
HotStrokes: Word-Gesture Shortcuts on a Trackpad

Wenzhe Cui

Department of Computer Science
Stony Brook University

Stony Brook, New York, USA
wecui@cs.stonybrook.edu

Jingjie Zheng

Google
Kitchener, Ontario, Canada

jingjie@acm.org

Blaine Lewis

Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada
blaine.lewis@uwaterloo.ca

Daniel Vogel

School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada
dvogel@uwaterloo.ca

Xiaojun Bi

Department of Computer Science
Stony Brook University

Stony Brook, New York, USA
xiaojun@cs.stonybrook.edu

ABSTRACT

Expert interaction techniques like hotkeys are efficient, but
poorly adopted because they are hard to learn. HotStrokes
removes the need for learning arbitrary mappings of com-
mands to hotkeys. A user enters a HotStroke by holding a
modifier key, then gesture typing a command name on a
laptop trackpad as if on an imaginary virtual keyboard. The
gestures are recognized using an adaptation of the SHARK2

algorithm with a new spatial model and a refined method for
dynamic suggestions. A controlled experiment shows Hot-
Strokes effectively augments the existing “menu and hotkey”
command activation paradigm. Results show the method is
efficient by reducing command activation time by 43% com-
pared to linear menus. The method is also easy to learn with
a high adoption rate, replacing 91% of linear menu usage.
Finally, combining linear menus, hotkeys, and HotStrokes
leads to 24% faster command activation overall.

CCS CONCEPTS

• Human-centered computing → Interaction devices;
Interaction techniques;

ACM Reference Format:

Wenzhe Cui, Jingjie Zheng, Blaine Lewis, Daniel Vogel, and Xiaojun
Bi. 2019. HotStrokes: Word-Gesture Shortcuts on a Trackpad. In
CHI Conference on Human Factors in Computing Systems Proceedings

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300395

(CHI 2019), May 4–9, 2019, Glasgow, Scotland UK. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3290605.3300395

1 INTRODUCTION

It is a common belief that user interfaces should be easy
to learn, provide high-performance mechanisms for power
users, and ideally, support the progression from ease to
efficiency [9, 23, 43]. In personal computing, menus and
hotkeys (or keyboard shortcuts) are the most common ways
of activating commands, representing the two opposite ends

Figure 1: HotStrokes activates a command ("Open") by hold-

ing down the Ctrl key, then tracing through letters of that

command on the trackpad ("O-P-E-N") as if gesturing on

a soft keyboard. The red trace on the trackpad shows the

finger motion, the yellow trace on the keyboard shows the

equivalent gesture typing shape, and the blue trace on the

display provides feedback. Red and yellow traces are for il-

lustration only and invisible in real use.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 1

of the ease-to-efficiency spectrum. On the one end, graphics-
based menu interaction is easy for novices, but can be in-
efficient when performing repetitive actions [48]. On the
other, hotkeys are fast but require a conscious and effort-
ful switch from menu interaction [15, 21]. Research shows
that hotkeys are largely underused, and many attributes to
the arbitrary command-to-key mappings caused by limited
keyboard input space [9, 15, 27, 48, 49].
We present HotStrokes, a command activation method

that removes the need for memorizing arbitrary key assign-
ment (Figure 1). It works by transforming a laptop trackpad
into an imaginary word-gesture keyboard: a user enters a
command by holding down a modifier key (e.g., Ctrl), then
inputs the command label on the trackpad by gesture typing.
The user learns a word gesture by referring to the physical
keyboard on the laptop for static visual guidance. Then, with
repetitive use of the same command, they may gradually
transition from depending on the visual guidance to directly
recalling the gesture from memory.

We implementHotStrokes using an adaption of theSHARK2

algorithm [19]with a new spatial model and a refinedmethod
for dynamic suggestions. Our evaluation shows that Hot-
Strokes is efficient by reducing command activation time
by 43% compared to linear menus. The method is also easy
to learn with a high adoption rate, replacing 91% of linear
menu usage. Finally, combining linear menus, hotkeys, and
HotStrokes leads to 24% faster command activation overall.

2 RELATEDWORK

HotStrokes relates to the word-gesture keyboard, techniques
for promoting hotkey usage, and gestural command input.

Word-gesture Keyboard

Word-gesture keyboard [19, 34, 42, 45], also variably known
as gesture typing or shape writing, is a text entry method
that has been widely adopted on touchscreen mobile devices.
Users may trace through letters of a word as a single ges-
ture instead of tapping on individual letters. As users gain
expertise, they may gradually transition to directly recalling
the gesture without relying on the visual guidance provided
by the keyboard. Past research has extended word-gesture
keyboard to supporting bi-manual input [8], mid-air text
entry [31], head-movement based [41], and device-tilt based
text input [40]. Building on the success of word-gesture in-
put, HotStrokes extends this input paradigm to command
activation on a trackpad.

Promoting Hotkey Usage

Hotkeys are viewed as the gold standard in efficient com-
mand input [27, 34, 35]. They enable parallel interaction by
combining keyboard and mouse input, and allow users to

focus on primary tasks by reducing visual distraction. How-
ever, research shows that except for very frequent commands
like “copy” and “paste”, users fail to transition from using
graphical interfaces to using shortcuts [1, 18, 27, 39, 48].

The failure to adopt hotkeysmay be ascribed to factors like
poor visibility [14, 15, 39], cumbersome hand movement [22,
32], lack of user motivation [9, 26, 38], and the large cost
to learn more efficient interaction strategies [21, 23]. Yet,
one primary issue, as identified by many [15, 18, 22, 27, 39]
and reiterated by a recent survey by Zheng et al. [48], is
the requirement for memorizing an often arbitrary mapping
from command labels to hotkeys.

Various techniques have been proposed to promote hotkey
usage. ExposeHK [30] displays hotkey labels on UI elements
when a modifier key is pressed to enable rehearsing hotkey
actionswith visual guidance. FingerArc and FingerChord [48]
provide similar guidance, but reduce the need for pressing
modifier keys by detecting special hand gestures. Grossman
et al. [15] show providing auditory feedback about shortcut
information when interacting with menus may significantly
improve hotkey adoption. IconHK [14] increases the visi-
bility of hotkeys by artistically incorporating hotkey letters
into toolbar icons.

Despite these techniques, requiring an arbitrary mapping
from a command to key presses is still a fundamental chal-
lenge for the wide adoption of hotkeys, partly due to the
limited keyboard space compared to the relatively large num-
ber of commands on desktop computing [49]. HotStrokes
proposes to alleviate this issue by leveraging the interac-
tion space of the trackpad for command activation. Because
HotStrokes directly associate the command with its word
gesture, it removes the need for learning arbitrary mappings,
which may substantially ease the learning procedure.

