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Abstract— We present a comprehensive study and evaluation
of existing single-image dehazing algorithms, using a new large-
scale benchmark consisting of both synthetic and real-world
hazy images, called REalistic Single-Image DEhazing (RESIDE).
RESIDE highlights diverse data sources and image contents, and
is divided into five subsets, each serving different training or eval-
uation purposes. We further provide a rich variety of criteria
for dehazing algorithm evaluation, ranging from full-reference
metrics to no-reference metrics and to subjective evaluation, and
the novel task-driven evaluation. Experiments on RESIDE shed
light on the comparisons and limitations of the state-of-the-art
dehazing algorithms, and suggest promising future directions.

Index Terms— Dehazing, detection, dataset, evaluations.

I. INTRODUCTION
A. Problem Description: Single Image Dehazing

MAGES captured in outdoor scenes often suffer from
poor visibility, reduced contrasts, fainted surfaces and
color shift, due to the presence of haze. Caused by aerosols
such as dust, mist, and fumes, the existence of haze adds
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complicated, nonlinear and data-dependent noise to the
images, making the haze removal (a.k.a. dehazing) a highly
challenging image restoration and enhancement problem.
Moreover, many computer vision algorithms can only work
well with the scene radiance that is haze-free. However,
a dependable vision system must reckon with the entire
spectrum of degradations from unconstrained environments.
Taking autonomous driving for example, hazy and foggy
weather will obscure the vision of on-board cameras and
create confusing reflections and glare, leaving state-of-the-art
self-driving cars in struggle [1]. Dehazing is thus becoming
an increasingly desirable technique for both computational
photography and computer vision tasks, whose advance will
immediately benefit many blooming application fields, such
as video surveillance and autonomous/assisted driving [2].

While some earlier works consider multiple images from
the same scene to be available for dehazing [3]-[6], the single
image dehazing proves to be a more realistic setting in prac-
tice, and thus gained the dominant popularity. The atmospheric
scattering model has been the classical description for the hazy
image generation [7]-[9]:

Ix)y=J@x)t(x)+A0—1(x)), (1)

where [ (x) is observed hazy image, J (x) is the haze-free
scene radiance to be recovered. There are two critical parame-
ters: A denotes the global atmospheric light, and 7 (x) is the
transmission matrix defined as:

t(x) =e P, 2)

where S is the scattering coefficient of the atmosphere, and
d (x) is the distance between the object and the camera.

We can re-write the model (1) for the clean image as the
output:

1 1

t (x)I () At (x)
Most state-of-the-art single image dehazing methods exploit
the physical model (1), and estimate the key parameters A
and ¢ (x) in either physically grounded or data-driven
ways. The performance of top methods have continuously
improved [10]-[17], especially after the latest models
embracing deep learning [18]-[20].

J(x)= A. 3)

B. Existing Methodology: An Overview

Given the atmospheric scattering model, most dehazing
methods follow a similar three-step methodology: (1) estimat-
ing the transmission matrix f (x) from the hazy image I (x);
(2) estimating A using some other (often empirical) methods;
(3) estimating the clean image J (x) via computing (3).
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Usually, the majority of attention is paid to the first step,
which can rely on either physically grounded priors or fully
data-driven approaches.

A noteworthy portion of dehazing methods exploited natural
image priors and depth statistics. Reference [21] imposed
locally constant constraints of albedo values together with
decorrelation of the transmission in local areas, and then
estimated the depth value using the albedo estimates and
the original image. It did not constrain the scene’s depth
structure, thus often leads to the inaccurate estimation of color
or depth. References [22] and [23] discovered the dark channel
prior (DCP) to more reliably calculate the transmission matrix,
followed by many successors. However, the prior is found
to be unreliable when the scene objects are similar to the
atmospheric light [19]. Reference [12] enforced the boundary
constraint and contextual regularization for sharper restora-
tions. Reference [14] developed a color attenuation prior and
created a linear model of scene depth for the hazy image, and
then learned the model parameters in a supervised way. Refer-
ence [24] jointly estimated scene depth and recover the clear
latent image from a foggy video sequence. Reference [15]
proposed a non-local prior, based on the assumption that each
color cluster in the clear image became a haze-line in RGB
space.

In view of the prevailing success of Convolutional Neural
Networks (CNNs) in computer vision tasks, several dehaz-
ing algorithms have relied on various CNNs to directly
learn ¢ (x) fully from data, in order to avoid the often inac-
curate estimation of physical parameters from a single image.
DehazeNet [18] proposed a trainable model to estimate the
transmission matrix from a hazy image. Reference [19] came
up with a multi-scale CNN (MSCNN), that first generated
a coarse-scale transmission matrix and gradually refined it.
Despite their promising results, the inherent limitation of
training data is becoming a increasingly severe obstacle for
this booming trend: see Section II-1 for more discussions.

Besides, a few efforts have been made beyond the sub-
optimal procedure of separately estimating parameters, which
will cause accumulated or even amplified errors, when com-
bining them together to calculate (3). They instead advocate
simultaneous and unified parameter estimation. Earlier works
[25], [26] modeled the hazy image with a factorial Markov
random field, where 7 (x) and A were two statistically
independent latent layers. In addition, some researchers also
examined the more challenging night-time dehazing problem
[27], [28], which falls beyond the focus of this paper.

Another line of researches [29], [30] tries to make use
of Retinex theory to approximate the spectral properties of
object surfaces by the ratio of the reflected light. Very recently,
[20] presented a re-formulation of (2) to integrate ¢ (x) and
A into one new variable. As a result. their CNN dehazing
model was fully end-to-end: J (x) was directly generated
from [ (x), without any intermediate parameter estimation
step. The idea was later extended to video dehazing in [31].

C. Our Contribution
Despite the prosperity of single image dehazing algo-
rithms, there have been several hurdles to the further
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development of this field. There is a lack of benchmark-
ing efforts on state-of-the-art algorithms on a large-scale
public dataset. Moreover, current metrics for evaluating and
comparing image dehazing algorithms are mostly just PSNR
and SSIM, which turn out to be insufficient for charac-
terizing either human perception quality or machine vision
effectiveness.

