
1

Revisiting Jump-Diffusion Process for Visual
Tracking: A Reinforcement Learning Approach

Xiaobai Liu∗, Qian Xu∗, Thuan Chau, Yadong Mu, Lei Zhu, Shuicheng Yan, IEEE Fellow

�

Abstract—In this work, we revisit the classical stochastic jump-diffusion
process and develop an effective variant for estimating visibility statuses
of objects while tracking them in videos. Dealing with partial or full
occlusions is a long standing problem in computer vision but largely
remains unsolved. In this work, we cast the above problem as a Markov
Decision Process and develop a policy-based jump-diffusion method
to jointly track object locations in videos and estimate their visibility
statuses. Our method employs a set of jump dynamics to change
object’s visibility statuses and a set of diffusion dynamics to track
objects in videos. Different from traditional jump-diffusion process that
stochastically generates dynamics, we utilize deep policy functions to
determine the best dynamic for the present state and learn the optimal
policies using reinforcement learning methods. Our method is capable
of tracking objects with full or partial occlusions in crowded scenes. We
evaluate the proposed method over challenging video sequences and
compare it to alternative tracking methods. Significant improvements are
made particularly for videos with frequent interactions or occlusions.

1 INTRODUCTION

Tracking objects of interest [51] in videos has attracted many

interests in the past decade since it has broad potentials in multi-

ple applications, e.g., security surveillance, autonomous driving,

border control, disaster response, and forensic video analysis,

etc. Object trajectories, once estimated, can be used to generate

high-level video understandings, e.g., activities, events. However,

a long standing research problem is how to track objects that

are partially visible or completely invisible due to occlusions.

Classic solutions [38], [35], [25] to this challenge often employ

a hypothesis-testing strategy to determine object visibility status:

assuming that the object of interest is visible, matching image of

object (or object part) into the next video frame, and checking if

the matching score is higher than a threshold. This strategy has

two fundamental shortcomings. First, the optimal threshold might

be varying across time, locations, objects, scene types, and it is

very difficult to find the optimal one while tracking an object

The first two authors contributed equally to this work. Xiaobai Liu is with
the Department of Computer Science, San Diego State University, San Diego,
California 92125
Qian Xu is with the XreLab Inc., San Diego, California 92128
Thuan Chau is with the Department of Computer Science, San Diego State
University, San Diego, California 92125
Lei Zhu is with the School of Information Science and Engineering, Shandong
Normal University, Jinan, China 250358
Yadong Mu is with the Institute of Computer Science and Technology, Peking
University, Beijing, China 100000
Shuicheng Yan is with the Department of Electrical and Computer Engineer-
ing, National University of Singapore, Singapore

A B c

(a)

A

B

C

(b)

visible

invisible

visible
occluded

visible

visible
occluded

invisible

time

Fig. 1. Object tracking with occlusions. (a) Three objects (pedestrians
or vehicles) in the same scene are interacting with each other. (b) The
visibility status of each object is switching between visible, occluded,
and invisible over time.

moving in the scene. Second, these methods ignore the time-

dependent relationships between the visibility statuses of the same

object. As shown in Figure 1, as the human A approaches and

enters the vehicle B, the visibility status of B changes over time,

form visible, occluded, to visible. To our best knowledge, there

is no previous efforts on systematically studying the temporal

transitions of object visibility status. In this work, we fill in the gap

through developing an unified method that can explicitly reason

object visibility statuses while tracking objects in videos.

The key idea of our method is to formulate object tracking as

a Markov Decision Process in a joint continuous-discrete space.

For each object, our method aims to estimate its visibility status as

well as its location and size in each video frame. The estimation

of visibility status is defined in a discrete space composed of

‘visible’, ‘occluded’ and ‘invisible ’, and the task of localization

is defined in a continuous image space, i.e. location coordinates.

On the one hand, these two tasks can be independently formulated

and separately solved. For example, we can learn a discriminative

model to predict the visibility status of a vehicle given its images,

or learn to decide the optimal bounding box for this object. On

the other hand, the two tasks should be coordinately formulated

and scheduled in order to avoid errors in visual tracking. When

the object of interest becomes invisible in videos, for example,

traditional trackers do not work and we need to employ re-

identification methods [55], [49] to group discrete trajectories



2

together. Therefore, a robust tracker is expected to jointly estimate

object visibility statuses and object locations in video frames.

As the main innovation of this effort, we develop a policy-

based jump-diffusion process [20] to seek for the optimal solution

in the continuous-discrete space. The process starts with an ini-

tial solution, i.e., visibility status and locations, and iteratively

employs a set of dynamics to reconfigure the present solution

in order to simulate a Markov Chain in the solution space. A

dynamic is either a jump that changes object visibility statuses

or a diffusion that changes object location/size in videos. In the

literature [20], [56], a traditional jump-diffusion process is often

driven by randomly proposed dynamics or data-driven dynamics,

and is subject to slow convergence. In this work, we focus on the

real-time visual tracking problem, for which convergence speed

is the most critical factor. To address this issue, we propose

to employ discriminatively trained policy functions to propose

dynamics and parameterize the policy functions using deep neural

networks [6], [32]. We train policy networks using the policy

gradient method [32] in the reinforcement learning setting. Eval-

uations on multiple video benchmarks showed that our method

can reliably estimate object visibility status over time and robustly

track objects of interest with occlusions in crowded scenarios.

The contributions of this work include (I) An unified tracking

method that can explicitly reason object visibility statuses in

crowded scenes; and (II) a policy-based jump-diffusion method

that employs discriminatively trained policy functions to drive the

simulation process. These techniques can be applied to address the

challenges of other compute vision tasks.

2 RELATIONSHIPS TO PREVIOUS WORKS

The proposed research is closely related to the following research

streams in computer vision and AI.

