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Diffusiophoresis in ionic surfactants: effect of micelle
formation

Patrick B Warren,a Sangwoo Shin,b and Howard A Stonec

We explore the consequences of micelle formation for diffusiophoresis of charged colloidal par-
ticles in ionic surfactant concentration gradients, using a quasi-chemical association model for
surfactant self assembly. The electrophoretic contribution to diffusiophoresis is determined by
re-arranging the Nernst-Planck equations, and the chemiphoretic contribution is estimated by
making plausible approximations for the density profiles in the electrical double layer surrounding
the particle. For sub-micellar solutions we find that a particle will typically be propelled down the
concentration gradient, although electrophoresis and chemiphoresis are finely balanced and the
effect is sensitive to the detailed parameter choices and simplifying assumptions in the model.
Above the critical micelle concentration (CMC), diffusiophoresis becomes much weaker and may
even reverse sign, due to the fact that added surfactant goes into building micelles and not aug-
menting the monomer or counterion concentrations. We present detailed calculations for sodium
dodecyl sulfate (SDS), finding that the typical drift speed for a colloidal particle in a ∼ 100µm
length scale SDS gradient is ∼ 1µms−1 below the CMC, falling to . 0.2µms−1 above the CMC.
These predictions are broadly in agreement with recent experimental work.

The recent surge of interest in colloidal diffusiophoresis has been
driven by the realisation that it is potentially a very common and
widespread non-equilibrium colloidal transport mechanism, rel-
evant for many physical phenomena and across many scientific
fields.1 The phenomenon was originally identified in the 1940s
by Derjaguin and coworkers,2 and revisited in the 1980s by An-
derson, Prieve and others.3–9 Much of the current focus has been
directed towards diffusiophoresis in electrolyte gradients where
significant effects additionally arise from the electric fields asso-
ciated with diffuse liquid junction potentials (LJPs).10–28 More
recently, diffusiophoresis in polymer solutions,29 and surfactant
solutions,19,30,31 has also been examined.

For ionic surfactants the problem combines elements of both
electro-diffusiophoresis, and surfactant self-assembly. In a recent
study it was noted that whilst diffusiophoresis approximately fol-
lows the normal rules in sub-micellar solutions, it is practically
‘switched off’ above the critical micelle concentration (CMC).30 In
our own work we confirmed that diffusiophoresis in sub-micellar
surfactant solutions operates as a significant transport mecha-
nism, relevant for example to pore-scale particulate soil removal
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in laundry detergency.31 However we left open the question of
what happens above the CMC.

Here we extend the standard theory of diffusiophoresis in elec-
trolyte solutions to take account of micelle formation, basing our
approach on earlier quasi-chemical association models that were
successfully developed for surfactant diffusion.32–34 Whilst not
exactly ‘switched off’, we find that diffusiophoresis is significantly
diminished or even reversed above the CMC, because added sur-
factant goes into building micelles and does not augment the
monomer or counterion concentrations. We also note that for an-
ionic surfactants there is a fine balance between electrophoresis in
the LJP, and chemiphoresis due to osmotic pressure gradients in
the electrical double layer (EDL) adjacent to the particle surface.
This makes the results exquisitely sensitive to detailed parame-
ter choices, and susceptible to errors arising from the simplify-
ing assumptions in the models. Therefore we do not expect the
present study will be the final word on this problem, and indeed
at present experiment seems destined to be the ultimate arbiter
in this complex situation.

Below, after introducing the problem and our notation, we shall
set up the quasi-chemical association model for surfactant micelle
formation, then compute the consequences for both electrophore-
sis in the LJP, and for chemiphoresis using plausible approxi-
mations for the ion density profiles in the EDL. For quantitative
results we shall largely focus on sodium dodecyl sulfate (SDS),
which is a well-characterised, prototypical, anionic surfactant for

Journal Name, [year], [vol.],1–11 | 1



gradient

(a)

(b)

+
–

–
–

––
–
–
–
– – –

+

+

+

++

+

+
–

+

+

– +
+

+

––
–

–
– E

U

Fig. 1 (a) Electrophoresis of a negatively-charged particle in an anionic
surfactant concentration gradient: the counterions are more mobile and
become slightly more spread out leading to a liquid junction potential and
an accompanying electric field; this effect drives particle motion down the
concentration gradient. (b) Schematic quasi-chemical association model
for surfactant self assembly: n monomers and q counterions combine to
make one micelle, of net charge z = n−q.

which there is abundant physico-chemical data. In particular, for
SDS the underpinning quasi-chemical association model is well
tested, and the requisite parameters are readily available.

Importantly, we shall tune our approximations to the case
where the charge on the particle (quantified by the ζ -potential)
has the same sign as the charge on the surfactant (e. g. nega-
tively charged particles in anionic surfactants). This seems to be
the practically relevant situation,30 and corresponds to an un-
derpinning assumption that the surfactant ipso facto is likely to be
strongly adsorped onto the particle surface thereby overriding the
bare charge. We shall further assume this adsorped surfactant has
the sole effect of regulating the ζ -potential and makes no direct
contribution to phoretic transport.

Finally we shall assume the EDL is thin compared to the col-
loidal particle size. With this approximation, the diffusiophoretic
drift velocity is independent of particle size and shape.8 Since we
are interested in surfactant concentrations around the CMC (typi-
cally a few mM) where the Debye length κ−1 . 3nm, this restricts
us to particle diameters 2a & 500nm, i. e. κa & 100,21,35 although
we expect the trends to be preserved for smaller particles.

