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This article presents a high-precision multi-modal approach for localizing moving cameras with monocular
videos, which has wide potentials in many intelligent applications, including robotics, autonomous vehicles,
and so on. Existing visual odometry methods often suffer from symmetric or repetitive scene patterns, e.g.,
windows on buildings or parking stalls. To address this issue, we introduce a robust camera localization
method that contributes in two aspects. First, we formulate feature tracking, the critical step of visual odom-
etry, as a hierarchical min-cost network flow optimization task, and we regularize the formula with flow
constraints, cross-scale consistencies, and motion heuristics. The proposed regularized formula is capable
of adaptively selecting distinctive features or feature combinations, which is more effective than traditional
methods that detect and group repetitive patterns in a separate step. Second, we develop a joint formula for
integrating dense visual odometry and sparse GPS readings in a common reference coordinate. The fusion
process is guided with high-order statistics knowledge to suppress the impacts of noises, clusters, and model
drifting. We evaluate the proposed camera localization method on both public video datasets and a newly cre-
ated dataset that includes scenes full of repetitive patterns. Results with comparisons show that our method
can achieve comparable performance to state-of-the-art methods and is particularly effective for addressing
repetitive pattern issues.
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1 INTRODUCTION

Accurately localizing moving cameras from monocular videos [63] is capable of providing scene
context for high-level video understanding tasks [30], e.g., behavior analysis, action recognition,
and so on, and has wide potentials in many intelligent systems, e.g., robotics, autonomous vehicles,
and intelligent helicopters. While GPS devices are popular in these applications, they can only
provide camera positions of moderate accuracies [55] and are sensitive to environment changes.
In addition, GPS locations are only sparsely available, which is not applicable for time-critical
applications, e.g., security systems or autonomous driving systems. In the past literature, vision-
based methods have been proposed to estimate camera locations (i.e., visual odometry), to enhance
the accuracies and robustness of GPS systems. The basic idea is to build correspondences across
consecutive video frames, e.g., using optical flow algorithm [8, 26, 31, 45], and further estimate
relative camera movements [43, 59]. These methods have achieved promising results in generic
types of scenes, as demonstrated by the odometry benchmark [19]. However, the visual odometry
problem still remains unresolved in complicated scenes that are full of repetitive or symmetric
patterns, since these patterns bring large ambiguities for feature correspondence as well the whole
visual odometry pipeline.
To address the repetitive pattern issues, we propose a robust multi-modal method for localizing

moving cameras using monocular videos. The objective of our approach is to estimate camera
poses (translation and orientations) at each time-step. Figure 1 shows a few video frames (top)
captured by a moving camera, and the scene map (bottom) overlaid with the estimated camera
trajectories. The scene is full of repetitive patterns, e.g., parking stalls, trees, buildings, and so on,
which might challenge most existing camera localization methods. In contrast, our approach is
able to robustly localize cameras in world coordinate with high accuracies.

1.1 Overview of Our Approach

Our goal is to estimate visual odometry of moving cameras [20] from monocular video sequences,
and integrate with sparsely available GPS readings to register the cameras in world coordinate.
We consider urban scenes that are full of repetitive patterns and propose a multi-modal visual
odometry method, which comprises of two important components.
First, we propose a simple and effective energy minimization approach for building feature cor-

respondences across consecutive video frames [34, 60]. Feature tracking is the most important step
of visual odometry and in the past literature, most tracking methods [3, 20, 59] employ appearance
(color, gradients) or motion information. These cues are not distinctive enough for the scenes that
include many repeated or symmetric patterns. Figure 1 (top) shows an exemplar scenario with
repetitive patterns. To address this issue, an effective solution is to first detect repetitive patterns
and then group spatially adjacent patterns to form distinct structures with large support to enable
robust feature matching [16, 24, 50]. Such a strategy is apparently restricted to the quality of repet-
itive pattern detection that still remains unsolved in wild settings. In this work, we will develop
a robust feature tracking method that does not require the separate step of detecting repetitive
patterns.
The key idea of our method is to formulate the feature tracking task as a hierarchical min-cost

network flow problem. We recursively group individual features in the same video frame to form
a hierarchical representation, and collectively match features or feature combinations of different
levels across consecutive video frames. We develop a global optimization strategy to adaptively
select feature detections that are distinctive against local surroundings, andwe feature connections
that are consistent across the hierarchy. This joint selection process is regularized with both flow

constraints, e.g., that two features cannot occupy the same feature location, and motion heuristics
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Fig. 1. Camera localization in scenes with repetitive patterns. Top: three video frames from a monocular

video captured by a moving camera. The scene is full of repetitive or symmetric patterns (e.g., windows,

facades). Bottom: the scene map overlaid with the estimated camera trajectory.

that characterize moving trajectories of cameras. The motion heuristics are used to encourage
individual features to move with constant speeds, or to enforce that adjacent features share similar
movement patterns. The above objectives and constraints are integrated together using a quadratic
integer program, which can be efficiently solved with appropriate relaxations [28]. At each time-
step, our method will process multiple video frames to explore the long-range inter-correlations
between feature paths. We will demonstrate that the proposed formula can significantly mitigate
the effects of repetitive patterns and many other challenges, e.g., lighting changes, low resolution,
and so on.
Second, we develop a multi-modal approach that can integrate both GPS readings and visual

odometry to further boost localization accuracy and robustness. As aforementioned, GPS locations
are usually noisy, sparse, andwith large errors (up to 10m on average). In contrast, visual odometry
are continuous, but suffer from drifting issues especially for scenes with repetitive and symmetric
patterns. Therefore, it is natural to integrate visual odometry and GPS readings in practical camera
localization systems. However, point-wise fusion of GPS readings and VOmeasurements is fragile,
because (i) GPS readings are provided in the absolute world coordinate system and the VO points
are in metric space, (ii) GPS readings are only available for discrete time-steps, and (iii) both data
modalities include tremendous errors that will affect the accuracies of data fusion. In this work, we
propose to represent a camera trajectory with a polynomial piece-wise smoothing function, and
introduce a multi-modal fitting method to fuse discrete GPS readings and continuous VO points.
The innovative idea of our method is a joint solution that simultaneously solves data fusion and
data interpretation. We also integrate high-order statistical knowledge over GPS readings, which
can further improve system robustness and precision.
For test and evaluation purposes, we apply the proposed camera localization approach over chal-

lenging video sequences that includemany repetitive patterns, e.g., parking lot, university campus.
Both qualitative and quantitative results showed that the proposed feature tracking method signif-
icantly improved the standard visual odomety pipeline and achieved state-of-the-art performance.
The proposed multi-modal fusion formula can further improve localization performance. We will
release the collected video sequences for public usage to foster research in this direction. We also
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apply the proposed method over the KITTI Odometry benchmark [19] and another video dataset,
Hague [14], to demonstrate its generalization capabilities while dealing with general scenarios.