Object Tracking In past literature, tracking-by-detection has

become the mainstream framework [45], [9]. Specifically, a gen-

eral detector [12], [36] is first applied over video frames to

obtain detection proposals, then data association techniques [2],

[8], [54] are employed to link detection proposals over time in

order to get object trajectories. The advances in object detection,

e.g., [26] [27], significantly improve detectors’ generalization

capabilities and robustness while dealing with small objects, scene

noises, and other challenges. Our approach follows the same

tracking-by-detection strategy but focuses on the reasoning of

object visibility status.

Occlusion Handling is perhaps the most fundamental problem

in visual tracking, and has been extensively studied in the past

literatures. These methods can be roughly divided into three

categories: i) using depth information [11], [52], ii) modeling

partial occlusion relations [41], iii) modeling object appearing

and disappearing globally [43], [44], [29]. As aforementioned,

these methods employ the hypothesis-test strategy to determine

if occlusions happen, which is not reliable. More recently, Qi et

al. [7] introduced a visual attention map to characterize target

visibility (occlusion) statuses, and used it to control the online

model updating process. This method quantizes occlusion statuses

in a continuous space and aims to regress these real-valued confi-

dences from low-level features. In contrast, this paper represents

occlusion statuses in a discrete space and presents a principled way

to explicitly reason object visibility status while tracking them in

videos.

Reinforcement Tracking Reinforcement learning meth-

ods [40] aim to learn to sequentially choose actions that can

maximize cumulative future rewards. Traditional reinforcement

learning methods are limited to their poor performance and sta-

bility capabilities. The recent deep reinforcement learning (DRL)

methods integrated deep representations to parameterize policy

functions or value functions, and achieved encouraging successes

in multiple fields, e.g., video games [31], or Go [32]. Recently,

DRL was also applied to solve traditional computer vision prob-

lems. In particular, Caicedo and Lazebnik [4] employed DRL

to narrow down search areas while localizing objects, Yun et

al. [53] extended this idea to track objects in videos. Choi et

al. [6] employed policy functions to determine the best template

while tracking multiple objects in videos. Huang et al. [21]

employed policy functions to classify video frames to be either

easy or difficult cases and adaptively use shallow or deep models

to deal with them in order to boost system efficiencies. James

and Deva [39] developed an interactive video processing system

which utilizes policy functions to collect human annotations with

minimal interactions and to estimate the status of tracks (i.e. being

lost or not). These methods achieved impressive results on public

video benchmarks, and demonstrated the effectiveness of DLR

methods. In this work, we extend these works and introduce an

tracking framework to explicitly reason object occlusion statuses.

We also contribute an effective variant of jump-diffusion process

that has wide application potentials in multiple computer vision

fields.

Our approach will collect both positive and negative samples

to train the proposed policy functions. Every sample contribute

equally to the training procedure. This strategy could be improved

by discriminatively assigning varying weights to each training

sample, as suggested by Ma et al. [28]. Our tracking method

can be integrated with advanced video analysis techniques, e.g.,

semantic pooling by Chang et al. [5], to further accelerate infer-

ence time. In this work, we focus on the study of learning-driven

sampling algorithm and the applications of the above techniques

are out of the scope.

3 THE PROPOSED METHOD

3.1 Background: stochastic jump-diffusion process

Stochastic jump-diffusion process was first studied by Grenan-

der and Miller [18] in 1994 and was rigorously formulated by

Green [17] in 1995. The process is often used to sample a prob-

abilistic distribution defined over a mixture space composed of

multiple subspaces of varying dimensions. It employs both jump

and diffusion dynamics to reconfigure the present sample, and

simulates a Markov Chain towards the target distribution. A jump

is used to move between different subspaces whereas a diffusion

is used to move within the same subspace. While this method was

barely used in computer vision community, the seminal works by

Song-Chun Zhu et al. [56] [20] showed that it can serve as a

unified inference framework for solving most vision tasks, e.g.,

image segmentation, skeleton detection etc. The traditional jump-

diffusion process, however, uses data-driven proposals or random

proposals to change the present sample and is not applicable

for real-time visual systems, e.g., object tracking. In this work,

we revisit jump-diffusion process and study an effective proposal

making strategy that enables the applications of this process over

visual tracking.



3

Algorithm 1: Policy-based Jump-Diffusion Tracker (JD-

Tracker).

1: Input: video sequences

2: Initializations: object detections

3: while Not Convergence do
- Call the discrete policy network to generate the

conditional action probabilities;

- Execute a stochastically selected discrete action;

- If the current status is invisible, terminate;

- Call the continuous policy network to generate the

conditional action probabilities;

- Execute a stochastically selected continuous action;
end

3.2 Overview of the proposed method
The objective of this work is to track objects of interest in video

sequences and simultaneously estimate their visibility statuses

over time. We formulate this joint task as a policy-based jump-

diffusion process, which employs a set of dynamics to simulate

a Markov Chain traveling towards the optimal solution. As the

object of interest moves in videos, our method employs two type of

dynamics to reconfigure the current solution: jump dynamics, that

change the discrete object visibility status, and diffusion dynamics,

that change the continuous object location/size. We employ policy

functions to seek for the optimal dynamic in either discrete or

continuous space, and parameterize the policy functions using

deep neural networks. A reinforcement method is developed to

train these networks from annotated video data. The learned policy

functions are used to make proposals while simulating the Markov

Chain. We will empirically show that the proposed method can

robustly track objects in crowded scenes with frequent occlusions,

and accurately estimate object visibility statuses.

3.3 Policy-based jump-diffusion tracking
Algorithm 1 summarizes the sketch of the proposed policy-based

jump-diffusion tracker. For a given video sequence, we first

detect objects of interest, and for each object detection, randomly

chooses a jump or diffusion dynamic to change its visibility status

or locations. Note that if the object of interest is invisible, the

algorithm terminates and the tracking of this object ends.

