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AABBSSTTRRAACCTT::  Herein we describe a general, mild and 
scalable method for deuterium incorporation by potassium 
methoxide/hexamethyldisilane-mediated dehalogenation of 
arylhalides. With CD3CN as a deuterium source, a wide array 
of heteroarenes prevalent in pharmaceuticals and bearing 
diverse functional groups, are labeled with excellent 
deuterium incorporation (>60 examples). The ipso-
selectivity of this method provides precise access to libraries 
of deuterated indoles and quinolines. The synthetic utility of 
our method has been demonstrated by the incorporation of 
deuterium into complex natural and drug-like compounds.  

Deuteration has found widespread applications in chemistry 
and related fields, such as organic synthesis,1 mechanistic 
studies,2 quantitative analyses,3 and pharmaceutical 
discoveries and developments.4 Deuterium labeling 
techniques are broadly utilized as efficient tools for 
optimization of metabolic stability and toxicity of drugs.5 
Moreover, introducing deuterium into active pharmaceutical 
ingredients may enhance their pharmacokinetic and 
pharmacodynamics properties.6 Therefore, deuterium 
incorporation is clinically meaningful and has the potential 
to enable new drug discovery.4 
    Development of efficient methods for deuteration has 
recently attracted much attention.7,8 Dehalogenative 
deuteration of widely available arylhalides is a convenient 
way to access versatile deuterated products. A number of 
methods enabling such transformation have been reported 
and widely used,7–10 such as lithium-halogen exchange,9 
transition-metal-catalyzed dehalogenative reduction,10a–f and 
organotin10g or sodium amalgam10h mediated halogen 
abstraction (Scheme 1a – c). However, the necessities of 
precious metal catalysts/ligands, toxic tin reagents, or highly 
reactive alkyllithium reagents under cryogenic conditions 

disadvantage the applications of those protocols. Crucially, 
one of the major challenges and potential limitations in 
halogen/lithium exchange is the poor tolerance of functional 
groups.9 Alternatively, direct hydrogen isotope exchange 
(HIE) was found to be a straightforward strategy,11 and great 
advances were made recently by the Chirik11f and 
Macmillan11g groups using iron and iridium photoredox 
catalysis respectively. Although these are powerful methods, 
achieving precise site-selectivity and high deuterium 
incorporation is still challenging. Therefore, general and mild 
methods with broad substrate scope, precise selectivity, and 
excellent deuterium incorporation are highly desirable. 
Recently, we have developed a simple dehalogenative 
deuteration strategy using a combination of potassium 
methoxide (KOMe) and hexamethyldisilane (Me3SiSiMe3) 
in CD3CN at room temperature (Scheme 1d). This mild 
method works well with arylhalides and alkenylhalides, and 
tolerates a wide range of functionalities. Moreover, 
deuteration can be easily controlled as the ipso-deuteration 
products are formed in a site-specific manner. Herein we 
wish to report the preliminary studies of this methodology. 12 
SScchheemmee  11..  DDeeuutteerriiuumm  IInnccoorrppoorraattiioonn  wwiitthh  AArryyllhhaalliiddeess..  
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SScchheemmee  22..  SSuubbssttrraattee  SSccooppee  SSttuuddiieessa  

 
aReactions were conducted on 0.5 mmol scale. bWith 20 equiv of CD3CN. cWith 50 equiv of CD3CN. dWith KOMe (4 equiv) and 

Me3SiSiMe3 (4 equiv). e0.2 mmol scale with 1 mL CD3CN. fProton/deuterium exchange ratio of acidic protons with CD3CN. 

    Our investigations started with 1-methyl-5-bromoindole 
(11aa) as a model substrate. Extensive optimization 
experiments identified that treatment of 11aa with KOMe, 
Me3SiSiMe3, and a relatively cheap deuterium source–
CD3CN (20 equiv) led to the desired product 22aa in excellent 
yield (see Table S1 in SI for condition optimizations and 
discussions). Iodoindole shows similar reactivity, but 
chloroindole or fluoroindole is completely inert. It is worth 
noting that the reaction occurs at room temperature with 
exclusively deuterium incorporation and without the 
formation of silylation byproducts.13     
    With the optimized conditions in hand, we next turned our 
efforts to investigate the scope of substrates (Scheme 2). 5-
Bromoindoles with various N-protecting groups such as Me, 
Bn, allyl, and MOM, all provided the corresponding 
deuterated products (22aa  – 22dd) in 61 – 92% yield. Many other 
pharmaceutically important heterocyclic scaffolds, including 
quinoline (33aa), isoquinoline (33bb), pyridine (44aa), 
(tetrahydro)carbazole (44bb  and  44cc), benzothiophene (44dd), 
and thiophene (44ee), all provided the deuterated heterocycles 
in moderate to good yield (61 – 91 %). Naphthalenes and 
fluorene were also compatible delivering the corresponding 
products (44ff, 44gg and  44hh)) smoothly. Next, we explored the 
electronics effect of substituents on arylbromides. Diverse 
functionalities such as pyridine (44ii), nitrile (44jj), epoxide 
(44kk), sulfone (44ll), amine (44mm), morpholine (44nn), benzyloxy 
(44oo), were all well tolerated and offered access to deuterium 
derivatives in 60 – 98% yield. Products 44pp and 44qq  were 
obtained without affecting the chloride and fluoride. In 
particular, boronate (Bpin) containing product 44rr was 

