z)| > — min |Fle(z)|
zeSt zeS!t 2 zest

for mlarge enough. We conclude for these 1, the functions Qo (z) and 2™ T, 4 n(1/2) have
the same number of zeros inside D by Rouché’s Theorem. Every zero of 2T}, ;n(1/2)
inside D is the inverse of a zero of T, x(z) outside D. Again using locally uniform
convergence, we see that, if m is sufficiently large, then F;x(2) and T}, 4 (z) have the
same number of zeros inside D, namely ¢, 5. This implies that 2T}, ;5 (1/z), and hence
Qm(z), has m — ¢4 zeros inside D.

If F;n has zeros on S, then we choose an r > 1, such that all the zeros of F;y in
the region {r~! < |z| < r} lie on S! and slightly modify the argument above by applying
Rouché’s Theorem to the circle {|z| = r}. m|

By taking d = 2, we have that Fo n(z) = exp( z) Since Fy n(z) has no zeros in D,
we have that ¢,y = 0; thus paq(2) has all of its zeros on S!, as shown in [12]. However,
for d = 4, the situation already becomes noticeably more complicated; when d = 4, we
have that Fy x (z) = Io(4n N~Y*,/z), where Iy denotes the I-Bessel function. When d > 6,
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F,;n(z) is a generalized hypergeometric function. To illustrate the difficulty when d > 4,
we directly compute

5 ifN=1,
4 ifN =1,

4 if2<N <6
3 if2<N <4,

3 if7<N <37

N =12 if5<N <26 CoN =

2 if38 < N < 494,
1 if27 <N < 745,

1 if495 < N < 45606,
0 if746 <N,

0 if45607 < N.

To see how these compare with those of the previous section, we observe that 746 ~
%(27‘()4 and 45607 ~ %(27‘[)6. Thus it appears that the weight aspect of the results in [12]
do not readily generalize to our setting when d is large.

6 Symmetric power L-functions and the Proof of Theorem 1.3

6.1 Symmetric power L-functions of non-CM newforms

Let f be a non-CM newform of even weight k > 2, squarefree level N, and trivial neben-
typus. It is well known that L(s, f) is a motivic L-function satisfying Hypothesis 2.1 with
weight w = k — 1, rank d = 2, and global conductor N (see [12] and the sources contained
therein).

For each prime ¢, Deligne proved that there exists a representation py : Gal(Q/Q) —
GL3(Z¢) with the property that if p is a prime not dividing £N and Frob, is the Frobenius
automorphism of Gal(Q/Q) at p, then the characteristic polynomial of pq(Froby) is x% —
ar(p) + p*1. By Deligne’s proof of the Weil Conjectures (which establishes Part 2 of
Hypothesis 2.1), we know that |as(p)| < 2p(k /2 Thus the roots of the characteristic
polynomial are Otpp(k_l)/2 and ,Bpp(k_lw, where 8, = &, and ay B, = 1. We recast the
Euler product of L(s, f) in (1.1) as

H H 1 T plk=1)/2~ —s’

L(sf) = H »
pINj=0 =

When N is squarefree, the Euler product of the n-th symmetric power of f, which we

—ar (19)19

denote by Sym”f, is given by

syt = | [T 7= G s | T

piNj=0 L — By prtk=D/2=s’

(See Cogdell and Michel [6, Sect. 1.1].) This is the L-function attached to the £-adic real-
izations of M = Sym”H(f); note that L(s, Symof) = {(s) and L(s, Symlf) = L(s,f). The
symmetric power L-functions of newforms determine the distribution of as (p)/ (2ptk=1)/2)
in [—1, 1], but very little is unconditionally known their analytic properties (cf. [2,16], for
example). Their critical values are important in the context of the Bloch—Kato conjecture,
much like those of L(s, f). (See [9] for an accessible overview along with some convincing
computations.) The weight of Sym”f is n(k — 1), the rank is n+1, and the global conductor
is N". (This expression for the global conductor of Sym”f is essential to the arguments
that follow, and it is guaranteed by the hypothesis that N is squarefree.) Whenn = 2r 4+ 1
is odd, the integers which are critical for Sym**'f are r(k — 1) +jfor1 <j < k — 1.
The Hodge numbers all lie in {0, 1}; see [6] for an exact expression for Lo (s, Sym”f). From
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this, we can check that the conditions of Theorem 1.1 (1) or (2) are satisfied under the
assumptions of Corollary 1.2.

Conjecturally, we have Sym”"f € A,;1(Q) for each n > 0, and Sym"f e A5 ,(Q)
for each odd n > 1. Unconditionally, we know that Sym"f € A,4+1(Q) for each n < 8
(see Clozel and Thorne [4], Cogdell and Michel [6], and the sources contained therein).
Moreover, as part of the celebrated proof of the Sato—Tate conjecture [2], we know that
L(s, Sym”f) can be analytically continued to the line 9i(s) = 1 for each n > 1. It follows
from the Euler product representation of L(s, Sym”f) and (2.3) that if n > 1 is odd, then

—

n—

L(s, Sym4jf).

—1

L(s, Ext?>(Sym"f)) = ¢ (s)
1

In particular, if # is odd and Sym¥f Ayi11(Q) forallj < ;%1, then L(s, Ext?(Sym”f)) has
apole ats = 1. Thus by Lapid and Rallis [14], we have that A(M,f) > 0. Regardless

of whether N is squarefree, we expect that L(s, Extz(Sym”f )) has a pole at s = 1 for all odd

~.
I

n > 1, in which case Sym"f € A | (Q) and we obtain the desired non-vanishing at the

central critical point.

