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THE STRONG APPROXIMATION THEOREM AND COMPUTING WITH LINEAR

GROUPS

A. S. DETINKO, D. L. FLANNERY, AND A. HULPKE

ABSTRACT. We obtain a computational realization of the strong approximation theorem. That is, we

develop algorithms to compute all congruence quotients modulo rational primes of a finitely generated

Zariski dense group H ≤ SL(n,Z) for n ≥ 2. More generally, we are able to compute all congruence

quotients of a finitely generated Zariski dense subgroup of SL(n,Q) for n > 2.

1. INTRODUCTION

The strong approximation theorem (SAT) is a milestone of linear group theory and its appli-

cations [17, Window 9]. It has come to play a similarly important role in computing with linear

groups [4].

Let H be a finitely generated subgroup of SL(n,Z) that is Zariski dense in SL(n,C). Then SAT

asserts that H is congruent to SL(n, p) for all but a finite number of primes p ∈ Z. Therefore,

we can describe the congruence quotients of H modulo all primes. Moreover, we can describe the

congruence quotients of H modulo all positive integers if n > 2 (see [4, Section 4.1]).

The congruence quotients of H provide important information about H ; especially when H is

arithmetic, i.e., of finite index in SL(n,Z). In that case, the set Π(H) of all primes p such that

H 6≡ SL(n, p) modulo p is (apart from some exceptions for p = 2 and n ≤ 4) the set of primes

dividing the level of H , defined to be the level of the unique maximal principal congruence subgroup

in H [5, Section 2]. If H is thin, i.e., dense but of infinite index in SL(n,Z), then we consider

the arithmetic closure cl(H) of H : this is the intersection of all arithmetic groups in SL(n,Z)

containing H [5, Section 3]. Note that Π(H) = Π(cl(H)) determines the level of cl(H) just as it

does when H is arithmetic. The level is a key component of subsequent algorithms for computing

with arithmetic subgroups, such as membership testing and orbit-stabilizer algorithms [7].

In [5, Section 3.2] and [4], we developed algorithms to compute Π(H) when n is prime or H

has a known transvection. This paper presents a complete solution: practical algorithms to compute

Π(H) for arbitrary finitely generated dense H ≤ SL(n,Z), n ≥ 2. We also give a characterization

of density that allows us to compute Π(H) without preliminary testing of density (although this can

certainly be done; see [5, Section 5] and [6]). Our methods extend in a straightforward manner to

handle input H ≤ SL(n,Q).

As in [4], we rely on the classification of maximal subgroups of SL(n, p). Specifically, we follow

the proof of SAT in [17, Window 9, Theorem 10], which credits C. R. Matthews, L. N. Vaserstein,

and B. Weisfeiler. In Section 2 we prove results about maximal subgroups of SL(n, p) that are

needed for the main algorithms. Then Section 3 provides methods to compute Π(H) for dense H ≤

SL(n,Q). In Section 4 we outline the algorithms, and in Section 5 demonstrate their practicality.
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We now fix some basic terms and notation. Let S = {g1, . . . , gr} ⊆ SL(n,Q) and H = 〈S〉.

Then R is the ring (localization) 1
µ
Z generated by the entries of the gi and g−1

i ; here µ is a positive

integer. Note that R depends only on H , not on the choice of generating set S for H . For m

coprime to µ, the congruence homomorphismϕm induced by natural surjection Z → Zm = Z/mZ

maps SL(n,R) onto SL(n,Zm). Let Π(H) be the set of all primes p (not dividing µ) such that

ϕp(H) 6= SL(n, p). Overlining will denote the image modulo a prime p of an element of R or a

matrix or set of matrices over R. In particular, H̄ = 〈S̄〉 = ϕp(H). If h̄ ∈ H̄ is given as a word

Πiḡ
ei
ji

in S̄, then the ‘lift’ of h̄ is its preimage h = Πig
ei
ji

.

Throughout, F is a field, Fp is the field of size p, Mat(n,F) is the F-algebra of n × n matrices

over F, and 1n ∈ Mat(n,F) is the identity matrix. We write 〈G〉D for the enveloping algebra of

G ≤ GL(n,F) over a subring D ⊆ F.

2. MAXIMALITY OF SUBGROUPS IN SL(n, p)

Let G ≤ SL(n, p). We show how to recognize when G is not in any maximal subgroup of

SL(n, p), i.e., when G = SL(n, p). Our approach, which characterizes maximal subgroups by

means of the adjoint representation, is motivated by [17, Window 9, Section 2].

We identify the adjoint module for SL(n,F) with the F-space

sl(n,F) = {x ∈ Mat(n,F) | trace(x) = 0}

of dimension n2 − 1 on which SL(n,F) acts by conjugation. Let ad : SL(n,F) → GL(n2 − 1,F)

be the corresponding linear representation.

