Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

Insight from a Docker Container Introspection

Thomas Watts
Computer Science
School of Computing
University of South Alabama
thw1321@jagmail.southalabama.edu

William Bradley Glisson
Cyber Forensics Intelligence Center
Department of Computer Science
Sam Houston State University

glisson@shsu.edu

Abstract

Large-scale adoption of virtual containers has
stimulated concerns by practitioners and academics
about the viability of data acquisition and reliability
due to the decreasing window to gather relevant data
points. These concerns prompted the idea that
introspection tools, which are able to acquire data
from a system as it is running, can be utilized as both
an early warning system to protect that system and as
a data capture system that collects data that would be
valuable from a digital forensic perspective.

An exploratory case study was conducted utilizing
a Docker engine and Prometheus as the introspection
tool. The research contribution of this research is
two-fold. First, it provides empirical support for the
idea that introspection tools can be utilized to
ascertain differences between pristine and infected
containers. Second, it provides the ground work for
future research conducting an analysis of large-scale
containerized applications in a virtual cloud.

1. Introduction

The proliferation of cloud computing is rapidly
expanding into all aspects of society. Investment in
the public cloud space has gone from 58.6 billion
dollars in 2009 to 219.6 billion in 2016 according to
Statista [1]. Gartner’s projections as of October 2017
have growth set to exceed 411 billion dollars by 2020
[2]. In 2017, SAP CEO Bill McDermott stated that
“cloud revenue is expected to overtake license
revenue for the first time” and that cloud revenue
would more than double by 2020 to roughly 10
billion dollars [3]. In support of this prediction,

URL: https://hdl.handle.net/10125/60156
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

HYCSS

Ryan G. Benton
Computer Science
School of Computing
University of South Alabama
rbenton@southalabama.edu

Jordan Shropshire
Information Systems and Technology
School of Computing
University of South Alabama
jshropshire@southalabama.edu

Amazon Web Services [4] experienced a 43 percent
jump in sales from 12 billion dollars in 2016 to
slightly under 17.5 billion dollars in 2017 [5].
Additionally, Rightscale’s 2018 State of the Cloud
survey reported that the adoption of a public cloud
rose 3 percent to 92 percent [6].

As investments expand and cloud services are
integrated into all aspects of life, concerns
surrounding the detection of security problems arise
from both practitioners and academicians [7-11].
Emphasizing these concerns, Alert Logic, a big data
security-as-a-service company, published a 2015
report that stated “businesses using cloud
environments are largely considered a ‘fruit-bearing
jackpot’ for hackers” [12]. Recent cases surrounding
breaches Tesla [13] and FedEx [14] have underscored
Alert Logic’s stance. There was also a container
specific problem reported by Ars Technica wherein a
corrupted container was introduced that mined
cryptocurrency. The malicious container was brought
to light by a user on the popular programming code
sharing website GitHub in August 2017 [15].

Even in light of recent security events, the use of
containers is expanding. Containers share smaller
operating system kernels, allowing faster and more
efficient use of the hardware than hypervisors, which
virtualize an entire machine [16]. RightScale
indicated Docker [17] usage expanded from 35 to 49
percent [6]. Hortonworks, which publishes its
Hortonworks Data Platform based on a distribution of
Apache Hadoop [18, 19], has adopted Docker
containers as part of Apache Hadoop YARN 3.1 in
order to “enable new use cases and improve existing
capabilities” within their platform [20]. The
efficiency of a container comes at a cost, which can
primarily be seen in terms of accessibility. Much like
virtual machines, when containers are destroyed,

Page 7194

mailto:thw1321@jagmail.southalabama.edu
mailto:glisson@shsu.edu
mailto:rbenton@southalabama.edu
mailto:jshropshire@southalabama.edu

those system resources are put back into a resource
pool. Worse, from a data collection point of view, a
container’s lifetime, from creation and destruction,
can be a matter of seconds; this duration is sufficient
for many to perform their function [21]. Hence, the
data about containers must be accessed/collected
while they are executing. In order to access this data,
application programming interfaces (APIs) have been
created and leveraged to create introspection tools
[22, 23]. These introspection tools have the ability to
obtain data from a running container environment
regardless of running time.

The evolving atmosphere in cloud computing
encourages organizations to consider cloud
environments from a security perspective along with
ways to improve incident response situations [24-27].
Trends in adoption of containers and increasing
security prompts the hypothesis that introspection
tools can be used as a data collection tool for an early
warning system, as well as a forensic analysis tool,
within a containerized system. Subsidiary questions
identified as part of this research are as follows:

1. What data does an introspection tool have

access to in a containerized environment?

2. How does it and how often does it log

information?

3. How persistent is the log information?

The research contribution of this paper is an
initial analysis of the viability of introspection tools
for performing a security analysis of containerized
software. The paper is structured as follows: Section
2 discusses the research surrounding cloud
computing and the challenges presented by the cloud
for detecting security problems. Section 3 presents
the experimental methodology and design. Section 4
examines the results of a series of experiments
designed to determine if an introspection tool can
capture data for forensics analysis and early warning
from a running containerized system. Section 5 draws
conclusions and presents future work.