1.2 Relationships to Previous Works

This work is closely related to five research streams in the areas of computer vision and video
processing.
Matching repetitive patterns across images has been studied extensively in the past literature.

Most existing methods [2, 16, 24, 27, 40, 50] follow the same pipeline: detecting repetitive patterns
in an image, clustering patterns to form large chucks of patterns that are more distinctive, and
matching clusters of features into the other image. Technical details of individual steps vary in
different methods. For example, Ha et al. [24] clustered features based on feature appearances, Fan
et al. [16] proposed to collect distinct pairs of features, Torii et al. [50] presented a rectified bag-
of-words descriptors for representing clusters, and Doubek et al. [40] introduced a shift-invariant
descriptor for clustering repetitive features using descriptors of 2D spatial layout. The above meth-
ods achieved impressive results for images with repetitive patterns. However, they are sensitive
to the choices of individual steps, which restrict its potentials in real applications. In this work,
we aim to shift this practice by developing a global optimal strategy that can adaptively select
both distinctive features and feature connections at multiple resolutions and allow us to skip the
tedious step of detecting repetitive patterns.
Visual Odometry (VO) or relative camera motion can be readily estimated from videos. The key

step of visual odometry is to associate features (e.g., SURF [4] or SIFT [31]) across consecutive
frames, i.e., feature correspondences. In the past decade, there has been significant improvements
in visual odometry along with the wide deployments of real applications, e.g., self-driving cars. In
particular, Zhang and Singh [59] proposed to extract visual odometry from lidar sensors in real-
time and achieved state-of-the-arts results on public benchmark KITTI [19]. Crivelli et al. [10] de-
veloped a theoretical framework for constructing dense point trajectories from optical flow fields.
Mohamed et al. [37] proposed a robust texture descriptor and used it to develop an illumination-
robust constancy for solving feature flow. Heas et al. [25] developed a Bayesian solution for select-
ing optimal models and hyper-parameters for optical-flow estimation. Botella et al. [6] introduced
a novel customizable architecture of optical flow based on reconfigurable hardware, and further
developed a bio-inspired system [7] to reduce computational complexity of optical-flow algorithms
to enable real-time deployments. Badino et al. [3] introduce a stereo system that integrates fea-
ture correspondences between multiple video frames to improve measurement accuracies. Geiger
et al. [20] and Song et al. [47] applied structure-from-motion techniques over monocular videos
to estimate camera motion. In this work, we focus on monocular videos with geo-tags and aim to
develop a general solution to the repetitive pattern issues. Our efforts include a dataset of videos
captured in scenes full of repetitive patterns, which is the first odometry benchmark in its catalog,
and a practical approach for associating repetitive patterns over time and registering camera in
world coordinate.
Visual odometry can also be solved by SLAM (Simultaneous Localization and Mapping) meth-

ods, which aim to reconstruct the 3D scene geometry and camera motions from monocular, stereo
or RGB-D cameras. Tardif et al. [49] employed various epipolar constraints for estimating camera
trajectories in urban scenes with a large amount of clutter. The open-source ORB-SLAM2 sys-
tem [38] provides a robust SLAM implementation under various camera settings. Guan et al. [21]
developed a real-time camera pose estimation system for wide-area augmented reality applica-
tions. Engel et al. [15] developed a feature-less monocular SLAM algorithm that allows us to build
large-scale, consistent maps of the environment. Guan et al. [23] developed a registration system
for wide-area augmented reality application with the aid of scene recognition and feature tracking
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techniques. Guan et al. [22] also proposed a city scale on-device visual localization recognition
method that can take advantages of inertial sensors and computer vision techniques. These al-
gorithms, however, do not explicitly suppress the impacts of repetitive patterns. In this work, we
focus on the development of a novel feature matching solution that is robust against repetitive
patterns and can be integrated with and used in the SLAM framework.
Geo-tagged Images based localization [12, 44, 51, 54, 58] has been extensively studied and be-

comes increasingly popular along with the availability of large-scale geo-tagged images. However,
these methods are restricted in two aspects: i) it is very time-consuming to prepare the geo-tagged
images; ii) the current view of the camera might be arbitrarily different from the pre-stored images
due to the environment changes. Another shortcoming of these methods is the low-precision of
geo-localization (usually worse than GPS). In this work, we propose an automatic camera local-
ization method that can leverage noisy GPS readings and visual odometry to provide sub-meter
level localization in complicated scenes.
Integrating GPS readings and visual odometry (VO) [1] has been proved to be an effective way

for reducing the effects of accumulated errors by visual odometry. In particular, Wei et al. [53]
proposed to warp VO points to GPS coordinates and calculated the mean locations of two sources
at each time-point. Agrawal and Konolige [1] used Kalman filter algorithm to rectify VO mea-
surement errors, where camera locations are described with state variables. Sukkarieh et al. [48]
proposed to detect possible faults before and during the fusion process to enhance the integrity of
the navigation loop, including both the low-frequency faults in Inertial Measurement Units (e.g.,
bias in sensor readings or misalignment of various units), and high-frequency faults from GPS
caused by muti-path errors. Najjar and Bonnifait [39] further integrated Kalman filter based fu-
sion method with a belief theory. Parra et al. [41] proposed to improve GPS readings with visual
odometry only when the GPS system is not reliable (e.g., Horizontal Dilution Of Position is greater
than 10). The above data fusion methods considered camera locations as a set of disjoint points
and tried to refine them separately, ignoring the fact that camera trajectories are defined in a con-
tinuous time-geography space. As a result, these methods are incapable of modeling long-range
temporal changes, and generate frequent localization failures especially when the measurement
errors are sparse yet dominant. In this work, we propose to fuse multi-modality data in a contin-
uous space and empirically demonstrate its superior performance for complicated environments.
Min-cost Network Flow Optimization has been widely used in visual tracking. Different from

the classical tracking methods, e.g., filtering [32, 52], bayesian sampling [34, 57], or subspace
learning [42, 61, 62], network flowmethods can respect spatial cooperative/conflicting constraints
and are less sensitive to initializations or outliers. They also benefit from the sophisticated op-
timization techniques, including graph cuts [28], EM type boolean programming [29], dynamic
programming [46], and linear programming [5]. In this work, we introduce a hierarchical net-
work flow formula that additionally imposes consistency constraints over flow variables across
multi-resolutions to mitigate the effects of repetitive patterns. The formula will exploit both flow
constraints and motion smoothness constraints with a quadratic integer program that is a novel
technique in its catalog.