1 Sub-micellar diffusiophoresis
For electrolytes, there are two effects that combine to cause dif-
fusiophoretic drift. The first as already mentioned arises from
electrophoresis in the LJP. The sign of the LJP depends on the
relative mobilities of the ions and the corresponding electric field
can be in either direction. For example, in common rock salt
(NaCl) the anion is more mobile than the cation and consequently
electrophoresis of a negatively charged particle is up the salinity
gradient (towards higher salt concentrations); in KCl the ion mo-
bilities are almost equal and the LJP is very small; while in ionic
surfactants the bulkier surfactant has a smaller mobility than the
counterion so that electrophoresis of a like-charged particle is al-
most certainly down the concentration gradient (Fig. 1a).

The second contribution to diffusiophoresis arises from osmotic
gradients within the EDL. Typically this effect drives motion up
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Fig. 2 Sub-micellar diffusiophoretic drift coefficient for a negatively
charged particle in SDS, from Eqs. (2)–(4). See Table 1 for the rele-
vant diffusion coefficients.

gradients since this reduces the interfacial free energy in the EDL.
The chemiphoretic contribution can be viewed as a kind of wall-
bounded Marangoni effect.3

Let us set up the notation in the context of the basic phe-
nomenology. We define a diffusiophoretic drift coefficient Γ which
gives the velocity of a suspended colloidal particle in terms of the
gradient of the logarithm of the electrolyte concentration,

U = Γ∇ lnc . (1)

With the above considerations this drift coefficient then natu-
rally decomposes into electrophoretic and chemiphoretic contri-
butions, as

Γ = Γe +Γc . (2)

For simple electrolytes the standard theory gives5,8

Γe =
εrε0

η

( kBT
e

)2
× eζ

kBT
β , (3a)

Γc =
εrε0

η

( kBT
e

)2
× 4lncosh

( eζ

4kBT

)
. (3b)

In these, εr and ε0 are dielectric permittivities of the medium and
vacuum, η is the viscosity, kBT is the thermal energy, e is the basic
unit of charge, ζ is the surface potential, and

β =
D2−D1

D1 +D2
(4)

is the diffusivity contrast in which D1 and D2 are the diffusion
coefficients of the anion and cation respectively (see Table 1).

For water at room temperature (25◦C), kBT/e ≈ 25mV,
εrε0/η ≈ 0.8µm2 s−1 mV−2, and the prefactor in the above
(εrε0/η)(kBT/e)2 ≈ 500µm2 s−1. This sets the overall scale for
the phenomenon; for example a salt gradient on a length scale
L ∼ 100µm gives rise to a diffusiophoretic drift velocity Γ/L ∼ 1–
10µms−1; thus the time for a µm-sized colloidal particle to be
propelled over this distance is of the order 10–100s. This can
be contrasted with the diffusion time L2/Dp ∼ 104 s where Dp ∼
1µm2 s−1 is a typical diffusion coefficient for a µm-sized colloid.
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Table 1 Diffusion coefficients (10−9 m2 s−1) for SDS monomers (D1),
counterions (D2), and micelles (Dm). The baseline represents the con-
sensus from the older literature whereas Movchan et al. and Shin et al.
are representative of more recent experimental measurements. The β -
parameter is from Eq. (4).

D1 D2 Dm β

baseline, refs. 32– 36 ∗ 0.57 1.33 0.11 0.40
Movchan et al., ref. 37 0.52 1.33 0.10 0.44
Shin et al., ref. 31 0.39 1.33 0.10 0.55

∗See also Table S1 in ref. 31

The marked difference signals that diffusiophoresis is potentially
vastly more effective than diffusion in moving colloidal material.
It is this feature that makes diffusiophoresis such an important
non-equilibrium transport mechanism.

Below the CMC, we shall suppose (as others do) that the sur-
factant in solution exists as dissociated monomers and counteri-
ons and the above theory can be applied without further refine-
ment.30,31 One interesting and important consequence already
mentioned for ionic surfactants is that chemiphoretic drift is al-
most surely in the opposite direction to electrophoresis in the LJP.
Therefore the magnitude, and even direction, of the net drift is
a sensitive function of the material properties. Additionally, the
magnitude is considerably reduced from the above ball-park es-
timate, perhaps even by as much as a factor of ten, as provided
in Fig. 2, which shows values based on measurements reported
by different groups (Table 1). Nevertheless, diffusiophoresis still
remains a potent transport process since the logarithmic depen-
dence on the salt concentration in Eq. (3) leads to persistent ef-
fects well beyond what one would estimate from the bare dif-
fusion time, such as salt trapping,13 and long-lasting pore-scale
particle removal.31

A related observation is that the dependence on the ζ -potential
is non-monotonic. This is demonstrated for SDS in Fig. 2 (see
also Fig. 10). For example for sub-micellar SDS solutions with
baseline diffusion coefficients as in Table 1, the largest effect is at
ζ ≈−45mV where Γ≈−170µm2 s−1; and Γ becomes positive for
ζ .−90mV. We shall focus our calculations on ζ ≈−80mV since
this is a typical value.31 For this case, the baseline sub-micellar
Γ≈−70µm2 s−1. To put this in perspective, an SDS gradient over
a length scale L ∼ 100µm gives rise to a diffusiophoretic drift ve-
locity Γ/L∼ 1µms−1.