This paper is directly motivated to overcome the above
hurdles, and makes three-fold technical contributions:

« We introduce a new single image dehazing benchmark,
called the Realistic Single Image Dehazing (RESIDE)
dataset. It features a large-scale synthetic training set, and
two different sets designed for objective and subjective
quality evaluations, respectively. We further introduce
the RESIDE-f set, an exploratory and supplementary
part of the RESIDE benchmark, including two innova-
tive discussions on the current hurdles on training data
content (indoor versus outdoor images) and evaluation
criteria (from either human vision or machine vision
perspective), respectively. Particularly in the latter part,
we annotate a task-driven evaluation set of 4,322 real-
world hazy images with object bounding boxes, which is
first-of-its-kind contribution.

« We bring in an innovative set of evaluation strategies
in accordance with the new RESIDE and RESIDE-p
datasets. In RESIDE, besides the widely adopted PSNR
and SSIM, we further employ both no-reference metrics
and human subjective scores to evaluate the dehazing
results, especially for real-world hazy images without
clean ground truth. In RESIDE-f, we recognize that
image dehazing in practice usually serves as the pre-
processing step for mid-level and high-level vision tasks.
We thus propose to exploit the perceptual loss [32]
as a “full-reference” task-driven metric that captures
more high-level semantics, and the object detection per-
formance on the dehazed images as a ‘“no-reference”
task-specific evaluation criterion for dehazing realistic
images [20].

e We conduct an extensive and systematic range of
experiments to quantitatively compare nine state-of-the-
art single image dehazing algorithms, using the new
RESIDE and RESIDE-f datasets and the proposed
variety of evaluation criteria. Our evaluation and analysis
demonstrate the performance and limitations of state-
of-the-art algorithms, and bring in rich insights. The
findings from these experiments not only confirm what
is commonly believed, but also suggest new research
directions in single image dehazing.

An overview of RESIDE could be found in Table I. We
note that some of the strategies used in this paper have been
previously used in the literature to a greater or smaller extent,
such as no-reference metrics in dehazing [33], subjective
evaluation [34], and connecting dehazing to high-level tasks
[20]. However, RESIDE is so far the first and only systematic
evaluation, that includes a number of dehazing algorithms with
multiple criteria on a common large-scale benchmark, which
has long been missing from the literature.
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(b)

Fig. 1. Example images from the five sets in RESIDE and RESIDE-/ (see Table 1. (a) RESIDE. (b) RESIDE-f.

TABLE I

STRUCTURE OF RESIDE(STANDARD) AND RESIDE-f

RESIDE(Standard)

Subset Number of Images | real/synthetic | indoor/outdoor | annotations
Indoor Training Set (ITS) 13,990 synthetic indoor No
Synthetic Objective Testing Set (SOTS) 500 synthetic indoor No
Hybrid Subjective Testing Set (HSTS) 20 real outdoor No

RESIDE-g3

Subset Number of Images | real/synthetic | indoor/outdoor | annotations
Outdoor Training Set (OTS) 72,135 synthetic outdoor No
Real-world Task-driven Testing Set (RTTS) 4,322 real outdoor Yes

The RESIDE dataset is made publicly available for
and we plan to periodically update

research purposes, !

Iwebsite: https://sites.google.com/site/boyilics/website-builder/reside

our own benchmarking results for noticeable new dehazing
algorithms. We also welcome authors to report new results

on RESIDE, and to contact us to add their references on the

website.
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II. DATASET AND EVALUATION: STATUS QUO

1) Training Data: Many image restoration and enhance-
ment tasks benefit from the continuous efforts for standardized
benchmarks to allow for comparison of different proposed
methods under the same conditions, such as [35] and [36].
In comparison, a common large-scale benchmark has been
long missing for dehazing, owing to the significant challenge
in collecting or creating realistic hazy images with clean
ground truth references. It is generally impossible to capture
the same visual scene with and without haze, while all
other environment conditions stay identical. Therefore, recent
dehazing models [34], [37] typically generate their training
sets by creating synthetic hazy images from clean ones: they
first obtain depth maps of the clean images, by either utilizing
available depth maps for depth image datasets, or estimating
the depth [38]; and then generate the hazy images by comput-
ing (1). Data-driven dehazing models could then be trained to
regress clean images from hazy ones.

Fattal’s dataset [37] provided 12 synthetic images.
FRIDA [39] produced a set of 420 synthetic images, for
evaluating the performance of automatic driving systems in
various hazy environments. Both of them are too small to
train effective dehazing models. To form large-scale training
sets, [19], [20] used the ground-truth images with depth meta-
data from the indoor NYU2 Depth Database [40] and the
Middlebury stereo database [41]. Recently, [34] generated
Foggy Cityscapes dataset [42] with 25,000 images from the
Cityscapes dataset, using incomplete depth information.

2) Testing Data and Evaluation Criteria: The testing sets in
use are mostly synthetic hazy images with known ground truth
too, although some algorithms were also visually evaluated on
real hazy images [18]-[20].

With multiple dehazing algorithms available, it becomes
pivotal to find appropriate evaluation criteria to compare their
dehazing results. Most dehazing algorithms rely on the full-
reference PSNR and SSIM metrics, with assuming a synthetic
testing set with known clean ground truth too. As discussed
above, their practical applicability may be in jeopardy even
a promising testing performance is achieved, due to the
large content divergence between synthetic and real hazy
images. To objectively evaluate dehazing algorithms on real
hazy images without reference, no-reference image quality
assessment (IQA) models [43]-[45] are possible candidates.
Reference [33] tested a few no-reference objective IQA models
among several dehazing approaches on a self-collected set
of 25 hazy images (with no clean ground truth), but did not
compare any latest CNN-based dehazing models. A recent
work [46] collected 14 haze-free images of real outdoor scene
and corresponding depth maps, providing a small realistic
testing set.