1.3 Contributions and Organization

The three major contributions of this work include (i) an effective hierarchical network flow for-
mula for addressing the repetitive pattern issues in visual feature tracking, (ii) a multi-modality
camera localization method that can effectively integrate both discrete GPS readings and continu-
ous VOmeasurements, and (iii) a novel video dataset for studying the repetitive pattern issues. We
evaluated the proposed techniques on both the newly collected video dataset and public odometry
benchmarks, and we achieved promising results in comparisons to the popular methods.
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2 GEO-LOCALIZATION OF MOVING CAMERAS

The objective of this work is aimed at developing a robust camera localization algorithm that
can work in scenes with repetitive patterns. The inputs to our method are geo-tagged monocu-
lar videos, and the outputs include the sequences of camera locations in world coordinate. The
developed techniques can also be used for camera localization from monocular videos without
geo-tags.
The structure of this section is organized as follows. In Section 2.1, we introduce how to formu-

late feature tracking problem in the min-cost network flow framework. In Section 2.2, we present
a hierarchical network flow method to mitigate the effects of repetitive patterns. In Section 2.3,
we augment the proposed hierarchical network flow formula with smoothness constraints over
feature paths, which can further enhance system robustness. In Section 2.4, we develop a unified
formula to simultaneously interpolate both visual odometry and GPS readings in a continuous
space to obtain high-precision localization results.

2.1 Background: Feature Tracking with Min-Cost Flow Optimization

We first introduce how to formulate feature tracking as a traditional min-cost flow optimization
problem. Our goal is to simultaneously track multiple features in a short sequence of video frames.
There are two sub-tasks. On the one hand, given feature detections we need to select distinctive
features of interest, e.g., corner, bars, sketches, and so on, that remain visible over time, i.e., feature
selection problem. On the other hand, we need to match features across video frames or connect
features appearing in consecutive frames, i.e., feature connection problem. Therefore, we cast the
feature tracking task as a joint optimization problem that simultaneously selects distinctive fea-
tures and determine their connections across video frames.
The above joint parsing task can be cast as an integer linear program, following the previous

works [5, 28, 46]. Let I denote the input video sequence. Given interest points detected, a flow
graph is imposed as the representation. Each graph node represents an interest point detected in
video frames.We introduce two binary variables: xi ∈ {0, 1}, that takes 1 if the feature detection i is
selected for tracking, andui j ∈ {0, 1}, that takes 1 if the detections i and j are from two consecutive
video frames and are connected (i.e., form a track). The index i ranges over possible detections in
the input video sequence. Let E denote all the edges in the graph, x assemble all the binary indicator
variables xi and ui j . The optimization of x are formulated as an energy minimization problem,

min
x

∑

i

cixi +
∑

<i, j>∈E
ci jui j , (1)

s .t . 0 ≤ xi , 0 ≤ ui j , (2)

∀j,
∑

∀i,<i, j>∈E
ui j = x j =

∑

∀k,<j,k>∈E
ujk , (3)

∑

<a,i>∈E
xai =

∑

<i,b>∈E
xib . (4)

In the above formula, ci denotes the cost of selecting detection i in a video frame and ci j denotes
the negative of matching strength between detections i and j. A popular choice for ci is the local

appearance contrast of an interest point [5]: ci = − log P (xi=1 |I)
P (xi=0 |I) . Accordingly, ci j can be defined as

the appearance dissimilarity between the two features i and j. Equation (2) imposes non-negative
constraints over both xi andui j . The constraints Equations (3) are used to enforce that the flow re-
ceived by a node j is equal to the sum of flow starting from the same node. Moreover, all detections
are linked to a source node a and point to a sink node b, as shown in the constraints Equation (4).
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The above linear constraints have the property of being totally unimodular [5], which ensures
that relaxing the integer constraints in Equation (1) and solving it with a linear program is still
guaranteed to produce plausible integer solutions. Therefore, the optimization problem with re-
laxed integer constraints can be solved efficiently using existing network flow or linear algebra
packages [28], providing a convenient framework to transform the feature correspondence prob-
lem into a joint feature selection problem.
In this work, we use the formula in Equation (1) as a starting point and introduce extra terms

to regularize the selection process to deal with the repetitive pattern issues.

2.2 Feature Tracking with Hierarchical Network Flow

In this subsection, we extend the standard min-cost formula Equation (1) to develop a robust fea-
ture tracking algorithm. In scenes with repetitive patterns, as shown in Figure 1, a feature patch
that is not distinctive at a certain scale will result in ambiguities in the selection process, i.e., de-
termining xi and ui j . As aforementioned, a traditional solution to matching repetitive patterns
is to group adjacent features to form distinct feature combinations that have larger image sup-
ports. These methods, however, suffer from the choices of grouping, e.g., the ways of calculating
adherences or the expected support of feature combinations. To address this issue, we introduce
a hierarchical composition procedure to group features of the same level to form feature com-
binations, and employ an optimization based method to adaptively select the distinctive feature
combination. Our method is robust against the initializations of feature grouping, since the fol-
lowing optimization is capable of discarding the bad or non-informative feature combinations.
We develop a bottom-up approach to construct the multi-level feature representation. The first

level of representation is composed of interest points detected in images. To form the second level
or higher level representations, we recursively employ three main steps: calculate between-point
distances; run K-means method to group these data points; prune clusters that have few data
points (less than minPT ) and data points that are far away (beyond minDist pixels) from their
respect cluster center locations. Each cluster of data points at the level l is considered as a data
point at the upper level l + 1. Let fi denote the feature vector of the ith interest point, the distance
between two sets of data points A and B is defined as

