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Abstract 
 

Large-scale adoption of virtual containers has 

stimulated concerns by practitioners and academics 

about the viability of data acquisition and reliability 

due to the decreasing window to gather relevant data 

points. These concerns prompted the idea that 

introspection tools, which are able to acquire data 

from a system as it is running, can be utilized as both 

an early warning system to protect that system and as 

a data capture system that collects data that would be 

valuable from a digital forensic perspective.  

An exploratory case study was conducted utilizing 

a Docker engine and Prometheus as the introspection 

tool. The research contribution of this research is 

two-fold. First, it provides empirical support for the 

idea that introspection tools can be utilized to 

ascertain differences between pristine and infected 

containers. Second, it provides the ground work for 

future research conducting an analysis of large-scale 

containerized applications in a virtual cloud. 

 
 
1. Introduction  
 

The proliferation of cloud computing is rapidly 
expanding into all aspects of society. Investment in 
the public cloud space has gone from 58.6 billion 
dollars in 2009 to 219.6 billion in 2016 according to 
Statista [1]. Gartner’s projections as of October 2017 
have growth set to exceed 411 billion dollars by 2020 
[2]. In 2017, SAP CEO Bill McDermott stated that 
“cloud revenue is expected to overtake license 
revenue for the first time” and that cloud revenue 
would more than double by 2020 to roughly 10 
billion dollars [3]. In support of this prediction, 

Amazon Web Services [4] experienced a 43 percent 
jump in sales from 12 billion dollars in 2016 to 
slightly under 17.5 billion dollars in 2017 [5]. 
Additionally, Rightscale’s 2018 State of the Cloud 
survey reported that the adoption of a public cloud 
rose 3 percent to 92 percent [6]. 

As investments expand and cloud services are 
integrated into all aspects of life, concerns 
surrounding the detection of security problems arise 
from both practitioners and academicians [7-11]. 
Emphasizing these concerns, Alert Logic, a big data 
security-as-a-service company, published a 2015 
report that stated “businesses using cloud 
environments are largely considered a ‘fruit-bearing 
jackpot’ for hackers” [12]. Recent cases surrounding 
breaches Tesla [13] and FedEx [14] have underscored 
Alert Logic’s stance. There was also a container 
specific problem reported by Ars Technica wherein a 
corrupted container was introduced that mined 
cryptocurrency. The malicious container was brought 
to light by a user on the popular programming code 
sharing website GitHub in August 2017 [15]. 

Even in light of recent security events, the use of 
containers is expanding. Containers share smaller 
operating system kernels, allowing faster and more 
efficient use of the hardware than hypervisors, which 
virtualize an entire machine [16]. RightScale 
indicated Docker [17] usage expanded from 35 to 49 
percent [6].  Hortonworks,  which publishes its 
Hortonworks Data Platform based on a distribution of 
Apache Hadoop [18, 19], has adopted Docker 
containers as part of Apache Hadoop YARN 3.1 in 
order to “enable new use cases and improve existing 
capabilities” within their platform [20]. The 
efficiency of a container comes at a cost, which can 
primarily be seen in terms of accessibility. Much like 
virtual machines, when containers are destroyed, 
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those system resources are put back into a resource 
pool. Worse, from a data collection point of view, a 
container’s lifetime, from creation and destruction, 
can be a matter of seconds; this duration is sufficient 
for many to perform their function [21]. Hence, the 
data about containers must be accessed/collected 
while they are executing.  In order to access this data, 
application programming interfaces (APIs) have been 
created and leveraged to create introspection tools 
[22, 23]. These introspection tools have the ability to 
obtain data from a running container environment 
regardless of running time. 