2. Related work

The structure of a cloud presents unique
challenges to practitioners. While primarily focused
on forensics in a cloud, O’Shaughnessy and Keane
[28] expanded on several concepts that underpin
problems in collecting data within a cloud
environment, particularly with regard to what data is
accessible to the parties operating a cloud. Two
highlights of this point are chain of custody and
multi-jurisdictional-legislation. Chain of custody is
key in legal proceedings because it proves what
parties had access to data that will be used as

evidence in that proceeding [28]. A cloud system
complicates a chain of custody since evidentiary data
can be located in a different geographical locations
and be collocated with other client data on a rack of
servers. Chain of custody becomes even more
complicated if the geographical location crosses
jurisdictions, such as national borders. Depending on
the jurisdictional change, it could be very difficult to
even gather data for detecting anomalies either in a
streaming environment, which is needed for early
warning systems, or for post hoc analysis of a
compromised system, which is needed for forensics.
In response to these realities, recent research focuses
on (a) building toolkits to circumvent some of the
issues presented by O’Shaughnessy and Keane or (b)
analyzing a cloud from the underlying hardware side.

Dykstra and Sherman [29] built a series of
analysis tools for OpenStack, a cloud operating
system [30] that accounts for 24% of private cloud
adoption in 2017 [6]. Their tools, FROST, allow for a
user to retrieve an image of virtual disks associated
with that user’s virtual machines and check both API
requests and OpenStack firewall logs. These tools
were built on-top of OpenStack and integrated into
the Horizon dashboard which serves as the web-
based user interface for OpenStack. The authors ran a
pair of evaluations on FROST. The first evaluation
involved 100 fictitious users with five virtual
machines each; FROST utilized requested logs from
a subset of those users. The second evaluation was
based on a twelve-user test with a large private
government cloud. The second evaluation was
successful enough that the organization wanted to
deploy FROST upon this cloud in mid-2013.

Saibharah and Greethaukumari [31] also used
OpenStack but eschewed the idea of building tools
directly into cloud platform; rather, they sought to
use existing tools built into the platform. They built a
framework based off of snapshots of both random-
access memory and disk images, as well as working
through logging systems native to OpenStack.
Finally, the researchers extended their framework to
incorporate network forensics. The authors tested this
framework utilizing Wireshark [32] to gather
network data and a purpose-built cloud process for
the framework simulation. The evaluations showed
that evidence could be obtained for several different
types of attacks on a cloud environment.

In contrast to building toolkits, Graziano et al.
[33] used a physical memory dump of a given system
to identify if a hypervisor is present as well as
identifying the type of hypervisor. Hypervisors
virtualizing memory changes how that memory is
allocated and accessed by the virtual machines that
the hypervisor serves. The authors assert the only

Page 7195

way to gain access to that virtual memory is through
analyzing the specific hypervisor, and then
translating the rest of the memory over based on how
that hypervisor handles the virtualization. The team
developed a tool called Actaecon that extended the
open source memory forensics framework Volatility
[34]. The authors tested their plugin on a variety of
hypervisors including Xen [35], KVM [36] and
VMWare [37] and correctly identify all of the
hypervisors in under a minute.

Whereas previous approaches dealt with
hypervisors and/or underlying systems in cloud
infrastructure, Casalicchio and Percibali [38] focused
specifically on containers. In particular, they sought
to determine if tools collected the same information.
The researchers tested a battery of traditional Linux
metrics including iostat and mpstat as well as
utilizing the container specific cAdvisor [39] and the
platform specific docker stats command to pipe
metrics into both Prometheus [22] and Grafana [40]
for collection. Tests centered upon CPU and Disk I/O
intensive workloads. They determined different tools
present similar but not completely equal results.

Previous approaches assumed there was no
deliberate tampering, internal contradictions or
inconsistent entries in their work; however, Thrope et
al. [41] chose to focus their efforts on these areas. In
order to test these issues, the group built a virtual
machine profiler model and a log auditor to fill in
potential gaps within the logs themselves. The
authors tested their model and audit software with a
series of four experiments that focused on execution
timelines by a virtual machine on the hypervisor.
Each timeline was subtly different in order to test
system times as well as log manipulation. In one
timeline, a Microsoft Word document’s author was
misattributed. The variance between execution
timelines showed that temporal inconsistencies
within a system, brought on issues such as differing
system times, as well as log deletions, which could be
detected by the forensic platform.

Shropshire [42] approached the problem of
detecting anomalous behavior within a compromised
cloud system from a hardware prospective. He
developed PowerCheck, an application that identifies
discrepancies by comparing the system state
parameters reported by software running on a system
with those parameters which application estimates
based upon server energy consumption. The
application predicted results of energy consumption
on CPU load, memory consumed, and disk
reads/writes among others. Once those predictions
were made, PowerCheck analyzes data from a
running system and does a comparison to determine
if a cloud system has been compromised. The

application was tested on VMWare ESXi [37] with
power measurements made by a Watt’s Up Pro
Power meter, and performance reports provided to
vSphere Client. The tests demonstrated the efficacy
of PowerCheck and validated the idea of secondary
system measures as legitimate integrity monitors.