1

2|A|
∑

i ∈A
min
j ∈B D ( fi , fj ) +

1

2|B |
∑

i ∈B
min
j ∈A D ( fi , fj ), (5)

where |A| indicates the size of A, and D indicates the Euclidean distance between two feature
vectors. To obtain fi , we use both geometric (i.e., spatial proximity) and appearances cues, as in-
troduced in the section of Experiments. Note that an interest point might be isolated and is not
used to compose any nodes of higher level. In this way, we allow parts of the detected features to
be tracked separately and independently.
Figure 2 illustrates the hierarchy, where every node at a level is composed of multiple nodes

at the lower level and belongs to a parent node at the higher level. With the hierarchy, the joint
feature selection and feature connections can be performed for nodes of each level in parallel,
while respecting the following cross-level consistency constraints: if one node is selected, at least
one of its children nodes should be selected as well.
Formally, we relax the boolean variables xi in Equation (2) to be integer variables, andwe enforce

that xi =
∑

k ∈Child (i ) xk . Let < V ,E > denote the flow graph, whereV includes all graph nodes, and
E the edges between nodes of the same level and the edges between parent and children nodes.
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Fig. 2. Hierarchical flow graph at time t and t + 1. Each blob indicates a feature point or a feature com-

bination and is linked to other nodes of the same level or children nodes of the lower level. Each edge is

augmented with a binary variable that indicates the between-node connectivity (blue) or children-parent

composition (red).

The joint optimization problem Equation (1) can be re-written as the following:

min
x

∑

i ∈V
cixi +

∑

<i, j>∈E
ci jui j , (6)

s .t . 0 ≤ xi , 0 ≤ ui j , (7)

∀j,
∑

∀i,<i, j>∈E
ui j = x j =

∑

∀k,<j,k>∈E
ujk , (8)

∑

<a,i>∈E
xai =

∑

<i,b>∈E
xib , (9)

∀i,xi =
∑

k ∈Child (i )
xk . (10)

The flow variables xi and ui j are integers, which are different from their binary definitions in
Equations (2), (3), and (4). Accordingly, the constraints in Equation (8) are used to ensure the node j
receive and send out the exact same amount of flow. The constraint Equation (10) is used to impose
the cross-level constrains. It is noteworthy that the above formula does not impose upper-bounds
for the real-valued variables xi , which is different from the traditional flow-based trackingmethods
[5, 28]. These variables are confined by the consistency constrains in the proposed hierarchy and
are solved in a collectively fashion. We group the constraints in Equations (7) through (9) and
denote them as x ∈ O.
Given a video sequence, wewill detect interest points in individual video frames to obtain a set of

possible feature locations and use the aforementioned bottom-up approach to construct the multi-
level feature representation. With the graph (V ,E), we solve Equation (6) to obtain the optimal
feature detections xi and connections ui j , with which the path of a feature patch in a monocular
video can be retrieved.
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The integer program in Equation (6) provides an effective min-cost network flow method for
matching repeated patterns across images. The upper-level graph nodes of the hierarchy corre-
spond to clusters of repetitive patterns at lower levels. As reviewed in Section 1.2, generating
discriminative clusters of regions is among one of the most successful approaches for matching
repeated patterns across images. Different from the previous methods that require detections of
repeated patterns in a separate step, the proposed formula is capable of automatically selecting
distinctive groups of features through optimizing the program in Equation (6).

2.3 Integrating Motion Smoothness Objectives

We further enhance the proposed hierarchical network flowmethodwith heuristic constraints. The
key idea is to leverage the fact that a camera usually undergoes smooth movements over time or
that the paths of multiple features in the proximity are likely to have similar motion patterns. This
observation is particularly effective for monocular videos captured with an autonomous camera-
based intelligent system, e.g., self-driving cars or robots. Therefore, we propose to enforce three
individual or pair-wise smoothness constraints over the selection variables x. (I) The appearance
discrepancies between matched pairs of features are as minimal; (II) The spatial displacements of
individual pairs of features should be not significant, i.e., without sudden movements; (III) spatial
movements of nearby features are encouraged to be consistent with each other.
Formally, let Ii denote the appearance features of detection i in the videos. Recall thatxi indicates

the feature detection i ,ui j indicates the connectivity between detections i and j. Let Δi j denote the
spatial displacement between detections i and j. The objectives for enforcing motion smoothness
are defined as follows:

Φ(x) =
∑

<i, j>∈E
ui j ‖Ii − Ij ‖2 + βaui jΔ2

i j + β
b

∑

k ∈N (i ),l ∈N (k )

ui jukl ‖Δi j − Δkl ‖2, (11)

where βa and βb are weighting parameters. The term ui j ‖Ii − Ij ‖2 is minimized when ui j = 1 and
features i and j have similar appearance. The second term is used to encourage smooth movements
of individual feature paths. The third term is used to encourage similar motion patterns between
nearby feature paths. It is noteworthy that only non-zero flow variables ui j are regularized with
the above objectives.
Thus, we rewrite Equation (6) as the following integer program with pair-wise objectives:

min
x

∑

i ∈V
cixi +

∑

<i, j>∈E
ci, jui j + γΦ(x), (12)

x ∈ O, (13)

where γ is a constant parameter. The constraints x ∈ O are defined in Equations (7) through (9).
Equation (12) includes two linear terms that encode the joint selection of feature detections and
feature connections, and a pair-wise term Φ(x) that represents informative and contextualized
knowledge in the selection processes. In particular, the productui jukl represents the joint selection
of two edges < i, j > and < k, l >, corresponding to a pair of connections. The above formula is a
quadratic assignment problem that is NP-hard to optimize in general. However, we can relax the
selection variables x to be real values, and thus convert Equation (12) to be a constrained quadratic
programming problem. The relaxed problem can be effectively solved by network flow packages
or algebra methods [9].
Once solved the selection variables x, we can retrieve feature paths between consecutive video

frames [5]. In particular, feature pairs with non-zero (or small) ui j are considered to be connected.
In this way, the feature correspondences are directly inferred from flow variables, and are further
used for estimating frame-to-frame visual odometry [3, 31, 47, 59].
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In summary, we develop a novel quadratic programming formula to track features of interest
across video frames. Our formula explicitly explores both hierarchical network flow constraints
and spatial regularizations of local motion fields, both of which play critical roles for suppressing
the effects of repetitive patterns. It is also effective for dealing other types of challenges, including
low resolution, clutters, occlusions, and so on.