successfully synthesized in 72% yield which allows the 
streamline derivatizations of this deuterated moiety. 
Surprisingly, the debromination proceeded efficiently even 
with a sterically-encumbered substrate (2,4,6-tri-tertbutyl-
benzyl bromide) to give product 44ss in 88% yield.  
    To further elaborate the functional group compatibility of 
this chemistry, a variety of oxygen-tethered benzyl bromides 
were prepared and subjected to the standard conditions (55aa – 
55gg). To our delight, substrates with a side chain containing 
amide (55aa), free alcohol (55bb), chloride (55cc), azide (55dd), 
internal or terminal olefins (55ee  and 55ff), and terminal alkyne 
(55gg) all underwent debrominative deuteration smoothly 
resulting in the corresponding products in 62 – 94% yield. 
Interestingly, a free alcohol was partially protected in situ to 
form silyl ether as well (i.e., 55bb, see SI).14 In addition, 
benzooxazole, pyrimidine, and piperiazine containing 
deuterated compounds (66aa – cc) were also successfully 
accessed in 80% – 89% yield. Finally, the reactions with 
methoxymethyl-protected (S)-3,3’-dibromo-BINOL and 
alkenylbromide furnished products 66dd and 66ee in 67% and 
80% yield, respectively. 
    Several additional points regarding the substrate scope 
investigations are noteworthy. Sensitive functionalities that 
are incompatible with alkyl lithium, such as epoxide, nitrile, 
quinoline, pyrimidine etc, are well tolerated. For instance, 
treatment of epoxide SS44kk and nitrile SS44jj under 
halogen/lithium exchange conditions resulted in cyclized 44kk’’ 
and 44jj’’ as the major products (eqs 1 and 2). A direct 
comparison with previously strategies demonstrated that

Ar Br/I Ar D
KOMe (2 equiv), Me3SiSiMe3 (2 equiv)

CD3CN, 25 °C

N

D

D

3b, 75%b,d

N

D

N
Bn

Me

4a, 83%d,e

N
Me

D D

4c, 75%c,d

N
Me

D

4b, 61%e

OMe
OMe

4g, 89%b

MeMe

D

4h, 80%c

N
D

4i, 82%b

S

4d, 85%b

D

O
O

DD

4k, 79%c,d

6d, 67%e

D

OMOM
OMOM

D

D

NMe2

F

4p, 75%b 4s, 88%c

D
tBu

tBu

tBu

D

4j, 60%b4f, 92%b

5a, 63%c

5e, R =  (E)-CH2CH=CHPh, 88%b

5f, R = CH2CH2CH=CH2, 64%c

D

O OR
5

R = Cl, 5c, 82%b

R = N3, 5d, 91%b4r, 72%c,d

D

BPin

4l, 83%b

D

S

D

O

D

O
R

D

D

O

NMe2

SD

4e, 85%e

N
Bn

2b, 92%c

D

N
MOM

2d, 90%c

D

N

2c, 61%b

D

N
Me

2a, 87%b

D

D

OBn

4o, 98%b

N

D

Et

Et

4m, 79%c

N

3a, 91%c

D

Me
10

5g, 62%b

D

O

D

N

4n, 79%c

O

(81% D)f

(32% D)f (100% D)f

CN

(100% D)f

O O

(35% D)f N

N

D

6b, 87%e

D
N O

N

6a, 80%c

D

NMe2

Cl

4q, 82%b

6e, 80%c

N
Bn

D

(64% D)f

N

D
N

N

N

N

6c, 89%e

[5b (R = H), 76% + 
5b' (R = TMS), 18%]c

D

O R
5



 

SScchheemmee  33..  DDeeuutteerriiuumm  IInnccoorrppoorraattiioonn  iinnttoo  PPhhaarrmmaacceeuuttiiccaallllyy  iimmppoorrttaanntt  mmoolleeccuulleess  aanndd  SSccaallee--uupp  RReeaaccttiioonna  

  
aSee SI for the detailed reaction conditions. bProton/deuterium exchange ratio of acidic protons with CD3CN. 

our chemistry not only allows a broad substrate scope but 
also offers a positional complement to recently reported two-
step procedure of phosphorium salt formation/deuteration 
of pyridines and diazines12a (see Scheme S1 in SI for the 
comparison results with halogen-lithium exchange, 
transition-metal catalysis, and sequential 
phosphoration/deuteration). Secondly, substrates bearing 
acidic protons (i.e., α-position of nitrile, amide, and sulfone) 
undergo proton/deuterium exchange with CD3CN. Finally, 
with respect to known limitations, monosubsituted or 1,2-
disubstituted linear alkenylbromides gave eliminated alkynes 
without formation of the desired deuterated products.  