A critical problem for this jump-diffusion tracker is how to

select an appropriate dynamic at each step. In this work, we

consider the input video sequences as the environment, and the

developed tracker as an agent. In each video frame, the agent em-

ploys policy functions and current state information to retrieve the

optimal action, execute the action to get a new state, and receive

a reward. The agent seeks for optimal actions to change object

visibility status or localize/resize the object while maximizing the

accumulated future rewards.

We cast the selection of dynamics a Markov Chain Decision

Process (MDP). An MDP is defined by a tuple (s, a, T , r), where

s ∈ S represents an object state, a ∈ A denotes an action, T
represents the transition between states, and r(s, a) defines the

immediate reward received after executing action a over a state s.

State variables are used to characterize the current status of

an object in the present environment. For each object, the state

space comprises of two subspaces, S = Sd � Sc, where Sd

includes three discrete states, i.e., visible, occluded, and invisible,

and Sc represents the continuous object positions and sizes in

video frames. Every state represents the information of the target

object, in terms of appearances, locations, and history of states.

Actions and Transition Function can be performed over

objects to change their discrete or continuous states. In the discrete

space, an action represents a jump dynamic and is applied to set

the object’s visibility status to be visible, occluded, or invisible.

In the continuous space, an action represents a diffusion dynamic

and is applied to shift or resize the bounding box of the object

to cover it in the new video frame. A continuous action can

be denoted with a triplet (θ, β, σ), representing the translation

and scaling changes over orientation, distance, and size. Figure 2

visualizes this vector in a log-polar coordination. This action space

is different from the previous works [53], [4], which quantize the

translation and scaling spaces into discrete bins and introduce a

classification network to define the policy function. In contrast, we

define continuous actions in a 3-dimensional space and introduce

a regression network to parameterize the policy function.

Reward function r(s, a) is defined over the present state s,

regardless of the actions a, i.e., r(s, a) = r(s). In the discrete

space, we apply an action to change the visibility status of the

object of interest, and the reward function r(s) returns 1 if the

new visibility status is equal to the ground-truth status; or returns 0

otherwise. In the continuous space, we use an action to translate or

re-size the target bounding box, and calculate the overlapping ratio

between the new bounding box and ground-truth box, denoted as

U . We set the reward function r(s) as:

r(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+1, U > 0.7

−1, U < 0.5

0, Otherwise

∀s ∈ Sc (1)

where the two constants 0.7 and 0.5 are empirically set. We use

these two thresholds throughout the experiments of this work.

Policy Functions The policy function π(at|st) in MDP is

used to choose a proper action at given the state st at time t. The

action can be chosen in either deterministic or stochastic manner.

While it is possible for a policy function to take any form, recent

studies [32] [53] showed it is beneficial to parameterize it using

deep neural networks, which can significantly improve the stability

in policy learning. In this work, we employ deep networks to

define policy functions in both continuous and discrete spaces, as

introduced in Section 3.4.

Heuristic Policies As an alternative to policy functions, the

simplest approach to selecting actions might be to pre-define

heuristics. In the discrete action space, for example, one can set

an object to be visible if it can be detected with high confidence,

or to be occluded if only object parts are detectable (with high

confidences), or to be invisible if neither objects or object parts are

detectable. One can also evaluate the history of object movements,

and set the visibility status of an object to be occluded if another

object will walk in front of it. Similarly, in the continuous space,

one can employ the traditional trackers to determine the translation

or scale changes of object bounding box. The above heuristics can

be further enhanced through using the ground-truth data, instead

of detectors or trackers. In this work, we use these heuristics to

initialize the learning of policy networks.

3.4 Architecture of Deep Policy Networks
We employ deep neural networks to parameterize the policy

functions and use them to choose the optimal action for the



4

112×112×3

51×51×96
11×11×256

3×3×512

512 512
Input Image

112×112×3

51×51×96
11×11×256

3×3×512

2048 2048

state: visible

state: occluded

state: invisible

(a)

(b)

visibility statuses

…
action sequence

Fig. 2. Architectures of policy networks. (a) Policy network that maps an input image to one of the three visibility statuses: visible, invisible, and
occluded. (b) Policy network that maps an input image to a continuous action used to shift or re-size object bounding boxes. Each continuous action
is described as a triplet (θ, β, σ) that represents the translation direction, translation distance and scale factors, respectively. The two networks
share the same convolutional layers.

current state. Figure 2 illustrates the network architectures used

for continuous and discrete policy functions.

Discrete Policy Network Figure 2 (a) summarizes the sketch

of the policy network used for selecting discrete actions. To

determine the visibility status of a tracked object at time t, we use

the bounding box at time t−1 to crop the image of object from the

video frame at t, and feed it to a deep neural network. The network

comprises of three convolution layers and two fully connected (fc)

layers that are combined with the ReLu and dropout layers. The

output of the second fc layer is concatenated with the vector of

past visibility statuses which has 100 dimensions. The final layers

are used to predict the probability of each visibility status of the

given state. In particular, there are three output units, representing

the 3 visibility statuses: visible, occluded and invisible, being

combined with a softmax layer whose output is the conditional

action probability distribution.

Continuous Policy Network We employ a similar network

architecture to parameterize the policy network in continuous

spaces, as shown in Figure 2 (b). The network shares the identical

convolutional layers with the discrete policy network, and includes

two additional fully connected layers that are combined with

the ReLu and dropout layers. The output of the secondfc layer

is concatenated with the vector of past actions which has 100

dimensions. The final layer includes a single unit connected with

a regression loss. We use the sum of square loss in this work.

Note that this is different from the previous work [53] which

employs classification loss to predict translation/scaling changes

and ignores the continuous relationships between actions.

3.5 Training of Policy Networks

We formulate the learning of policy networks in the reinforcement

setting. During training, the agent (tracker) will receive a reward

signal from the environment (input video sequences in this work)

after executing an action at time t. The training objective is to

maximize the total rewards the agent can receive in the future.

Note that the two policy networks are trained alternatively so that

the developed jump-diffusion tracker can choose either continuous

or discrete actions for the given state.