2.4 Multi-Modal Trajectory Fitting for High-Precision Localization

In this subsection, we further introduce a multi-modal method to fuse noisy sparse GPS readings
and visual odometry (VO) points. Ourmethod involves two coupled subtasks: warpingVOpoints in
metric space to GPS coordinate and predicting camera position at each time-step. On the one hand,
these two subtasks are challenging, because (i) GPS points are noisy and are sparsely available over
time (e.g., one reading for every 1–2min), and (ii) the warped VO points are noisy as well and the
warping itself might incur errors. On the other hand, the two subtasks are mutually beneficial:
(i) accurate warping is helpful to estimating complete and dense camera positions and (ii) accurate
camera positions, once estimated, can help build high-quality warping. Therefore, we propose to
jointly solve these two subtasks in a coordinated fashion.
The proposed joint formula includes three major objectives:

• The deformation between VO points and GPS readings is assumed to follow rotation, scale,
and translation only, i.e., similarity transformation. This simplification is used to balance
model complexity and computational cost in practice;

• Each camera trajectory is parameterized as a continuous function of camera positions in 3D.
w.r.t. time, denoted as τ . We use the B-Spline function [13] whose first and second deriva-
tives are both continuous. These high-order constraints are used to enforce smoothness
over camera trajectories and allow robust estimation against noises and missing data;

• The optimal camera trajectory should be consistent with both warped VO points and sparse
GPS points (if available).

Formally, letM denote the similarity transformation matrix. Let x̄t , x̂t denote the homogeneous
coordinates of cameras obtained from visual odometry and GPS device at time t , respectively. Let d
denote the order of B-Spline, Bl (t ) the lth quadratic basis function. The spline function τ (t ) can be
written as a linear combination of basis functions: τ (t ) =

∑
l αlBl (t ), where the basis functions Bl

can be directly obtained given time interval and order d . We set d = 3 in this article. Let s index the
GPS points, v̂s denote the relative motion from s to s + 1. Thus, we aim to optimize the following
objective function:

arg min
M, {αl }

∑

t

‖x̄t −Mx̂t ‖2 + λa ‖x̄t −
∑

l

αlBl (t )‖2

+λb
∑

s,s+1

∑

l

< αlBl (s ) − αlBl (s + 1), v̂ >, (14)

where λa , λb are constants, < ·, · > returns the cosine distance between two motion vectors. The
three terms are used to solve the transformation matrix between GPS points x̂t and VO points x̄t ,
interpolate the VO points x̄t with the spline model, and minimize the disagreement between the
predicted moving directions and those estimated from GPS readings from time s to s + 1, respec-
tively. Basically, we interpolate the estimated VO points with a continuous spline function and
further regularize the interpolation to preserve the second-order spatial structure of noisy GPS
data, i.e., the relative motion of consecutive GPS points. Note that we do not directly utilize the
original GPS data, which are sensitive to outliers.
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Alternative Optimization. Equation (14) is an unconstrained blockwise least-square problem
that can be solved alternatively: with fixed M , solve αl , and vice versa. At each step, the subtask
can be optimized analytically. We initializeM by solving the first term of least square and initialize
αl by solving the second term independently. We alternate these two steps until the change of the
objective function is less than a small threshold (e.g., 10−3). The alternative optimization often
converges in 5-15 iterations.

3 EXPERIMENTS

In this section, we apply the proposed method over both a newly created video dataset and pubic
odometry datasets to estimate camera trajectories using both monocular videos and noisy GPS
readings.

Datasets. In computer vision community there have beenmultiple video datasets [19] for study-
ing camera localization. However, most videos in these datasets do not include frequent repetitive
patterns and are not suitable for studying the repetitive pattern issues. In this work, we fill in the
gap through building a new collection of videos in challenging scenes that are full of repetitive
patterns. Our dataset includes 20 video sequences captured from cameras mounted on a moving
car or a riding bike. The cameras are equipped with GPS components. These videos are captured
in two scenes: parking-lot and university campus. To facilitate quantitative evaluations, we use
meter-based GPS coordinates. Each video segment lasts about 60-200 seconds with a frame rate of
30 frames per second. To obtain groundtruth camera trajectories, we develop an interactive toolkit
that includes human in the loop. All videos were annotated by the same annotator. We split the
video dataset into two even subsets, used for training and testing, respectively.
We also apply the proposed method on two public benchmarks, KITTI [19] and Hague Dataset

[14], and compare it to the other popular localization methods. These results are used to demon-
strate the generalization capabilities of our method while dealing with general scenarios.

Implementation.We use the SURF method [4] to detect interest points in each video frame. To
solve Equation (12), we use the interior point method in network flow packages, e.g., Reference [5].
To calculate between-point distances, we represent each point using its location coordinates
(two-dimensional) and extract a histogram of oriented gradients (HOG) [11] from the surrounding
region (15 by 15 pixels). For the graph construction, we use three level of representations, and
set the Ks (i.e., numbers of clusters) of the second and third level to be 50 and 15, respectively.
For the second level of representation, we setminPT to be 3 and set theminDist to be 20 pixels.
For the third level of representation, we set minPT to be 2, and set minDist to be 0 (i.e., do not
change the clustering results).
We use the cross-validation method over training videos to choose the best hyper-parameters,

including βa , βb , γ , λa , and λb . We implement the variants of our method using Matlab and run
them on an Intel i7 2.8GHZ Quad-Core machine with 16G RAM. To deal with streaming video
sequences, we use the popular sliding window method. We set the window size to be a constant
(e.g., 20 frames) and slide it with a step (e.g., 10 frames). For a video of 960 × 540 resolution, the
feature tracking step takes 30ms per frame, the multi-modal fitting step takes 20ms per frame.

