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The rapid and streamlined synthesis of complex molecules has been a long-standing 
challenge in organic chemistry. Improved procedures make accessible a broader array of 
potential chemical targets that can be applied in many fields, such as pharmaceuticals, 
agrochemicals and material science. The established approach for the synthesis of complex 
molecules relies on the use of functional groups, which are considered as the reactive 
functionality within an organic compound. In recent years, there has been considerable 
interest in exploring a different approach in which the carbon–hydrogen (C–H) bonds are 
selectively functionalized.1-5 Several new reagents and catalysts have been recently developed 
to render selective C–H functionalization a viable proposition. The most widely used C–H 
functionalization methods rely on the use of substrates that have an inherent preference for 
functionalization at specific C–H bonds,6-8 often employing directing groups9-11 or conducting 
intramolecular reactions.12-14 An alternative approach relies on catalyst control. In the ideal 
situation, a suite of catalysts would be available to achieve specific site-selective C–H 
functionalization at will and overcome the normal reactivity preference of the substrate. We 
recently introduced two dirhodium catalysts capable of inducing site-selective C–H 
functionalization at the most accessible secondary15 and tertiary C–H bonds.16 In this paper, 
we describe the design and optimization of a new dirhodium catalyst that is capable of high 
levels of site-selectivity and enantioselectivity for the most accessible primary C–H bond. 
 
The development of reagents that are sufficiently reactive to functionalize non-activated sp3 C–H 

bonds and still be susceptible to the controlling influence of a catalyst is a major challenge. Some 

notable examples included C–H oxidation with metal oxo intermediates,17 C–H amination with metal 

nitrene intermediates,18-20 C–H azidation21-22 and C–H borylation.23 We have focused on the use of 

donor/acceptor metal carbenes as the reactive intermediates (Figure 1A).24-25 The presence of the 
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donor group attenuates the reactivity of the carbene compared to those with just acceptor groups, 

leading to the possibility of effective catalyst control of site-selectivity. The C–H functionalization 

proceeds through a concerted but asynchronous process, in which positive charge build-up at carbon 

occurs in the transition state, electronically favoring tertiary C–H functionalization. The donor/acceptor 

carbene intermediate, however, is sterically demanding and thus, the steric influence would tend to 

favor primary C–H functionalization. Therefore, the opportunity exists to control site-selectivity by 

modifying the size of the catalyst; a very bulky catalyst would favor primary C–H functionalization, 

whereas a less sterically constrained catalyst would prefer secondary or even tertiary C–H 

functionalization. Recently, we designed a D2 symmetric dirhodium catalyst, Rh2[R-3,5-di(p-
tBuC6H4)TPCP]4, that selectively functionalizes the most accessible secondary C–H bond15 and a 

second catalyst, Rh2(R-TCPTAD)4, that selectively functionalizes the most accessible tertiary C–H 

bond16 (Figure 1B). Che and co-workers have explored the use of bulky rhodium-porphyrin catalysts 

for selective functionalization of hydrocarbons with donor/acceptor carbenes at the primary C–H 

bonds, however, the site- and enantioselectivity was relatively limited.26 Here, we report that a new 

dirhodium catalyst, Rh2[R-tris(p-tBuC6H4)TPCP]4, is highly effective for the functionalization of non-

activated primary C–H bonds with extremely high levels of site-selectivity and enantioselectivity. 

 
Figure 1 Caption: Figure 1A: General scheme of the carbene-induced C–H functionalization. Figure 1B: Comparison of 

prior C–H functionalization studies with the current study. This study describes a catalyst that is capable of selective 

functionalization of the most accessible primary C–H bond. 
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The evaluation of the site-selectivity of new catalysts for unactivated C–H bonds was conducted with 

the reference reaction between 2-methylpentane and 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-

diazoacetate (1a) (Figure 2). Even though 2-methylpentane is a relatively simple substrate, it has 
eight distinct C–H bonds. The donor/acceptor carbenes, however, are sufficiently selective that only 

four sites can be functionalized, the most sterically accessible primary-, the most sterically accessible 

diastereotopic secondary-, and the tertiary C–H bonds, to generate the products 2, 3 or 4. We have 
previously shown that the established chiral catalysts such as Rh2(R-DOSP)4 (A) gave preferentially 
the tertiary C–H insertion product 4, with Rh2(S-TCPTAD)4 (B) being the optimum catalyst for the 
tertiary site.16 In the case of 2-methylpentane, Rh2(R-DOSP)4 gave a n.d.:19:81 ratio, whereas Rh2(S-