The set of maximal subgroups of SL(n, p) is the union of Aschbacher classes C1, . . . ,C8,S

(see [1] and [17, p. 397]). The classes C4 and C7 involve tensor products, for which we adopt the

following convention. If H1 ≤ GL(a,F) and H2 ≤ GL(b,F) then H1 × H2 acts on Fa ⊗ Fb.

The associated matrix representation of degree ab has (h1, h2) ∈ H1 × H2 acting as the matrix

Kronecker product h1×̇h2. The group generated by these Kronecker products is denoted H1 ⊗H2.

Proposition 2.1. Let G be a proper absolutely irreducible subgroup of SL(n, p) such that ad(G) is

irreducible. Then G lies in a maximal subgroup in C6 ∪ S .

Proof. Since G is absolutely irreducible, it cannot be in a subgroup in C1. Class C5 is irrelevant

over a field of prime size. For each of the remaining Aschbacher classes other than C6 or S , we

identify a proper submodule T of the adjoint module A for SL(n, p).

C2. A maximal subgroup lies in W = GL(a, p) ≀ Sb with n = ab. Let T ≤ A be the subspace

spanned by block matrices with b blocks from {1a, 0a,−1a} and zero trace. Clearly T is

preserved under conjugation by W and has dimension b− 1.

C3. A maximal subgroup here has a normal subgroup N ∼= SL(a, pb) with n = ab, 1 < a, b <

n. Each ‘entry’ of N is a b× b submatrix. The set of matrices in the center of N with trace

0 is a proper submodule of A.

C4. A maximal subgroup L is SL(a, p) ⊗ SL(b, p) for some a, b < n such that n = ab. If

x ∈ sl(a, p) and y = x×̇1b then trace(y) = 0 and thus y ∈ A. Let T be the space

spanned by all such products. Then L acts on T by the adjoint action of the SL(a, p)-part

of elements on the x-components of such products. Thus T ≤ A is invariant under L, so is

a proper submodule of A.

C7. We use an argument similar to the preceding one. Here a maximal subgroup is generated

by Sym(b) and SL(a, p) ⊗ · · · ⊗ SL(a, p) with b factors, where n = ab and 1 < a, b < n.
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Let T be the subspace of A spanned by all Kronecker products of length b with every factor

1a except for one, drawn from the adjoint module of SL(a, p). Then T is invariant under

action by the maximal subgroup.

C8. A maximal subgroup that stabilizes a form preserves its own adjoint module (see, e.g., [17,

p. 398] or [11, Section 1.4.3]), which cannot be A. �

Remark 2.2. (Cf. [17, p. 392].) Even if ad(G) is absolutely irreducible,G could still be in a maximal

subgroup in C6. For example, SL(8, 5) contains the maximal subgroup 4◦21+6.Sp6(2) ∈ C6 which

acts absolutely irreducibly on A; see [3, p. 399].

Theorem 2.3. There exists a function f , depending only on the degree n, such that |G| ≤ f(n) for

any proper absolutely irreducible subgroup G of SL(n, p) such that ad(G) is irreducible.

Proof. (Cf. [17, p. 398]). By [3, Section 2.2.6],L ≤ SL(n, p) in C6 has order bounded by a function

of n only. By Proposition 2.1, then, let L ∈ S . That is, L = NSL(n,p)(K) with K ≤ SL(n, p)

simple non-abelian and CL(K) = 〈1n〉. As L is embedded in Aut(K), a bound on |K| implies a

bound on |L|.

By the classification of finite simple groups, K can be alternating, or of Lie type, or sporadic.

Sporadic groups are of course bounded in order.

If K ∼= Alt(k) then [9, Theorem 5.7A, corrected] shows that n ≥ 2k−6
3 ; i.e., for fixed n, the

permutation degree k and hence |K| is bounded.

Now let K = Yl(r
e) for a Lie class Y , Lie rank l, and r prime. If r 6= p then [22, Table 1] gives

lower bounds for the smallest coprime degree n in which K has a faithful projective representation.

These bounds are functions a(l, re), independent of p, such that a(l, re) → ∞ as l → ∞ or

re → ∞. Thus, in bounded degree n, only a finite number (up to isomorphism) of groups Yl(r
e)

are candidates for K .

If r = p then [17, p. 398] shows that K and L must be in a proper connected algebraic subgroup,

and so do not act irreducibly on the adjoint module A. �

Corollary 2.4. Let G ≤ SL(n, p), and let f(n) be as in Theorem 2.3. If ad(G) is absolutely

irreducible and |G| > f(n) then G = SL(n, p).