Evaluation Baselines. We evaluate the proposed method from two aspects: analyzing contri-
butions of individual components, i.e., visual odometry and trajectory fitting, and comparing to
the popular alternative methods.
For the visual odometry step, we implement the following feature tracking methods: (i) BI, the

monocular version of the widely used VO software LIBVISO2 [20]; (ii) BII, the method by Song
et al. [47]; (iii) Flow, that optimizes the standard min-cost network flow formula, i.e., Equation (1);
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(iv) HFlow, that optimizes the hierarchical min-cost network flow formula, i.e., Equation (6); (v)
CHFlow that optimizes the constrained hierarchical min-cost network flow formula, i.e., Equa-
tion (12); and (vi) CHFlowLinear, that sets βb = 0 in Equation (11) and optimizes the objective
function Equation (12), which becomes a linear programming problem. The results of the pro-
posed variants are used to calculate visual odometry using the monocular version of LIBVISO, a
standard visual odometry pipeline [20]. It is noteworthy that both BI and BII are considered as
the state-of-the-art feature correspondence methods although they are not designed for matching
repetitive patterns.
For the trajectory fitting step, we implement three variants of the proposed fusion strategy:

(i) S, that first solve a similarity matrix M (i.e., minimizing the first term in Equation (14)) and
then calculates the camera position at each time-step as the average of the warped VO point and
GPS reading; (ii) SS, that extends the previous variant by interpolating camera trajectories (i.e.,
VO points) with a cubic spline function of time, i.e., setting λb = 0 in Equation (14); (iii) SSC, that
additionally utilizes the second-order statistics over GPS readings, i.e., optimizing Equation (14)
with nonzero λa and λb .
The combination of the above two steps results in a total of 18 algorithms for localizing moving

cameras. We will test and evaluate these algorithms on the same collection of videos to analyze
the contributions of individual components of the proposed method.

Evaluation Metrics. We apply the above methods over monocular videos to estimate camera
locations and compare the estimation results with the groundtruth locations. Following previous
works [19], we divide all localization results into two subsequences: unlocalized and localized. A
video sequence is considered to be localized only when for at least five seconds of the average
localization error is less than 20m. The subsequent video sequences beyond the localization point
are considered to be localized.
For each video sequence, we calculate and report the localization time of every baseline method,

i.e., the time needed for an algorithm to successfully localize the camera. In other words, localiza-
tion time is equivalent to the number of video frames for a method to process before successfully
localizing the camera in the map. We also report average localization errors (in meters) of each
algorithm on localized subsequences of the input videos.

Qualitative Results. We first visualize the outcomes of the proposed methods in Figure 3,
which plots the estimated VO points and GPS points in world coordinate. We generate the figure
using the similarity matrixM solved from Equation (14).
Figure 4 visualizes the features selected by the proposed hierarchical network flow method for

three typical scenarios. We show three video frames each of which is overlaid with the originally
detected features (left column) as well as the selected features (right column). In the figures, we
use circles of green, red and blue to represent features of the first, second and third levels in the
hierarchy, respectively. For the image in the last row, we crop the bottom region of vehicle so that
no interest points are detected on the vehicle body. It is noteworthy that a node in the flow graph
might be independently matched across video frames without hierarchical constraints. In Figure 4,
for example, these isolated features at the first level are plotted as green circles not encircled by any
blue or red circles. From these figures, we can observe that the nodes with non-zero flow mostly
locate on boundaries or corners, which are distinctive to be tracked over time. The nodes of higher
levels are often composed of multiple feature points and form discriminative primitive structures
that are distinctive even in the scenes with repetitive patterns.
In Figure 5, we show in the top row a video frame overlaid with interest points and their matches

in the previous video frame. We also plot in the bottom row the camera trajectories estimated
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Fig. 3. Exemplar results of fusing Visual Odometry(VO) points (green) and GPS points (blue). The transfor-

mation matrix is obtained by solving Equation (14).

Fig. 4. Features and feature combinations selected by the proposed hierarchical min-cost network flow op-

timization method. We use a three-level representation, whose nodes are represented as circles of green,

red, and blue, respectively. Left: original detections of interest features; right: selected features and feature

combinations in the hierarchy. Only nodes with non-zero flow (xi ) are displayed.

by various methods, including the GPS readings, CHFlow+S, and CHFlow+SSC. The groundtruth
camera trajectories are included for comparisons as well. It is noteworthy that most interest fea-
tures appear on the regions of trees, which have similar appearance or texture patterns with each
other. Moreover, the method CHFlow+S has large errors around the bottom-mid area due to the
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Fig. 5. Exemplar results on the scene of parking-lot. Top: a video frame overlaid with matched keypoints

detected by our method, where green points are from the previous frame; Bottom: camera positions in GPS

(red points), the groundtruth trajectories(green), the estimated trajectories by the CHFlow method with the

fusion strategy S (blue) or multi-modal fusion strategy SSC (yellow).

Fig. 6. Exemplar video frames for which the proposed method CHFlow+S does not work properly. The corre-

sponding areas are highlighted by a red ellipse in Figure 5. The videos are full of lighting changes, reflections,

and sudden object movements.

drifting issues. In contrast, the multi-modal method CHFlow+SSC (in yellow) is quite close to
groundtruth trajectories.
In Figure 6, we show two video frames for which the proposed hierarchical network flowmethod

CHFlow+S does not work properly. The corresponding areas are highlighted in Figure 5 (red el-
lipse). The two scenarios are challenging, because they have sudden foreground movements being
very close to the camera, and strong sunshine reflections. In contrast, the proposed CHFLow+SSC
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Fig. 7. Exemplar results on the scene of university campus. Column 1: three video frames (not overlaid

with tracked points for better display); Column 2: the camera positions in GPS (red points), groundtruth

trajectories (green), estimated trajectories by the CHFlow method with fusion strategy S (blue) or multi-

modal fusion strategy SSC (yellow).

method employs additional, noisy and sparse GPS data and can significantly improve camera lo-
calization accuracies.
In Figure 7, we show three video frames in the first column, and plot the estimated camera

trajectories in the second column (over different time-stamp). We can observe that (i) all methods
work well for the time-period shown in the top-right subfigure; (ii) the visual odometry method
with sequent fusion strategy (S) drifts a bit while the vehicle is making left turn, as shown in
the bottom-right figure. The proposed CHFlow+SSC method, in contrast, can rectify such drifting
issues by exploring GPS data.
It is noteworthy that the proposed method is capable of addressing repetitive patterns at a vari-

ety of scales. According to Wu et al. [56], a scene element (e.g., window corner) might be imaged
as sketch, texture, or flat regions, while its distance to the camera varies. Our method employs a
hierarchical network flow formula to adaptively select and match features of multiple scales, and
imposes smoothness constraints to regularize the matching process. This provides an implicit way
for addressing the scaling factor.