Gestural Command Input

Taking advantage of human’s ability in well-remembering
pictorial information [33], many techniques have explored
using gestures for command input [44]. Gestural commands
may address the arbitrary mapping problem by using ges-
tures with semantic meanings. For example, Gesture Search
[28] triggers actions on a smartphone by drawing related
characters, and similarly, Gesture Avatar [29] activates on-
screen UI widgets by drawing their icons.
Many other interfaces use somewhat arbitrary gestures,

but provide visual guidance for novices to facilitate learning.
On touchscreen devices, Marking Menu [21, 24, 25] and its
variants [5, 6, 11, 12, 46, 47] allow novices to “press and hold”
to expand a hierarchical menu and trace through menu labels
to form a gesture, while experts may approximate the same
gesture without depending on any guidance. OctoPocus [7]
expands this idea, but only shows what gestures are possible
when users pause their fingers. On trackpads, Markpad [13]

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 2

triggers commands by gesturing on a predefined grid while
referring to the display for visual guidance.

More relevant are Command Strokes [20] and Command-
Board [2], both supporting entering a command by gesture
typing its label on a touchscreen keyboard. HotStrokes trans-
fers this idea to a laptop trackpad. It significantly deviates
from these techniques by letting users refer to the physical
keyboard for static visual guidance and providing gesture
feedback on a separate display. Anderson and Bischof [3]
show that static guidance, in contrary to common belief, may
actually foster better motor performance when recalling ges-
tures, and the limited guidance with HotStrokes compared
to showing an on-screen keyboard directly under the finger
may have certain benefits.

3 HOTSTROKES: WORD-GESTURE SHORTCUTS

To strike a balance between efficiency and ease of use, we
design and implement HotStrokes to enable entering a com-
mand by gesture typing its label on a laptop trackpad as if on
an imaginary virtual keyboard, while also holding a modifier
key (Figure 1). The gesture stroke is visualized on the laptop
screen, providing real-time action feedback. The command
is executed as soon as the finger lifts off the trackpad. The
activated command label, as well as the hotkey option, is
displayed on the screen after the execution. Since HotStrokes
is aimed to augment, rather than replace the existing com-
mand input paradigm, displaying hotkeys serves as calm
notification [38] to remind users of the existence of another
efficient command input method.

HotStrokes has the following theoretical advantages. First,
a known command can be triggered directly without having
to search in linear menus or toolbars. Second, it inherits
the same benefits of gesture typing, supporting a gradual
transition from relying on visual guidance to direct memory
recall. Third, it reduces the need for memorizing arbitrary
key combinations by naturally mapping command labels to
corresponding word gestures. The physical keyboard above
the trackpad also serves as a reference to help users recall
gesture shapes and locations, easing the learning procedure.

In the rest of the paper, we first investigate how to decode
HotStrokes input, then study the pros and cons of using
HotStrokes in combination with the existing “linear menu
and hotkey” command input paradigm.

4 DECODING HOTSTROKES INPUT

Decoding HotStrokes input on a trackpad is substantially dif-
ferent from regular touchscreen keyboards. First, the input
signal is expected to be noisy due to the lack of on-screen key-
board visual where locating key positions can be challenging
to users. Second, no language context exists for command
input, so the decoding algorithm can not leverage a language
model to disambiguate words like regular typing.

In this section, we review the SHARK2 gesture decoding
algorithm [19], analyze users gesture typing behavior on a
trackpad, and optimize SHARK2 for decoding HotStrokes
input.

Decoding Principle

We developed a gesture decoding algorithm from scratch,
following principles outlined in SHARK2 [19] with two aug-
mentations explained later. Since command input has no
language context, our algorithm relied on the shape channel
and location channel in SHARK2 for decoding.

Shape Channel. This channel classifies gestures based on the
shape information. It takes a gesture stroke u as input, and
outputs the shape matching distance Ds (u,v) between the
gesture input u and the template pattern v of a candidate
commandw . The template pattern is formed by connecting
key centers of the command with straight lines on a Qwerty
layout whose dimensions are identical with the trackpad. We
followed the same procedure outlined in [19] to calculate
Ds (u,v).

Location Channel. This channel examines the absolute loca-
tion of the user’s gesture trace on the keyboard. It outputs
average the location distance Dl (u,v) between the input ges-
ture u and the template pattern of a command candidate
v . The procedure of calculating Dl (u,v) is also detailed in
SHARK2 [19]. We followed the same procedure. The only
difference was that Dl (u,v) was divided by the diagonal of a
keyboard whose dimensions were identical to the trackpad,
which normalized its value between [0, 1], in the similar scale
with Ds (u,v).

Finally, we combined the shape distance Ds (u,v) and loca-
tion distanceDl (u,v) to obtain the matching distanceD(u,v)
between an input gesture u and a template pattern v as:

D(u,v) = αDs (u,v) + (1 − α)Dl (u,v), (1)

where α is the weight between Ds and Dl which was later
trained from the collected data.

Applying Equation (1), the algorithm obtains the matching
distance D(u,v) between an input gesture u with every com-
mand candidatew whose template pattern is denoted by v .
The one with the shortest D(u,v) is the intended command
while the candidates with 2nd and 3rd shortest D(u,v) are
the 2nd and 3rd suggestions.
To investigate whether this algorithm can decode Hot-

Strokes and optimize its performance, we conducted a study
to collect HotStrokes input data, and used it to train and test
the algorithm parameters.

Collecting HotStrokes Input Data

Task. The study was to study the users’ HotStrokes gestur-
ing behavior and collect HotStrokes input data. The subjects

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 3

Figure 2: Screenshot of the data collection application. The

user was instructed to gesture type setup three times in a

row.

were instructed to gesture type commands displayed on the
screen via the trackpad of a laptop, imagining that there
was an invisible keyboard superimposed on the trackpad
and could successfully decode their input. We used this Wiz-
ard of Oz keyboard approach to collect neutral input data
which was not biased toward any algorithm. Participants
were asked to gesture as naturally as possible. The keyboard
above the trackpad worked as an input aid to help partici-
pants who were not familiar with QWERTY keyboard layout.

Design. The command set contained 80 single word com-
mands chosen from menu items from Apple OS X. These
words covered all 26 English letters from ’a’ to ’z’. These
commands were extracted from Safari menus and systems
applications of Apple OS X. Most of the commands were sin-
gle words. For those commands containing multiple words
that were hard to input in one continuous gesture, we picked
either the verb or the core word in the command phrase. An
80-word dictionary was set up using these commands for
gesture input recognition.

Each command appeared 3 times consecutively, while the
Ctrl key was pressed. In total, each participant input 240
gestures. The orders of all words were randomized across
participants. The gesture traces were recorded for later train-
ing and testing. The gesture traces were displayed on the
laptop screen as feedback.

Participants and Apparatus. We recruited 12 participants (3
females, 25%), aged from 22 to 39. All were right-handed.
Three of them had gesture input experiences. The others
had never used gesture typing before. The subjects were
instructed to use their preferred finger and hand. In the
experiment, all the users used right hand and index finger.
All the experiments conducted on a Lenovo Thinkpad X1

Figure 3: Imaginary key position distribution with 95%confi-

dence ellipses. The black boundaries were the trackpad bor-

ders.