PSNR/SSIM, as well as other objective metrics, often align
poorly with human perceived visual qualities [33]. Many
papers visually display dehazing results, but the result differ-
ences between state-of-the-art dehazing algorithms are often
too subtle for people to reliably judge. That suggests the
necessity of conducting a subjective user study, towards which
few efforts have been made so far [33], [47].
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TABLE 11
COMPARISON BETWEEN EXISTING HAZY DATASETS AND RESIDE

Synthetic Real
indoor | outdoor | outdoor | annotated

Fattal [37] 4 8 31 -
FIRDA [39] - 480 - -

Ma [373] 3 22 - -
HazeRD [46] - 14 - -
Sakaridis [34] - 25,000 101 101

RESIDE 14,490 | 72,135 9,129 4,322

All the aforementioned hazy image datasets, as well as
RESIDE, are compared in Table II. As shown, most of the
existing datasets are either too small in scale, or lack sufficient
real-world images (or annotations) for diverse evaluations.

III. A NEW LARGE-SCALE DATASET: RESIDE

We propose the REalistic Single Image DEhazing
(RESIDE) dataset, a new large-scale dataset for fairly
evaluating and comparing single image dehazing algorithms.
A distinguishing feature of RESIDE lies in the diversity of
its evaluation criterion, ranging from traditional full-reference
metrics, to more practical no-reference metrics, and to the
desired human subjective ratings. A novel set of task-driven
evaluation options will be discussed later in this paper.

A. Dataset Overview

The REISDE training set contains 13, 990 synthetic hazy
images, generated using 1, 399 clear images from existing
indoor depth datasets NYU2 [40] and Middlebury stereo [41].
We synthesize 10 hazy images for each clear image.
An optional split of 13, 000 for training and 990 for validation
is provided. We set different atmospheric lights A, by choosing
each channel uniformly randomly between [0.7,1.0], and
select £ uniformly at random between [0.6,1.8]. It thus
contains paired clean and hazy images, where a clean ground
truth image can lead to multiple pairs whose hazy images are
generated under different parameters A and £.

The REISDE testing set is composed of Synthetic Objec-
tive Testing Set (SOTS) and the Hybrid Subjective Testing
Set (HSTS), designed to manifest a diversity of evaluation
viewpoints. SOTS selects 500 indoor images from NYU2 [40]
(non-overlapping with training images), and follow the same
process as training data to synthesize hazy images. We spe-
cially create challenging dehazing cases for testing, e.g., white
scenes added with heavy haze. HSTS picks 10 synthetic
outdoor hazy images generated in the same way as SOTS,
together with 10 real-world hazy images collected real world
outdoor scenes [48],2 combined for human subjective review.

B. Evaluation Strategies

1) From Full-Reference to No-Reference: Despite the
popularity of the full-reference PSNR/SSIM metrics for
evaluating dehazing algorithms, they are inherently limited
due to the unavailability of clean ground truth images

2Image Source: http://www.tour-beijing.com/real_time_weather_photo/
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TABLE III
AVERAGE FULL- AND NO-REFERENCE EVALUATIONS RESULTS OF DEHAZED RESULTS ON SOTS

DCP [10] | FVR[11] | BCCR [12] | GRM [I13] | CAP [I4] | NLD [I15] | DehazeNet [18] | MSCNN [19] | AOD-Net [20]
PSNR 16.62 15.72 16.88 18.86 19.05 17.29 21.14 17.57 19.06
SSIM 0.8179 0.7483 0.7913 0.8553 0.8364 0.7489 0.8472 0.8102 0.8504
SSEQ 64.94 67.75 65.83 63.30 64.69 67.46 65.46 65.31 67.65
BLIINDS-II 74.41 75.63 74.45 73.46 73.41 74.85 71.71 74.34 79.02

in practice, as well as their often poor alignment with
human perception quality [33]. We thus refer to two
no-reference IQA models: spatial-spectral entropy-based
quality (SSEQ) [45], and blind image integrity notator
using DCT statistics (BLIINDS-II) [44], to complement the
shortness of PSNR/SSIM. Note that the score of SSEQ and
BLIINDS?2 used in [45] and [44] are range from O (best) to
100 (worst), and we reverse the score to make the correlation
consistent to full-reference metrics.

We will apply PSNR, SSIM, SSEQ, and BLIINDS-II, to the
dehazed results on SOTS, and examine how consistent their
resulting ranking of dehazing algorithms will be. We will also
apply the four metrics on HSTS (PSNR and SSIM are only
computed on the 10 synthetic images), and further compare
those objective measures with subjective ratings.

2) From Objective to Subjective: Reference [33] investi-
gated various choices of full-reference and no-reference IQA
models, and found them to be limited in predicting the quality
of dehazed images. We then conduct a subjective user study
on the quality of dehazing results produced by different
algorithms, from which we gain more useful observations.
Ground-truth images are also included when they are available
as references.

In the previous survey [33], [49] a participant scored each
dehazing result image with an integer from 1 to 10 that best
reflects its perceptual quality. We adopt a different pipeline:
(1) asking participants to give pairwise comparisons rather
than individual ratings, the former often believed to be more
robust and consistent in subjective surveys, which has also
be adopted by [34] and [50]; (2) decomposing the perceptual
quality into two dimensions: the dehazing Clearness and
Authenticity, the former defined as how thoroughly the haze
has been removed, and the latter defined as how realistic the
dehazed image looks like. Up to our best knowledge, such
two disentangled dimensions have not been explored before
in similar literature. They are motivated by our observations
that some algorithms produce naturally-looking results but are
unable to fully remove haze, while some others remove the
haze at the price of unrealistic visual artifacts.

During the survey, each participant is shown a set of
dehazed result pairs obtained using two different algorithms
for the same hazy image. For each pair, a participant needs
to independently decide which one is better than the other
in terms of Clearness, and then which one is better for
Authenticity. The image pairs are drawn from all the compet-
itive methods randomly, and the images winning the pairwise
comparison will be compared again in the next round [51],
until the best one is selected. We fit a Bradley-Terry [52] model

to estimate the subjective scores for each dehazing algorithm
so that they can be ranked.