The evolving atmosphere in cloud computing 
encourages organizations to consider cloud 
environments from a security perspective along with 
ways to improve incident response situations [24-27]. 
Trends in adoption of containers and increasing 
security prompts the hypothesis that introspection 
tools can be used as a data collection tool for an early 
warning system, as well as a forensic analysis tool, 
within a containerized system. Subsidiary questions 
identified as part of this research are as follows: 

1. What data does an introspection tool have 
access to in a containerized environment?  

2. How does it and how often does it log 
information?  

3. How persistent is the log information? 
The research contribution of this paper is an 

initial analysis of the viability of introspection tools 
for performing a security analysis of containerized 
software. The paper is structured as follows: Section 
2 discusses the research surrounding cloud 
computing and the challenges presented by the cloud 
for detecting security problems. Section 3 presents 
the experimental methodology and design. Section 4 
examines the results of a series of experiments 
designed to determine if an introspection tool can 
capture data for forensics analysis and early warning 
from a running containerized system. Section 5 draws 
conclusions and presents future work. 
 
2. Related work 
 

The structure of a cloud presents unique 
challenges to practitioners. While primarily focused 
on forensics in a cloud, O’Shaughnessy and Keane 
[28] expanded on several concepts that underpin 
problems in collecting data within a cloud 
environment, particularly with regard to what data is 
accessible to the parties operating a cloud. Two 
highlights of this point are chain of custody and 
multi-jurisdictional-legislation. Chain of custody is 
key in legal proceedings because it proves what 
parties had access to data that will be used as 

evidence in that proceeding [28]. A cloud system 
complicates a chain of custody since evidentiary data 
can be located in a different geographical locations 
and be collocated with other client data on a rack of 
servers. Chain of custody becomes even more 
complicated if the geographical location crosses 
jurisdictions, such as national borders. Depending on 
the jurisdictional change, it could be very difficult to 
even gather data for detecting anomalies either in a 
streaming environment, which is needed for early 
warning systems, or for post hoc analysis of a 
compromised system, which is needed for forensics. 
In response to these realities, recent research focuses 
on (a) building toolkits to circumvent some of the 
issues presented by O’Shaughnessy and Keane or (b) 
analyzing a cloud from the underlying hardware side. 

Dykstra and Sherman [29] built a series of 
analysis tools for OpenStack, a cloud operating 
system [30] that accounts for 24% of private cloud 
adoption in 2017 [6]. Their tools, FROST, allow for a 
user to retrieve an image of virtual disks associated 
with that user’s virtual machines and check both API 
requests and OpenStack firewall logs. These tools 
were built on-top of OpenStack and integrated into 
the Horizon dashboard which serves as the web-
based user interface for OpenStack. The authors ran a 
pair of evaluations on FROST. The first evaluation 
involved 100 fictitious users with five virtual 
machines each; FROST utilized requested logs from 
a subset of those users. The second evaluation was 
based on a twelve-user test with a large private 
government cloud. The second evaluation was 
successful enough that the organization wanted to 
deploy FROST upon this cloud in mid-2013. 

Saibharah and Greethaukumari [31] also used 
OpenStack but eschewed the idea of building tools 
directly into cloud platform; rather, they sought to 
use existing tools built into the platform. They built a 
framework based off of snapshots of both random-
access memory and disk images, as well as working 
through logging systems native to OpenStack. 
Finally, the researchers extended their framework to 
incorporate network forensics. The authors tested this 
framework utilizing Wireshark [32] to gather 
network data and a purpose-built cloud process for 
the framework simulation. The evaluations showed 
that evidence could be obtained for several different 
types of attacks on a cloud environment.  

In contrast to building toolkits, Graziano et al. 
[33] used a physical memory dump of a given system 
to identify if a hypervisor is present as well as 
identifying the type of hypervisor. Hypervisors 
virtualizing memory changes how that memory is 
allocated and accessed by the virtual machines that 
the hypervisor serves. The authors assert the only 
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way to gain access to that virtual memory is through 
analyzing the specific hypervisor, and then 
translating the rest of the memory over based on how 
that hypervisor handles the virtualization. The team 
developed a tool called Actaeon that extended the 
open source memory forensics framework Volatility 
[34]. The authors tested their plugin on a variety of 
hypervisors including Xen [35], KVM [36] and 
VMWare [37] and correctly identify all of the 
hypervisors in under a minute. 