TCPTAD)4 gave a n.d.:11:89 ratio favoring the tertiary site. The bulky dirhodium tetrakis-

triarylcyclopropanecarboxylates [Rh2(TPCP)4] have been shown to be much more bulky catalysts 

than the more established catalysts and tend to favor C–H functionalization at less crowded sites. 

Rh2[R-3,5-di(p-tBuC6H4)TPCP]4 (C) is exceptional for selective functionalization at the most 
accessible secondary C–H bond of n-alkanes15 and gave a 7:75:18 ratio favoring the secondary site 

with 2-methylpentane. During the development of Rh2[R-3,5-di(p-tBuC6H4)TPCP], a related catalyst, 

Rh2(R-p-PhTPCP)4 (D), with a biphenyl substituent was observed to give a mixture of primary and 
secondary C–H insertion products with n-pentane15 and in the reaction with 2-methylbutane it gave a 

39:45:16 ratio. As this was the first TPCP catalyst to give significant amounts of primary C–H 

insertion product it became the scaffold for the design of more selective catalysts for primary C–H 

functionalization.  

 

During the studies on Rh2[R-3,5-di(p-tBuC6H4)TPCP]4 (C), we developed a novel strategy to generate 
a library of catalysts by a palladium-catalyzed eight-fold cross coupling reaction.15 A similar strategy 

was used for catalyst diversifications in this project. Two series of new catalysts related to Rh2(R-p-

PhTPCP)4 were generated, either by a four-fold cross coupling on Rh2(R-p-BrTPCP)4 to form 

catalysts E-G or a 12-fold cross coupling on Rh2(R-tris(p-Br)TPCP)4 to form catalysts H-K. All the 
catalysts were effective chiral catalysts, generating the primary C–H functionalization products with 

high asymmetric induction (≥90% e.e.). In the case of the Rh2(R-p-BrTPCP)4 derived analogs Rh2[R-

(p-tBuC6H4)TPCP]4 (E) and Rh2[R-(p-tBuC6H4C6H4)TPCP]4 (G) were the best for site-selectivity, 
giving a 71:25:4 and 71:26:3 ratio favoring the primary C–H insertion product, which was formed with 

very high asymmetric induction (96% and 97% e.e.). The triphenyl derivatives F also gave good but 
slightly inferior selectivity to E and G. The four catalysts generated from Rh2[R-tris(p-Br)TPCP]4 were  
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Figure 2 Caption: Numerical and graphical representations of the catalysts optimization studies for selective primary C–H 

functionalization. The green product 2 is the desired product and Rh2[R-tris(p-tBuC6H4)TPCP]4 (I) is the optimum catalyst. 
Abbreviations: r.r., regioisomeric ratio; e.e., enantiomeric excess, n.d., not detected. 

 

also evaluated and Rh2[R-tris(p-tBuC6H4)TPCP]4 (I) displayed the best characteristics with an 84:16 
ratio of primary and secondary products 2 and 3 (no observable tertiary product 4) and 98% e.e for 

CH2Cl2, reflux

Rh2L4
(1 mol %)

CO2CH2CCl3

N2

CO2CH2CCl3 CO2CH2CCl3 CO2CH2CCl
3

p-BrC6H4

p-BrC6H4
p-BrC6H4 p-BrC6H4

+ + +

2 3 41
Catalyst r.r. (2 : 3 : 4) e.e. (2, %) yield (2+3, %)

7 : 75 : 18 81 75

39 : 45 : 16 97 75

p-tBuC6H4 (E) 71 : 25 : 4 96 74

p-PhC6H4 (F) 70 : 27 : 4 98 70

p-tBuC6H4C6H4 (G) 71 : 26 : 3 97 72

68 : 25 : 7 90 71

84 : 16 : n.d. 98 90

p-PhC6H4 (J) 68 : 25 : 7 92 83

p-tBuC6H4C6H4 (K) 48 : 35 : 17 97 55

n.d. : 11 : 89 – 10

Ph (D)