We use a variant of REINFORCE algorithm [46] with ac-

cumulated policy gradients to learn the parameters of the two

policy networks. To do so, we randomly generate multiple tracking

episodes with varying lengths (frames) from training videos, such

that each episode covers the lifespan of an object of interest.



5

Algorithm 2: Training of Policy Networks.

1: Input: an episode of video frames and annotations

2: for every video frame at t do
-Use the policy networks to generate conditional

probabilities for discrete actions and continuous

actions, respectively;

-Choose and execute an action with a probability;

-Accumulate gradients ΔW according to Eq. (2);
end

3: if tracking the object successfully then
-Update network parameters W = W +ΔW
else
-Update network parameters W = W −ΔW ;

end

Then, we perform object tracking on each training episode and

draw actions as follows: employing the current policy reworks to

generate the conditional action probabilities in both discrete and

continuous spaces; stochastically selecting one of the actions as

the current decision. In this way, we can probabilistically generate

action sequences from the episode. Once selected the action, being

discrete or continuous, we consider it as the ground-truth label and

run the back-propagation method to calculate gradients. Taking

the discrete policy network for an example, let φ(αt|st;W )
denote the policy function and W the network parameters. We

can accumulate the gradients for all decisions in the same episode

as:

ΔW = c
T∑

t=1

Δ log π(αt|st;W )γT−t (2)

where c is the learning rate, Δ represents the derivative with

respect to the network parameters W , T is the length of the

episode and γ ∈ (0, 1] is a discounting factor that assigns higher

weight to decisions made later during the course of the episode.

Similar gradient calculations are applied for the continuous policy

network. We use ΔW to update network parameters when our

tracker successfully localizes the object by the end of the episode.

Otherwise, if our tracker fails to localize the object, we use

negative gradients, i.e. −ΔW , to update the network parameters.

Algorithm 2 summarizes the sketch of the proposed training

algorithm.

4 EXPERIMENTS

4.1 Datasets, Implementation, and Metrics

We apply the proposed method over three video video datasets for

test and evaluation purposes and compare it to the alternatives.

Tracking Interacting Objects (TIO) dataset. We collect a

new video dataset to justify the effectiveness of the proposed

occlusion reasoning method. The videos are captured in a parking-

lot, and include multiple human-object interactions, e.g., loading,

unloading, stopping etc. The objects of interest include pedestrians

and vehicles. In contrast, most existing tracking benchmarks, e.g.,

PETS09 [13], OTB [47], KITTI dataset [16], do not include

frequent occlusions. All video sequences are captured by a GoPro

camera, with frame rate 30fps and resolution 1920 × 1080. The

total number of frames of TIO dataset is more than 30K. There

exist severe occlusions and large scale changes, making this

dataset very challenging for traditional tracking methods.

People-Car dataset [43]1. This dataset consists of video

sequences on a parking lot with two synchronized bird-view

cameras, with length 300− 5100 frames. In this dataset, there are

many instances of people getting in and out of cars. This dataset is

challenging because of frequent subject-object or subject-subject

interactions, light variations and low object resolutions. It includes

22 video sequences in a plaza where people walk around and get

in/out vehicles, and 3 video sequences in a parking lot that show

vehicles entering/exiting the parking lot, people getting in/out

vehicles, people interacting with trunk/suitcase.

PPL-DA dataset. We collect another video dataset to cover

people’s daily activities. This dataset consists of 3 public facilities:

foot court, office reception, and plaza. The scenes are recorded

with 4 GoPro cameras, mounted on around 1.5 meters high tripods.

The produced videos are also around 4 minutes long and in 1080P

high quality.

Beside the above testing data, we collect another set of video

clips for training. To avoid over-fitting, we set up different camera

positions, different people and vehicles from the testing settings.

The training data consists of 380 video clips covering 9 events:

walking, opening vehicle door, entering vehicle, exiting vehicle,
closing vehicle door, opening vehicle trunk, loading baggage,
unloading baggage, closing vehicle trunk. Both the datasets and

short clips are annotated with the bounding boxes for people,

suitcase, and vehicles. We additionally annotate the visibility

status, i.e. ”visible”, ”occluded”, and ”invisible”, for the TIO

dataset. We utilize the video annotation toolkit VATIC [42] to

annotate the videos.

Implementation We pre-train the policy networks on the

ImageNet dataset [10], and then fine-tune network parameters

on the randomly generated episodes. We resize all images to be

112 × 112 pixels before feeding into the policy networks. We

use dropout regularization for fully-connected layers, with drop

rate 0.7. Each convolution layer is followed by the rectified linear

unit (ReLU) activation function. To train the network, we set the

learning rate c to be 0.0001, γ = 0.95. We randomly generate

6000 episodes from the training dataset, with length varying from

30 to 300 frames. We consider a predicted object box to be

correct if its overlapping ratio with the ground-truth box is at least

0.5, and consider an episode to be successfully tracked if at last

40% predicted bounding box are correct. At the the early stage

of training, we use the heuristic policies, instead of the policy

networks, to choose actions, in order to accelerate the exploration

stage. We use experience replay method [37] during training and

retain in the replay memory 5000 successful samples and 5000

failure samples. To update the network parameters, we sample

50 samples from the memory and accumulate the gradients. It is

noteworthy that we used the same policy representation for both

vehicles and pedestrians and use the same two policy networks for

tracking different categories. This is feasible because of the high

generalization capabilities of deep neural networks.

We implement the proposed tracker using MatConvNet tool-

box and run all experiments on a workstation with CPU: Intel Core

i7-7700K, GPU: Nvidia GeForce GTX 1050, and Memory: 8GB.

Without code optimization, the proposed tracker can run about 30

fps.

Metrics We evaluate the proposed method from two aspects.