Carbon 2017. (CPU:i7-7500U, RAM:8G) with Synaptics HID-
Compliant Touch pad Device. In total, 2880 gestures of 80
words were collected from 12 participants.

Data Analysis – Imagined Key Position Distribution

After collecting the input data, we first investigated whether
users could recall key positions without key visuals, and
whether the imagined key positions differed from a regular
Qwerty keyboard. Such information would be critical in
designing the decoding algorithm.
We located the imagined key positions of a commandw

from its corresponding gesture input u. It was straightfor-
ward to locate the first and last letter positions: the first and
last touch points in u corresponded to the first and last letter
inw , respectively. However, it was not easy to match letters
in the middle of w with touch points in the gesture u. We
achieved it using the Dynamic Time Warping (DTW) algo-
rithm [37]. We performed DTW between u and the pattern
template ofw (denoted by v). For a letter c inw , assuming
its key center in the template pattern is vc , the DTW algo-
rithm would output its matching point uc in u, which is the
imagined key position of letter c on the trackpad. Note that
DTW matched the template pattern (u) with a user-entered
gesture (v) based on touch point coordinates of these two
traces, not the time stamp. So matching results were un-
likely to be affected by the gesturing time from letter to
letter. More specifically, it first sampled u and v into 100
equidistant points, and obtained the optimal match between
u and v . This procedure resulted in good matches for letters
at the beginning and end of a word (they will be matched
to starting and ending points on a gesture trace), and also
middle letters where the gesture exhibited sharp turns.

Figure 3 shows the distribution of imagined key positions
after this procedure. As shown, the relative imagined key cen-
ters approximately followed a Qwerty layout, which showed

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 4

Figure 4: Performing a linear search to obtain the optimal α
in Equation (1) on training data set.

that users could to a certain degree recall relative Qwerty
key locations without key visuals shown on the trackpad.
Previous research in imaginary interfaces [16, 17] has shown
that users’ memory on interface location is strong enough to
help them draw single-stroke characters and simple sketches
and perform interaction without interface visuals. Our work
advances the understanding to word-gesture input on a track-
pad, showing that such ability also holds for gesture typing
on an imaginary keyboard on a trackpad.
Figure 3 also showed the touch point distribution clus-

tered near the central region of the trackpad, suggesting that
the width of the imaginary keyboard was smaller than the
width of the trackpad, and the imagined key positions did
not evenly distribute over the trackpad. This finding led us to
hypothesize that adapting the key positions to the imagined
key positions (a.k.a, spatial model adaption) may improve the
accuracy of recognizing HotStrokes input. We investigate
the effectiveness of this method as follows.

Enhancing Decoding 1. Spatial Model Adaption

In this section, we evaluate the effectiveness of spatial model
adaption: we learned the key positions from the collected
data, used them in decoding and compared its performance
with a regular Qwerty layout.

To avoid over-fitting, we randomly selected 10 out of 12
users’ data as the training set, and the rest as the test set.
We first computed the center of each key from the training
data, following the procedure described in the previous sec-
tion. The new key locations were then used in both shape
and location channels [19] to form a template pattern for
a command, and used in both shape and location distance
calculation.

Figure 5: Decoding accuracy by the size of the command set.

We also performed a linear search to obtain the optimal
α value in Equation (1), to maximize the decoding accuracy
on training data. It worked as follows. We first initiated α
to 0, and gradually increased it to 1, with 0.01 as the step
length. For each α value, we plugged it into Equation (1) and
obtained the overall decoding accuracy on the training data.
The α that led to the greatest accuracy was the optimal value.
Figure 4 showed how the accuracy varied as α changed. The
optimal α was 0.67 and the accuracy on the training data
was 77.71%.

The algorithm was then evaluated over the test data and
compared with a baseline condition. The baseline condition
was using a regular Qwerty layout in decoding: we equally
divided the trackpad into a 3 × 10 grid, and superimposed a
Qwerty layout onto it. We also performed an identical linear
search to obtain the optimal α value for the baseline, which
was 0.88. The accuracy on the training data was 74.17%.

To investigate how the decoding accuracy was affected by
the size of the command set, we created 8 test command sets
from the test data, with the size of 10, 20, 30, · · · , 80. For com-
mand set with size X , we randomly chose X commands from
test data set, used these X commands as the dictionary in
the decoding algorithm, and fed the gestures corresponding
to these X commands into the algorithm for decoding.
Figure 5 shows the decoding accuracy by the size of the

command set, with and without spatial model adaption. As
shown, adapting key centers in general improved the de-
coding accuracy, especially for command set greater than
30.

Enhancing Decoding 2. Suggesting Multiple

Commands When Necessary

Figure 5 showed that the top 1 decoding accuracy was above
90% on small-sized command set, but the accuracy drop as

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 5

Figure 6: Dynamic suggestion shows 2 or 3 suggestions if the

input command is ambiguous, determined by Equation (2),

and Equation (6). Sliding the finger to the left, right, or up

selects the corresponding command. Sliding down cancels

the input.

the command set size increases, suggesting users will likely
benefit from suggesting two or three commands especially
on large command set. On the other hand, always providing
multiple suggestions may introduce unnecessary cost for
gestures where the top 1 suggestion was already the intended
word, which was the majority across all the conditions (the
top 1 accuracy was above 77% for across command set sizes).
To address this problem, we developed a dynamic sug-

gestion feature. The decoding algorithm will suggest two
command candidates if

Dtop2 − Dtop1 < σ1, (2)

where Dtop1 is the matching distance between the top 1
command candidate and the input gesture, and Dtop2 is the
matching distance between the top 2 candidate and the input
gesture.

The rationale behind this feature is that if both top 1 and
top 2 candidates have close matching distance to the input
gesture, it means both have high probabilities to be the in-
tended command and the algorithm should present both to
the user, and request the user to select the suggestion by
performing a sliding gesture (Figure 6). If none of the sugges-
tion is the intended command, sliding down will cancel the
current input. If the algorithm produces only one suggestion,
the command would automatically be executed upon the
finger lifting off the trackpad.

To make the dynamic suggestion effective, we need to
determine an optimal σ1 value, which should produce 2 sug-
gestions only if the intended command is the 2nd suggestion,
and show one suggestion only if the intended command is
the 1st suggestion.

We used recall and precision rates to quantify whether σ1
is optimal. The recall rate is defined as

r =
tp

tp + f n
, (3)

where tp is the number of true positive (i.e., the intended
command was the 2nd suggestion and two suggestions were
displayed), and f n is the number of false negative (i.e., the
intended command was the 2nd suggestion but the algorithm
only showed 1 suggestion).

The precision rate was defined as

p =
tp

tp + f p
, (4)

where f p is the number of false positive (i.e., the intended
command was the 1st suggestion but two suggestions were
displayed) and tp is the number of true positive as previously
explained.