Proof. Working over the algebraic closure of Fp, suppose that G is block upper triangular with main

diagonal (G1, G2) where Gi has degree ni < n. Then ad(G) leaves invariant the subspace of the

adjoint module consisting of all block upper triangular matrices with main diagonal (x, 0n2
), where

trace(x) = 0. Hence G must be absolutely irreducible. By Theorem 2.3, G = SL(n, p). �

Remark 2.5. Theorem 2.3 and Corollary 2.4 remain valid if we let f(n) be a bound on exp(G), or

a bound on the largest order of an element of G.

Using the formulae for the smallest representation degree of alternating groups, and of Lie-type

groups in cross-characteristic, it would be possible to give a rough upper estimate of f(n). We do

not attempt this. In Section 5.1, we instead use the tables of [3, Chapter 8] to give tight values for

f(n) in degrees n ≤ 12, extending the values in [4, Remark 3.3].

3. REALIZING STRONG APPROXIMATION COMPUTATIONALLY

Let H be a dense subgroup of SL(n,R), R = 1
µ
Z. By Corollary 2.4 and Remark 2.5, if

ad(ϕp(H)) is absolutely irreducible and f(n) is exceeded by ϕp(H), then ϕp(H) = SL(n, p).
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This result, and a well-known equivalent statement of density, comprise the background for our

main algorithm.

Input groups for all the algorithms are finitely generated. Sometimes we write input as a finite

generating set, or as the group itself.

3.1. Preliminaries. We start by giving two auxiliary procedures.

3.1.1. Bounded order test. The first auxiliary procedure is a slight generalization of the one in [4,

Section 2.1].

Lemma 3.1. If k is a positive integer and H ≤ GL(n,R) is infinite, then ϕp(H) has an element of

order greater than k for almost all primes p.

Proof. The proof is the same as in [4, Section 2.1]. �

Lemma 3.2. Suppose that H ≤ SL(n,R) and ϕp(H) = SL(n, p) for some prime p. If n ≥ 3 or

p > 2 then H is infinite.

Proof. See [4, Lemma 2.1]; a finite subgroup of SL(n,R) can be conjugated into SL(n,Z). �

The procedure PrimesForOrder(H, k) accepts an infinite subgroup H ≤ GL(n,R) and a

positive integer k, and returns the finite set of all primes p such that ϕp(H) has maximal element

order at most k. This output obviously contains all primes p such that |ϕp(H)| ≤ k.

3.1.2. Testing absolute irreducibility. For this subsection, we refer to [8, p. 401] and [5, Section

3.2].

Let N be the normal closure 〈X〉H where X is a finite subset of a finitely generated group H ≤

GL(n,F). The procedure BasisAlgebraClosure(X,S) computes a basis {A1, . . . , Am} of

〈N〉F, thereby deciding whether N is absolutely irreducible, i.e., whether m = n2.

The procedure PrimesForAbsIrreducible from [4, Section 2.2] will operate in the same

way for absolutely irreducible H ≤ GL(n,R): it accepts a generating set S of H , and returns the

(finite) set of primes p such that ϕp(H) is not absolutely irreducible. The first step is to compute

a basis of 〈H〉Q. By making a small adjustment, we get PrimesForAbsIrreducible(X,S);

for absolutely irreducible N = 〈X〉H , it returns the primes p such that ϕp(N) is not absolutely

irreducible.

If H̄ = ϕp(H) is absolutely irreducible (e.g., H̄ = SL(n, p)) and {Ā1, . . . , Ān2} is a basis

of 〈H̄〉Fp
, then H is absolutely irreducible and {A1, . . . , An2} is a basis of 〈H〉Q. Thus, we can

simplify PrimesForAbsIrreducible by computing a basis of the enveloping algebra over a

finite field and then lifting it to a basis of 〈H〉Q (cf. [4, Section 2.2]).

3.2. Density and strong approximation. Now we give elementary proofs of some properties of

dense groups, including strong approximation (cf. [16], [17, Theorem 9, p. 396], and [4, Corol-

lary 3.10]).

The following is fundamental.

Proposition 3.3 ([21, p. 22]). A subgroup H of SL(n,C) is dense if and only if H is infinite and

ad(H) is absolutely irreducible.

Let H be a finitely generated subgroup of SL(n,R).

Lemma 3.4. ϕp(ad(H)) = ad(ϕp(H)) for all primes p (coprime to µ).
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Corollary 3.5. If ad(H) is absolutely irreducible then ad(ϕp(H)) is absolutely irreducible for

almost all primes p.

Lemma 3.6. If ϕp(H) = SL(n, p) then ad(H) is absolutely irreducible.

Proof. By Lemma 3.4, ϕp(ad(H)) = ad(SL(n, p)). Since the latter is absolutely irreducible, its

preimage ad(H) is too. �

Proposition 3.7. The following are equivalent.

(i) H is dense.

(ii) H surjects onto SL(n, p) for almost all primes p.

(iii) H surjects onto SL(n, p) for some prime p > 2.