Quantitative Results. We further quantitatively evaluate individual components of the pro-
posed method and compare them to the other odometry methods. Table 1 reports the localization
time of each method, i.e., how many seconds of video frames this method need to process to suc-
cessfully localize a video sequence. Table 2 reports average localization errors over localized video
sequences. Video sequences that were not localized are indicated with ∗.

In general the proposed method can localize a monocular video sequence in 3–5s with sub-
meter level of accuracies (0.57m on average). Moreover, the component-wise comparisons result in
the following observations. (I) The proposed flow based feature tracking method can significantly
improve the localization performance of the basic monocular visual odometry pipeline [20] and
achieved comparable localization accuracies as the other state-of-the-art methods [33, 47]. Note
that these baseline algorithms are designed for generic types of scenes, and thus cannot work

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 6, Article 66. Publication date: November 2018.



66:16 X. Liu et al.

Table 1. Localization Time (seconds)

Parking Lot Videos University Campus Videos

Video Duration (s) 67 121 89 132 125 95 68 110 142 186 Mean

Step I Step II 01 02 03 04 05 06 07 08 09 10 Mean

CHFlow SSC 1.2 1.1 1.3 1.8 3.4 2.8 3.9 2.5 3.4 3.7 2.5

CHFlow SS 2.1 2.2 2.5 1.9 4.9 3.1 5.3 2.9 3.8 3.9 3.3

CHFlow S 2.7 2.5 3.6 2.4 6.8 4.5 6.4 3.5 4.6 4.1 4.1

CHFlowLinear SSC 1.5 1.4 2.6 1.8 4.5 3.3 5.3 3.1 3.5 3.8 3.1

CHFlowLinear SS 2.3 3.1 2.8 2.1 5.3 4.2 5.8 3.5 4.8 4.1 3.8

CHFlowLinear S 2.9 3.1 3.8 4.5 8.1 4.8 8.1 4.6 4.9 5.3 5.0

HFlow SSC 2.4 3.1 4.2 3.5 5.9 5.8 7.2 4.8 5.3 5.2 4.7

HFlow SS 2.9 3.5 4.8 4.7 7.2 6.4 7.3 5.1 6.2 5.9 5.4

HFlow S 3.5 4.2 6.3 4.9 9.3 7.9 8.6 6.7 5.8 5.8 6.3

Flow SSC 3.4 4.1 6.4 5.1 8.9 7.7 8.5 6.9 6.5 6.1 6.4

Flow SS 3.7 4.3 7.2 5.2 9.5 7.8 8.9 7.2 7.2 7.3 6.1

Flow S 4.1 4.4 6.9 5.4 9.8 9.2 9.1 7.7 8.8 7.8 7.3

BII SSC 3.9 4.3 6.5 4.8 9.7 7.2 8.1 7.2 6.7 5.6 6.4

BII SS 5.2 4.5 7.2 9.5 10.4 8.9 9.2 8.7 9.1 7.2 8.0

BII S 8.7 * 7.5 12.1 12.5 9.3 10.7 10.2 12.8 9.9 10.4

BI SSC 12.8 9.2 12.5 11.2 14.3 12.7 9.8 15.1 * 15.6 12.6

BI SS 14.5 * * 12.8 14.1 13.5 * 15.5 * 16.6 14.5

BI S 17.8 14.3 16.5 18.0 19.4 * 14.3 * * 18.1 16.9

[33] 16.8 14.7 * 15.6 * * * * * 16.2 15.8

Step I, visual odometry; Step II, multi-modal fusion; Flow, the standard min-cost network flow method; HFlow, the pro-
posed hierarchical min-cost network flow method; CHFlow, the proposed hierarchical min-cost network flow method;
CHFlowLinear, first-order constrained hierarchical min-cost network flow method; S, sequent data fusion strategy; SS,
solving similarity matrix and spline representation jointly; SSC, enforce the second-order constraints over the method SS;
BI, the monocular version of LIBVISO2; BII, Song et al. [47]; ∗, failure of localization.

robustly when there exist significant amount of repetitive patterns. For example, the method of
Reference [33] cannot localize cameras for six out of ten video sequences. (II) The proposed hier-
archical network flow method (i.e., HFlow) clearly outperforms the standard network flow method
(i.e., Flow), in terms of both localization times and localization accuracies. (III) The proposed
smoothness constraints can further enhance system accuracies over all testing video sequences.
(IV) The proposed multi-modal fusion strategy (i.e., SSC) achieved much better performance than
the other two fusion strategies (i.e., SS and S). The comparisons among algorithms using S or SS
showed that enforcing high-order smoothness constraints (through spline representation) in the
continuous space can result in improved performance and robustness.
In the above experiments, we test the proposed feature trackingmethod by evaluating howmuch

it can boost the standard visual odometry pipeline. The developed techniques can be applied for
the other vision problems. We also note that there have been extensive studies about the fusion
strategies of multi-modal cues, and we compare the proposed fusion strategy SSC with the other
two popular strategies, i.e., S and SS, in quantitative experiments.

Results on theKITTIOdometryBenchmark.Weapply the proposedmethod over the KITTI
Odometry benchmark [19] and compare it to other popular methods. The benchmark includes 11
video sequences (numbers 0–10) for training, and 11 video sequences (numbers 11–21) for testing.
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Table 2. Average Localization Errors (meters) over Individual Video Clips