2 Supra-micellar diffusiophoresis
As stated our main purpose is to generalise Eqs. (3)–(4) to include
the effects of micelle formation for ionic surfactants. We note that
Eqs. (3) predict that Γ should be independent of concentration
below the CMC; this is no longer to be expected to be the case
in the presence of micelles, and indeed this is an outcome of the
theory developed below.

Above the CMC, the system contains monomers, micelles and
counterions, and should be treated as a ternary system albeit
one which in which monomeric and micellar surfactant can equi-
librate. This leads to a rich though manageable problem. In
the following, the micelle kinetics shall be assumed fast (relax-
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Fig. 3 Monomer (c1), counterion (c2), and micellar surfactant (ncm) con-
centrations for SDS, from the quasi-chemical association model with
n = 60 and q/n = 0.84 (see Appendix A).

ation times typically . 0.1s) so that local equilibrium can be as-
sumed.33,38 Following much earlier work on the problem of sur-
factant diffusion,32–34 the analysis will be done in the context of a
simple quasi-chemical association model (see Fig. 1b). An impor-
tant point to note is that to make sense of the physico-chemical
observations it has long been established that in such a model
one has to assume some fraction of counterions are ‘bound’ to the
micelle. This is explicitly incorporated into the model.

2.1 Quasi-chemical association model

Following Leaist,34 let c1 be the monomer surfactant concentra-
tion (number density), c2 the free counterion concentration, and
cm the micelle number density. Let the total surfactant concentra-
tion be c; this is also the total counterion concentration, assuming
univalent surfactant ions and counterions. We suppose that n sur-
factant monomers and q counterions combine to form one micelle
(Fig. 1b), so that a micelle has a net charge of magnitude z= n−q.
For example, for SDS the consensus is n≈ 60 and q/n≈ 0.84.32

We have the following mass balances, and law of mass action,

c = c1 +ncm , c = c2 +qcm , cm = Kcn
1cq

2 . (5)

In the last of these, K is an equilibrium constant related to the
CMC (see Appendix A). Since c1, c2 and cm are all supposed
small (mM), we neglect corrections for non-ideality (activity co-
efficients) both here and in the Nernst-Planck equations below.
Eqs. (5) are sufficient to determine c1, c2 and cm in terms of c,
which we shall take to be the independent concentration variable.
More details of the solution method and the relationship between
K and the CMC are given in Appendix A. For SDS the behaviour is
shown in Fig. 3.
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Fig. 4 Gradient terms from Eqs. (6) corresponding to Fig. 3.

Eqs. (5) can be differentiated to find

∂c1

∂c
=

c1c2− zqc1cm

c1c2 +q2c1cm +n2c2cm
, (6a)

∂c2

∂c
=

c1c2 + znc2cm

c1c2 +q2c1cm +n2c2cm
, (6b)

∂cm

∂c
=

qc1cm +nqc2cm

c1c2 +q2c1cm +n2c2cm
. (6c)

These equations will be critical in the sequel. In the sub-micellar
limit (cm → 0, ci → c for i = 1,2), one has ∂cm/∂c → 0 and
∂ci/∂c→ 1. Results for SDS are shown in Fig. 4.

2.2 Electrophoresis and the Nernst-Planck equations
Liquid junction potentials (LJPs) in electrolyte solutions arise be-
cause of a mismatch in ionic mobilities: in a concentration gradi-
ent the faster ions try to spread out more rapidly than the slower
ions leading to a charge imbalance, which gives rise to a compen-
sating electric field. The actual charge imbalance is miniscule,
and to a very good approximation the LJP can be calculated as-
suming local charge neutrality.39–43 In the present case this im-
plies that the charge current vanishes.44

Leaist splits the problem into thermodynamic and mobility cal-
culations (see Appendix B), but the end result can be reached
perhaps more transparently and succinctly simply by rearranging
the Nernst-Planck equations for the fluxes J1, J2 and Jm, which
correspond to the three solution species. This also gives direct
access to the electric field (LJP).

For this problem, the Nernst-Planck equations are

J1 =−D1(∇c1− c1∇ψ) , (7a)

J2 =−D2(∇c2 + c2∇ψ) , (7b)

Jm =−Dm(∇cm− zcm∇ψ) . (7c)

In these, D1, D2 and Dm are diffusion coefficients, ψ = eφ/kBT is
the dimensionless electrostatic potential, and we have assumed
the surfactant is anionic (negatively charged). As mentioned, the

charge current vanishes,44

I = J2−J1− zJm = 0 . (8)

This constraint can be used to solve for ∇ψ in terms of the
concentration gradients. It is convenient to write this as ∇ψ =

(∂ψ/∂c)∇c where

∂ψ

∂c
=

D1
∂c1
∂c −D2

∂c2
∂c + zDm

∂cm
∂c

D1c2 +D2c2 + z2Dmcm
. (9)

This can now be used to eliminate the ∇ψ terms from the Nernst-
Planck equations, and in combination with Eqs. (6) to obtain J1,
J2, Jm and ∇ψ, as a function of the overall concentration gradient
∇c (or ∇ lnc).

The conservation law for the total surfactant concentration is
∂c/∂ t +∇ · J = 0 where J = J1 + nJm. With the above results we
find that J =−Dc(c)∇c where

Dc = D1
∂c1

∂c
+nDm

∂cm

∂c
− (D1c1 +nzDmcm)

∂ψ

∂c
. (10)

The concentration-dependent collective diffusion coefficient that
results from injecting Eqs. (6) into Eq. (10) is reported in
Eq. (11a) below. Bearing in mind the redundancy n = q+ z, it
is the same as described previously.33,34 One can readily check
that in the sub-micellar limit it reduces to Dc = 2D1D2/(D1 +D2),
thus recovering the familiar ambipolar diffusion coefficient.