We weighed recall rate more than precision because a false
negative is more costly than a false positive. Missing a hit
(false negative) means the user needs to redraw the gesture,
while falsely reporting the 2nd suggestion (false positive)
means the user needs to do a follow-up sliding to select the
intended command.
To balance precision and recall rates, and weigh recall

higher than precision, we performed a linear search to find
the optimal σ1 value that maximized the commonly used F2
score [36] on the training data:

F2 = 5 ·
p · r

4 · p + r
, (5)

where p is the precision rate and r is the recall rate.
We first initiated σ1 to 0, gradually increased it to 0.25

(max value in experiment data) with an increment of 0.0001,
and calculated the F2 score. σ1 = 0.0468 led to the highest F2
score of 0.6823.
Similarly, we expanded the dynamic suggestion feature

to include the 3rd suggestion. If the matching distance of
top 1 and top 3 command candidates satisfy the following
equation, the decoding algorithm will show three candidates:

Dtop3 − Dtop1 < σ2, (6)

where Et3 is thematching distance between the 3rd command
candidate and the input gesture. The user will then slide the
finger in the corresponding direction to select the candidate
command (Figure 6). Similar to determining optimal σ1, we
searched for the optimal σ2 to maximize the corresponding

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 6

Table 1: The intended command Coverage per com-

mand set size without and with dynamic suggestion,

and false positive rates for 2 suggestions (2-FP) and 3

suggestions (3-FP) with dynamic suggestion.

size
Coverage
(without)

Coverage
(with)

2-FP 3-FP

10 92.31% 96.00% 13.05% 6.92%
20 87.76% 93.33% 18.03% 10.53%
30 85.20% 92.11% 22.33% 15.89%
40 82.56% 90.25% 25.51% 18.62%
50 81.52% 89.18% 29.52% 22.60%
60 80.42% 88.25% 32.95% 24.49%
70 78.81% 87.71% 35.94% 25.30%
80 77.71% 86.88% 38.07% 27.47%

Figure 7: Intended command coverage without and with dy-

namic suggestions.

F2 score, and found σ2 = 0.0318 led to the highest F2 score
of 0.7155 on the training data set.

Equation (2) with σ1 = 0.0468 and Equation (6) with σ2 =
0.0318 were our solution for dynamically showing multiple
commands when necessary. We applied it on the test data
set to evaluate its effectiveness.
Figure 7 shows the intended command coverage after

adopting the dynamic suggestion. Intended command cov-
erage is the percentage of gestures in which the intended
command was correctly recognized, or it is one of the pre-
sented suggestions when 2 or 3 suggestions are displayed.
As shown in Figure 7 and Table 1, using dynamic suggestion
brought the intended command coverage to above or near
90% for command set less or equal to 50. Table 1 showed the
intended command coverage, and the false positive rates for
2, and 3 suggestions.

Discussion

Our investigation showed both spatial model adaption and
dynamic suggestionswere effective in recognizingHotStrokes
input.
First, as shown in Figure 5, adapting the spatial model

substantially improved the decoding accuracy, especially for
command set greater than 30 commands. It was probably
because users exhibited distinct gesturing behavior when
drawing HotStrokes. For example, they underused the re-
gions near the left and right boundaries. Accounting for their
gesturing behavior improved the decoding performance.
Second, the dynamic suggestion method was effective in

recommending the necessary suggestion when there was
ambiguity in decoding. If the algorithm only showed the
top 1 suggestion, the recognition accuracy dropped from
92.21% (10-command set) to around 80% as the command set
size increases to 60 or 70. Dynamic suggestions brought the
intended command coverage to above or near 90% especially
for command sets with 50 or fewer commands. (Figure 7).

5 EVALUATION

After investigating how to support HotStrokes, we studied
the utility of HotStrokes. We conducted a user study to in-
vestigate whether and to what degree providing HotStrokes
as an alternative improved the performance of the existing
command input paradigm (e.g., menus and hotkeys).

Experiment Setup

Design. The study was a command activation task, and had
two conditions:

• Hotkeys + linear menus (KM). This represented the
existing command activation paradigm. A user could
freely choose either hotKey or use linear menus.

• HotStrokes + hotkeys + linearmenus (SKM). HotStrokes
were added as an option for triggering command. A
user could choose any of these three methods for trig-
gering a command, according to her preference.

We adopted a between-subject design to eliminate the
potential carryover learning effect, since participants may
learn hotkey combinations during the study. There was a
single independent variable, technique, with two levels (KM,
and SKM).

Task. The study consisted of multiple command activation
trials. At the start of each trial, a start button appeared at
the center of the screen. Participants moved the cursor to
click on the start button, which would then be replaced by a
stimulus icon at the same position with a size of 200 × 200
pixels. The icon was a highly familiar graphical object, such
as cat, apple, or hat. The associations among all the stimulus
objects were trivial and unique. Choosing iconic stimuli was

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 7

Figure 8: A participant just finished inputting the command

dog with HotStrokes in Experiment. The green �indicated
the input was correct. The blue trace was the feedback for

HotStrokes input. The command label (e.g., dog) and corre-

sponding hotkey option (e.g., ctrl + alt + d) were displayed

after the command was successfully entered.

based on the fact that verbal or textural objects reduce the
connections between the stimulus and the command. It is
the same strategy used in previous research [4, 15].
Participants were then instructed to input the command

according to the stimulus image on the icon. The participant
could use either hotkeys or linear menus in the KM condi-
tion, and linear menus, hotkeys or HotStrokes in the SKM
condition. In both conditions, participants were instructed
to only use the trackpad for cursor movement, a common
usage on laptop.

If the input was correct, the command label and the corre-
sponding hotkey would appear under the stimulus image. It
was consistent with the HotStrokes design: command feed-
back including hotkey option was provided after it was trig-
gered. If the input was incorrect, the window would freeze
for 3 seconds as a penalty, preventing participants from ran-
domly guessing hotkeys. The user then repeated the same
trial until the command was correctly triggered.

A post-study questionnaire was administered at the end of
the study to collect participants’ subject rating about mental
demand, physical demand, temporal demand, the effort of
performing the task, and their overall preference of each
technique.

Command Set. The task included six categories of 72 com-
mands, each category containing 12 commands. A 72-word
dictionary was created based on these commands for recog-
nition. For each command, a hotkey was assigned after the
following rules designed to simulate the common hotkey
assigning strategies:

1) If the first letter of a command word was the only letter
appears in initial letters of all the commands, it would be
associated with ’Ctrl’ button. For example, ’g’ was the first
letter of ’gloves’, and there was no other words in 30 com-
mands start with ’g’, ’Ctrl + G’ would be assigned to glove
as a hotkey.

2) If there were several words with the same first letter, we
assigned the 7 combinations of ’Ctrl’, ’Shift’, ’Alt’ buttons to
each of them. In an order as ’Ctrl’, ’Shift’, ’Alt’, ’Ctrl + Shift’,
’Ctrl + Alt’, ’Alt + Shift’, ’Ctrl + Alt + Shift’. For example,
if there are only three words ’pig’, ’pea’ and ’printer’ in all
72 commands start with ’p’, we will only use the first 3 of 7
combinations, ’Ctrl + P’, ’Alt + P’ and ’Shift + P’. To ensure
all the hotkeys were designed with the first letter of the
corresponding command, for all the words in our study, the
number of words that start with the same letter is less than
or equal to 7 in the study.