Parking Lot Videos University Campus Videos

Video Duration (s) 67 121 89 132 125 95 68 110 142 186 Mean

CHFlow SSC 0.42 0.54 0.31 0.92 0.76 0.66 0.45 0.81 0.34 0.51 0.57

CHFlow SS 0.58 0.89 0.66 1.46 0.87 0.70 0.51 0.94 0.46 0.65 0.77

CHFlow S 1.92 0.92 0.79 1.97 0.99 0.89 0.62 1.68 0.77 0.97 1.15

CHFlowLinear SSC 0.76 0.87 0.43 1.01 0.82 0.88 0.75 1.25 0.39 0.81 0.79

CHFlowLinear SS 0.93 1.02 0.81 1.49 1.32 1.11 1.07 1.32 0.87 0.93 1.08

CHFlowLinear S 2.05 1.32 1.43 2.11 1.45 1.87 1.73 1.89 0.93 1.20 1.60

HFlow SSC 1.81 1.11 0.92 1.89 1.02 1.97 1.14 1.77 0.91 1.52 1.41

HFlow SS 2.23 1.34 1.24 2.01 1.54 2.08 1.69 1.94 0.95 1.78 1.68

HFlow S 2.57 2.51 2.07 2.19 2.07 2.51 2.04 2.35 1.43 2.11 2.19

Flow SSC 2.89 2.49 1.98 2.40 2.17 2.55 2.32 2.21 2.34 2.45 2.38

Flow SS 2.94 2.57 2.43 2.59 2.41 2.79 2.46 2.39 2.51 2.49 2.56

Flow S 3.25 2.78 2.54 2.73 3.04 2.84 2.87 2.51 3.44 3.10 2.91

BII SSC 3.14 2.69 2.24 3.07 3.11 2.34 2.54 2.98 3.69 2.52 2.83

BII SS 3.25 2.78 2.51 3.43 3.35 2.78 3.77 3.27 4.78 2.89 3.28

BII S 4.21 * 3.10 4.11 4.97 2.86 4.14 3.55 5.43 4.14 4.06

BI SSC 5.87 4.12 3.42 5.09 5.34 3.09 5.14 4.45 * 5.78 4.70

BI SS 7.97 * * 6.14 6.12 3.14 * 5.19 * 5.97 5.76

BI S 10.21 8.32 7.53 7.10 6.97 * 14.3 * * 6.21 8.66

[33] 11.32 12.73 * 13.10 * * * * * 18.41 13.89

Step I, visual odometry; Step II, multi-modal fusion; Flow, the standardmin-cost network flowmethod; HFlow, the proposed
hierarchical min-cost network flow method; CHFlow, the proposed quadratic constrained hierarchical min-cost network
flow method; CHFlowLinear, first-order constrained hierarchical min-cost network flow method; S, sequent data fusion
strategy; SS, solving similarity matrix and spline representation jointly; SSC, enforce the second-order constraints over the
method SS; BI, the monocular version of LIBVISO2; BII, Song et al. [47]; ∗, failure of localization.

We use the testing sequences in the evaluation. We employ the variant of CHFlow to discover
feature correspondences and then call the monocular version of LIBVISIO2 [20] to reason cam-
era poses over time. All model parameters are chosen using the cross-validation method over the
provided training sequences. For all test sequences, we use two quantitative results: relative trans-
lational error and rotational error. The translational errors are measured in percent (%) and the
rotational errors (deg/m) are measured in degrees per meter.
Table 3 reports the results of our method and the other top-ranked published methods that use

monocular videos. Only published methods reported on the KITTI leaderboard are included for
comparisons. Our method achieved comparable translational and rotational errors as the state-
of-the-art methods. The proposed method does not employ any extra knowledge or training pro-
cess and can largely enhance the basic visual odometry pipeline [20] in terms of both metrics. In
contrast, the top-ranked method [18] employed pre-trained deep learning models for estimating
ground-planes, which requires extra efforts in deployment. These comparisons clearly demon-
strated the superiority of the proposed hierarchical flow optimization formula.

Results on the Hague Dataset [14]. We also evaluate the proposed method on the publicly
available Hague dataset, which consists of three sequences of varying lengths, from 600m to 5km.
Figure 8 plots sample video frames (top row) and ground-truth camera trajectories on themap (bot-
tom row). These low-resolution video sequences include severe occlusions due to crowded scenes
and moving vehicles close to the camera. These scenes also include many repetitive patterns, e.g.,
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Table 3. Translational and Rotational Errors for the KITTI

Odometry Benchmark

Method Translation Rotation

PMO / PbT-M2 [18] 2.05% 0.0051[deg/m]
FTMVO [36] 2.24% 0.0049[deg/m]
CHFlow 2.33% 0.0038[deg/m]
PbT-M1 [17] 2.38% 0.0053[deg/m]
MLM-SFM [47] 2.54% 0.0057[deg/m]
RMCPE+GP [35] 2.55% 0.0086[deg/m]
VISO2-M [20] 11.94% 0.0234[deg/m]

Only published methods using monocular videos are included for
comparisons.

Fig. 8. Hague video dataset. Top, sample video frames; Bottom (from left to right), trajectories of the se-

quences 1, 2, and 3, respectively.

Table 4. End-point Errors for Sequences in the Hague Dataset [14]

Sequence Frames Length (m) Song [47] CHFlow
1 2,500 609.34 5.37 4.13
2 3,000 834.39 1.99 1.82
3 19,000 5045.45 4.85 2.51

textures, flat regions, and road marks. Song et al. [47] evaluated their method on this dataset in
terms of loop closure, i.e., end-point error relative to map information. In this work, we follow the
same strategy to evaluate the proposed CHFlowmethod. Table 4 reports the comparisons between
Song et al. [47] and the proposed method. The proposed method achieved much better accuracies
on all the three sequences. Notably, the improvements over longer sequences are more significant,
which clearly demonstrate the robustness of the proposed hierarchical network flow formula.

4 CONCLUSION

This article studied the video-based camera localization problem for scenes with repetitive pat-
terns and introduced a multi-modality method that can achieve high-quality camera localization
using monocular videos. Our efforts include three aspects. First, we introduce a constrained
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hierarchical network flow method for matching features over consecutive video frames while
respecting smoothness constraints in local motion fields. This results in a novel quadratic
programming formula that can adaptively select and match distinctive features and feature
combinations at multiple resolutions. Second, we further introduce a formula that simultaneously
warps visual odometry locations to world coordinate and estimate camera locations. Third, we
collect new video dataset that comprises of videos with repetitive patterns, which is the first one
in its catalog. We exhaustively evaluate the proposed method through analyzing the contributions
of individual components and comparing to the other popular methods. Results showed that our
method can localize moving cameras with high accuracies. The developed techniques in this work
have wide applications in other computer vision tasks, including object tracking, shape matching,
robotic mapping, 3D scene reconstructions, and so on.
The proposed method is limited to the fact that it comprises of multiple stages, e.g., feature ex-

traction, feature matching (with the proposed hierarchical network flowmethod), andmodality fu-
sion. The choices at each stage might affect system performance. While this is a common issue ex-
isting in most odometry methods, a promising direction is to develop a unified framework capable
of learning the optimal parameters from the past experiences, which will be studied in the future.
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