First, the ability to track objects. We adopt the widely used

CLEAR metrics [22] to measure the performances of tracking

1. This dataset is available at cvlab.epfl.ch/research/surv/interacting-objects



6

visible occluded invisible

2 3
4

12
3

4

1 122 3 3
4 4

12 3
4

4
5

t=1 t=30 t=60

t=90 t=120 t=150

Fig. 3. Quantitative results of visibility status estimation on TIO dataset. t: index of video frames.

Scene JDTracker DCNet

Plaza 0.81 0.47
Parking-lot 0.73 0.29

Average 0.77 0.38

TABLE 1
Results of visibility status recognition (accuracy) on the TIO dataset.
JDTracker: the proposed method; DCNet: the baseline method based

on deep networks.

methods. It includes four metrics, i.e., Multiple Object Detection

Accuracy (MODA), Detection Precision (MODP), Multiple Ob-

ject Tracking Accuracy (MOTA) and Tracking Precision (MOTP),

which take into account three kinds of tracking errors: false

positives, false negatives and identity switches. We also report

the number of false positives (FP), false negatives (FN), identity

switches (IDS) and fragments (Frag). A higher value means better

performance for TA and TP while a lower value means better

performance for FP, FN, IDS and Frag. If the Intersection-over-

Union (IoU) ratio of tracking results to ground truth is above 0.5,

we accept the tracking result as a correct hit. The other metrics

used include MT, mostly tracked, percentage of ground truth

trajectories which are covered by tracker output for more than

80% in length; and ML↓, mostly lost, percentage of ground-truth

trajectories which are covered by tracker output for less than 20%
in length. Second, the ability to estimate object visibility status.

We simply compare the prediction to the ground-truth labels and

calculate the percentage of correctness, i.e. accuracy.

4.2 Results for Visibility Status Estimation

We apply the proposed method, denoted as JDTracker, over

TIO dataset and test its ability to estimate object visibility status.

Figure 3 visualizes the results on a video sequence. There are four

pedestrians walking in a parking-lot and a vehicle moving in the

nearby area. Taking the pedestrian#2 for an instance, his visibility

status changes from ‘visible’ (t=1, t=30) to ‘occluded’ (t=60, t=90)

and ‘invisible’ (t=120) as he approaches and gets into the vehicle.

Our method can correctly estimate the changes of visibility and

enable high-level video understanding, e.g., activity recognition.

Table 1 reports the quantitative results of visibility status esti-

mation while applying the proposed tracker over the TIO videos.

For comparisons, we include the results of a baseline method,

DCNet, which takes as input the image of object and outputs its

discrete visibility labels. The network architecture of DCNet is

the same as the discrete policy network but does not include the

history of visibility statuses as inputs. We train DCNet in the fully

supervised setting using the same training data. As shown in the

table, the proposed tracker can achieve much better accuracies

than the baseline. These comparisons are used to demonstrate the

basic observation, as aforementioned, that visibility statuses of the

same object are strongly time-dependent and it is important to

make prediction using the previous visibility statuses.

4.3 Results for Object Tracking

For the TIO dataset, we compare the proposed method (denoted

as JDTracker) with 6 state-of-the-arts: successive shortest path

algorithm (SSP) [34], multiple hypothesis tracking with distinctive

appearance model (MHT D) [23], Markov Decision Processes

with Reinforcement Learning (MDP) [48], Discrete-Continuous

Energy Minimization (DCEM) [30], Discrete-continuous opti-

mization (DCO) [1] and Joint Probabilistic Data Association

(JPDA m) [19]. We use the public implementations of these

methods. Table 2 reports the quantitative results and comparisons

on TIO dataset. From the results, we can observe that our method

achieved encouraging performance while using most metrics. In

particular, the IDS of our method is much lower than any other

methods. This indicates that the ability of occlusion reasoning can



7

Plaza MOTA ↑ MOTP ↑ FP ↓ FN ↓ IDS ↓ Frag ↓
JDTracker 51.0% 78.3% 5 349 1 3

MHT D [23] 34.3% 73.8% 56 661 15 18

MDP [48] 32.9% 73.2% 24 656 9 7

DCEM [30] 32.3% 76.5% 2 675 2 2
SSP [34] 31.7% 72.1% 19 678 21 25

DCO [1] 29.5% 76.4% 22 673 6 2

JPDA m [19] 13.5% 72.2% 163 673 6 3

ParkingLot MOTA ↑ MOTP ↑ FP ↓ FN ↓ IDS ↓ Frag ↓
JDTracker 39.3% 79.8% 321 1531 8 6
MDP [48] 30.1% 76.4% 397 2296 26 22

DCEM [30] 29.4% 77.5% 383 2346 16 15

SSP [34] 28.9% 75.0% 416 2337 12 14

MHT D [23] 25.6% 75.7% 720 2170 15 12

DCO [1] 24.3% 78.1% 536 2367 38 10

JPDA m [19] 12.3% 74.2% 1173 2263 28 17

TABLE 2
Quantitative tracking results on the TIO dataset. The best scores are marked in bold.

People-Car Method MODA ↑ FP ↓ FN ↓ IDS ↓

Seq.0

JDTracker 0.71 0.02 0.03 0.01
TIF-MIP [44] 0.67 0.07 0.25 0.04

KSP [2] 0.49 0.10 0.41 0.07

LP2d [24] 0.47 0.05 0.48 0.06

POM [15] 0.47 0.06 0.47 -

SSP [34] 0.20 0.04 0.76 0.04

Seq.1

JDTracker 0.65 0.15 0.11 0.01
TIF-MIP [44] 0.58 0.17 0.25 0.04

KSP [2] 0.04 0.71 0.25 0.12

LP2D [24] 0.02 0.77 0.21 0.17

POM [15] -0.21 0.98 0.23 -

SSP [34] 0.00 0.75 0.25 0.12

TABLE 3
Quantitative tracking results on the People-Car dataset. The best scores are marked in bold.

improve the robustness of visual tracking systems when there are

frequent object interactions.