One drawback with the pervious approaches
seeking evidence of compromise is they assumed the
operating system was not compromised. This was the
motivation behind the next study. Zhang et al. [43]
utilized BIOS level analysis to gain access to, and
export out through a PCI card, memory contents and
CPU registers that underpin a Xen hypervisor. Their
application, HyperCheck, was different in that it does
not rely on any software running on the target
machine beyond a trusted BIOS. HyperCheck was
tested against Xen through four attacks: modifying
the interrupt descriptor table, the hypercall table, the
exception table, and the Xen code itself. It was able
to identify all of those modifications.

The previous studies concentrated on gathering
behavior and performance evidence of various types;
however, the scalability of the approaches was not
directly assessed. Stelly et al. [44] dealt with this
issue via the containerization of the digital forensics
process with their SCARF toolkit. They focused on
scalability across large platforms using Docker
Swarm, and attempted to prove that while the data
needed for forensic analysis continue to expand as
cloud adoption increased, their platform could extend
just as easily by showing high throughput. The group
ran tests on both a legacy cluster, and a cluster with
cutting edge hardware and found that several of the
components of the SCARF system, such as Yahoo’s
OpenNSFW network [45], had large throughput gains
comparing the two systems.

Cloud computing research on early warning
systems and forensic data gathering tools currently
focuses on designing tools that either extend the
capabilities of the cloud control software such as
FROST or taking advantage of certain virtualization
properties to analyze specific virtual components.
These systems struggle with containerized systems
since many were focused on hypervisors which
virtualize at a different level of the cloud, or heavily
modify an underlying system. There has been
minimal investigative research into how container
introspection tools, whose systems only require an
open port to function, can contribute to both early
warning systems and forensic data investigation by
polling and storing data

Page 7196

3. Methodology

This research investigates the viability of
gathering behavioral (performance) data from
containers using an introspection tool to detect
problems within the system. This data can be used to
set up an early warning system or store potential
forensic evidence depending on the needs of an end
user. The research according to Oates is classified as
an exploratory study due to its attempt to understand
the overall research problem [46].

3.1 Experimental testing environment

The experiment is conducted using Ubuntu 16.04
[47], Docker [17], and Prometheus [22]. The system
utilizes an Intel Xeon E5 CPU with 16 gigabytes of
RAM. Docker is open source software that runs on
top of a host operating system, and as such, has an
engine associated with it. The engine handles
communication with repositories to pull container
images, as well as provides administrative oversight
to the containers under its control. Figure 1 illustrates
where Docker, the container engine, is in a virtual
environment.

bins/libs bins/libs bins/libs

Container Engine

Operating System

Infrastructure

Figure 1. Docker location [48]

Prometheus is an open source introspection tool
that provides the ability to check multiple nodes in a
containerized architecture through console readouts
or graphs from several hundred metrics on both the
Prometheus server, as well as targets that are
connected to that server. Prometheus utilizes the
Docker API, which allows Prometheus to access data
via a well-defined data pipe; this also mitigates the
amount of stress on the system. In order to use the
service, ports have to be opened within the Docker
environment, as well as configured within
Prometheus to listen and scrape information from the
Docker environment. The default time between

information scrapes by Prometheus is fifteen seconds,
but that can be customized via the modification of
Prometheus configuration files. Prometheus provides
a query language to create specific metrics about the
Docker environment, which can be manually
reviewed; the same metrics can also be presented via
a series of graphic functionalities for easier
infrastructure visualization. Figure 2 shows a list of
http request metrics that Prometheus gathers when
running the default configuration; the system will, in
addition to metrics, print some guiding comments as
seen in the first two lines of Figure 2. By default,
Prometheus saves these metrics every two hours in
data chunks. The data chunks can be stored in a local
file or into a database server, which can be on another
server; these options can be configured. Hence, in
case of an unexpected shutdown, the data that would
be lost, at most, is the current set of data in memory.
One final advantage Prometheus has is that it can
execute on a server other than Docker.

HELP http_request_size_bytes The HTTP request sizes in bytes.

TYPE http_request size bytes summary

http_request size bytes{handler="alertmanagers”,quantile="0.5"} NaN
http _request size bytes{handler="alertmanagers",quantile="0.9"} NaN
http request size bytes{handler="alertmanagers",quantile="0.99"} NaN
http_request_size bytes sum{handler="alertmanagers"} ©
http_request_size bytes count{handler="alertmanagers"} @
http_request_size bytes{handler="alerts",quantile="0.5"} NaN
http request size bytes{handler="alerts",quantile="0.9"} NaN
http_request_size bytes{handler="alerts"”,quantile="0.99"} NaN
http request size bytes sum{handler="alerts"} 0
http_request_size_bytes_count{handler="alerts"} 0
http_request_size bytes{handler="clean_tombstones", quantile="0.5"
http_request size bytes{handler="clean_tombstones”,quantile="0.9"
http request size bytes{handler="clean tombstones", quantile="0.9
http request size bytes sum{handler="clean tombstones"} @

http request size bytes count{handler="clean tombstones"} 6
http_request size bytes{handler="config",quantile="0.5"} NaN
http_request_size bytes{handler="config",quantile="0.9"} NaN
http request size bytes{handler="config",quantile="0.99"} NaN

Figure 2. Example prometheus metrics

3.2 Experimental methodology

The experiment has three phases: (a) the initial
setup required to run Prometheus and Docker, (b)
acquiring data for the baseline, and (c) executing and
acquiring data when the system is in an infected state.
A fourth phase is also presented, which describes
what data will be analyzed.