In the context of diffusiophoresis we are obviously interested
in the electric field E = −(kBT/e)∇ψ. To quantify this, we gen-
eralise the β factor that appears in Eqs. (3), defining it such
that eE/kBT = β (c)∇ lnc, or β = −c∂ψ/∂c. Fully expanded, this
concentration-dependent β -parameter is given in Eq. (11b) be-
low. In the sub-micellar limit it reduces to β = (D2−D1)/(D1 +

D2), thus is the correct generalisation of the familiar result.

Our results are summarised in the following expressions, al-
though for practical calculations it is just as easy to work with
Eqs. (6), (9), and (10):

Dc(c) =
(c1 + c2 + z2cm)(D1D2c1c2 +q2D1Dmc1cm +n2D2Dmc2cm)

(c1c2 +q2c1cm +n2c2cm)(D1c1 +D2c2 + z2Dmcm)
,

(11a)

β (c) = c
(D2−D1)c1c2 +qz(D1−Dm)c1cm +nz(D2−Dm)c2cm

(c1c2 +q2c1cm +n2c2cm)(D1c1 +D2c2 + z2Dmcm)
.

(11b)

Eq. (11b) is to be used with Eq. (3a) to obtain the electrophoretic
contribution to the drift coefficient Γe. Note that Eq. (11a) is
identical to Eq. (25) in ref. 34.

2.3 Chemiphoresis and the Poisson-Boltzmann equation

To estimate the chemiphoretic contribution to the drift, we start
with a general expression for the diffusio-osmotic wall slip veloc-
ity in the presense of multiple solute gradients,3

vs =−
kBT

η
∑

i

{∫ ∞

0
ydy

( ci(y)
ci(∞)

−1
)}

∇s ci . (12)
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Fig. 5 (a) Collective, and (b) self diffusion coefficients for SDS. Lines
are from the quasi-chemical association model with diffusion coefficients
from Table 1. Data points are from (a) conductiometry [ref. 34; circles],
and (b) radiotracer [ref. 36; squares] and NMR [ref. 45; diamonds].

In this equation, y is the direction normal to the wall and ∇s is
the projection of the gradient operator parallel to the wall.8 In
our problem there are three components, and we assume that
the concentration profiles in the EDL are governed by a common
dimensionless electrostatic potential ψ(y) normal to the wall. Un-
der the thin EDL approximation we can transpose this into a col-
loidal drift velocity,5,8

U =
kBT

η

[{∫ ∞

0
ydy(eψ −1)

}
∇s c1

+
{∫ ∞

0
ydy(e−ψ −1)

}
∇s c2 +

{∫ ∞

0
ydy(ezψ −1)

}
∇s cm

]
. (13)

We now further assume that the surface is negatively charged (as
appropriate for an anionic surfactant) and that ψ can be taken
from the solution to the Poisson-Boltzmann equation (PBE) for
the small ions only,

ψ = 2ln
(1+Ce−κy

1−Ce−κy

)
, (14)

where C = tanh( 1
4 ψ0), ψ0 = eζ/kBT is the dimensionless ζ -

potential, and κ is the inverse Debye length, which will be dis-
cussed further below.

The first two integrals in Eq. (13) can now be done analytically,
and the last approximated by assuming that micelles are excluded
from an inner region 0 < y . H where |zψ| � 1, and treating the
outer region analytically where the far-field PBE solution can be
used. More details are given in Appendix C. The final result is

Γc =
ckBT
ηκ2

[
4ln 1

2 (1+ eψ0/2)
∂c1

∂c
+4ln 1

2 (1+ e−ψ0/2)
∂c2

∂c

− (1+κH + 1
2 κ

2H2)
∂cm

∂c

]
,

(15)

where κH = ln(4αz tanh 1
4 |ψ0|) and α ≈ 0.713 is fine-tuned to

match with the numerical results (Fig. 14). Injecting the indi-
vidual gradients from Eq. (6) into Eq. (15) yields a complete
solution for Γc. In the sub-micellar limit Eq. (15) goes over to
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Fig. 6 Collective diffusion coefficient Dc (left axis), and β -parameter (right
axis), using SDS baseline parameters from Table 1.

Eq. (3b) since one can show ln 1
2 (1+ eψ0/2) + ln 1

2 (1+ e−ψ0/2) =

2lncosh 1
4 ψ0.

Note that since ψ0 < 0 the first and third terms in Eq. (15)
are negative and the middle term is positive (see Fig. 13). This
accords with the fact that the anionic surfactant monomers and
micelles are expelled from the EDL, whereas the cationic counte-
rions are attracted into it.

The inverse Debye screening length κ that features in the PBE
solution deserves further discussion. Formally, this is the screen-
ing length in a salt reservoir containing only the small ions, in
a Donnan equilibrium with the bulk.46,47 Supposing the Don-
nan potential is ψD, then c1 = cR exp(ψD) and c2 = cR exp(−ψD)

where cR is the ion concentration in the reservoir. From these,
cR =

√
c1c2, ψD = 1

2 ln(c1/c2), and formally κ2
R = 2e2cR/(εrε0kBT ).