As the same for peer benchmarks [53], [54], the subjective
survey is not “automatically” scalable to new results.
However, it is extremely important to study the correlation
between human perception and objective metrics, which helps
analyze the effectiveness of the latter. We are preparing to
launch a leaderboard, where we will accept selective result
submissions, and periodically run new subjective reviews.

IV. ALGORITHM BENCHMARKING

Based on the rich resources provided by RESIDE, we eval-
uate 9 representative state-of-the-art algorithms: Dark-Channel
Prior (DCP) [10], Fast Visibility Restoration (FVR) [11],
Boundary Constrained Context Regularization (BCCR) [12],
Artifact Suppression via Gradient Residual Minimization
(GRM) [13], Color Attenuation Prior (CAP) [14], Non-local
Image Dehazing (NLD) [15], DehazeNet [18], Multi-scale
CNN (MSCNN) [19], and All-in-One Dehazing Network
(AOD-Net) [20]. The last three belong to the latest CNN-based
dehazing algorithms. For all data-driven algorithms, they are
trained on the same RESIDE training set.

A. Objective Comparison on SOTS

We first compare the dehazed results on SOTS using two
full-reference (PSNR, SSIM) and two no-reference metrics
(SSEQ, BLIINDS-II). Table III displays the detailed scores
of each algorithm in terms of each metric.?

In general, since learning-based methods [14], [18]-[20]
are optimized by directly minimizing the mean-square-error
(MSE) loss between output and ground truth pairs or maxi-
mizing the likelihood on large-scale data, they clearly outper-
form earlier algorithms based on natural or statistical priors
[10]-[13], [15] in most cases, in terms of PSNR and SSIM.
Especially, DehazeNet [18] achieves the highest PSNR value,
AOD-Net [20] and CAP [14] obtain the suboptimal and third
PSNR score. Although GRM [13] achieves the highest SSIM
score, AOD-Net [20] and DehazeNet [18] still obtain the
similar SSIM values.

However, when it comes to no-reference metrics, the results
become less consistent. AOD-Net [20] still maintains compet-
itive performance by obtaining the best BLIINDS-II result on
indoor images, thanks to end-to-end pixel correction. On the
other hand, several prior-based methods, such as FVR [11] and
NLD [15] also show competitiveness: FVR [11] ranks first in
term of SSEQ, and NLD [15] achieves the suboptimal SSEQ
and BLIINDS-II. We visually observe the results, and find that

3we highlight the top-3 performances using red, cyan and blue, respectively.
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AVERAGE FULL-EVALUATIONS RESULTS OF DEHAZED RESULTS ON SOTS WITH DIFFERENT HAZE LEVEL

TABLE IV

[ DCP[10] [ FVR[11] | BCCR[12] [ GRM [13] | CAP [I4] | NLD [15] | DehazeNet [15] | MSCNN [10] | AOD-Net [(]

B €[0.6,0.9]
PSNR 16.10 17.18 1691 18.64 20.88 1752 2424 19.72 22.40
SSIM | 0.8158 0.7682 0.7978 0.8528 0.8597 0.7558 0.9044 0.8480 0.8980
BE[1.0,14]
PSNR 16.58 16.00 17.07 18.74 19.68 1737 22.02 17.25 19.61
SSIM | 0.8210 0.7538 0.7942 0.8576 0.8450 0.7487 0.8870 0.8110 0.8616
BE[L5,1.8
PSNR 17.15 14.42 17.14 10.11 1721 17.06 13.67 15.10 16.16
SSIM | 0.8259 0.7289 0.7906 0.8555 0.8120 0.7438 0.8454 0.7723 0.8064
TABLE V

AVERAGE SUBJECTIVE SCORES, AS WELL AS FULL- AND NO-REFERENCE EVALUATIONS RESULTS, OF DEHAZING RESULTS ON HSTS
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DCP [10] | FVR [11] | BCCR [12] | GRM [1°] | CAP [11] | NLD [15] | DehazeNet [15] | MSCNN [10] | AOD-Net [1(]
Synthetic images
Clearness 1.26 0.18 0.62 0.75 0.50 1 0.29 1.22 0.86
Authenticity 0.78 0.14 0.50 0.95 0.86 1 1.94 0.54 1.41
PSNR 14.84 14.48 15.08 18.54 21.53 18.92 24.48 18.64 20.55
SSIM 0.7609 0.7624 0.7382 0.8184 0.8726 0.7411 0.9153 0.8168 0.8973
SSEQ 86.15 85.68 85.60 78.43 85.32 86.28 86.01 85.56 86.75
BLIINDS-II 90.70 87.65 91.05 82.30 85.75 85.30 87.15 88.70 87.50
Real-world images
Clearness 0.39 0.46 0.45 0.75 1 0.54 1.16 1.29 1.05
Authenticity 0.17 0.20 0.18 0.62 1 0.15 1.03 1.27 1.07
SSEQ 68.65 67.75 66.63 70.19 67.67 67.96 68.34 68.44 70.05
BLIINDS-II 69.35 72.10 68.55 79.60 63.55 70.80 60.35 62.65 74.75
DCP [10], BCCR [12] and NLD [15] tend to produce sharp observations:

edges and highly contrasting colors, which explains why they
are preferred by BLIINDS-II and SSEQ. Such an inconsistency
between full- and no-reference evaluations aligns with the
previous argument [33] that existing objective IQA models are
very limited in providing proper quality predictions of dehazed
images.

We have further conducted an experiment using standard
evaluation metrics, with different haze concentration levels
(i.e.,p values), to detail the suitability of each method for
each distinct haze density. As show in Table IV, we split the
SOTS dataset into three groups according to the ranges of £.
It makes clear that DehazeNet is consistently the best for light
and medium haze, and GRM achieves the highest PSNR and
SSIM for thick haze.