3.2.1 Initial Setup. To create the data collection
environment, Ubuntu, Prometheus and Docker have
to be installed on a machine. The steps for the initial
setup are as follows. Download the latest Ubuntu
image from Canonical’s website [47]. This
experiment utilized Ubuntu image version 16.04.3.
Load the downloaded image onto a USB Flash drive
and leave the USB drive plugged into the PC.

Restart the machine, and, at the BIOS screen,
press the necessary key to enter the BIOS settings.
Navigate through BIOS to the boot order screen, and
make sure that USB drives are checked in the boot
order ahead of the primary hard drive of the

Page 7197

experimental platform. Exit BIOS which will restart
the machine, and boot into the Ubuntu installation
suite. At the first screen of the installation process,
select “Install Ubuntu”. Allow Ubuntu to download
updates while installing on the next screen.

The following screen sets installation type, and it
is at this point where the disk will be formatted.
Select “Erase disk and install Ubuntu” and then click
continue in the pop-up window. At this point, the
installation will shift to configuration details, such as
time zone, on the next screen. The experiment was
built in Mobile, Alabama at the University of South
Alabama, which is in the Central time zone, so
Chicago is appropriate. Select language and keyboard
type on the following screen. The platform used
English (US) as the language, and QWERTY as its
keyboard.

Next, set a default username and password that
will automatically have administrator privileges, and
Ubuntu will install over the course of several
minutes, and then restart itself to complete the
installation. Once Ubuntu has restarted, the first step
to install Docker from a repository [17] is to update
apt package index. Enter the command “sudo apt
update”. Once apt is updated, configure it to be used
over HTTPS using “sudo apt install apt-transport-
https ca-certificates curl software-properties-
common”. Add Docker’s Gnu Privacy Guard (GPG)
key using: “curl —fSSL https://download.docker.com
Ainux/ubuntu/gpg | sudo apt-key add-" Build the
repository for Docker by inputting: “sudo add-apt-
repository” deb [arch= amd64] https://download.
docker.com/linux/ubuntu $(Is b_release -cs) stable”.
Given these new packages, update apt again using
“sudo apt update” and then install Docker with “sudo
apt install docker-ce”. This will complete the Docker
installation.

In order to allow Prometheus to connect to
Docker, a JSON file has to be added in the
/etc/docker/ file. Since this is a new installation of
Docker, this has to be created through a text editor
such as nano. Open nano using “nano daemon.json”
and then add “{“metrics-addr” : “127.0.0.1:9323”,
“experimental” : true }” to this new file. Save this file
in the /etc/docker/ directory.

Prometheus provides precompiled binaries on
their website [22]. These binaries are tarballs, so
extract it using “tar xvfz prometheus-*.tar.gz” and
then change into the newly extracted files with “cd
prometheus-*”. Modify the prometheus.yml to scrape
Docker by adding “job name: ‘docker’ and
static_configs: -targets: [‘localhost:9323] in the
appropriate sections of the yml file. Alternatively,
Docker provides an updated yml file within their
Prometheus documentation [17].

Next a containerized Apache2 server is obtained
and deployed on the experimental platform. Apache2
is obtained from the Docker Hub [45]. The command
to start Redis is “docker run —dit -—name
apache2testbed —p 8080:80 —v “$PWD”:/usr/
loca/apache2/htdocs/ httpd:2.4.”

Once Apache?2 has been installed through Docker,
navigate a browser to localhost:9323/metrics to get to
the Prometheus dashboard. Prometheus provides two
hundred thirty metrics from installation and can be
configured with additional rules by a user. This
methodology focused on metrics found at installation.
In order to simulate traffic on a web server,
ApacheBench [49], a stress test tool, was used to
simulate hits on the server. ApacheBench is part of
the apache2-utils package and is installed with the
“sudo apt install apache2-utils” command.

3.2.2 Gathering data for the benign scenario. Now
that Apache2 web server has been installed,
Prometheus can gather metrics based on user defined
scrape times. The collected data is kept in memory
until written to file every two hours. In order to avoid
any potential issues, a pristine Apache2 web server
was run for two hours, and ApacheBench is used to
push one hundred thousand hits on the server every
twenty minutes to provide traffic. The ab command is
“ab —k —c 100 —n 100000 <web server IP>.” The web
server IP can be found through ifconfig. After two
hours of collecting metrics, the data is saved for
comparison against the malware infected web server.

3.2.3 Gathering data for the infected scenario.
This scenario is similar to the benign scenario with
the exception that the Apache2 web server is infected
with malware. The steps in subsection 3.2.1 are
repeated to reset the testbed, and a Chapro binary, a
malicious Apache webserver module, is downloaded
from a malware repository and run on the system.
The two-hour test is repeated with attendant
ApacheBench hits every twenty minutes. Metrics are
pulled to provide comparison between the two
platforms. This ends the gathering of the data.

3.2.4 Data analysis from the two scenarios. Once
the three phases are done, an analysis of the two data
sets using the metrics provided by Prometheus needs
to be conducted. As previously stated, Prometheus
provides two hundred and thirty metrics in its initial
configuration. The analysis of these metrics is a
simple comparison between the values given by the
two testbeds, which is presented in the next section.