6.2 Proof of Theorem 1.3

By the modularity theorem, if E is a semistable elliptic curve of squarefree conductor N,
then E corresponds to a weight 2 newform of level N, trivial nebentypus, and integral
Fourier coefficients. Thus L(s, Sym”E) = L(s, Sym”f). By Corollary 1.2, the only cases left
to check are

n=>5 11 <N <43
and
n=7 11 <N <15

We observe that in all of these exceptional cases except for (n, N) € {(5,37), (5,43)},
corresponding to the isogeny classes 37.a and 43.a in Cremona’s table, the root number
e(Sym”f) is —1; these are stored on the L-function and Modular Form Database (LMFDB)
Web site at http://www.Imfdb.org.

In the cases with ¢(Sym”f) = 1 (resp. n = 7), we explicitly compute the zeros of P sy
(resp. Psym7f) and observe that all of them lie in the open unit disk. For this, we use the
critical value L(3, Sym®f) and the Dirichlet coefficients of L(s, Sym®f) (resp. L(s, Sym’f)),
which are stored in the Lcalc files on http://www.lmfdb.org.

If n = 5and e(Sym®f) = —1, we have

P s(2) = A5, Sym®f)z* + 24A (4, Sym®f )z,

so P, 5 has all zeros inside the unit disk, if

Sym
5
24 A (4, Sym°f) -1
A(5, Sym>f)
This can again be checked by computing L(4, Sym®f) and L(5, Sym®f) in these cases.

7 Proof of Theorem 1.4
We first present some corollaries of the results in [20]. Let L/(z) be a polynomial of degree
e with U(1) # 0. Consider the rational function V(z) := U(z)(1 — z)~€+D, It is easily
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shown that there exists a polynomial H(z) of degree e such that H(¢) = %:—; V(z)| for

each integer £ > 0. Define Z(s) := H(—s).

z=0

Theorem 7.1 (Rodriguez-Villegas) If all of the roots of U lie on S', then all of the roots
of Z(s) lie on the line R(s) = 1/2. Moreover, if U has real coefficients and U(1) # O, then
Z(s) satisfies the functional equation Z(1 — s) = (—1)°Z(s).

We now show that under the hypotheses of Theorem 1.3, psy £ (2) satisfies the hypothe-
ses of Theorem 7.1.

Lemma 7.2 Let E/Q be a semistable elliptic curve, and suppose that Sym"E satisfies the
hypotheses of Theorem 1.3. If e(Sym"E) = 1, then psymng(1) # 0. If ¢(Sym”"E) = —1, then
Psym"E(2) has a simple zero at z = 1.

Proof Let n > 3 be odd, let m = ”T_l, and let ¢ = ¢(Sym”E). By (3.2) and the fact that
L(s, Sym"E) is self-dual, we have that psym~£(1) equals

T (2m — v\ " f2m— o\
[]_[ < ) ] A(m+1, Sym”E) + 22 []_[ ( A ) ] A(m+14j, Sym”E)
v=0 " j=1 Lv=0 m=J
if e = 1 and psyme(1) = 0ife = —1.

When ¢ = 1, it follows from Lemma 3.1 and Hypothesis 2.1 (both of which hold
whenever Sym”E satisfies the hypotheses of Theorem 1.3) that the sum defining psyn7£(1)
has only nonnegative terms. If psy£(1) = 0, then it would follow that all Deligne periods
of Sym”E would equal zero. This implies that the Deligne periods of E are both zero, which
is not true. (For the relationship between the periods of E and the periods of Sym”E, see
[9], for example.) Thus psymng(1) # 0.

Now, suppose that ¢ = —1. Note that the sum defining pgymn £(2z) isasum of non-positive
terms. Much like the case where ¢ = 1, if all of these terms equal zero simultaneously,
then all of the Deligne periods of E are zero, which cannot happen. Thus psym£(z) has a
simple zero at z = 1. ]

Define s(m, n) by [[[_o(x — /) = >}, _o s(n, m)x™. Let

n—1

) 1 =5 n—1—v hy .
Msymne(f) == , ST (n_l e 1—2m ) A(m + 1, Sym"E)w/
(I’l - 1)' m=0 | v=0 2 | 2 |
and
n—1 n—1-h I +]
ZSym”E(S) =& Z(—s)h Z ( i )5(7[ — Lk +j)9:nsymn5(]'), (7]_)
h=0 j=0

Proof of Theorem 1.4 If n > 1 is an integer, then we have the Maclaurin expansion
o
n—1+¢
1-2)"= z".
1-97=3 ("7

Sending j to n — 1 — j in the sum defining psym~£(2), using the functional equation for
A(s, Sym”E), and sending £ to £ + j — (1 — 1) yields the identity
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PsymE(2) - ¢ - n—1—v & . " £+j
FreraatpIC D3I I | (PR B E A Lol
(7.2)
Let /1 be the coefficient of z¢ in (7.2). With s(# — 1, m) defined above, we have
PR s n—1-v hy =
_ : n _ N
T YU (’%1—I"T_1 _j|) AG+1,Sym"E) Y " s(n — 1, m)(€ + )
h=0 | v=0 m=0
which equals Zgy£(—¢) (see [18] for a similar manipulation). This proves Part 3.
Let
N (@) = pSym”E(z)
Psym"E\Z) = a— z)_‘LLs’

where §;; is the Kronecker delta function. By Theorem 1.3 and Lemma 7.2, we see that
PsymE(2) is a polynomial of degree n — 1 — §_1,¢, all of whose roots lie on S!. Moreover,
Psyme(1) # 0. Thus
Psyme(2)  Psyme(2)
(1—z)  (1—z)rd-1e
Parts 1 and 2 follow from an application of Part 3 and Theorem 7.1 withe = n—1—8_1.
O
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