Whereas previous approaches dealt with 
hypervisors and/or underlying systems in cloud 
infrastructure, Casalicchio and Percibali [38] focused 
specifically on containers. In particular, they sought 
to determine if tools collected the same information. 
The researchers tested a battery of traditional Linux 
metrics including iostat and mpstat as well as 
utilizing the container specific cAdvisor [39] and the 
platform specific docker stats command to pipe 
metrics into both Prometheus [22] and Grafana [40] 
for collection. Tests centered upon CPU and Disk I/O 
intensive workloads. They determined different tools 
present similar but not completely equal results. 

Previous approaches assumed there was no 
deliberate tampering, internal contradictions or 
inconsistent entries in their work; however, Thrope et 
al. [41] chose to focus their efforts on these areas.  In 
order to test these issues, the group built a virtual 
machine profiler model and a log auditor to fill in 
potential gaps within the logs themselves. The 
authors tested their model and audit software with a 
series of four experiments that focused on execution 
timelines by a virtual machine on the hypervisor. 
Each timeline was subtly different in order to test 
system times as well as log manipulation. In one 
timeline, a Microsoft Word document’s author was 
misattributed. The variance between execution 
timelines showed that temporal inconsistencies 
within a system, brought on issues such as differing 
system times, as well as log deletions, which could be 
detected by the forensic platform. 

Shropshire [42] approached the problem of 
detecting anomalous behavior within a compromised 
cloud system from a hardware prospective. He 
developed PowerCheck, an application that identifies 
discrepancies by comparing the system state 
parameters reported by software running on a system 
with those parameters which application estimates 
based upon server energy consumption. The 
application predicted results of energy consumption 
on CPU load, memory consumed, and disk 
reads/writes among others. Once those predictions 
were made, PowerCheck analyzes data from a 
running system and does a comparison to determine 
if a cloud system has been compromised. The 

application was tested on VMWare ESXi [37] with 
power measurements made by a Watt’s Up Pro 
Power meter, and performance reports provided to 
vSphere Client. The tests demonstrated the efficacy 
of PowerCheck and validated the idea of secondary 
system measures as legitimate integrity monitors. 

One drawback with the pervious approaches 
seeking evidence of compromise is they assumed the 
operating system was not compromised. This was the 
motivation behind the next study. Zhang et al. [43] 
utilized BIOS level analysis to gain access to, and 
export out through a PCI card, memory contents and 
CPU registers that underpin a Xen hypervisor. Their 
application, HyperCheck, was different in that it does 
not rely on any software running on the target 
machine beyond a trusted BIOS. HyperCheck was 
tested against Xen through four attacks: modifying 
the interrupt descriptor table, the hypercall table, the 
exception table, and the Xen code itself. It was able 
to identify all of those modifications. 

The previous studies concentrated on gathering 
behavior and performance evidence of various types; 
however, the scalability of the approaches was not 
directly assessed. Stelly et al. [44]  dealt with this 
issue via the containerization of the digital forensics 
process with their SCARF toolkit. They focused on 
scalability across large platforms using Docker 
Swarm, and attempted to prove that while the data 
needed for forensic analysis continue to expand as 
cloud adoption increased, their platform could extend 
just as easily by showing high throughput. The group 
ran tests on both a legacy cluster, and a cluster with 
cutting edge hardware and found that several of the 
components of the SCARF system, such as Yahoo’s 
OpenNSFW network [45], had large throughput gains 
comparing the two systems. 

 Cloud computing research on early warning 
systems and forensic data gathering tools currently 
focuses on designing tools that either extend the 
capabilities of the cloud control software such as 
FROST or taking advantage of certain virtualization 
properties to analyze specific virtual components. 
These systems struggle with containerized systems 
since many were focused on hypervisors which 
virtualize at a different level of the cloud, or heavily 
modify an underlying system. There has been 
minimal investigative research into how container 
introspection tools, whose systems only require an 
open port to function, can contribute to both early 
warning systems and forensic data investigation by 
polling and storing data 
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3. Methodology  
 

This research investigates the viability of 
gathering behavioral (performance) data from 
containers using an introspection tool to detect 
problems within the system. This data can be used to 
set up an early warning system or store potential 
forensic evidence depending on the needs of an end 
user. The research according to Oates is classified as 
an exploratory study due to its attempt to understand 
the overall research  problem [46]. 
 