In the PBE the zero-point of the potential is defined to be in this
same salt reservoir so that one should have ψ → ψD in the bulk.
Whilst this is not exactly satisfied (as will be discussed in the next
paragraph), linearising the PBE about this bulk value yields an
effective screening length κ2 = κ2

R coshψD.46 This amounts to set-
ting κ2 = e2(c1+c2)/(εrε0kBT ). Taking this into consideration the
prefactor in Eq. (15) is

ckBT
ηκ2 =

εrε0

η

(kBT
e

)2
× c

c1 + c2
. (16)

In the sub-micellar limit the last factor is 1/2.
As remarked, the PBE solution in Eq. (14) does not actually sat-

isfy ψ → ψD in the bulk (in fact it satisfies ψ → 0), and thus does
not strictly qualify according to the rules discussed in the preced-
ing paragraph. In fact, unless one incorporates the background
charge density of the micelles into the PBE,47 a non-vanishing
Donnan potential is incompatible with the requirement that the
bulk electric field vanishes (dψ/dy→ 0 as y→∞); essentially as a
consequence of Gauss’ law. One could resolve this at the expense
of numerically integrating the PBE, but for present purposes we
shall take Eq. (14) as a reasonable approximation as long as the
Donnan potential is not too large. Calculations for SDS for in-
stance indicate that |ψD|. 10mV for c. 50mM (note ψD vanishes
for sub-micellar solutions).
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Fig. 7 Diffusiophoretic drift coefficient in SDS broken down into elec-
trophoretic and chemiphoretic contributions, for ζ =−80mV.

3 Results
Figures 5–10 show results for SDS, with a variety of assump-
tions for the underlying parameters. Let us first discuss the dif-
fusion coefficients. Table 1 shows a selection of the underlying
monomer (D1), counterion (D2), and micelle (Dm) diffusion coef-
ficients that have been entertained in the literature. The first row
summarises the older literature (see also Table S1 in ref.31), and
is our baseline.32–34,36,48 A reduced value of D1 was recently pro-
posed by Movchan et al. who note that D1 declines by about 10%
going from the infinite dilution limit to the CMC.37 They attribute
this to deviations from ideal solution behavior, and argue that the
value at the CMC better captures the physical chemistry; this gives
the second row in Table 1. Finally, the third row corresponds to
values which best fit our recent experiments on colloidal diffusio-
phoresis in SDS solutions.31

Collective (Dc) and self (Ds) (or tracer) diffusion coefficients
calculated from the model are shown in Fig. 5, compared to some
of the available experimental data.34,36,45 The most noticeable
phenomenon is the precipitous drop in Dc at the CMC. The rea-
son for this (Fig. 12) is that the chemical potential gradient flat-
tens almost to zero above the CMC.34 Less prominent, but puz-
zling to the early investigators, is the steady increase in Dc with
overall surfactant concentration above the CMC. As was realised
at the time,32–34 the explanation lies in the electrostatic cou-
pling contained in the Nernst-Planck equations, combined with
the evolving solution composition above the CMC that is captured
by the quasi-chemical association model (Fig. 11). We see that
the model captures this behavior very effectively. The effect of
changing D1 is fairly small and all results remain consistent with
the experimental data (Fig. 5a).

In the quasi-chemical association model, the self diffusion coef-
ficient is given as a weighted average Ds =(1−α)D1+αDm where
α is the mole fraction of micellar surfactant (see Appendix A).
Fig. 5b compares this to radiotracer,36 and NMR experiments.45

Again, the agreement is rather good, though the dependence on
D1 becomes more pronounced and arguably the final row in Ta-
ble 1 that derives from our own diffusiophoresis experiments is at
odds with the self diffusion data. This will be touched on later.
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Fig. 8 Chemiphoretic drift coefficient in SDS further broken down into
contributions from individual solution species, for ζ =−80mV.

The concentration-dependent β (c), shown in Fig. 6, displays
similar behavior to Dc, essentially for the same reasons but this
time more deeply intertwined by Eq. (9) with the behavior of the
individual gradients in Eqs. (6). The β -parameter governs the
magnitude and direction of the electric field associated with the
diffuse LJP, and is a solution property independent of the pres-
ence of tracer colloidal particles. The theory thus indicates that
the LJP is significantly diminished above the CMC (for a given con-
centration gradient) and the electrophoretic drift coefficient Γe is
likewise diminished. This is shown in Fig. 7. Note that altering
the diffusion coefficients does not affect the micellar equilibrium,
and therefore does not affect the chemical potential or the gra-
dient terms, but it does affect the LJP. Thus the electrophoretic
component of diffusiophoresis is not solely governed by the sur-
factant chemical potential gradient.

Figure 7 also shows the chemiphoretic drift coefficient Γc com-
puted from Eqs. (15) and (16), and the net drift coefficient Γ. We
see that the behavior of Γc essentially mirrors that of Γe, but is
of the opposite sign. The effect is again traceable to the behavior
of the underpinning gradient terms. The chemiphoretic drift can
be broken down into individual contributions from the different
solution species, shown in Fig. 8. Inspecting these curves we see
that even within the chemiphoretic drift calculation there is some
partial cancellation of the individual contributions.

The net overall drift coefficient Γ shown in Fig. 7 is consider-
ably smaller than the individual contributions, which almost can-
cel each other. Compared to the behavior in sub-micellar solu-
tions, the prediction is that diffusiophoresis declines significantly
(by a factor 3–5) at the CMC, and then exhibits a slow variation
with surfactant concentration above the CMC. At higher concen-
trations, Γ may change sign and grow in magnitude again. This
happens with the baseline parameter set for c & 20mM.