B. Subjective Comparison on HSTS

We recruit 100 participants from different educational
backgrounds for the subjective, using HSTS which contains
10 synthetic outdoor and 10 real-world hazy images. We fit a
Bradley-Terry [52] model to estimate the subjective score for
each method so that they can be ranked. In the Bradley-Terry
model, the probability that an object X is favored over Y is
assumed to be

esx 1

eSx f ey | 4 esrsx’

p(X =Y)= 4)
where sy and sy are the subjective scores for X and Y.
The scores s for all the objects can be jointly estimated by
maximizing the log likelihood of the pairwise comparison

1
msaxZwij log (71 +esj_si), %)
ij

where w;; is the (i, j)-th element in the winning matrix W,
representing the number of times when method i is favored
over method j. We use the Newton-Raphson method to
solve Eq. (5). Note that for a synthetic image, we have a
10 x 10 winning matrix W, including the ground truth and
nine dehazing methods’ results. For a real-world image, its
winning matrix W is 9 x 9 due to the absence of ground
truth. For synthetic images, we set the score for ground truth
method as 1 to normalization scores.

Figures 3 and 4 show qualitative examples of dehazed
results on a synthetic and a real-world image, respectively.
Quantitative results can be found in Table V and the trends
are visualized in Figure 2. We also compute the full- and
no-reference metrics on synthetic images to examine their
consistency with the subjective scores.

A few interesting observations could be drawn:

o The subjective qualities of various algorithms’ results

show different trends on synthetic and real hazy images.
On the 10 synthetic images of HSTS, DCP [10] receives
the best clearness score and DehazeNet is the best in
authenticity score. On the 10 real images, CNN-based
methods [18]-[20] rank top-3 in terms of both clearness
and authenticity, in which MSCNN [19] achieves the best
according to both scores.

o The clearness and authenticity scores of the same image

are often not aligned. As can be seen from Figure 2,
the two subjective scores are hardly correlated on
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Fig. 3.  Examples of dehazed results on a synthetic hazy image from HSTS
(g) CAP. (h) NLD. (i) DehazeNet. (j) MSCNN. (k) AOD-Net.

synthetic images; their correlation shows better on real
images. That reflects the complexity and multi-facet
nature of subjective perceptual evaluation.

From Table V, we observe the divergence between
subjective and objective (both full- and no-reference)
evaluation results. For the best performer in subjective
evaluation, MSCNN [19], its PSNR/SSIM results
on synthetic indoor images are quite low, while
SSEQ/BLIINDS-IT on both synthetic and outdoor images
are moderate. As another example, GRM [13] receives
the highest SSEQ/BLIINDS-II scores on real HSTS
images. However, both of its subjective scores rank only
fifth among nine algorithms on the same set.

C. Running Time

Table VI reports the per-image running time of each algo-
rithm, averaged over the synthetic indoor images (620 x 460)
in SOTS, using a machine with 3.6 GHz CPU and 16G RAM.
All methods are implemented in MATLAB, except AOD-Net
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Clearness and Authenticity on Realistic Hazy Images
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Averaged clearness and authenticity scores: (a) on 10 synthetic images in HSTS; and (b) on real-world images in HSTS.
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. (a) Clean Image. (b) Hazy Image. (c) DCP. (d) FVR. (e) BCCR. (f) GRM.

by Pycaffe. However, it is fair to compare AOD-Net with
other methods since MATLAB implementation has superior
efficiency than Pycaffe as shown in [20]. AOD-Net shows a
clear advantage over others in efficiency, thanks to its light-
weight feed-forward structure.

V. WHAT ARE BEYOND: FROM RESIDE TO RESIDE-S

RESIDE serves as a sufficient benchmark for evaluating
single image dehazing as a traditional image restoration prob-
lem: either to ensure signal fidelity or to please human vision.
However, dehazing is increasingly demanded in machine
vision systems in outdoor environments, whose requirement
is not naturally met by taking an image restoration viewpoint.
To identify and eliminate the gaps between current dehazing
research and the practical application need, we introducing
the RESIDE-f part, as an exploratory and supplementary
part of the RESIDE benchmark, including two innovative
explorations on solving two hurdles, on training data content
and evaluation criteria, respectively. Being our novel try,
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Fig. 4. Examples of dehazed results on a real-world hazy image from HSTS. (a) Hazy Image. (b) DCP. (c¢) FVR. (d) BCCR. (e) GRM. (f) CAP. (g) NLD.

(h) DehazeNet. (i) MSCNN. (j) AOD-Net.

TABLE VI
COMPARISON OF AVERAGE PER-IMAGE RUNNING TIME (SECOND) ON SYNTHETIC INDOOR IMAGES IN SOTS

DCP [10] | FVR [11] | BCCR [12] | GRM [I3]

CAP [11]

NLD [15] | DehazeNet [18] | MSCNN [19] | AOD-Net [20]

Time 1.62 6.79 3.85 83.96

0.95

9.89 2.51 2.60 0.65

RESIDE-f has a “beta stage” nature and is meant to inspire
more followers.

A. Indoor Versus Outdoor Training Data

Up to our best knowledge, almost all data-driven dehazing
models have been utilizing synthetic training data, because
of the prohibitive difficulty of simultaneously collecting real-
world hazy RGB images and their “hazy-free” ground truth.
Most outdoor scenes contain object movements from time to
time, e.g. traffic surveillance and autonomous driving. Even in
a static outdoor scene, the change of illumination conditions
etc. along time is inevitable. Despite their positive driving
effects in the development of dehazing algorithms, those
synthetic images are collected from indoor scenes [40], [41],
while dehazing is applied to outdoor environments.

The content of training data thus significantly diverges
from the target subjects in real dehazing applications. Such
a mismatch might undermine the practical effectiveness of the
trained dehazing models. Reference [46] collected 14 outdoor
clean images with accurate depth information, and proposed
to generate hazy images from them with parameters that
are chosen to be physically realistic. Their meaningful and

delicate efforts are however not straightforward to scale up
and generate large-scale training sets.