3.1 Experimental testing environment 
 

The experiment is conducted using Ubuntu 16.04 
[47], Docker [17], and Prometheus [22]. The system 
utilizes an Intel Xeon E5 CPU with 16 gigabytes of 
RAM. Docker is open source software that runs on 
top of a host operating system, and as such, has an 
engine associated with it. The engine handles 
communication with repositories to pull container 
images, as well as provides administrative oversight 
to the containers under its control. Figure 1 illustrates 
where Docker, the container engine, is in a virtual 
environment. 

 
Figure 1. Docker location [48] 

 
Prometheus is an open source introspection tool 

that provides the ability to check multiple nodes in a 
containerized architecture through console readouts 
or graphs from several hundred metrics on both the 
Prometheus server, as well as targets that are 
connected to that server. Prometheus utilizes the 
Docker API, which allows Prometheus to access data 
via a well-defined data pipe; this also mitigates the 
amount of stress on the system. In order to use the 
service, ports have to be opened within the Docker 
environment, as well as configured within 
Prometheus to listen and scrape information from the 
Docker environment. The default time between 

information scrapes by Prometheus is fifteen seconds, 
but that can be customized via the modification of 
Prometheus configuration files. Prometheus provides 
a query language to create specific metrics about the 
Docker environment, which can be manually 
reviewed; the same metrics can also be presented via 
a series of graphic functionalities for easier 
infrastructure visualization. Figure 2 shows a list of 
http request metrics that Prometheus gathers when 
running the default configuration; the system will, in 
addition to metrics, print some guiding comments as 
seen in the first two lines of Figure 2. By default, 
Prometheus saves these metrics every two hours in 
data chunks. The data chunks can be stored in a local 
file or into a database server, which can be on another 
server; these options can be configured. Hence, in 
case of an unexpected shutdown, the data that would 
be lost, at most, is the current set of data in memory.  
One final advantage Prometheus has is that it can 
execute on a server other than Docker. 

 

 
Figure 2. Example prometheus metrics 

 
3.2 Experimental methodology 
 

The experiment has three phases: (a) the initial 
setup required to run Prometheus and Docker, (b) 
acquiring data for the baseline, and (c) executing and 
acquiring data when the system is in an infected state. 
A fourth phase is also presented, which describes 
what data will be analyzed. 
 
3.2.1 Initial Setup. To create the data collection 
environment, Ubuntu, Prometheus and Docker have 
to be installed on a machine. The steps for the initial 
setup are as follows. Download the latest Ubuntu 
image from Canonical’s website [47]. This 
experiment utilized Ubuntu image version 16.04.3. 
Load the downloaded image onto a USB Flash drive 
and leave the USB drive plugged into the PC.  

Restart the machine, and, at the BIOS screen, 
press the necessary key to enter the BIOS settings. 
Navigate through BIOS to the boot order screen, and 
make sure that USB drives are checked in the boot 
order ahead of the primary hard drive of the 
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experimental platform. Exit BIOS which will restart 
the machine, and boot into the Ubuntu installation 
suite. At the first screen of the installation process, 
select “Install Ubuntu”. Allow Ubuntu to download 
updates while installing on the next screen. 

The following screen sets installation type, and it 
is at this point where the disk will be formatted. 
Select “Erase disk and install Ubuntu” and then click 
continue in the pop-up window. At this point, the 
installation will shift to configuration details, such as 
time zone, on the next screen. The experiment was 
built in Mobile, Alabama at the University of South 
Alabama, which is in the Central time zone, so 
Chicago is appropriate. Select language and keyboard 
type on the following screen. The platform used 
English (US) as the language, and QWERTY as its 
keyboard. 