The remaining plots demonstrate these overall conclusions are
robust against parameter variations, whilst providing further in-
sight into the delicate balance of contributions. Fig. 9 shows the
effect of changing the diffusion coefficients from the baseline,
keeping ζ =−80mV. Fig. 10 shows the effect of changing the ζ -
potential, for the baseline diffusion model. In all cases the overall
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Fig. 9 Effect on Γ of varying diffusion coefficients (see Table 1).

magnitude of the drift coefficient falls abruptly at the CMC, then
changes more slowly above the CMC and in some cases changes
sign at concentrations typically several times the CMC. Just as
for the collective diffusion coefficient, these trends reflect the be-
haviour of the underlying individual species gradients (Fig. 4).

4 Discussion
Overall, our calculations are in broad agreement with the exist-
ing experimental evidence for diffusiophoresis in surfactant so-
lutions.30,31 In particular for sub-micellar solutions we find that
a colloidal particle will typically be propelled down a surfactant
concentration gradient, assuming the surfactant also controls the
surface charge of the particle. The basic mechanism is elec-
trophoresis in the electric field associated with the liquid junction
potential (Fig. 1a). This overcomes a slightly weaker opposing
chemiphoretic drift arising from osmotic gradients in the EDL. As
a result the net drift speed is considerably smaller than would
be found for instance in an electrolyte gradient in which these
contributions were not opposed. For example, in an SDS gradi-
ent over a length scale ∼ 100µm, the diffusiophoretic drift speed
would be of the order 1µms−1 down the gradient, which can be
compared to a speed of order 10µms−1 up a comparable NaCl
gradient. In sub-micellar SDS concentration gradients, such drift
speeds (∼ 1µms−1) are in accord with recent measurements.30,31

At the critical micelle concentration, the prediction is that the
diffusiophoretic drift coefficient abruptly drops, perhaps by a fac-
tor 3–5, and subsequently varies slowly with increasing concen-
tration above this point. It may even vanish and change sign, be-
fore growing in magnitude again. Again, this response is roughly
in accord with experimental observations of Nery-Azevedo et al.,
although we predict a remnant drift coefficient whereas they find
diffusiophoretic drift is practically absent. They also note a con-
siderable discrepancy between the measured and calculated drift
coefficient in sub-micellar solutions, where the theoretical situa-
tion should be relatively unambiguous. We now make some re-
marks on this aspect.

The obvious point is that the net drift coefficient is extraor-
dinarily sensitive to some of the parameters in the problem, in
particular the monomer diffusion coefficient D1 and the surface
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Fig. 10 Effect on Γ of varying the ζ -potential. Note the striking non-
monotonic trends.

ζ -potential. This is shown in Fig. 2, and Figs. 9–10. For example
a mere 5% decrease in D1 increases the sub-micellar drift coeffi-
cient Γ by ≈ 50% (Fig. 2). Similarly increasing |ζ | by only 5mV is
enough to shrink |Γ| by ≈ 35%. Thus, one could easily accommo-
date the deviations observed by Nery-Azevedo et al. with small
changes to the model parameters. However this may be over-
interpreting the theory as by the same consideration the results
must also be sensitive to the underpinning approximations and
assumptions in the model. We now list some of these.

First, the thin EDL approximation may be questioned since
finite-size effects in diffusiophoresis may be unexpectedly signif-
icant even for micron-sized particles.21,35 Also, Nery-Azevedo et
al. mention polarization effects in the EDL although this seems
to take the predictions in the wrong direction.8,49 Another place
where the theory may go wrong is in the detailed treatment of
the EDL, for which Poisson-Boltzmann theory may be inadequate.
Certainly, the assumption that the micelles are excluded from the
relevant region in the EDL, and do not contribute to the screen-
ing, requires more careful examination in future work.

Another possible source of error lies in the assumption of ideal
solution behavior. This is clearly an area for concern since surfac-
tants are unlikely to be well-behaved in this respect, and indeeed
the 10% decrease in D1 at the CMC compared to the infinite dilu-
tion limit has been attributed to this effect.37 As we have seen, a
small correction affecting D1 can have large consequences for dif-
fusiophoresis. This may also be behind the discrepancy between
the best-fit parameters for our diffusiophoresis experiments and
the measured self diffusion coefficient.

These problems look formidable, but are hiding a potentially
interesting opportunity. Note from Figs. 2 and 10 that the de-
pendence on the ζ -potential is quite significantly non-monotonic,
and the theory predicts perhaps counterintuitively the largest ef-
fects may arise at intermediate surface charge. Since this also
depends rather sensitively on surfactant adsorption, it offers a
tantalising possibility to tune the surfactant and particle surface
chemistry to favour or disfavour diffusiophoresis under specific
conditions. Obviously, given the parlous state of the theory, this
would require detailed experimental validation, making inexpen-
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sive high-throughput methods to characterise phoretic transport
rather desirable. We have already investigated this to some extent
in the context of developing low-cost ζ -potentiometry.23