For the People-Car dataset, we compare the proposed method

with other 5 state-of-the-arts methods: successive shortest path

algorithm (SSP) [34], K-Shortest Paths Algorithm (KSP) [2],

Probability Occupancy Map (POM) [15], Linear Program-

ming (LP2D) [24], and Tracklet-Based Intertwined Flows (TIF-

MIP) [44]. The quantitative results are reported in Table 3. From

the results, the proposed method obtains better performance than

the baseline methods.

PPL-DA dataset We compare the proposed method to four

popular trackers: Probabilistic Occupancy Map (POM) [14], K-

Shortest Path (KSP) [3], and Hierarchical Trajectory Composition

(HTC) [50]. We included the results of the recent neural network

based method, MDNet [33], which employs a Multi-Domain Con-

volutional Neural Network for visual tracking. In MDNet, each

object of interest (or domain) is represented as a separate CNN

network. MDNet achieved state-of-the-art tracking performance

in multiple visual tracking benchmarks [33]. We also include

the tracker ActionNet proposed by Yoo et al. [53]. ActionNet

can be considered as a variant of the proposed method since it

employs reinforcement techniques as well and aims to learn to

shift object bounding boxes in order to track objects. In contrast,

our method additionally utilizes visibility statuses while training

policy networks, and quantize action spaces in a continuous space

rather than the discrete space used in [53].

Table 4 reports the quantitative results of various methods on

PPL-DA dataset. Notably, our method can significantly reduce the

number of ID switches (IDSW) on all scenarios, which is a critical

indicator of the superiority of our method. Our method also outper-

forms ActionNet, which clearly demonstrates the superiority of the

proposed policy-based jump-diffusion process. Fig. 4 visualizes

exemplar results on this dataset. These four video sequences

are challenging in varying ways, including low-resolution (top-

left, top-right), distortions (bottom-left), occlusions (bottom-left,

bottom-right) and illumination changes (all four scenes). Our

method can robustly track these subjects over time.



8

Fig. 4. Exemplar tracking results of the proposed method on the PPL-DA dataset.

Seq-Court TA(%) TP(%) MT(%) ML(%) ↓ IDSW ↓ FRG ↓
JDTracker 54.8 81.3 35.7 17.2 18 61
MDNet [33] 53.1 82.1 32.2 21.3 53 42
ActionNet [53] 45.6 78.1 28.7 26.8 61 51
HTC [50] 29.5 71.9 14.8 25.9 91 77
KSP [3] 24.7 64.4 0.00 44.4 318 291
POM [14] 22.3 65.4 0.00 51.9 296 269
Seq-Office TA(%) TP(%) MT(%) ML(%) ↓ IDSW ↓ FRG ↓
JDTracker 66.5 89.5 64.3 0.00 18 25
MDNet [33] 60.3 87.1 54.1 0.00 33 28
ActionNet [53] 57.3 78.5 55.3 0.00 34 32
HTC [50] 41.2 70.7 28.6 0.00 66 59
KSP [3] 39.6 58.0 28.6 0.00 83 76
POM [14] 36.9 58.8 28.6 0.00 89 82
Seq-Plaza TA(%) TP(%) MT(%) ML(%) ↓ IDSW ↓ FRG ↓
JDTracker 48.9 76.5 43.4 11.0 59 72
MDNet [33] 27.4 68.9 18.5 12.7 112 98
ActionNet [53] 32.5 65.8 29.5 21.5 99 103
HTC [50] 23.1 66.2 11.6 18.6 202 178
KSP [3] 17.3 57.5 7.0 27.9 356 311
POM [14] 16.7 57.9 4.6 32.6 339 295

TABLE 4
Quantitative tracking results on the PPL-DA dataset that includes three video sequences.

5 CONCLUSIONS AND FUTURE WORKS

This paper revisited the classical jump-diffusion process and

studied a novel way to make it computationally feasible for dealing

with real-time problems. We focus on visual tracking and study in

particular how to jointly track objects and reason their visibility

statues in videos. Our method employs two different dynamics to

reconfigure the present solution in both discrete and continuous

space, and chooses the optimal dynamic at each step through

discriminaively trained policy functions. Integrating with the pro-

posed Deep Reinforcement Learning methods, we developed an

effective algorithm to learn policy functions from training data.

Results on multiple public video benchmarks showed that our

method can accurately recognize object visibility statuses and

robustly track objects in crowded scenes.

The proposed method employs an alternative strategy to jointly

optimize the continuous and discrete policy networks. The out-

comes of the continuous policy network will be used to move

or scale the target box and thus change the present object state.

The learning of discrete policy network is dependent on the

new object state. However, the learning of continuous policy

network is not dependent on the outcomes of discrete states. This

unidirectional coupling relationship is reasonable since the deep

policy representation can work well without explicitly knowing of

visibility status. It might also help reduce the negative impact of

errors made for visibility estimation, which is not ignorable at the

early stage of joint learning.

The developed techniques can be applied to solve a variety of

computer vision tasks, e.g., image reconstruction, segmentation,

and activity recognition, which will be studied in the future.

Taking image reconstruction for an instance, it often involves two



9

coupled sub-tasks: segmenting input images into semantic regions,

and estimating the 3D coordinates of each semantic region, which

are defined in continuous and discrete spaces, respectively. These

two subtasks can be jointly solved by the proposed continuous-

discrete inference algorithm. Similarly, the inference of image

segmentation is traditionally formulated as a Markov Chain Pro-

cess [56] and be solved by a stochastic jump-diffusion process,

where jump dynamics are used to flip the colors of image segments

and diffusion dynamics are used to refine segment boundaries. In

contrast to the traditional stochastic policy making strategy, the

proposed policy-based proposal making method can be used to

accelerate the mixing of the Markov Chain. Therefore, the devel-

oped techniques provide a generic framework for joint inference

in heterogeneous spaces, which has wide application potentials in

computer vision.