Next, set a default username and password that 
will automatically have administrator privileges, and 
Ubuntu will install over the course of several 
minutes, and then restart itself to complete the 
installation. Once Ubuntu has restarted, the first step 
to install Docker from a repository [17] is to update 
apt package index. Enter the command “sudo apt 
update”. Once apt is updated, configure it to be used 
over HTTPS using “sudo apt install apt-transport-
https ca-certificates curl software-properties-
common”. Add Docker’s Gnu Privacy Guard (GPG) 
key using: “curl –fsSL https://download.docker.com 
/linux/ubuntu/gpg | sudo apt-key add-” Build the 
repository for Docker by inputting:“sudo add-apt-
repository” deb [arch= amd64] https://download. 
docker.com/linux/ubuntu $(ls b_release -cs) stable”. 
Given these new packages, update apt again using 
“sudo apt update” and then install Docker with “sudo 
apt install docker-ce”. This will complete the Docker 
installation. 

In order to allow Prometheus to connect to 
Docker, a JSON file has to be added in the 
/etc/docker/ file. Since this is a new installation of 
Docker, this has to be created through a text editor 
such as nano. Open nano using “nano daemon.json” 
and then add “{“metrics-addr” : “127.0.0.1:9323”, 
“experimental” : true }” to this new file. Save this file 
in the /etc/docker/ directory. 

Prometheus provides precompiled binaries on 
their website [22]. These binaries are tarballs, so 
extract it using “tar xvfz prometheus-*.tar.gz” and 
then change into the newly extracted files with “cd 
prometheus-*”. Modify the prometheus.yml to scrape 
Docker by adding “job_name: ‘docker’ and 
static_configs: -targets: [‘localhost:9323] in the 
appropriate sections of the yml file. Alternatively, 
Docker provides an updated yml file within their 
Prometheus documentation [17].  

Next a containerized Apache2 server is obtained 
and deployed on the experimental platform. Apache2 
is obtained from the Docker Hub [45]. The command 
to start Redis is “docker run –dit –name 
apache2testbed –p 8080:80 –v “$PWD”:/usr/ 
loca/apache2/htdocs/ httpd:2.4.”  

Once Apache2 has been installed through Docker, 
navigate a browser to localhost:9323/metrics to get to 
the Prometheus dashboard. Prometheus provides two 
hundred thirty metrics from installation and can be 
configured with additional rules by a user. This 
methodology focused on metrics found at installation. 
In order to simulate traffic on a web server, 
ApacheBench [49], a stress test tool, was used to 
simulate hits on the server. ApacheBench is part of 
the apache2-utils package and is installed with the 
“sudo apt install apache2-utils” command. 
 
3.2.2 Gathering data for the benign scenario. Now 
that Apache2 web server has been installed, 
Prometheus can gather metrics based on user defined 
scrape times.   The collected data is kept in memory 
until written to file every two hours. In order to avoid 
any potential issues, a pristine Apache2 web server 
was run for two hours, and ApacheBench is used to 
push one hundred thousand hits on the server every 
twenty minutes to provide traffic. The ab command is 
“ab –k –c 100 –n 100000 <web server IP>.” The web 
server IP can be found through ifconfig. After two 
hours of collecting metrics, the data is saved for 
comparison against the malware infected web server.  
 
3.2.3 Gathering data for the infected scenario. 
This scenario is similar to the benign scenario with 
the exception that the Apache2 web server is infected 
with malware. The steps in subsection 3.2.1 are 
repeated to reset the testbed, and a Chapro binary, a 
malicious Apache webserver module, is downloaded 
from a malware repository and run on the system. 
The two-hour test is repeated with attendant 
ApacheBench hits every twenty minutes. Metrics are 
pulled to provide comparison between the two 
platforms.  This ends the gathering of the data. 
 