Overall we can only claim to have taken the first steps towards
building a theory of diffusiophoresis in surfactant solutions. Nev-
ertheless we hope the present study will act as a spur to further
investigations and experiments. One aspect that could rather eas-
ily be addressed though is the effect of the CMC on colloidal trans-
port in dead-end capillaries. For this, the expression for the col-
lective diffusion coefficient in Eq. (11a) can be used to obtain
a time-dependent surfactant concentration profile, then the the-
ory developed thus far can be used to predict colloidal trajecto-
ries as in our earlier work.31 Whilst we must leave the detailed
calculations for a future publication, we can anticipate that the
precipitous drop in the surfactant diffusion coefficient above the
CMC (Figs. 5a and 6) is likely to lead to a shrinking core of supra-
micellar surfactant in the case that one starts off with a high sur-
factant concentration inside a dead-end capillary. Then, colloidal
particles will be expelled as they drift slowly into the sub-micellar
region where diffusiophoresis is strongest. When finally the sur-
factant content falls everywhere below the CMC, the logarithmic
dependence in Eq. (1) ensures continued persistent particle re-
moval as established in our earlier work.31 Thus we expect that
even starting above the CMC, diffusiophoresis will remain a potent
transport mechanism for particle removal from surfactant-laden
dead-end capillaries.
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A Solution of association model
We summarise the solution of Eqs. (5) for c1, c2, and cm, given
the overall surfactant concentration c, in the limit of large aggre-
gation number (n� 1). This is essentially the charged pseudo-
phase model of Shinoda and later workers.50–52 To proceed, write
ncm = αc so that α is the mole fraction of surfactant incorporated
into micelles, and write θ = q/n for the fractional counterion bind-
ing. Then c1 = (1−α)c and c2 = (1−αθ)c, and the law of mass
action becomes

(1−α)(1−αθ)θ = kα
ε cε−1−θ (17)

where ε = 1/n is small, and k is a constant related to K.

Note that 1− αε = 1− eε lnα ≈ −ε lnα � 1 as long as α �
O(e−n). This means that for ε→ 0 the behavior of Eq. (17) can be
divided into two regimes, as

1 ≈ kαε c−1−θ α . O(e−n) ,

(1−α)(1−αθ)θ ≈ kc−1−θ α � O(e−n) .
(18)

The two regimes are joined at c = c0 where the right hand sides
overlap, thus 1 = kc−1−θ

0 . This determines the CMC (c0). In these
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Fig. 11 Chemical potential µ (in units of kBT ) and mole fraction α of
micellar surfactant for SDS, corresponding to Figs. 3 and 4.

terms one has

α ≈ 0 c < c0 ,

(1−α)(1−αθ)θ ≈ (c0/c)1+θ c > c0 .
(19)

The mole fraction α(c) thus defined is continuous and piece-wise
smooth, and in practical terms provides an excellent approxima-
tion for the exact solution of Eq. (17). Although the second of
Eqs. (19) is implicit for α, it is straightforward to solve numeri-
cally using a standard numerical root-finding toolbox (just about
any initial guess α ∈ [0,1] should work). Once α(c) is determined,
(c1,c2,cm) follow straightforwardly.

B Leaist diffusion model

We make some comments on the approach adopted by Leaist in
which first the chemical potential gradient ∇µ is calculated, then
related to the flux by J = −L ∇µ where the Onsager coefficient
L is a generalised mobility.34 For notational simplicity in this
Appendix we will work in units where kBT = 1. Note that it is
impossible to extract ∇ψ in this approach, without injecting some
additional information from the Nernst-Planck equations.

To get a handle on the thermodynamics it is convenient to start
with the free energy of micellar association,

f = c1(lnc1−1)+ c2(lnc2−1)+ cm(lncm−1)+gcm . (20)

The first three terms are ideal solution free energies, and the last
is the free energy g associated with assembling a micelle. This
leads to the following chemical potentials,

µ1 = lnc1 , µ2 = lnc2 , µm = lncm +g . (21)

The density variables (c1,c2,cm) are constrained by constancy of
c1 + ncm and c2 + qcm. Constrained minimisation of the free en-
ergy then reveals

µm = nµ1 +qµ2 . (22)

This recovers the law of mass action as in the last of Eqs. (5), with
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K = e−g. Next,

d f = µ1 dc1 +µ2 dc2 +µm dcm

= µ1 dc1 +µ2 dc2 +(nµ1 +qµ2)dcm

= µ1(dc1 +ndcm)+µ2(dc2 +qdcm)

= µ1 dc+µ2 dc = (µ1 +µ2)dc ,

(23)

so that we identify

µ

(
=

∂ f
∂c

)
= µ1 +µ2 = ln(c1c2) . (24)

This same result can also be derived somewhat more labori-
ously by differentiating Eq. (20) and making use of Eq. (22) and
Eqs. (6). The result for SDS is shown in Fig. 11. It is then easy to
prove from Eqs. (6) that

∂ µ

∂c
=

c1 + c2 + z2cm

c1c2 +q2c1cm +n2c2cm
. (25)

This is the thermodynamic factor in Leaist’s approach.

To get to the Onsager coefficient we rewrite the Nernst-Planck
equations in terms of electrochemical potentials,

J1 =−c1D1 ∇µ̃1 , J2 =−c2D2 ∇µ̃2 ,

Jm =−cmDm ∇µ̃m ,

(26)

where

µ̃1 = µ1−ψ , µ̃2 = µ2 +ψ , µ̃m = µm− zψ . (27)

The two (charge neutral) relations in Eqs. (22) and (24) can also
be written in these terms, as µ = µ̃1 + µ̃2 and µ̃m = nµ̃1 + qµ̃2.
Combining these with the zero current constraint J1 + zJm = J2

yields the fluxes in terms of ∇µ. Finally, defining J = J1 +nJm as
before, one finds J =−L ∇µ where

L =
c1c2D1D2 +q2c1cmD1Dm +n2c2cmD2Dm

c1D1 + c2D2 + z2cmDm
. (28)

This is the Onsager coefficient. Since J = −L ∇µ =

−L (∂ µ/∂c)∇c, the overall diffusion coefficient is the product of
the two factors in Eqs. (25) and (28). This recovers Eq. (11a)
(equivalently Eq. (25) in ref. 34). Results for SDS (partly non-
dimensionalised by factors of c) are shown in Fig. 12.