Moreover, we plan to study the proposed reinforcement tracker

from three aspects. The first research question is how tho effec-

tively specify rewards for continuous/discrete actions in reinforce-

ment learning. In this work, we determine rewards based on states

only, regardless of actions. In continuous space, for example,

it is possible to associate rewards with properties of the action

sequences in order to encourage effective and compact actions.

The second question is how to train policy functions with a limited

amount of supervisions. Complete object trajectory annotations

are very expensive to prepare. It is invaluable to investigate a

weakly supervised way to train the proposed policy networks.

The third question is the theoretical analysis of the proposed

policy-based jump-diffusion process, which can help understand

the underlying convergence properties.

ACKNOWLEDGMENT

Xiaobai Liu was supported by the DARPA SIMPLEX program

(No. 58723A), National Science Foundation (No. 1657600), ONR

grant (No. N00014-17-1-2867) and San Diego State University

Presidential Leadership Funds.

REFERENCES

[1] A. Andriyenko, K. Schindler, and S. Roth. Discrete-continuous optimiza-
tion for multi-target tracking. In IEEE Conference on Computer Vision
and Pattern Recognition, 2012.

[2] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple object tracking
using k-shortest paths optimization. IEEE transactions on pattern
analysis and machine intelligence, 33(9):1806–1819, 2011.

[3] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. multiple object track-
ing using k-shortest paths optimization. IEEE Transaction on Pattern
Analysis and Machine Intelligence, 33(9):1806–1819, 2011.

[4] J. C. Caicedo and S. Lazebnik. Active object localization with deep rein-
forcement learning. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2488–2496, 2015.

[5] X. Chang, Y.-L. Yu, Y. Yang, and E. P. Xing. Semantic pooling for
complex event analysis in untrimmed videos. IEEE transactions on
pattern analysis and machine intelligence, 39(8):1617–1632, 2017.

[6] J. Choi, J. Kwon, and K. M. Lee. Visual tracking by reinforced decision
making. arXiv preprint arXiv:1702.06291, 2017.

[7] Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, and N. Yu. Online
multi-object tracking using cnn-based single object tracker with spatial-
temporal attention mechanism. In Proceedings of the IEEE Conference
on Computer Vision, 2017.

[8] A. Dehghan, S. Assari, and M. Shah. Gmmcp-tracker:globally optimal
generalized maximum multi clique problem for multiple object tracking.
In IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[9] A. Dehghan, Y. Tian, P. Torr, and M. Shah. Target identity-aware
network flow for online multiple target tracking. In IEEE Conference
on Computer Vision and Pattern Recogntion, 2015.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255.
IEEE, 2009.

[11] A. Ess, K. Schindler, B. Leibe, and L. V. Gool. Improved multi-person
tracking with active occlusion handling. In IEEE ICRA Workshop on
People Detection and Tracking, 2009.

[12] P. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.
Object detection with discriminatively trained part based models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(9):1627–
1645, 2010.

[13] J. Ferryman and A. Shahrokni. Pets2009: Dataset and challenge. In
IEEE International Workshop on Performance Evaluation of Tracking
and Surveillance, 2009.

[14] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multi-camera people
tracking with a probabilistic occupancy map. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 30(2):267–282, 2008.

[15] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multicamera people
tracking with a probabilistic occupancy map. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 30(2):267–282, 2008.

[16] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In IEEE Conference on
Computer Vision and Pattern Recognition, 2012.

[17] P. J. Green. Reversible jump markov chain monte carlo computation and
bayesian model determination. Biometrika, 82(4):711–732, 1995.

[18] U. Grenander and M. I. Miller. Representations of knowledge in
complex systems. Journal of the Royal Statistical Society. Series B
(Methodological), pages 549–603, 1994.

[19] S. Hamid Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, and I. Reid.
Joint probabilistic data association revisited. In IEEE International
Conference on Computer Vision, 2015.

[20] F. Han, Z. Tu, and S.-C. Zhu. Range image segmentation by an effective
jump-diffusion method. IEEE Transactions on pattern analysis and
machine intelligence, 26(9):1138–1153, 2004.

[21] C. Huang, S. Lucey, and D. Ramanan. Learning policies for adaptive
tracking with deep feature cascades. In Proceedings of the IEEE
Conference on Computer Vision, 2017.

[22] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo,
R. Bowers, M. Boonstra, V. Korzhova, and J. Zhang. Framework for
performance evaluation of face, text, and vehicle detection and tracking
in video: Data, metrics, and protocol. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(2):319–336, 2009.

[23] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg. Multiple hypothesis tracking
revisited. In IEEE International Conference on Computer Vision, 2015.

[24] L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and S. Savarese.
Learning an image-based motion context for multiple people tracking. In
IEEE Conference on Computer Vision and Pattern Recognition, 2014.

[25] B. Li, T. Wu, and S.-C. Zhu. Integrating context and occlusion for car
detection by hierarchical and-or model. In European Conference on
Computer Vision, 2014.

[26] J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, and S. Yan. Perceptual generative
adversarial networks for small object detection. In IEEE CVPR, 2017.

[27] J. Li, Y. Wei, X. Liang, J. Dong, T. Xu, J. Feng, and S. Yan. Atten-
tive contexts for object detection. IEEE Transactions on Multimedia,
19(5):944–954, 2017.

[28] Z. Ma, X. Chang, Y. Yang, N. Sebe, and A. G. Hauptmann. The many
shades of negativity. IEEE Transactions on Multimedia, 19(7):1558–
1568, 2017.

[29] A. Maksai, X. Wang, and P. Fua. What players do with the ball: A
physically constrained interaction modeling. In IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[30] A. Milan, K. Schindler, and S. Roth. Multi-target tracking by discrete-
continuous energy minimization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 38(10):2054–2068, 2016.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[33] H. Nam and B. Han. Learning multi-domain convolutional neural
networks for visual tracking. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4293–4302, 2016.

[34] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-optimal greedy
algorithms for tracking a variable number of objects. In IEEE Conference
on Computer Vision and Pattern Recognition, 2011.