3.2.4 Data analysis from the two scenarios. Once 
the three phases are done, an analysis of the two data 
sets using the metrics provided by Prometheus needs 
to be conducted. As previously stated, Prometheus 
provides two hundred and thirty metrics in its initial 
configuration. The analysis of these metrics is a 
simple comparison between the values given by the 
two testbeds, which is presented in the next section. 
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4. Results and discussion  
 

The results presented below are from multiple 
runs; there is a total of twenty hours of data. The 
tables within this section capture the results of each 
run and the averages of the five separate runs, as well 
as the percentage differences between the clean and 
contaminated versions of the Apache2 web server. 

After an initial examination, nine metrics were 
identified that have utility in detecting the presence 
of malware.  These nine metrics are grouped into 
three categories. The first provides information about 
the underlying engine, the second provides 
information about the memory usage, and the third 
provides information about the process and HTTP 
requests. 

 
4.1. Daemon engine 

 
Prometheus is able to gather data about the 

underlying Docker engine. The first metric that has 
been identified, engine_daemon_engine_info, 
provides specific information on Docker itself and 
demonstrates that the two experiments are performed 
on the same Docker engine. This would be useful for 
a forensic investigation because it would document 
the Docker system information and also aid in 
ensuring any simulations would be performed on the 
correct Docker container engine. 

The other two metrics focused on providing 
information about the Docker engine were identified 
as potentially being useful.  Shown in Table 1 is 
engine_daemon_engine_memory_bytes; this metric 
captures how much memory the Docker container has 
allocated from the host upon which the Docker 
engine sits. As can be seen, the metric indicates that 
the infected containers have been assigned more 
resources from the resource pool.  This makes sense, 
as malware would take additional memory above and 
beyond that needed by the base service. 

 
Table 1. Engine_daemon_engine_memory_bytes  

Experiment Clean  Infected % 
Difference 

1 2985674229 3239857152 9% 
2 3200538134 3511309584 10% 
3 3405294587 3549809237 4% 
4 3009478856 3353498206 11% 
5 3159152434 3419008911 8% 
Average 3152027648 3414696618 8% 
 

The last metric, Engine_daemon_events_total, 
shown in Table 2, describes the number of events that 
the engine handled throughout a test. As can be seen, 

there is a stark difference between the two testbeds 
since it specifically references the number of events 
that are logged by the Docker engine. The extra 
program running within the Apache2 web server on 
the infected container that was deployed had several 
more interactions with the Docker Engine throughout 
the battery of tests.  

 
Table 2. Engine_daemon_events_total  

Experiment Clean  Infected % 
Difference 

1 32 39 21% 
2 33 39 18% 
3 37 45 21% 
4 35 37 5% 
5 33 40 21% 
Average 34 40 17% 
 
4.2. Go memory statistics 
 

Prometheus is written in Go [50] , an open source 
programming language, and one of the modules that 
the Prometheus provides focuses on memory 
allocation. Where the Docker engine metrics shown 
in section 4.1 focus on the engine and how it handles 
events, the three Go metrics focus on how memory is 
allocated within the environment. The first memory 
metric is go_memstats_alloc_bytes_total, which is 
the total count of bytes allocated to a server.  As in 
Table 3, the infected containers use more memory 
than the clean. This is not surprising as the malware 
is conducting additional work, requiring more 
memory. The total difference varies between 
experiments; with experiment 5 having the lowest.  
The average difference overall is fairly high; 
however, the metric may not be sufficient by itself. 

 
Table 3. Go_memstats_alloc_bytes_total  

Experiment Clean  Infected % 
Difference 

1 1314183517 1432935864 9% 
2 1714271435 1944971723 13% 
3 1809472402 2053409271 13% 
4 1455934827 1699468245 16% 
5 1593068259 1633482952 2% 
Average 1577586088 1752873431 11% 

 
The second metric is go_memstats_frees_total, 

which shows the amount of free requests that are 
performed. As seen in Table 4, the memory freed is 
generally greater for the infected container; however, 
similar to the previous metric, the differences vary 
greatly between experiments. It is noteworthy that the 
difference observed are lower than that found in the 
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previous memory metric, go_memstats_alloc_ 
bytes_total. Hence, this metric is unlikely to be 
sufficient by itself to create early warnings.  It would 
be a good indicator in a post forensic analysis for 
detecting when infections began changing the system. 