Aiming for automatic generation of large-scale realistic out-
door hazy images, we first examine the possibility of utilizing
existing outdoor depth datasets. While several such datasets,
e.g., Make3D [55] and KITTI [56], have been proposed, their
depth information is less precise and incomplete compared to
indoor datasets. For example, due to the limitations of RGB-
based depth cameras, the Make3D dataset suffer from at least
4 meters of average root mean squared error in the predicted
depths, and the KITTI dataset has at least 7 meters of average
error [57]. In comparison, the average depth errors in indoor
datasets, e.g., NYU-Depth-v2 [40], are usually as small as
0.5 meter. For the outdoor depth maps can also contain a
large amount of artifacts and large holes, which renders it
inappropriate for direct use in haze simulation. We choose
Make3D to synthesize hazy images in the same way as we
did for RESIDE training set, a number of examples being
displayed at the first row of Figure 5. It can be easily seen that
they suffer from unrealistic artifacts (e.g., notice the “blue”
regions around the tree), caused by inaccurate depth map.
A possible remedy is to adopt recent approaches of depth map
denoising and in-painting [34], [58], which we leave for future.
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TABLE VII
PERCEPTUAL L0OSS ON SOTSAt t INDOOR IMAGES

Haze | DCP[10] | EVR[I1] | BCCR[12] | GRM [13] | CAP[I1] | NLD [15] | DehazeNet [15] | MSCNN [10] | AOD-Net [20]
Relu2_2 | 0.0558 | 0.0473 0.0601 0.0593 0.0395 0.0380 0.0523 0.0314 0.0417 0.0394
Relu3_3 | 0.0814 | 0.0731 0.0988 0.0885 0.0626 0.0617 0.0805 0.0520 0.0651 0.0634
Relud_3 | 0.0205 | 0.0190 0.0256 0.0217 0.0163 0.0165 0.0206 0.0143 0.0172 0.0186
Relu5_3 | 0.0264 | 0.0158 0.0280 0.0188 0.0161 0.0195 0.0186 0.0151 0.0204 0.0173

Fig. 5.  Visual comparison between the synthetic hazy images directly
generated from Make3D (first row) and from OTS (second row).

Another option is to estimate depth from outdoor images
and then synthesizing hazy images. After comparing different
depth estimation methods, we find the algorithm in [38]
to produce fewest visible depth errors and to cause much
less visual artifacts on natural outdoor images, same as [20]
observed. We display a few synthetic hazy examples generated
by using [38] for depth estimation, in the second row of
Figure 5. By comparing them with the first row (Make3D),
one can see that using depth estimation [38] leads to much
more visually plausible results.

We thus extend to a large scale effort, collecting 2, 061 real
world outdoor images from [48], among which we carefully
excluded those originally with haze and ensure their scenes to
be as diverse as possible. We use [38] to estimate the depth
map for each image, with which we finally synthesize 72,
135 outdoor hazy images with £ in [0.04, 0.06, 0.08, 0.1, 0.12,
0.16,0.2] and A in [0.8,0.85, 0.9, 0.95, 1]. This new set, called
Outdoor Training Set (OTS), consists of paired clean outdoor
images and generated hazy ones. It is included as a part of
RESIDE-f, and could be used for training. Despited that depth
estimation could potentially be noisy, we visually inspect the
new set and find most generated hazy images to be free of
noticeable artifacts (and much better than generating using
Make3D). As we observed from preliminary experiments,
including this outdoor set for training performed in general
similarly on SOTS in the sense of PSNR/SSIM, but improved
the generalization performance on real-world images, in terms
of visual quality.

B. Restoration Versus High-Level Vision

It has been recognized that the performance of high-level
computer vision tasks, such as object detection and recogni-
tion, will deteriorate in the presence of various degradations,

and is thus largely affected by the quality of image restoration
and enhancement. Dehazing could be used as pre-processing
for many computer vision tasks executed in the wild, and
the resulting task performance could in turn be treated as an
indirect indicator of the dehazing quality. Such a “task-driven”
evaluation way has received little attention so far, despite its
great implications for outdoor applications.

A relevant preliminary effort was presented in [20], where
the authors compared a few CNN-based dehazing models
by placing them in an object detection pipeline, but their
tests were on synthetic hazy data with bounding boxes.
Reference [34] created a relatively small dataset of 101 real-
world images depicting foggy driving scenes, which came with
ground truth annotations for evaluating semantic segmentation
and object detection. We notice that [34] investigated detection
and segmentation problems in hazy images as well, evaluated
on a small image set with only three dehazing methods.

1) Full-Reference Perceptual Loss Comparison on SOTS:
Since dehazed images are often subsequently fed for automatic
semantic analysis tasks such as recognition and detection,
we argue that the optimization target of dehazing in these
tasks is neither pixel-level or perceptual-level quality, but the
utility of the dehazed images in the given semantic analysis
task [59]. The perceptual loss [32] was proposed to measure
the semantic-level similarity of images, using the VGG recog-
nition model* pre-trained on ImageNet dataset [60]. Here,
we compared the Euclidean distance between clean images
and dehazed images with different level features including
relu2_2, relu3_3, relu4_3 and relu5_3. Since it is a full-
reference metric, we compute the perceptual loss on the SOTS
dataset, as listed in Table VII. We also compute the perceptual
loss on the 10 synthetic images in HSTS, to examine how
well it agrees with the perceptual quality, as seen from
Table VIII. DehazeNet and CAP consistently lead to the lowest
perceptual loss differences on both sets, which seem to be in
general aligned with PSNR results, but not SSIM or other two
no-reference metrics.

On HSTS synthetic images, we observe the perceptual loss
to be correlated to the authenticity score to some extent
(e.g., DehazeNet and AOD-Net perform well under both),
but hardly correlated to the clearness. It might imply that for
preserving significant semantical similarities for recognition,
it is preferable to keep a realistic visual look than to thoroughly
remove haze. In other words, “under-dehazed” images might
be preferred over “over-dehazed” images, the latter potentially
losing details and suffering from method artifacts.