A command could also be activated via the menu bar. The
height of the menu bar was 20 pixels (7mm on the laptop),
approximately the same size of menu bars in common appli-
cations.

We randomly selected 14 commands from the 6 categories
as target commands. The same target commands were used
across participants. Since previous research showed that the
distribution of commands could be approximated with a
Zipfian distribution, the frequencies of the command were
generated according to Zipfian distribution with exponent 1
(relative frequency = 1/rank) based on 30 random inputs of
7 items.

The generated frequencies are (12, 6, 4, 3, 2, 2, 1). Since we
had 14 target commands, each frequency value was assigned
to two commands. The frequencies of target commands in a
60-trial block were (12, 12, 6, 6, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1). The
command to frequency mapping was counterbalanced across
all participants in each condition(KM and SKM). Therefore,
each command was mapped to each frequency an equal
number of times. This strategy was the same as used in the
previous research [4, 15]. Each participant performed 20 tri-
als (in 3 minutes) as a warm-up prior to the formal study.
Each condition contained 2 blocks of 60 trials (120 trials in
total) for each participant. The orders of commands were
randomized in each block, with the constraint on the fre-
quencies of each command. For instance, the two commands
mapped to the frequency 6, would each appear exactly 12
times over both blocks.

Participants and Apparatus. 28 subjects (6 female), aged from
18 to 36 participated in this experiment. The median of self-
reported familiarity with the Qwerty keyboard (1: extremely
unfamiliar; 5: extremely familiar) was 5. The experiment was
conducted on a Thinkpad X1 2017 running Windows 10 OS.

In total, our experiment included:

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 8

Figure 9: Average command input time (95% CI) in two con-

ditions.

Table 2: The average input time(seconds) of each com-

mand activation method in two conditions.

method KM - mean (std) SKM - mean (std)
HotStrokes - 2.93 (0.69)
linear menus 5.27 (1.02) 6.27 (0.85)
hotkeys 2.14 (0.37) 1.59 (0.52)

28 (subjects) × 2 (blocks) × 60 (trials) = 3360 trials.

Results

Command Input Time. This metric measured the efficiency
of each technique. It was defined as the elapsed duration
between the moment the start button was clicked and the
moment a command was triggered.
Figure 9 shows the average command input time in KM

and SKM conditions. The means (std) (in seconds) were
3.32(SD = 0.60) for KM and 2.52(SD = 0.50) for SKM. An
independent t-test showed the difference was significant
(t26 = 3.87,p < 0.05). Adding HotStrokes as an option short-
ened the average activation time by 24.1%.
Table 2 shows the break-down command activation time

for each technique. To further compare the performance
between linear menus and HotStrokes, we examined com-
mands that were entered by linear menus in KM, and also en-
tered by HotStrokes in SKM. HotStrokes reduced the average
command input time of these commands by 43%, from 4.96
seconds (linear menus in KM) to 2.84 seconds (HotStrokes
in SKM).
To investigate whether users became faster at repeating

the same HotStrokes, we selected HotStrokes which had
been repeated at least 4 times and analyzed their input time.
Figure 10 showed the mean input time of those HotStrokes
by the repetition number. As shown, the average input time

Figure 10: Themean (95%CI) input time ofHotStrokeswhich

had been repeated at least 4 times.

dropped by 17.3% after the first repetition and stayed stable
afterwards, indicating that users could quickly improve the
HotStrokes input efficiency by practicing it only once.

To further understand the strength and weakness of Hot-
strokes, we made a comparison of left and right side hotkeys.
The result showed that 64.3% of hotkeys used left-hand side
letters (keys to the left of T, G, B inclusive). For commands
that can be entered with left-hand side hotkeys, the mean
input time (in HotStrokes+hotkeys+linear menus condition)
was 1.83 seconds (SD = 0.84) for hotkeys and was 2.81 sec-
onds (SD = 0.72) for HotStrokes (i.e. using a hotkey was 1
second faster).

Accuracy. The accuracy was the ratio of correctly triggered
commands over the total number of commands. The mean ac-
curacy was 91.85% (SD = 5.00%) for KM, and 89.46% (SD =
4.08%) for SKM. An independent t-test did not show signif-
icant difference the between KM and SKM (t26 = 1.38,p =
0.17). Within KM, the accuracy of was 87.98% (SD = 7.40%)
for hotkeys, and 97.82% (SD = 2.33%) for linear menus,
while within SKM, the accuracy was 86.35% (SD = 5.68%) for
HotStrokes, 86.06% (SD = 13.26%) for hotkeys, and 90.24%
(SD = 14.84%) for linear menus. As a recall-based method,
the accuracy of HotStrokes was slightly higher than its coun-
terpart on the keyboard, and lower than the visual-guided
linear menus. It was not unexpected: recall-based actions
were efficient but harder to perform than visual-guided ac-
tions

Adoption Rate. Adoption rate shows how many percentages
of commands were activated by a particular technique. As
shown in Figure 11, in SKM where HotStrokes is enabled the
majority of commands (64.7%) were triggered by HotStrokes;

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 9

Table 3: The repetition index of each input method in

KM and SKM.

method KM - mean (std) SKM - mean (std)

HotStrokes - 6.31 (5.17)
linear menus 4.46 (4.56) 2.16 (2.75)
hotkeys 9.84 (6.47) 10.95 (6.46)

Figure 11: Adoption rate of each command activation

method.

the usage of linear menus was only 3.63%, drastically lower
than that in KM (40.96%).
To further understand the adoption pattern of each tech-

nique, we measured the repetition index, which was the num-
ber of times a command had been repeated when it was
presented. Table 3 shows the mean (std) of this measure
across conditions. The repetition index for the linear menus
dropped from 4.46 (KM) to 2.16 (SKM), while this measure
of hotkeys remained almost unchanged from KM to SKM. It
showed that when HotStrokes was enabled, users substituted
a large number of linear menu usages with HotStrokes, while
hotkey usage was hardly affected by HotStrokes.
As repetition indices may be affected by frequencies of

commands, to remove the potential impact caused by com-
mand frequencies, we examined repetition indices for com-
mands with highest frequencies only (commands that were
repeated 24 times in total across 2 blocks). For these com-
mands, the mean (std) repetition indices for linear menus
were: 8.24 (7.15) in KM, 3.77 (5.47) in SKM; repetition indices
for hotkeys were 13.76 (6.34) in KM, 13.61 (6.42) in SKM;
this metric was 11.67 (7.14) for HotStrokes in SKM. The data
showed a similar pattern as data based on all commands.
The repetition index for the linear menus dropped from 8.24
(KM) to 3.77 (SKM), while this measure for hotkeys remained
almost unchanged from KM to SKM.