C Chemiphoresis calculation

We present some more details of the Poisson-Boltzmann equation
(PBE) and the integrals that appear in the chemiphoretic contri-
bution. It will be convenient to work in terms of the reduced
height u = κy, and pull out a common factor 1/κ2 from the inte-
grals in Eq. (13).

0 10 20 30 40 500

1

2

3

4

5

Fig. 12 Dimensionless chemical potential gradient, and Onsager coef-
ficient (generalised mobility), in Leaist’s approach to calculating the col-
lective diffusion coefficient for SDS. 34

C.1 Poisson-Boltzmann equation

We have to solve d2ψ/dy2− κ2 sinhψ = 0, or in terms of the re-
duced height

d2ψ

du2 = sinhψ . (29)

The boundary conditions are ψ → ψs at u→ 0 and dψ/du→ 0
at u→ ∞. Whilst this is a textbook exercise,53 the intermediate
results facilitate the evaluation of the integrals in Eq. (13). As
a first step multiply Eq. (29) through by dψ/du and integrate to
find

1
2

(dψ

du

)2
= coshψ−1 = 2sinh2 1

2 ψ . (30)

The constant of integration has been chosen to correspond to
dψ/du→ 0 at u→ ∞. Next, it is the negative root of Eq. (30)
that is required, thus

dψ

du
=−2sinh 1

2 ψ . (31)

Again, this integrates,

2ln tanh 1
4 ψ =−2u+ constant , (32)

or
tanh 1

4 ψ =Ce−u (33)

where C = tanh 1
4 ψ0 as advertised. If we had made the wrong

choice of sign in Eq. (31), this would have blown up as eu in the
relevant half-space u > 0. Using the standard expression for the
inverse hyperbolic tangent gives Eq. (14), in the main text.

C.2 Concentration profile integrals

We use the above results to calculate the integrals in Eq. (13),
which we write in dimensionless terms as

I1,2 =
∫

∞

0
udu(e±ψ −1) , Im =

∫
∞

0
udu(ezψ −1) . (34)
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Fig. 13 The individual integrals in Eqs. (34) as a function of the wall ζ -
potential, for SDS micelle charge z = 9.6. The downturn in Im just visible
as ζ → 0 is an artefact (see text).

With the intermediate result in Eq. (31), the first two are straight-
forward. For example,

I1 =
∫

∞

0
udu(eψ −1) = 2

∫
∞

0
udueψ/2 sinh 1

2 ψ (35a)

=−
∫

∞

0
udueψ/2 dψ

du
(35b)

=−
[
u ·2(eψ/2−1)

]∞

0
+2

∫
∞

0
du(eψ/2−1) (35c)

=
∫

ψ0

0
dψ

eψ/2−1
sinh 1

2 ψ
=
[
4ln(1+ eψ/2)

]ψ0

0
(35d)

= 4ln 1
2 (1+ eψ0/2) . (35e)

In going from (b) to (c) here, the constant in the integration-by-
parts has been judiciously chosen to make the boundary contri-
bution vanish. Later, in changing variables from u to ψ, the limits
of integration have been flipped introducing an extra minus sign.
In a similar vein one obtains I2 = 4ln 1

2 (1+ e−ψ0/2).
Now we turn to the micelle contribution, codified in Im. As

noted in the main text we start by dividing the integration range
into inner and outer regions so that

Im =
∫

κH

0
udu(ezψ −1)+

∫
∞

κH
udu(ezψ −1) (36a)

≈− 1
2 κ

2H2 +
∫

∞

κH
udu4zCe−u (36b)

≈− 1
2 κ

2H2 +4zCe−κH(1+κH) . (36c)

To obtain the intermediate result (b) we suppose that ezψ ≈ 0 in
the inner region and ezψ −1≈ zψ in the outer region; then z� 1
justifies the use of the far-field PBE solution (tanh 1

4 ψ ≈ 1
4 ψ).

Clearly this approach likely overestimates the inner region and
underestimates the outer region. This suggests ∂ Im/∂ (κH) = 0
can be used as a criterion to find κH, yielding the operational
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Fig. 14 The integral Im evaluated approximately with the method in the
text with α = 1 (chained line) and α ≈ 0.713 (dashed line), compared to
numerical integration (solid line). The inset shows κH (with α = 0.713).

definition zψ(κH) = −1, or κH = ln(4z tanh 1
4 |ψ0|) noting z� 1

and ψ0 < 0. Injecting this into the above gives

Im ≈− 1
2 κ

2H2− (1+κH) =−(1+κH + 1
2 κ

2H2) . (37)

We have noticed a significant improvement can be made
by introducing an empirical adjustment factor so that κH =

ln(4αz tanh 1
4 |ψ0|), whilst retaining Eq. (37) for Im. Choosing

α ≈ 0.713 (as in the main text) produces almost perfect agree-
ment with the numerically-evaluated integral, for relevant param-
eter ranges (Fig. 14). This approximation for Im only makes sense
if κH > 0, which translates into the requirement that αz|ψ0| & 1
(for z� 1). For all practical purposes, this is always satisfied (see
for example Fig. 14 inset). It does however generate an artefact
at |ψ0| → 0, which accounts for the unphysical downturn in Im in
this region (Fig. 13).
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