Page 7198

4. Results and discussion

The results presented below are from multiple
runs; there is a total of twenty hours of data. The
tables within this section capture the results of each
run and the averages of the five separate runs, as well
as the percentage differences between the clean and
contaminated versions of the Apache2 web server.

After an initial examination, nine metrics were
identified that have utility in detecting the presence
of malware. These nine metrics are grouped into
three categories. The first provides information about
the wunderlying engine, the second provides
information about the memory usage, and the third
provides information about the process and HTTP
requests.

4.1. Daemon engine

Prometheus is able to gather data about the
underlying Docker engine. The first metric that has
been identified, engine_daemon_engine info,
provides specific information on Docker itself and
demonstrates that the two experiments are performed
on the same Docker engine. This would be useful for
a forensic investigation because it would document
the Docker system information and also aid in
ensuring any simulations would be performed on the
correct Docker container engine.

The other two metrics focused on providing
information about the Docker engine were identified
as potentially being useful. Shown in Table 1 is
engine_daemon_engine memory_bytes; this metric
captures how much memory the Docker container has
allocated from the host upon which the Docker
engine sits. As can be seen, the metric indicates that
the infected containers have been assigned more
resources from the resource pool. This makes sense,

there is a stark difference between the two testbeds
since it specifically references the number of events
that are logged by the Docker engine. The extra
program running within the Apache2 web server on
the infected container that was deployed had several
more interactions with the Docker Engine throughout
the battery of tests.

Table 2. Engine_daemon_events_total

Experiment | Clean Infected %
Difference

1 32 39 21%

2 33 39 18%

3 37 45 21%

4 35 37 5%

5 33 40 21%
Average 34 40 17%

4.2. Go memory statistics

Prometheus is written in Go [50] , an open source
programming language, and one of the modules that
the Prometheus provides focuses on memory
allocation. Where the Docker engine metrics shown
in section 4.1 focus on the engine and how it handles
events, the three Go metrics focus on how memory is
allocated within the environment. The first memory
metric is go_memstats_alloc_bytes total, which is
the total count of bytes allocated to a server. As in
Table 3, the infected containers use more memory
than the clean. This is not surprising as the malware
is conducting additional work, requiring more
memory. The total difference varies between
experiments; with experiment 5 having the lowest.
The average difference overall is fairly high;
however, the metric may not be sufficient by itself.

Table 3. Go_memstats alloc_bytes total

as malware would take additional memory above and Experiment | Clean Infected %
beyond that needed by the base service. Difference
1 1314183517 | 1432935864 | 9%
Table 1. Engine_daemon_engine_memory_bytes 2 1714271435 | 1944971723 | 13%
Experiment Clean Infected % 3 1809472402 | 2053409271 13%
Difference 4 1455934827 | 1699468245 | 16%
1 2985674229 | 3239857152 | 9% 5 1593068259 | 1633482952 | 2%
2 3200538134 | 3511309584 | 10% Average 1577586088 | 1752873431 | 11%
3 3405294587 | 3549809237 | 4%
4 3009478856 | 3353498206 | 11% The second metric is go memstats frees_total,
5 3159152434 | 3419008911 | 8% which shows the amount of free requests that are
Average 3152027648 | 3414696618 | 8% performed. As seen in Table 4, the memory freed is

The last metric, Engine daemon events total,
shown in Table 2, describes the number of events that
the engine handled throughout a test. As can be seen,

generally greater for the infected container; however,
similar to the previous metric, the differences vary
greatly between experiments. It is noteworthy that the
difference observed are lower than that found in the

Page 7199

previous memory metric, go memstats alloc
bytes total. Hence, this metric is unlikely to be
sufficient by itself to create early warnings. It would
be a good indicator in a post forensic analysis for
detecting when infections began changing the system.

Table 4. Go_memstats_frees total

The second metric, process virtual memory
bytes, refers to how much virtual memory is used by
the overall Docker containers. As seen in Table 7, the
underlying system must allocate more memory when
infected containers are executed. This indicates that
the malware is requiring a fair amount of memory to
be available for use. What is interesting is that
experiment 5 shows a high virtual memory usage,
even when some of the more individual memory
usage in the Docker containers were lower.

Table 6. Process max fds

Experiment | Clean Infected %
Difference
1 163795705 | 189523901 | 15%
2 206526775 | 215692761 | 4%
3 214580257 | 224596002 | 4%
4 169934501 | 192180500 | 13%
5 164373404 | 167924960 | 2%
Average 183842128 | 197983614 | 8%
Table 5 shows the third metric,

go_memstats_heap_released, which shows how much
memory is released to the host operating system by
the Docker processes. Of the three, this shows a clear
performance difference, with the lowest difference
being 12%. A simple threshold, assuming a good
baseline exists, would be sufficient to trigger an
alarm. However, this assumes no major variations are
expected; otherwise, this and the other two memory
statistics would be inputs into a more sophisticated
analysis system.