Subjective Rating. Subjects were asked to provide a continues
numerical rating (1-least demanding, 10-most demanding)
on mental demand, physical demand, temporal demand, and
effort of completing the task in each condition. Figure 12
showed the mean subjective ratings. As shown, subjects’
subjective ratings were unanimously in favor of SKM across
all the questions.
Each subject was also asked to give an overall impres-

sion of the condition: “Overall how do you like activating
commands in this condition?” (1-least preferred, 5-most pre-
ferred). The median rating was 5 for SKM and 4 for KM,
showing that participants preferred to have HotStrokes as
an extra command activation method.

Figure 12: Mean(SD) of subjective ratings and median of

overall preference. For measure 1-4, a lower rating means

lower mental, physical, temporal demand, and smaller ef-

fort. For measure 5 (1 - least, 5-most preferred), a higher

score means the method is more preferred. SKM received fa-

vorable ratings in all categories.

Discussion

Efficiency and adoption rate. The study showed promising re-
sults of adding HotStrokes as a command activation method.

First, HotStrokes is more efficient than the traditional lin-
ear menus. It shortened the average command input time
by 43% over the linear menus, from 4.96 seconds to 2.84 sec-
onds. This substantial time saving makes HotStrokes a great
complement to the existing command input paradigm. Over-
all, providing HotStrokes as an option reduced the average
command issuing time by 24%, compared with using linear
menus and hotkeys only.

Second, HotStrokes is also very easy to adopt. Once it was
enabled, users substituted 91% of linear menu usage with
HotStokes (linear menu usage dropped from 40.96% in KM
to 3.63% in SKM). HotStrokes adoption rate was also the
highest among the three options in SKM, at 64.7%. Users
could quickly improve the input efficiency after entering a
HotStrokes only once. As shown in Figure 10, the mean input
time dropped from 3.46 to 2.86 seconds (17%) after using a
HotStrokes command once.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 10

In contrast, the adoption rate of hotkeys was only 31.67%
in SKM, much lower than that of HotStrokes. Note that the
adoption rate of hotkeys was subject to its design strategy.
In our experiment, we used two components to make hotkey
commands easier to remember: using the first letters of com-
mands and using increasingly complex modifiers. It was
somewhat artificial, but was one of the common practices. In
fact, the majority of hotkey commands (78.6%) executed by
participants used a single modifier key, indicating that most
of the hotkeys were easy to execute. Should other hotkey de-
sign strategy be adopted, it might affect the hotkey adoption
rate.

Integration with existing command activation methods and

interaction workflow. In addition to being efficient and easy-
to-adopt, HotStrokes is also highly compatible with the ex-
isting hotkey trackpad commands and current unimanual
trackpad usage. There are currently two types of existing
hotkey trackpad commands: combining a modifier key with
a click (e.g., Ctrl+click to open a link in a new tab), and multi-
finger gestures (e.g., 3-finger swipe to switch workspace on
a Mac). Since HotStrokes is executed by a combination of a
modifier key with singer-finger touch gesture, it does not
conflict with these common gestures.
Although in our experiment HotStrokes was executed

bimanually, we believe unimanual usage of Hotstrokes is
possible, depending on trackpad size and keyboard layout.
Simple HotStrokes could be performed with one hand (e.g.,
pinky finger presses Ctrl while the thumb draws a short
stroke on the trackpad.). Note the distance from the Cmd
key to the farthest corner of a 15" MacBook Pro trackpad
is about 19cm, comparable to the 95th percentile maximum
hand span for a woman (also 19cm) [10].
We envision that HotStrokes could facilitate the existing

interaction workflow via at least two approaches: (1) Hot-
Strokes serves as a global command activation method, an
alternative to linear menus and hotkeys; or (2) HotStrokes
could be integrated with current one-handed hotkeys like
pressing and holding down Ctrl-V in Excel, then drawing a
word-gesture with the other hand to select a paste variation,
such as ’text’, ’transposed’, or ’values’. The left-hand hotkey
press serves as a single modifier press in the standard Hot-
Strokes method. We focus on investigating approach #1 in
this paper.

6 CONCLUSION AND FUTUREWORK

We present HotSrokes, word-gesture shortcuts on a trackpad.
Our investigation showed that HotStrokes significantly im-
proved the command activation performance, augmenting
the existing command activation paradigm. Providing it as a
command input alternative shortened the input time by 24%.

It is more efficient than using the typical linear menus, reduc-
ing command activation time by 43%. It is also easy for adop-
tion. Once enabled, users substituted over 90% of commands
previously triggered with linear menus with HotStrokes; its
overall adoption rate is 64.7%, higher than hotkeys or linear
menus.
Decoding HotStrokes is challenging due to the lack of

language context and the absence of key visuals on the
trackpad. We have presented spatial model adaption and
dynamic suggestion to address it. Both were effective and
made HotStrokes a practical command activation method.
Spatial model adaption improved the decoding accuracy by
accounting for gesture behaviors on an invisible keyboard,
while dynamic suggestion shows multiple command candi-
dates when the input is ambiguous.
We have open-sourced HotStrokes and the installation

file is available for download1. It is interesting to carry out
longitudinal studies to investigate HotStrokes in a large inter-
action workflow with more complex tasks. Interesting topics
include under which circumstances a user will replace typical
menus or hotkeys with HotStrokes, and how quickly a user
will adopt HotStrokes in real-world tasks. The open-sourced
code and file provide tools for conducting such studies. We
believe such understanding will complement the findings
and insights gained from lab experiments reported in this
paper.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful com-
ments. We thank our user study participants. This work was
supported in part by NSF CHS-1815514. This work was done
as part of the Ph.D. dissertation of Wenzhe Cui, a Stony
Brook Ph.D. student.

REFERENCES

[1] Jason Alexander and Andy Cockburn. 2008. An Empirical Characteri-
sation of Electronic Document Navigation. In Proceedings of Graph-
ics Interface 2008 (GI ’08). Canadian Information Processing Society,
Toronto, Ont., Canada, Canada, 123–130. http://dl.acm.org/citation.
cfm?id=1375714.1375736

[2] Jessalyn Alvina, Carla F. Griggio, Xiaojun Bi, and Wendy E. Mackay.
2017. CommandBoard: Creating a General-Purpose Command Gesture
Input Space for Soft Keyboard. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology (UIST ’17). ACM,
New York, NY, USA, 17–28. https://doi.org/10.1145/3126594.3126639

[3] Fraser Anderson and Walter F. Bischof. 2013. Learning and Perfor-
mance with Gesture Guides. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’13). ACM, New York,
NY, USA, 1109–1118. https://doi.org/10.1145/2470654.2466143

[4] Caroline Appert and Shumin Zhai. 2009. Using Strokes As Command
Shortcuts: Cognitive Benefits and Toolkit Support. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI

1https://github.com/cuiwenzhe/HotStrokes

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 11

’09). ACM, New York, NY, USA, 2289–2298. https://doi.org/10.1145/
1518701.1519052