4Public available at http://www.robots.ox.ac.uk/Vgg/software/very_deep/
caffe/VGG_ILSVRC_16_layers.caffemodel
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TABLE VIII
PERCEPTUAL LOSS ON HSTS 10 SYNTHETIC OUTDOOR IMAGES

Haze | DCP [10] | FVR[11] | BCCR[12] | GRM [13] | CAP [14] | NLD [15] | DehazeNet [15] | MSCNN [10] | AOD-Net [20]
Relu2_2 | 0.0595 0.0544 0.0593 0.0635 0.0443 0.0334 0.0541 0.0233 0.0452 0.0356
Relu3_3 | 0.0918 0.0838 0.0973 0.0944 0.0659 0.0538 0.0829 0.0392 0.0728 0.0596
Relud_3 | 0.0234 | 0.0213 0.0274 0.0240 0.0183 0.0145 0.0217 0.0108 0.0264 0.0165
Relu5_3 | 0.0347 0.0184 0.0320 0.0207 0.0196 0.0181 0.0213 0.0122 0.0192 0.0178
TABLE IX Table V). Figure 6 display the object detection results using
DETAILED CLASSES INFORMATION OF RTTS FRCNN on an RTTS hazy image and after applying nine
different dehazing algorithms.
Category | person | bicycle car bus motorbike Total R K g8 L. . .
Normal 7.950 334 18413 1,838 362 29,597 3) Discussion: Optlmlzmg Detection Peijformance mn
Difficult | 3,416 164 6,904 | 752 370 11,606 Haze?: Reference [20] for the first time reported the
Total | 11,366 | 698 [ 25317 | 2590 | 1232 [ 41,203  promising performance on detecting objects in the haze,

2) No-Reference Task-Driven Comparison on RTTS: For
real-world images without ground-truth, following [20],
we adopt a task-driven evaluation scheme for dehazing algo-
rithms, by studying the object detection performance on their
dehazed results. Specially, we used several state-of-the-art
pre-trained object detection models, including Faster R-CNN
(FRCNN) [61], YOLO-V2 [62], SSD-300 and SSD-512 [63],
to detect objects of interests from the dehazed images, and
rank all algorithms via the mean Average Precision (mAP)
results achieved.

For that purpose, we collect a Real-world Task-driven
Testing Set (RTTS), consisting of 4, 322 real-world hazy
images crawled from the web, covering mostly traffic and
driving scenarios. Each image is annotated with object cat-
egories and bounding boxes, and RTTS is organized in the
same form as VOC2007 [64]. We currently focus on five
traffic-related categories: car, bicycle, motorbike, person, bus.
We obtain 41, 203 annotated bounding boxes, 11, 606 of
which are marked as “difficult” and not used in this paper’s
experiments. The class details of RTTS are shown in Table IX.
Additionally, we also collect 4,807 unannotated real-world
hazy images, which are not exploited in this paper, but may
potentially be used for domain adaption in future, etc. The
RTTS set is the largest annotated set of its kind.

Table X compares all mAP results.® The results are not
perfectly consistent among four different detection models,
the overall tendency clearly shows that MSCNN, BCCR, and
DCP are the top-3 choices that are most favored by detection
tasks on RTTS. If comparing the ranking of detection mAP
with the no-reference results on the same set (see Table XI),
we can again only observe a weak correlation. For example,
BCCR [12] achieves highest BLIINDS-II value, but MSCNN
has lower SSEQ and BLIINDS-II scores than most competi-
tors. We further notice that MSCNN also achieved the best
clearness and authenticity on HSTS real-world images (see

SHere we use py-faster-rcnn and its model is trained on VOC2007_trainval,
while official implementations are used for YOLO-V2 and SSDs and their
models are trained on both VOC2007_trainval and VOC2012_trainval

SFor FVR, only 3,966 images are counted, since for the remaining 356 FVR
fails to provide any reasonable result.

by concatenating and jointly tuning AOD-Net with FRCNN
as one unified pipeline, similar to other relevant works [65],
[66], [69]. The authors trained their detection pipeline using
an annotated dataset of synthetic hazy images, generated from
VOC2007 [64]. Due to the absence of annotated realistic
hazy images, they only reported quantitative performance on
a separate set of synthetic annotated images. While their goal
is different from the scope of RTTS (where a fixed FRCNN
is applied on dehazing results for fair comparison), we are
interested to explore whether we could further boost the
detection mAP on RTTS realistic hazy images using such a
joint pipeline. We also point to other recent works utilizing
domain adaptation [70].

In order for further enhancing the performance of such
a dehazing + detection joint pipeline in realistic hazy pho-
tos or videos, there are at least two other noteworthy potential
options as we can see for future efforts:

o Developing photo-realistic simulation approaches of
generating hazy images from clean ones [71], [72].
That would resolve the bottleneck of handle-labeling
and supply large-scale annotated training data with little
mismatch. The technique of haze severity estimation [73]
may also help the synthesis, by first estimating the haze
level from (unannotated) testing images and then
generating training images accordingly.

o If we view the synthetic hazy images as the source
domain (with abundant labels) and the realistic ones as the
target domain (with scarce labels), then the unsupervised
domain adaption can be performed to reduce the domain
gap in low-level features, by exploiting unannotated
realistic hazy images. For example, [74] provided an
example of pre-training the robust low-level CNN filters
using unannotated data from both source and target
domains, leading to much improved robustness when
applied to testing on the target domain data. For this
purpose, we have included 4,322 unannotated realistic
hazy images in RESIDE that might help build such
models.