Table 5. Go_memstats _released bytes total

Experiment | Clean Infected | %
Difference

1 1091797 1105923 | 1%
2 972579 1117239 | 14%
3 1095761 1192469 | 8%
4 1089851 1180307 | 8%
5 992892 1152971 | 16%
Average 1048576 1149782 | 9%

Table 7. Process_virtual memory bytes
Experiment | Clean Infected %

Difference

1 560294865 | 623246092 | 11%
2 593261704 | 683256017 | 15%
3 642359760 | 691269132 | 7%
4 602874102 | 671296123 | 11%
5 531242209 | 616019356 | 15%
Average 586006528 | 657017344 | 12%

Experiment | Clean Infected %
Difference

1 3706530 4199240 13%
2 3852390 4723000 22%
3 4059500 4855900 19%
4 3523560 4024010 14%
5 3290020 3701850 12%
Average 3686400 4300800 16%

4.3. Process & http requests

The last set of metrics gather data about the
system running underneath Docker. The first metric,
process_max_fds, captures the maximum number of
open file descriptors. As seen in Table 6, there is a
general trend that the infected system has more files
open; however, this can vary greatly, and, in some
experiments, the difference is negligible. It is unclear,
at this time, why there is a wide range of differences.
Given the difference, this cannot be used by itself as
an early warning system; however, it could be useful
when combined with other metrics. A forensics
analyst could use it as an indicator to detect when
changes occurred assuming a normal baseline exists.

The last metric is the number of HTTP requests
handled by the system, which is represented by
http_requests_total. As seen in Table 8, the number
of HTTP requests are greater for the infected
containers. This is expected as the malware injects an
iframe into the content provided by Apache2. Given
the general consistency in the numbers, this could be
a good indicator for an early warning system and
would be telling for a forensic investigation.

Table 8. Http requests total

Experiment | Clean Infected %
Difference

1 731039 799125 9%

2 779683 852301 9%

3 802359 882559 10%

4 650048 772471 18%

5 752941 827619 9%
Average 743214 826815 8%

Page 7200

4.4. Other Prometheus metrics

The nine metrics in this study looked primarily at
memory and communication between multiple planes
of a virtual system. However, Prometheus gathers
other metrics by default that describe CPU activity,
IO activity and operating events. Additionally,
Prometheus is able to obtain metrics from other APIs
besides those provided by Docker. It can poll metrics
from entire cloud systems such as Amazon’s Amazon
Web Services [4] or Microsoft’s Azure [51].
Furthermore, system administrators can build custom
rules for their individual systems. This allows tools
such as Prometheus to be used to detect multiple
types of problems in a many various environments.
Hence, more elaborate data gathering could be
conducted, as well as the capturing of data relevant
for detection of other problems and situations.

5. Conclusions and future work

This research proposed three subsidiary questions
to determine if an introspection tool could serve as an
early warning system and forensics tool in a virtual
environment. The first investigates what data an
introspection tool can access. Prometheus, the chosen
introspection tool for this study, can capture
performance information about the containers, the
Docker Engine, and the host OS. This includes 1/O,
memory statistics, and operating events. The
Prometheus documentation indicates that histogram
information can be generated instead of single
counters and/or measurements. This information is
useful for monitoring and early warning systems. For
forensic investigations, it can confirm when malware
was running, and when it began; this, would aid in
determining when the malware was installed.

The second subsidiary question is how often is the
data collected? In Prometheus, collecting data is a
configurable option. By default, it is 15 seconds; this
can be tuned to ensure that the collection is not
burdensome upon the system. It collects the data by
pulling information from the Docker Engine through
its API, which requires a port for pulling to be
opened for communication. While opening ports does
lead to potential risks, this can be mitigated by
controlling what servers are allowed to access the
Docker Engine via the known port.

The final subsidiary question dealt with the
persistence of the log information. As discussed in
the methodology, Prometheus can store data as local
files or in a database, either of which can be on a
separate server. This does come with a caveat;
Prometheus does allow for the user to specify how

long it should run before writing the data to file or to
a database. Data held solely in memory is subject to
being lost, if Prometheus is shut down prematurely.

The answers to the subsidiary questions provide
support for the hypothesis that introspection tools can
be used as a data collection tool for an early warning
system, as well as a forensic analysis tool, within a
containerized system. Of the default metrics, nine
metrics were identified as being immediately useful,
as they provided either human distinguishable
differences or they provided wuseful forensics
information. engine _daemon_engine info is a metric
that would be of interest to forensics investigators as
it would help confirm the exact version of Docker
engine being executed. The other eight metrics
permitted the operator to determine if Apache2 was
corrupted via simple percentage differences. While
individual metrics may not be sufficient for an early
alert system, in combination, they tend to compensate
for when other measures are weak.

More interesting, the nine metrics captured
different types of performance: the engine itself, the
memory usage of the containers, and information of
the underlying host. Thus, any malware seeking to
corrupt the Docker Engine to hide its existence would
need to determine the typical usage patterns; this, in
turn, leads to other opportunities for the monitoring
system to detect the malware presence.

Future work can be split into three major efforts.
The first effort would be conducting more complex
studies using Prometheus to detect different types of
malware and/or system compromises. It is unlikely
all malware and compromises will be detectable with
the same nine metrics. Thus, future work will require
determining what metrics are useful for detecting
different types of attacks. It will also expand the
underlying test bed system to utilize larger numbers
of containers and interactions between containers,
such as how Apache Hadoop YARN [20] has done to
streamline some data processing. Determining what
time intervals would be best for Prometheus to
collect information would be part of this work.