 
Table 4. Go_memstats_frees_total  

Experiment Clean  Infected % 
Difference 

1 163795705 189523901 15% 
2 206526775 215692761 4% 
3 214580257 224596002 4% 
4 169934501 192180500 13% 
5 164373404 167924960 2% 
Average 183842128 197983614 8% 

 
Table 5 shows the third metric, 

go_memstats_heap_released, which shows how much 
memory is released to the host operating system by 
the Docker processes. Of the three, this shows a clear 
performance difference, with the lowest difference 
being 12%. A simple threshold, assuming a good 
baseline exists, would be sufficient to trigger an 
alarm. However, this assumes no major variations are 
expected; otherwise, this and the other two memory 
statistics would be inputs into a more sophisticated 
analysis system. 

 
Table 5. Go_memstats_released_bytes_total  

Experiment Clean  Infected % 
Difference 

1 3706530 4199240 13% 
2 3852390 4723000 22% 
3 4059500 4855900 19% 
4 3523560 4024010 14% 
5 3290020 3701850 12% 
Average 3686400 4300800 16% 
 
4.3. Process & http requests 
 

The last set of metrics gather data about the 
system running underneath Docker.  The first metric, 
process_max_fds, captures the maximum number of 
open file descriptors.  As seen in Table 6, there is a 
general trend that the infected system has more files 
open; however, this can vary greatly, and, in some 
experiments, the difference is negligible. It is unclear, 
at this time, why there is a wide range of differences. 
Given the difference, this cannot be used by itself as 
an early warning system; however, it could be useful 
when combined with other metrics. A forensics 
analyst could use it as an indicator to detect when 
changes occurred assuming a normal baseline exists. 

The second metric, process_virtual_memory_ 
bytes, refers to how much virtual memory is used by 
the overall Docker containers. As seen in Table 7, the 
underlying system must allocate more memory when 
infected containers are executed.  This indicates that 
the malware is requiring a fair amount of memory to 
be available for use. What is interesting is that 
experiment 5 shows a high virtual memory usage, 
even when some of the more individual memory 
usage in the Docker containers were lower. 

 
Table 6. Process_max_fds  

Experiment Clean  Infected % 
Difference 

1 1091797 1105923 1% 
2 972579 1117239 14% 
3 1095761 1192469 8% 
4 1089851 1180307 8% 
5 992892 1152971 16% 
Average 1048576 1149782 9% 

 
Table 7. Process_virtual_memory_bytes  

Experiment Clean  Infected % 
Difference 

1 560294865 623246092 11% 
2 593261704 683256017 15% 
3 642359760 691269132 7% 
4 602874102 671296123 11% 
5 531242209 616019356 15% 
Average 586006528 657017344 12% 

 
The last metric is the number of HTTP requests 

handled by the system, which is represented by 
http_requests_total. As seen in Table 8, the number 
of HTTP requests are greater for the infected 
containers. This is expected as the malware injects an 
iframe into the content provided by Apache2.  Given 
the general consistency in the numbers, this could be 
a good indicator for an early warning system and 
would be telling for a forensic investigation. 
 

Table 8. Http_requests_total  
Experiment Clean  Infected % 

Difference 
1 731039 799125 9% 
2 779683 852301 9% 
3 802359 882559 10% 
4 650048 772471 18% 
5 752941 827619 9% 
Average 743214 826815 8% 
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4.4. Other Prometheus metrics 
 

The nine metrics in this study looked primarily at 
memory and communication between multiple planes 
of a virtual system. However, Prometheus gathers 
other metrics by default that describe CPU activity, 
IO activity and operating events. Additionally, 
Prometheus is able to obtain metrics from other APIs 
besides those provided by Docker. It can poll metrics 
from entire cloud systems such as Amazon’s Amazon 
Web Services [4] or Microsoft’s Azure [51]. 
Furthermore, system administrators can build custom 
rules for their individual systems. This allows tools 
such as Prometheus to be used to detect multiple 
types of problems in a many various environments.  
Hence, more elaborate data gathering could be 
conducted, as well as the capturing of data relevant 
for detection of other problems and situations. 
 