Apparently, the above discussions can be straightforwardly
applied to other high-level vision tasks in uncontrolled outdoor
environments (e.g., bad weathers and poor illumination), such
as tracking, recognition, semantic segmentation, etc.
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TABLE X

ALL DETECTION RESULTS ON RTTS(in %), PLEASE NOTE THAT, THE MODEL USED IN FRCNN IS TRAINED ON VOC2007_TRAINVAL DATASET,
WHILE THE MODELS USED IN YOLO-V2 AND SSDS ARE TRAINED ON VOC2007_TRAINVAL + VOC2012_TRAINVAL

Haze DCP [10] FVR [11] BCCR [12] GRM [13] CAP [11] NLD [15] DehazeNet [13] MSCNN [19] AOD [20]
FRCNN [61] 37.58 40.58 35.01 41.56 28.90 39.63 40.03 40.54 41.34 37.47
mAP YOLO-V2 [62] 40.37 39.81 38.06 40.65 29.41 39.80 39.93 40.10 40.76 40.53
SSD-300 [63] 50.26 49.40 47.04 51.57 35.59 50.31 49.84 50.14 51.82 49.77
SSD-512 [63] 55.55 55.71 52.29 57.17 39.18 55.70 54.99 55.40 56.88 55.29
FRCNN [61] 60.84 61.54 57.72 64.51 50.22 61.29 60.53 61.40 61.43 61.22
Person YOLO-V2 [62] 61.24 61.14 60.00 61.16 50.13 61.24 60.49 61.16 61.30 61.20
SSD-300 [63] 68.60 68.18 66.36 69.12 53.91 68.78 66.96 68.18 69.20 68.28
SSD-512 [63] 72.58 72.72 69.45 73.34 56.74 72.50 71.20 72.34 73.13 72.62
FRCNN [61] 40.72 40.77 38.76 44.57 30.71 40.48 40.21 40.68 41.69 40.33
Bicycle YOLO-V2 [62] 44.63 43.39 40.08 43.66 28.81 42.65 43.56 42.34 43.53 44.55
SSD-300 [63] 54.92 51.36 49.35 53.33 34.48 53.38 53.42 53.08 55.73 54.18
SSD-512 [63] 58.45 56.70 54.57 58.57 36.70 57.49 56.38 57.50 58.76 5791
FRCNN [61] 35.18 42.15 34.74 42.69 26.30 41.52 42.30 41.74 42.61 35.13
Car YOLO-V2 [62] 39.39 38.93 37.22 39.88 29.91 39.03 38.96 39.35 40.00 39.49
SSD-300 [63] 54.14 54.98 50.81 56.32 40.21 55.08 54.98 55.27 56.32 54.62
SSD-512 [63] 63.05 64.95 61.54 65.80 47.79 64.15 65.04 64.21 65.22 64.05
FRCNN [61] 20.90 24.18 19.06 24.66 14.81 24.74 23.74 25.20 25.25 20.56
Bus YOLO-V2 [62] 20.57 19.34 19.42 20.01 12.86 18.90 18.22 19.07 19.63 19.09
SSD-300 [63] 30.13 30.87 30.98 33.70 19.72 30.90 30.43 30.86 32.26 29.42
SSD-512 [63] 34.60 36.51 33.47 37.69 22.81 35.47 34.31 35.18 37.42 34.13
FRCNN [61] 30.24 34.25 24.78 34.34 22.44 30.10 33.36 33.70 35.72 30.09
Motorbike YOLO-V2 [62] 37.84 36.23 33.59 38.54 25.33 37.10 38.40 38.59 39.33 38.31
SSD-300 [63] 4348 41.61 37.72 45.38 29.63 43.41 43.40 43.30 45.60 42.35
SSD-512 [63] 49.08 47.69 42.40 50.46 31.85 48.89 48.04 47.79 49.87 47.76
TABLE XI
AVERAGE NO-REFERENCE METRICS OF DEHAZED RESULTS ON RTTS

DCP[10] | EVR[11] | BCCR[12] | GRM [13] | CAP [14] | NLD [15] | DehazeNet [15] | MSCNN [10] | AOD-Net [20]

SSEQ 62.87 6359 6331 58.64 60.66 59.37 60.01 6231 6535

BLINDS I | 6834 67.68 7407 5454 65.15 68.32 52.54 56.50 71.05

(©)

(e)

(& )

Fig. 6. Visualization of two RTTS images’ object detection results after applying different dehazing algorithms. (a) Ground Truth. (b) RawHaze. (c) DCP.
(d) FVR. (e) BCCR. (f) GRM. (g) CAP. (h) NLD. (i) DehazeNet. (j) MSCNN. (k) AOD-Net.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we systematically evaluate the state-of-the-arts
in single image dehazing. From the results presented, there
seems to be no single-best dehazing model for all criteria:
AOD-Net and DehazeNet are favored by PSNR and SSIM;
DCP, FVR and BCCR are more competitive in terms of
no-reference metrics; DehazeNet performs best in terms of
perceptual loss; MSCNN shows to have the most appreciated

subjective quality and superior detection performance on real
hazy images; and AOD-Net is the most efficient among all.
The reason why each dehazing method might succeed or fail in
each evaluation case is certainly complicated, e.g., depending
on the prior it uses or the model’s design choices. Some overall
remarks and empirical hypotheses made by the authors are:
o Deep learning methods [18]-[20], especially with the
end-to-end optimization towards reconstruction loss [20],
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are advantageous under traditional PSNR and SSIM met-
rics. However, the two metrics do not necessarily reflect
human perceptual quality, and those models may not
always generalize well on real-world hazy images.

o Classical prior-based methods [11], [12], [22] seem to
generate results favored more by human perception.
That is probably because their priors explicitly empha-
sized illumination, contrasts, or edge sharpness, to which
human eyes are particularly sensitive. On the other hand,
the typical MSE loss used in deep learning methods tend
to over-smooth visual details in results, which are thus
less preferred by human viewers. We refer the readers to
a later manuscript [70] for more related discussions.

o The detection results on RTTS endorse MSCNN [19]
in particular, which is aligned with the current trend in
object detection to use multi-scale features [75].

Based on the RESIDE study and its extensions, we see the
highly complicated nature of the dehazing problem, in both
real-world generalization and evaluation criteria. For future
research, we advocate to be evaluate and optimize dehazing
algorithms towards more dedicated criteria (e.g., subjective
visual quality, or high-level target task performance), rather
than solely PSNR/SSIM, which are found to be poorly aligned
with other metrics we used. In particular, correlating dehazing
with high-level computer vision problems will likely lead to
innovative robust computer vision pipelines that will find many
immediate applications. Another blank to fill is developing
no-reference metrics that are better correlated with human
perception, for evaluating dehazing results. That progress
will accelerate the needed shift from current full-reference
evaluation on only synthetic images, to the more realistic
evaluation schemes with no ground truth.
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