The second effort focuses on taking the data from
Prometheus and creating an alerting system. At
present, Prometheus can create simple alerting rules,
which activate when certain thresholds are violated.
This is often insufficient when determining if a
system has been compromised. Hence, the data
would need to be feed into online systems [52],
where anomaly detection methods could be used to
detected unexpected behavior. This can be done with
using methods such as simple learning systems, such
as the Hierarchical Temporal Memory method [53],
DBScan [54], or generalized linear models [55].

Page 7201

The third effort will develop forensic tools to find
suspicious behavior within the introspection logs and
correlate them with other factors. For instance,
Rightscale’s yearly State of the Cloud surveys [6]
underscore how necessary it is to provide different
analytical mechanisms.

6. Acknowledgements

This material is based upon work supported by
the National Science Foundation under Grant No.
CNS-1726069.

7. References

[1] Statista. Public cloud services: market size 2009-2020 |
Statistic. 2018,;
https://www.statista.com/statistics/273818/global-revenue-
generated-with-cloud-computing-since-2009/.

[2] van der Meulen, R. and C. Pettey, Gartner Forecasts
Worldwide Public Cloud Services Revenue to Reach $260
Billion in 2017. 2018.

[3] Evans, B. Inside SAP: As Cloud Surpasses License
Revenue In 2018, 10 Strategic Insights. 2018.

[4] Amazon Web Services (AWS) - Cloud Computing
Services. 2018; https://aws.amazon.com/.

[5] Peterson, B. Amazon Web Services is now a $17.5
billion business. 2018.

[6] Weins, K., Cloud Computing Trends: 2018 State of the
Cloud Survey. 2018.

[7] Ab Rahman, N.H. and K.-K.R. Choo, 4 survey of
information security incident handling in the cloud.
Computers & Security, 2015. 49: p. 45-69.

[8] Agrawal, B., T. Wiktorski, and C. Rong, Adaptive
real-time anomaly detection in cloud infrastructures.
Concurrency and Computation: Practice and Experience,
2017.29(24).

[9] Osanaiye, O., K.-K.R. Choo, and M. Dlodlo,
Distributed denial of service (DDoS) resilience in cloud:
review and conceptual cloud DDoS mitigation framework.
Journal of Network and Computer Applications, 2016. 67:
p. 147-165.

[10] Cahyani, N.D.W., N.H.A. Rahman, W.B. Glisson, and
K.-K.R. Choo, The Role of Mobile Forensics in Terrorism
Investigations Involving the Use of Cloud Storage Service
and Communication Apps. Mobile Networks and
Applications, 2017. 22(2): p. 240-254.

[11] Grispos, G., W.B. Glisson, and T. Storer, Chapter 16 -
Recovering residual forensic data from smartphone

interactions with cloud storage providers, in The Cloud
Security Ecosystem, R.K.-K.R. Choo, Editor. 2015,
Syngress: Boston. p. 347-382.

[12] Palmer, D. Hackers see cloud as 'a fruit-bearing
Jjackpot' for cyber attacks | Computing. 2015.

[13] Team, R.C.S.1., Lessons from the Cryptojacking Attack
at Tesla. 2018, @Redlockio.

[14] Diachenko, B. FedEx Customer Records Exposed.
2018.

[15] Goodin, D. Backdoored images downloaded 5 million
times finally removed from Docker Hub. 2018;
https://arstechnica.com/information-
technology/2018/06/backdoored-images-downloaded-5-

million-times-finally-removed-from-docker-hub/.

[16] Chae, M., H. Lee, and K. Lee, A4 performance
comparison of linux containers and virtual machines using
Docker and KVM. Cluster Computing, 2017: p. 1-11.

[17] Docker. 2018.

[18] Backaitis, V., Big Data Crushers Have Peaked For
Now, Regardless Of Hortonworks' Upcoming Earnings.
2018.

[19] Welcome to Apache Hadoop! 2018;
http://hadoop.apache.org/.

[20] Shane Kumpf, V.K.V., Saumitra Buragohain, Trying
out Containerized Applications on Apache Hadoop YARN
3.1 - Hortonworks. 2018.

[21] Vaughan-Nichols, S.J. What is Docker and why is it so
darn popular? 2018; https://www.zdnet.com/article/what-
is-docker-and-why-is-it-so-darn-popular/.

[22] Prometheus - Monitoring system & time series
database. 2018.

[23] Datadog, Infrastructure & Application Monitoring as
a Service | Datadog. 2015.

[24] Grispos, G., W.B. Glisson, and T. Storer, Cloud
security challenges: Investigating policies, standards, and
guidelines in a fortune 500 organization. arXiv preprint
arXiv:1306.2477, 2013.

[25] Grispos, G., W.B. Glisson, and T. Storer, Security
incident response criteria: A practitioner's perspective.
arXiv preprint arXiv:1508.02526, 2015.

[26] Grispos, G., W.B. Glisson, and T. Storer, Enhancing
security incident response follow-up efforts with
lightweight agile retrospectives. Digital Investigation,
2017.22: p. 62-73.