[5] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2007. Wave
Menus: Improving the Novice Mode of Hierarchical Marking Menus.
In Human-Computer Interaction âĂŞ INTERACT 2007, CÃľcilia
Baranauskas, Philippe Palanque, Julio Abascal, and Simone Diniz Jun-
queira Barbosa (Eds.). Number 4662 in Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 475–488. https://doi.org/10.1007/
978-3-540-74796-3_45

[6] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2008. Flower Menus:
A New Type of Marking Menu with Large Menu Breadth, Within
Groups and Efficient Expert Mode Memorization. In Proceedings of the
Working Conference on Advanced Visual Interfaces (AVI ’08). ACM, New
York, NY, USA, 15–22. https://doi.org/10.1145/1385569.1385575

[7] Olivier Bau andWendy E. Mackay. 2008. OctoPocus: A Dynamic Guide
for Learning Gesture-based Command Sets. In Proceedings of the 21st
Annual ACM Symposium on User Interface Software and Technology
(UIST ’08). ACM, New York, NY, USA, 37–46. https://doi.org/10.1145/
1449715.1449724

[8] Xiaojun Bi, Ciprian Chelba, Tom Ouyang, Kurt Partridge, and Shumin
Zhai. 2012. Bimanual Gesture Keyboard. In Proceedings of the 25th
Annual ACM Symposium on User Interface Software and Technology
(UIST ’12). ACM, New York, NY, USA, 137–146. https://doi.org/10.
1145/2380116.2380136

[9] Andy Cockburn, Carl Gutwin, Joey Scarr, and Sylvain Malacria. 2014.
Supporting Novice to Expert Transitions in User Interfaces. ACM
Comput. Surv. 47, 2, Article 31 (Nov. 2014), 36 pages. https://doi.org/
10.1145/2659796

[10] Sarah M. Donelson and Claire C. Gordon. 1996. 1995 Matched Anthro-
pometric Database of USMarine Corps Personnel: Summary Statistics.

[11] JÃľrÃľmie Francone, Gilles Bailly, Eric Lecolinet, Nadine Mandran,
and Laurence Nigay. 2010. Wavelet Menus on Handheld Devices:
Stacking Metaphor for Novice Mode and Eyes-free Selection for Expert
Mode. In Proceedings of the International Conference on Advanced Visual
Interfaces (AVI ’10). ACM, New York, NY, USA, 173–180. https://doi.
org/10.1145/1842993.1843025

[12] Jeremie Francone, Gilles Bailly, Laurence Nigay, and Eric Lecolinet.
2009. Wavelet Menus: A Stacking Metaphor for Adapting Mark-
ing Menus to Mobile Devices. In Proceedings of the 11th Interna-
tional Conference on Human-Computer Interaction with Mobile Devices
and Services (MobileHCI ’09). ACM, New York, NY, USA, 49:1–49:4.
https://doi.org/10.1145/1613858.1613919

[13] Bruno Fruchard, Eric Lecolinet, and Olivier Chapuis. 2017. MarkPad:
Augmenting Touchpads for Command Selection. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (CHI
’17). ACM, New York, NY, USA, 5630–5642. https://doi.org/10.1145/
3025453.3025486

[14] Emmanouil Giannisakis, Gilles Bailly, Sylvain Malacria, and Fanny
Chevalier. 2017. IconHK: Using Toolbar Button Icons to Communi-
cate Keyboard Shortcuts. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (CHI ’17). ACM, New York, NY,
USA, 4715–4726. https://doi.org/10.1145/3025453.3025595

[15] Tovi Grossman, Pierre Dragicevic, and Ravin Balakrishnan. 2007.
Strategies for Accelerating On-line Learning of Hotkeys. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’07). ACM, New York, NY, USA, 1591–1600. https:
//doi.org/10.1145/1240624.1240865

[16] Sean Gustafson, Daniel Bierwirth, and Patrick Baudisch. 2010. Imagi-
nary Interfaces: Spatial Interaction with Empty Hands and Without
Visual Feedback. In Proceedings of the 23Nd Annual ACM Symposium
on User Interface Software and Technology (UIST ’10). ACM, New York,
NY, USA, 3–12. https://doi.org/10.1145/1866029.1866033

[17] Sean Gustafson, Christian Holz, and Patrick Baudisch. 2011. Imaginary
Phone: Learning Imaginary Interfaces by Transferring Spatial Memory
from a Familiar Device. In Proceedings of the 24th Annual ACM Sympo-
sium on User Interface Software and Technology (UIST ’11). ACM, New
York, NY, USA, 283–292. https://doi.org/10.1145/2047196.2047233

[18] Jeff Hendy, Kellogg S. Booth, and Joanna McGrenere. 2010. Graphically
Enhanced Keyboard Accelerators for GUIs. In Proceedings of Graph-
ics Interface 2010 (GI ’10). Canadian Information Processing Society,
Toronto, Ont., Canada, Canada, 3–10. http://dl.acm.org/citation.cfm?
id=1839214.1839217

[19] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2: A Large Vo-
cabulary Shorthand Writing System for Pen-based Computers. In Pro-
ceedings of the 17th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST ’04). ACM, New York, NY, USA, 43–52.
https://doi.org/10.1145/1029632.1029640

[20] Per Ola Kristensson and Shumin Zhai. 2007. Command Strokes with
and Without Preview: Using Pen Gestures on Keyboard for Command
Selection. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’07). ACM, New York, NY, USA, 1137–1146.
https://doi.org/10.1145/1240624.1240797

[21] Gordon Kurtenbach and William Buxton. 1994. User Learning and
Performance with Marking Menus. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI ’94). ACM, New
York, NY, USA, 258–264. https://doi.org/10.1145/191666.191759

[22] Gordon Kurtenbach, George W. Fitzmaurice, Russell N. Owen, and
Thomas Baudel. 1999. The Hotbox: Efficient Access to a Large Number
of Menu-items. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’99). ACM, New York, NY, USA,
231–237. https://doi.org/10.1145/302979.303047

[23] G. Kurtenbach, T. P.Moran, andW. Buxton. 1994. Contextual animation
of gestural commands. In Computer Graphics Forum. 83–90.

[24] Gordon Paul Kurtenbach. 1993. The Design and Evaluation of Marking
Menus. Technical Report.

[25] Gordon P. Kurtenbach, Abigail J. Sellen, and William A. S. Buxton.
1993. An Empirical Evaluation of Some Articulatory and Cognitive
Aspects of Marking Menus. Hum.-Comput. Interact. 8, 1 (March 1993),
1–23. https://doi.org/10.1207/s15327051hci0801_1

[26] Benjamin Lafreniere, Carl Gutwin, and Andy Cockburn. 2017. In-
vestigating the Post-Training Persistence of Expert Interaction Tech-
niques. ACM Trans. Comput.-Hum. Interact. 24, 4 (Aug. 2017), 29:1–
29:46. https://doi.org/10.1145/3119928

[27] David M. Lane, H. Albert Napier, S. Camille Peres, and Aniko Sandor.
2005. Hidden Costs of Graphical User Interfaces: Failure to Make
the Transition from Menus and Icon Toolbars to Keyboard Shortcuts.
International Journal of Human Computer Interaction 18, 2 (2005), 133–
144. https://doi.org/10.1207/s15327590ijhc1802_1

[28] Yang Li. 2010. Gesture Search: A Tool for Fast Mobile Data Access. In
UIST’10: Symposium on User Interface Software and Technology. 87–96.