Ph (H)

p-tBuC6H4 (I)

Ph
Ph

R1

O

O

Rh

Rh

4

R2

R2

R2

O

O

Rh

Rh

4

Rh2[R-3,5-di(p-tBuC6H4)TPCP]4 (C)

R1=

R2=

n.d  : 19 : 81 – 10Rh2(R-DOSP)4 (A)

Rh2(S-TCPTAD)4 (B)

3 equiv. 1 equiv.



5	
	

the primary product 2. In this series, the extended triphenyl catalysts J and K gave considerably 
inferior site-selectivity to Rh2[R-tris(p-tBuC6H4)TPCP]4 (I). On the basis of these studies, Rh2[R-tris(p-
tBuC6H4)TPCP]4 (I) was selected as the optimum catalyst for primary C–H functionalization. The 
nature of the ester functionality of the donor/acceptor carbene also has a significant effect on the 

outcome of this chemistry (see supporting information). The methyl ester derivative failed to give any 

of the C–H functionalization, whilst the trifluoroethyl ester gave a poor regioisomeric mixture 

(54:36:10 r.r.). The tribromoethyl derivative gave slightly improved site- and enantioselectivity 

(87:13:n.d. r.r. and >99% e.e.) compared to the trichloroethyl derivative but the yields were lower.	
	

Having optimized the catalyst and the ester functionality, the scope of the primary C–H 

functionalization was examined with a range of substrates (Figure 3). Initially a series of alkanes was 

examined to determine the influence of the steric environment within the substrate on site-selectivity 

(Figure 3, 5-12). In contrast to 2-methylpentane, the methylene group in 2-methylbutane is not 
susceptible to functionalization because it is too close to the isopropyl group. The tribromoethyl 

product 5 is formed with better selectivity for the most accessible primary C–H bond (90:10 r.r., >99% 
e.e.) compared to the trichloroethyl product 6 (89:11 r.r., 90% e.e.) but the yield is lower (5, 40%; 6, 
82%). In the case of 3-methylpentane the tertiary site is slightly more crowded than 2-methylbutane 

and this is enough for the reaction to proceed cleanly for the primary C–H insertion product 7. In 
contrast to the previous study in which only tertiary C–H functionalization product was observed with 

Rh2(S-TCPTAD),16 C–H functionalization occurred only at the most accessible primary C–H bond with 

Rh2[R-tris(p-tBuC6H4)TPCP]4, the more crowded secondary site and the tertiary site were no longer 

functionalized. Similarly, highly selective reactions were observed in the formation of 8-11. the 
reaction with 2,2-dimethylbutane to form 8 is notable because in the past 2,2-dimethylbutane has 
been extensively used as an “inert” solvent for donor/acceptor carbene C–H functionalization. Also, 

the formation of 11 with very high site-selectivity (>98:2 r.r.) and enantioselectivity (98% e.e.) shows 
the current system is superior to the best previously reported chiral catalyst, a rhodium-porphyrin 

catalyst, which formed 11 with relatively poor primary/secondary ratio (3.8:1 r.r.) and 
enantioselectivity (65% e.e.).26 These results showed that primary C–H functionalization competes 

favorably with reactions of secondary and tertiary C–H bonds, as long as secondary and tertiary sites 

are slightly sterically encumbered. The steric subtleties are readily seen in the reaction with 3,3-

dimethylhexane to form 12. Reaction at the primary C–H bond on the propyl group is favored over 
ethyl group (marked in green) by an 84:13 ratio and no reaction occurs at the other two methyl groups. 