Page 7202

https://www.statista.com/statistics/273818/global-revenue-generated-with-cloud-computing-since-2009/
https://www.statista.com/statistics/273818/global-revenue-generated-with-cloud-computing-since-2009/
https://aws.amazon.com/
https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/
https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/
https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/
http://hadoop.apache.org/
https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/

[27] Grispos, G., T. Storer, and W.B. Glisson, Calm before
the storm: the challenges of cloud. Emerging digital
forensics applications for crime detection, prevention, and
security, 2013. 4(1): p. 28-48.

[28] O’shaughnessy, S. and A. Keane. Impact of cloud
computing on digital forensic investigations. in IFIP
International Conference on Digital Forensics. 2013.
Springer.

[29] Dykstra, J. and A.T. Sherman, Design and
implementation of FROST: Digital forensic tools for the

OpenStack cloud computing platform. Digital Investigation,
2013. 10: p. S87-S95.

[30] What is OpenStack? 2018;
https:/www.openstack.org/software/.

[31] Saibharath, S. and G. Geethakumari. Design and
Implementation of a forensic framework for Cloud in
OpenStack cloud platform. in Advances in Computing,
Communications and Informatics (ICACCI, 2014
International Conference on. 2014. IEEE.

[32] Live View. 2018; http://liveview.sourceforge.net/.

[33] Graziano, M., A. Lanzi, and D. Balzarotti. Hypervisor
memory forensics. in International Workshop on Recent
Advances in Intrusion Detection. 2013. Springer.

[34] The Volatility Foundation - Open Source Memory
Forensics. 2018; http://www.volatilityfoundation.org.

[35] VS16: Video Spotlight with Xen Project's Lars Kurth.
2018; https://www.xenproject.org/.

[36] KVM. 2018;
kvm.org/page/Main_Page.

https:/www.linux-

[37] VMware - Official Site. 2018;
https:/www.vmware.com.

[38] Casalicchio, E. and V. Perciballi. Measuring docker
performance: What a mess!!! in Proceedings of the Sth
ACM/SPEC on International Conference on Performance
Engineering Companion. 2017. ACM.

[39] google/cadvisor - Docker Hub. 2018;
https://hub.docker.com/r/google/cadvisor/.

[40] Grafana - The open platform for analytics and
monitoring. 2018; https://grafana.com/.

[41] Thorpe, S., I. Ray, T. Grandison, A. Barbir, and R.
France. Hypervisor event logs as a source of consistent
virtual machine evidence for forensic cloud investigations.
in IFIP Annual Conference on Data and Applications
Security and Privacy. 2013. Springer.

[42] Shropshire, J. Securing cloud infrastructure:
unobtrusive techniques for detecting hypervisor
compromise. in ICCSM2015-3rd International Conference

on Cloud Security and Management: ICCSM2015. 2015.
Academic Conferences and publishing limited.

[43] Zhang, F., J. Wang, K. Sun, and A. Stavrou,
Hypercheck: A hardware-assistedintegrity monitor. 1EEE
Transactions on Dependable and Secure Computing, 2014.
11(4): p. 332-344.

[44] Stelly, C. and V. Roussev, SCARF: A container-based
approach to cloud-scale digital forensic processing. Digital
Investigation, 2017. 22: p. S39-S47.

[45] Docker. Explore - Docker Hub. 2018;
https://hub.docker.com/explore/.

[46] Oates, B.J., Researching information systems and
computing. 2005: Sage.
[47] Ubuntu 16.04.3 LTS. 2018.

[48] Labs, R., Playing Catch-up with Docker and
Containers. 2017, @Rancher Labs.

[49] ab - Apache HTTP server benchmarking tool - Apache
HTTP Server Version 24. 2018;
https://httpd.apache.org/docs/2.4/programs/ab.html.

[50] Donovan, A.A. and B.W. Kernighan, The Go
programming language. 2015: Addison-Wesley
Professional.

[51]1 Microsoft Azure Cloud Computing Platform &
Services. 2018; https://azure.microsoft.com/en-us/.

[52] Abbady, S., C.-Y. Ke, J. Lavergne, J. Chen, V.
Raghavan, and R. Benton. Online mining for association
rules and collective anomalies in data streams. in Big Data
(Big Data), 2017 IEEE International Conference on. 2017.
IEEE.

[53] Ahmad, S., A. Lavin, S. Purdy, and Z. Agha,
Unsupervised real-time anomaly detection for streaming
data. Neurocomputing, 2017. 262: p. 134-147.

[54] Thang, T.M. and J. Kim. The anomaly detection by
using dbscan clustering with multiple parameters. in
Information Science and Applications (ICISA), 2011
International Conference on. 2011. IEEE.

[55] Behzadi, S., K. Hlavackova-Schindler, and C. Plant.
Dependency anomaly detection for heterogeneous time
series: A Granger-Lasso approach. in Data Mining
Workshops ~ (ICDMW), 2017 IEEE International
Conference on. 2017. IEEE.

Page 7203

https://www.openstack.org/software/
http://liveview.sourceforge.net/
http://www.volatilityfoundation.org/
https://www.xenproject.org/
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://www.vmware.com/
https://hub.docker.com/r/google/cadvisor/
https://grafana.com/
https://hub.docker.com/explore/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://azure.microsoft.com/en-us/