 
        The promising functional group tolerance and mild 
reaction conditions of this protocol enable its application to 
the deuteration of pharmaceuticals and natural product 
derivatives (Scheme 3a). Introducing deuterium into 
menthol (77aa) and glucofuranose (77bb) derivatives were 
successfully realized in excellent yields. Deuterated naftifine 
(77cc), pheniramine (77dd), methylduloxetine (77ee), 
diphenhydramine (77ff), imipramine (77gg), clomipramine 
(77hh), aplysamine (77ii) were achieved from the corresponding 
bromide precursors in 73 – 91% yield. A triazole derivative of 
estradiol (77jj) was accommodated and deuterium was 
introduced in 82% yield. Additionally, deuterated estrone 
analogs (77kk – 77mm) were readily synthesized in 68 – 85% 
yield. In the case of estrone 77mm, the carbonyl group adjacent 
to a quaternary carbon was compatible. Moreover, a formal 
isotopic exchange of the original C–H bond of 

methyltocopherol (77nn) was realized by performing both the 
bromination15a and deuteration in a one-pot fashion to 
eliminate the need for isolation of the bromo-precursors 
(Scheme 3b). Finally, we were delighted to find that the 
reaction was amenable to scale up using 20 equivalent of 
deuterium source without loss of efficiency (Scheme 3c).  

SScchheemmee  44..  CCoommbbiinnaattoorriiaall  SSyynntthheessiiss  ooff  LLiibbrraarriieess  ooff  
DDeeuutteerraatteedd  IInnddoolleess  ((aa))  aanndd  QQuuiinnoolliinneess  ((bb))a  

 
aReactions were conducted on 0.5 mmol scale with 20 equiv 

of CD3CN. bWith N-Me-2-I-indole as substrate. cWith 50 equiv 
of CD3CN. 

        Precise deuteration of the specific bond of interest is 
necessary for methods to be useful in drug discovery and 
mechanistic studies. Such a highly selective deuteration is 
still a significant challenge for the HIE processes.11 In 
contrast, given the availability of diverse arylhalides,15 site-
specifically introducing deuterium into target molecules 
could be rapidly accessed by our methodology. To showcase 
this feature, pinpoint incorporation of deuterium into 
privileged heterocycles was carried out. Starting from 
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bromo- or iodo-precursors, a library of deuterated indoles 
(22aa, and 22ee – 22hh) were synthesized in moderate to good yield 
(81 – 91%) with excellent deuterium incorporation (Scheme 
4a). Similarly, quinolones (33aa, and 33cc – 33hh) were successfully 
labeled (from C2 to C8) in 31 – 91% yield (Scheme 4b).  
        A number of synthetic methods with potassium alkoxides 
and organosilanes have been reported involving the 
intermediacy of either radicals or silyl anions.13,16 We first 
considered the possibility of a radical pathway. The addition 
of TEMPO, which is able to shut down the silyl radical 
addition,16e has little effect to the deuteration reaction (see 
Scheme S2a in SI). Moreover, when a radical probe substrate 
1-bromo-2-(but-3-en-1-yl)benzene was used, ipso-
debromination product was obtained in 54% yield 
exclusively without the observation of radical cyclization 
reaction  (Scheme S2b).17 Those results indicate that a free 
radical species is less possible. Inspired by previous studies 
reporting silyl substitutions of aryl halides by Ito et al18 and 
Strohmann et al,19 a putative mechanism involving an anionic 
pathway is proposed to be active under our reation 
conditions (Scheme S2c). The mixture of KOMe and 
Me3SiSiMe3 may slowly generate trimethylsilyl anion or a 
nucleophilic hypervalentsilane species,16 which attacks the 
aryl bromide to form an aryl carbanion.18 The transient 
carbanion is instantaneously trapped by the large excess of 
CD3CN to provide the desired deuterated product. Detailed 
studies aimed at understanding mechanism will be carried 
out to further probe this hypothesis. 
    In summary, a general KOMe/disilane-mediated ipso-
dehalogenative deuteration reaction in CD3CN was 
developed. This method features operationally simple 
procedures, mild reaction conditions, readily available 
reagents, and good functional group tolerance. A diverse 
range of valuable deuterated (hetero)arenes, natural 
products, and pharmaceuticals were isotopically labeled with 
excellent deuterium incorporation and specificity. Further 
mechanistic studies are currently ongoing. 
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