Studies were also conducted in the presence of substrates containing functional groups to illustrate 
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the potential versatility of this chemistry. The reaction was conducted with a series of trimethylsilyl 

(TMS) protected alcohols to form 13-17. Generally, the reactions proceeded with excellent selectivity, 
but the yields were deceased when the inductively electron-withdrawing group was too close to the 

site of C–H functionalization, as seen in the case of 13 and 14. The reactions with TMS protected 3-
ethyl-3-hexanol to form 17 is a further illustration of the subtle steric effects because reaction at the 
propyl methyl group is strongly preferred over the six other methyl groups in the substrate. 1-

Bromobutane is also a viable substrate, forming 18 with high enantioselectivity (93% e.e.) but with 
some competition from C–H functionalization as the secondary C–H bond marked in blue with a ratio 

of 84:16. As the emphasis of this study has been to determine the subtleties of the site-selectivity, the 

studies so far have concentrated on a single aryl group in the donor/acceptor carbene. However, the 

donor group can be varied and this is illustrated in the reactions of 2,2-dimehylpentane to form the 

boronic ester and trifluoromethyl derivatives 19 and 20. 

 
Figure 3 Caption: Examples of selective primary C–H functionalization. In some instances regioisomer products are 

formed: a When forming the following compounds, a small amount of a secondary C–H functionalization product was 

formed at the position marked as blue: 5 (10%), 6 (11%), 16 (6%), 18 (16%) b A value of >98:2 r.r. means no other 
regioisomer was detected in the 1H NMR spectra of the crude reaction mixtures; c C–H functionalization took place at 
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other positions of 3,3-dimethylhexane (12): 13% at the position marked green (1° site), 3% at the position marked blue (2° 
site); d C–H functionalization took place at other positions of ((2,2-diethylpentyl)oxy)trimethylsilane (17): 4% at the position 
marked green (1° site), 3% at the position marked blue (2° site).	

 

We have also examined the Rh2[tris(p-tBuC6H4)TPCP]4-catalyzed reactions with enantiomerically 

pure substrates 21-23. In these substrates, the internal methyl group is sufficient to block any C–H 
functionalization reactions at the methylene sites, and all the substrates react cleanly. The reactions 

are under catalyst control because the reaction with Rh2[R-tris(p-tBuC6H4)TPCP]4 gives one 

diastereomeric series of the products 24-26, in which the newly formed stereocenter has the S-
configuration, whereas the reaction with Rh2[S-tris(p-tBuC6H4)TPCP]4 gives the opposite 

diastereomeric series 27-29. 

 
Figure 4 Caption: Catalyst-controlled diastereoselective primary C–H functionalization 
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and selectivity of Rh2[R-tris(p-tBuC6H4)TPCP]4 (I). Given that the catalyst contains nearly 500 atoms, 
we employed the two-layer ONIOM (B3LYP:UFF) approach to study the catalyst structure and C–H 

functionalization selectivity using the partitioning shown in Figure 5a (see Supplementary Information 

for computational details). These ONIOM calculations reveal that catalyst I has two major 
conformations, with a C2-symmetric conformation favored over a C4-symmetric conformation by an 

energy difference of 10.1 kcal/mol (see Supplementary Information for other higher energy symmetric 

conformations in Figure S4).  

 
Figure 5 Caption: Structural information about the dirhodium catalyst I. a, ONIOM partitioning of the catalyst with the 
atoms inside the purple rectangle modeled with DFT and the atoms outside modeled with the UFF, along with the relative 

energies of the C2 and C4 conformations (U: up; S: side). b, Top and side views of the C2 and C4 conformations. The free 
energies with solvation correction are given in kcal/mol.  
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TS2 (primary C–H bond approached from the opposite face of the carbene), which is in excellent 
agreement with the experimentally observed enantioselectivity of 98% e.e. The destabilization of TS2 
arises from the alkyl substrate repulsions with the “up” biphenyl moiety. (see also Figure S7 in the 

Supplementary Information). Because there are significant contacts between alkyl and aryl groups, 

and there are likely a variety of low energy conformations, more extensive computations with 

dispersion and dynamic averaging are underway.  

 
Figure 6 Caption. Optimized transition structures for carbene insertion into the primary C–H bond. The free energies with 

solvation correction are given in kcal/mol. TS1 involves attack to the Si face of the carbene and is the lowest energy, 
consistent with the observed asymmetric induction. 
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donor/acceptor carbenes as well as metal nitrene and metal oxo intermediates, these studies are 

likely to encourage further efforts in catalyst design to control site-selectivity.  

 

Supplementary Information is available in the online version of the paper. 
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