5. Conclusions and future work  
 

This research proposed three subsidiary questions 
to determine if an introspection tool could serve as an 
early warning system and forensics tool in a virtual 
environment. The first investigates what data an 
introspection tool can access. Prometheus, the chosen 
introspection tool for this study, can capture 
performance information about the containers, the 
Docker Engine, and the host OS.  This includes I/O, 
memory statistics, and operating events. The 
Prometheus documentation indicates that histogram 
information can be generated instead of single 
counters and/or measurements. This information is 
useful for monitoring and early warning systems. For 
forensic investigations, it can confirm when malware 
was running, and when it began; this, would aid in 
determining when the malware was installed. 

The second subsidiary question is how often is the 
data collected? In Prometheus, collecting data is a 
configurable option. By default, it is 15 seconds; this 
can be tuned to ensure that the collection is not 
burdensome upon the system. It collects the data by 
pulling information from the Docker Engine through 
its API, which requires a port for pulling to be 
opened for communication. While opening ports does 
lead to potential risks, this can be mitigated by 
controlling what servers are allowed to access the 
Docker Engine via the known port. 

The final subsidiary question dealt with the 
persistence of the log information. As discussed in 
the methodology, Prometheus can store data as local 
files or in a database, either of which can be on a 
separate server. This does come with a caveat; 
Prometheus does allow for the user to specify how 

long it should run before writing the data to file or to 
a database. Data held solely in memory is subject to 
being lost, if Prometheus is shut down prematurely. 

The answers to the subsidiary questions provide 
support for the hypothesis that introspection tools can 
be used as a data collection tool for an early warning 
system, as well as a forensic analysis tool, within a 
containerized system. Of the default metrics, nine 
metrics were identified as being immediately useful, 
as they provided either human distinguishable 
differences or they provided useful forensics 
information. engine_daemon_engine_info is a metric 
that would be of interest to forensics investigators as 
it would help confirm the exact version of Docker 
engine being executed. The other eight metrics 
permitted the operator to determine if Apache2 was 
corrupted via simple percentage differences. While 
individual metrics may not be sufficient for an early 
alert system, in combination, they tend to compensate 
for when other measures are weak.  

More interesting, the nine metrics captured 
different types of performance: the engine itself, the 
memory usage of the containers, and information of 
the underlying host. Thus, any malware seeking to 
corrupt the Docker Engine to hide its existence would 
need to determine the typical usage patterns; this, in 
turn, leads to other opportunities for the monitoring 
system to detect the malware presence.  

Future work can be split into three major efforts. 
The first effort would be conducting more complex 
studies using Prometheus to detect different types of 
malware and/or system compromises. It is unlikely 
all malware and compromises will be detectable with 
the same nine metrics. Thus, future work will require 
determining what metrics are useful for detecting 
different types of attacks. It will also expand the 
underlying test bed system to utilize larger numbers 
of containers and interactions between containers, 
such as how Apache Hadoop YARN [20] has done to 
streamline some data processing. Determining what 
time intervals would be best for Prometheus to 
collect information would be part of this work. 

The second effort focuses on taking the data from 
Prometheus and creating an alerting system. At 
present, Prometheus can create simple alerting rules, 
which activate when certain thresholds are violated. 
This is often insufficient when determining if a 
system has been compromised. Hence, the data 
would need to be feed into online systems [52], 
where anomaly detection methods could be used to 
detected unexpected behavior. This can be done with 
using methods such as simple learning systems, such 
as the Hierarchical Temporal Memory method [53], 
DBScan [54], or generalized linear models [55].  
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The third effort will develop forensic tools to find 
suspicious behavior within the introspection logs and 
correlate them with other factors. For instance, 
Rightscale’s yearly State of the Cloud surveys [6] 
underscore how necessary it is to provide different 
analytical mechanisms. 
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