[29] Hao LÃĳ and Yang Li. 2011. Gesture Avatar: A Technique for Operating
Mobile User Interfaces Using Gestures. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’11). ACM,
NewYork, NY, USA, 207–216. https://doi.org/10.1145/1978942.1978972

[30] Sylvain Malacria, Gilles Bailly, Joel Harrison, Andy Cockburn, and
Carl Gutwin. 2013. Promoting Hotkey Use Through Rehearsal with
ExposeHK. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’13). ACM, New York, NY, USA, 573–582.
https://doi.org/10.1145/2470654.2470735

[31] Anders Markussen, Mikkel Rønne Jakobsen, and Kasper Hornbæk.
2014. Vulture: A Mid-air Word-gesture Keyboard. In Proceedings of the
32Nd Annual ACM Conference on Human Factors in Computing Systems
(CHI ’14). ACM, New York, NY, USA, 1073–1082. https://doi.org/10.
1145/2556288.2556964

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 12

[32] Hugh Mcloone, Ken Hinckley, and Edward Cutrell. 2003. Bimanual
interaction on the Microsoft Office Keyboard. In In Proceedings of the
Conference on HumanComputer Interaction (INTERACT. 49–56.

[33] Douglas L Nelson, Valerie S Reed, and John R Walling. 1976. Pictorial
superiority effect. Journal of Experimental Psychology: Human Learning
and Memory 2, 5 (1976), 523.

[34] Jakob Nielsen. 1992. Finding Usability Problems Through Heuristic
Evaluation. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’92). ACM, New York, NY, USA, 373–380.
https://doi.org/10.1145/142750.142834

[35] Daniel L. Odell, Richard C. Davis, Andrew Smith, and Paul K. Wright.
2004. Toolglasses, MarkingMenus, and Hotkeys: A Comparison of One
and Two-handed Command Selection Techniques. In Proceedings of
Graphics Interface 2004 (GI ’04). Canadian Human-Computer Commu-
nications Society, School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, 17–24. http://dl.acm.org/citation.cfm?id=
1006058.1006061

[36] C. J. Van Rijsbergen. 1979. Information Retrieval (2nd ed.). Butterworth-
Heinemann, Newton, MA, USA.

[37] H. Sakoe and S. Chiba. 1978. Dynamic programming algorithm
optimization for spoken word recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing 26, 1 (February 1978), 43–49.
https://doi.org/10.1109/TASSP.1978.1163055

[38] Joey Scarr, Andy Cockburn, Carl Gutwin, and Philip Quinn. 2011. Dips
and Ceilings: Understanding and Supporting Transitions to Expertise
in User Interfaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11). ACM, New York, NY, USA,
2741–2750. https://doi.org/10.1145/1978942.1979348

[39] Susanne Tak, Piet Westendorp, and Iris van Rooij. 2013. Satisficing
and the Use of Keyboard Shortcuts: Being Good Enough Is Enough?
Interacting with Computers 25, 5 (2013), 404–416. https://doi.org/10.
1093/iwc/iwt016

[40] Hui-Shyong Yeo, Xiao-Shen Phang, Steven J. Castellucci, Per Ola
Kristensson, and Aaron Quigley. 2017. Investigating Tilt-based Ges-
ture Keyboard Entry for Single-Handed Text Entry on Large De-
vices. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems (CHI ’17). ACM, New York, NY, USA, 4194–4202.
https://doi.org/10.1145/3025453.3025520

[41] Chun Yu, Yizheng Gu, Zhican Yang, Xin Yi, Hengliang Luo, and
Yuanchun Shi. 2017. Tap, Dwell or Gesture?: Exploring Head-Based

Text Entry Techniques for HMDs. In Proceedings of the 2017 CHI Con-
ference on Human Factors in Computing Systems (CHI ’17). ACM, New
York, NY, USA, 4479–4488. https://doi.org/10.1145/3025453.3025964

[42] Shumin Zhai and Per-Ola Kristensson. 2003. Shorthand Writing on
Stylus Keyboard. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’03). ACM, New York, NY, USA,
97–104. https://doi.org/10.1145/642611.642630

[43] Shumin Zhai and Per Ola Kristensson. 2012. The Word-gesture Key-
board: Reimagining Keyboard Interaction. Commun. ACM 55, 9 (Sept.
2012), 91–101. https://doi.org/10.1145/2330667.2330689

[44] Shumin Zhai, Per Ola Kristensson, Caroline Appert, Tue Haste An-
dersen, and Xiang Cao. 2012. Foundational issues in touch-screen
stroke gesture design-an integrative review. Foundations and Trends
in Human-Computer Interaction 5, 2 (2012), 97–205. https://hal.inria.
fr/hal-00765046/

[45] Shumin Zhai, Per Ola Kristensson, Pengjun Gong, Michael Greiner,
Shilei Allen Peng, Liang Mico Liu, and Anthony Dunnigan. 2009.
Shapewriter on the Iphone: From the Laboratory to the Real World.
In CHI ’09 Extended Abstracts on Human Factors in Computing Sys-
tems (CHI EA ’09). ACM, New York, NY, USA, 2667–2670. https:
//doi.org/10.1145/1520340.1520380

[46] Shengdong Zhao and Ravin Balakrishnan. 2004. Simple vs. Compound
Mark Hierarchical Marking Menus. In Proceedings of the 17th Annual
ACM Symposium on User Interface Software and Technology (UIST ’04).
ACM, New York, NY, USA, 33–42. https://doi.org/10.1145/1029632.
1029639

[47] Jingjie Zheng, Xiaojun Bi, Kun Li, Yang Li, and Shumin Zhai. 2018. M3
Gesture Menu: Design and Experimental Analyses of Marking Menus
for Touchscreen Mobile Interaction. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI ’18). ACM,
New York, NY, USA, Article 249, 14 pages. https://doi.org/10.1145/
3173574.3173823

[48] Jingjie Zheng, Blaine Lewis, Jeff Avery, and Daniel Vogel. 2018. Finger-
Arc and FingerChord: Supporting Novice to Expert Transitions with
Guided Finger-Aware Shortcuts. In The 31st Annual ACM Symposium
on User Interface Software and Technology. New York, NY, 17p.

[49] Jingjie Zheng and Daniel Vogel. 2016. Finger-Aware Shortcuts. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA, 4274–4285. https://doi.
org/10.1145/2858036.2858355

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 165 Page 13