[35] H. Possegger, T. Mauthner, P. Roth, and H. Bischof. Occlusion geodesics
for online multi-object tracking. In IEEE Conference on Computer Vision
and Pattern Recognition, 2014.



10

[36] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Conference on Neural
Information Processing Systems, 2015.

[37] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience
replay. arXiv preprint arXiv:1511.05952, 2015.

[38] G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah. Part-based
multiple-person tracking with partial occlusion handling. In IEEE
Conference on Computer Vision and Pattern Recognition, 2012.

[39] J. Supancic III and D. Ramanan. Tracking as online decision-making:
Learning a policy from streaming videos with reinforcement learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[40] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998.

[41] S. Tang, M. Andriluka, and B. Schiele. Detection and tracking of oc-
cluded people. International Journal of Computer Vision, 110(1):58–69,
2014.

[42] C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scaling up
crowdsourced video annotation. International Journal of Computer
Vision, 101(1):184–204, 2013.

[43] X. Wang, E. Turetken, F. Fleuret, and P. Fua. Tracking interacting
objects optimally using integer programming. In European Conference
on Computer Vision, 2014.

[44] X. Wang, E. Turetken, F. Fleuret, and P. Fua. Tracking interacting objects
using intertwined flows. IEEE Transaction on Pattern Analysis and
Machine Intelligence, 38(11):2312–2326, 2016.

[45] L. Wen, W. Li, J. Yan, and Z. Lei. Multiple target tracking based on
undirected hierarchical relation hypergraph. In IEEE Conference on
Computer Vision and Pattern Recogntion, 2014.

[46] R. J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8(3-4):229–256,
1992.

[47] Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37(9):1834–
1848, 2015.

[48] Y. Xiang, A. Alahi, and S. Savarese. Learning to track: Online multi-
object tracking by decision making. In IEEE International Conference
on Computer Vision, 2015.

[49] Y. Xu, L. Lin, W.-S. Zheng, and X. Liu. Human re-identification by
matching compositional template with cluster sampling. In proceedings
of the IEEE International Conference on Computer Vision, pages 3152–
3159, 2013.

[50] Y. Xu, X. Liu, Y. Liu, and S. Zhu. Multi-view people tracking via
hierarchical trajectory composition. In IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[51] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. Acm
computing surveys (CSUR), 38(4):13, 2006.

[52] A. Yilmaz, L. Xin, and M. Shah. Contour based object tracking with
occlusion handling in video acquired using mobile cameras. IEEE
Transaction on Pattern Analysis and Machine Intelligence, 26(11):1532–
1536, 2004.

[53] S. Yoo, J. Yun, Y. Choi, K. Yun, and J. Y. Choi. Action-decision networks
for visual tracking with deep reinforcement learning. 2017.

[54] S.-I. Yu, D. Meng, W. Zuo, and A. Hauptmann. The solution path
algorithm for identity-aware multi-object tracking. In IEEE Conference
on Computer Vision and Pattern Recogntion, 2016.

[55] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian. Scalable
person re-identification: A benchmark. In IEEE International Conference
on Computer Vision, 2015.

[56] S.-C. Zhu. Stochastic jump-diffusion process for computing medial axes
in markov random fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(11):1158–1169, 1999.

Xiaobai Liu is an Assistant Professor of Com-
puter Science at San Diego State University
(SDSU), San Diego, U.S.A. He received his
PhD from the Huazhong University of Science
and Technology (HUST), China. His research
interests focus on the development of theories,
algorithms, and models for the core computer
vision problems. He has published 45 peer-
reviewed articles in top-tier conferences (e.g.
ICCV, CVPR, etc.) and leading journals (e.g.
TPAMI, TIP etc.). He received a number of

awards for his academic contributions, including the outstanding thesis
award by CCF (China Computer Federation).

Qian Xu is the co-founder and president of Xre-
Lab Inc., San Diego, CA. She received the Mas-
ter degree and Doctoral degree from the Depart-
ment of Statistics, San Diego State University in
2011 and 2017, respectively, and received the
B.S. degree from the School of Science, Beihang
University, Beijing, China, in 2006. Her research
interest falls in the various statistical models and
their applications in computer vision.

Thuan Chau is a Master student in the Depart-
ment of Computer Science, San Diego State
University, and currently works as a research
assistant. His research interest falls in the areas
of computer vision and machine learning.

Lei Zhu is a professor with the School of In-
formation Science and Engineering, Shandong
Normal University. He received his B.S. degree
(2009) from Wuhan University of Technology,
and the Ph.D. degree (2015) from Huazhong
University of Science and Technology. He was a
Postdoctoral Research Fellow at Data & Knowl-
edge Engineering research group in The Uni-
versity of Queensland (2016 to 2017), and Sin-
gapore Management University (2015 to 2016).
His research interests are in areas of multimedia

analysis and search.

Yadong Mu received the Ph.D. degree from
Peking University in 2009. He is now an assis-
tant professor at Peking University and leading
the machine intelligence lab at Institute of Com-
puter Science and Technology. Before joining
Peking University, he has ever worked at Na-
tional University of Singapore, Columbia Univer-
sity, Huawei Noah’s Ark Lab and AT&T Labs.
His research interest is in large-scale machine
learning, video analysis and computer vision.



11

Shuicheng Yan is chief scientist of Qihoo/360
company, and also the Dean’s Chair Associate
Professor at National University of Singapore.
Dr. Yan’s research areas include machine learn-
ing, computer vision and multimedia, and he has
authored/co-authored hundreds of technical pa-
pers over a wide range of research topics, with
Google Scholar citation over 20,000 times and
H-index 66. He is ISI Highly-cited Researcher of
2014, 2015 and 2016. His team received 7 times
winner or honorable-mention prizes in PASCAL

VOC and ILSVRC competitions, along with more than 10 times best
(student) paper prizes. He is a IEEE Fellow and IAPR Fellow.