Proof. Suppose that (i) holds. Then by Lemma 3.1, Proposition 3.3, and Corollary 3.5, ad(ϕp(H))

is absolutely irreducible and |ϕp(H)| > f(n) for almost all primes p. By Corollary 2.4, ϕp(H) =

SL(n, p) for such p.

Suppose that (iii) holds. By Lemma 3.6, ad(H) is absolutely irreducible, and by Lemma 3.2, H

is infinite. Therefore H is dense by Proposition 3.3. �

4. THE MAIN ALGORITHMS

In this section we combine results from Sections 2 and 3 to obtain the promised algorithms to

compute Π(H) for dense groups H . These consist of the main procedure, a variation aimed at

improved performance, and an alternative that could be preferable in certain degrees.

Our main procedure, based on Corollary 2.4, follows.

PrimesNonSurjectiveSL

Input: a finite generating set of a dense group H ≤ SL(n,R).

Output: Π(H).

1. P := PrimesForOrder(H, f(n))∪ PrimesForAbsIrreducible(ad(H)).

2. Return {p ∈ P | ϕp(H) 6= SL(n, p)}.

Step 2 is performed via standard methods for matrix groups over finite fields (e.g., as in [18]).

Proposition 4.1. PrimesNonSurjectiveSL returns Π(H) for dense input H .

Proof. Proposition 3.3 implies that Step 1 terminates. Then ϕp(H) = SL(n, p) for any p /∈ P by

Corollary 2.4 and Lemma 3.4. �

4.1. Testing irreducibility. Testing absolute irreducibility of ad(H) for H of degree n entails

computation in degree about n4, which is comparatively expensive. However, Theorem 2.3 offers

a way to bypass this test. That is, we adapt Meataxe ideas [13, 20] to determine all primes modulo

which the adjoint representation is merely reducible. For simplicity, the discussion will be restricted

to R = Z.

Recall the following special case of Norton’s criterion for the natural module V of a matrix

algebra A.

Suppose that B ∈ A has rank rk(B) = n − 1. Assume that vA = V for some

non-zero v in the nullspace of B, and Aw = V ⊥ and for some non-zero w⊤ in the

nullspace of B⊤. Then V is irreducible.

Now let A ⊆ Mat(n,Q) be a Z-algebra, and suppose that the following hold.
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(1) We have found B ∈ A such that rk(B) = n− 1.

(2) For a non-zero v in the nullspace of B, the Z-span vA contains n linearly independent

vectors v1, . . . , vn.

(3) For a non-zerow⊤ in the nullspace of B⊤, there are n linearly independent vectors w1, . . . ,

wn ∈ Aw.

Norton’s criterion, applied to the above configuration modulo p, shows that ϕp(A) is irreducible

unless

rk(ϕp(B)) < n− 1, or

ϕp(v1), . . . , ϕp(vn) are linearly dependent, or

ϕp(w1), . . . , ϕp(wn) are linearly dependent.

To find (a finite superset of) the set of primes p for which ϕp(A) is reducible, we form the union

of three sets, namely the prime divisors of det(M1), det(M2), and det(M3), where

M1 is a full rank (n− 1)× (n− 1) minor of B (modulo other primes, B has rank n− 1),

M2 is the matrix with rows v1, . . . , vn (modulo other primes, v spans the whole module),

M3 is the matrix with rows w1, . . . , wn.

To make this into a concrete test PrimesForIrreducible, let A = 〈ad(H)〉Z. Take a small

number (say, 100) of random Z-linear combinations B ∈ A until a B of rank n − 1 is detected.

Although we do not have a justification that such elements occur with sufficient frequency, they

seem to (as observed in [19]); in every experiment so far we found such a B. (Also note that there

are irreducible H such that 〈H〉Q does not have an element of rank n − 1; but if H is absolutely

irreducible then such elements always exist.)

We now state a version of PrimesNonSurjectiveSL that may have improved performance

in many situations (see Section 5).

PrimesNonSurjectiveSL, modified.

1. If PrimesForIrreducible confirms that ad(H) is irreducible then

P := PrimesForOrder(H, f(n))∪ PrimesForAbsIrreducible(H)

∪ PrimesForIrreducible(ad(H));

else

P := PrimesForOrder(H, f(n))∪ PrimesForAbsIrreducible(ad(H)).

2. Return {p ∈ P | ϕp(H) 6= SL(n, p)}.

Proposition 4.2. The above modification of PrimesNonSurjectiveSL terminates, returning

Π(H) for input dense H .

Proof. This follows from Theorem 2.3 and Proposition 4.1. �

Remark 4.3. Suppose that PrimesForIrreducible completes, i.e., ad(H) is confirmed to be

irreducible. Then H is dense if it is infinite and absolutely irreducible. This gives a more efficient

density test than the procedure IsDenseIR2 in [6].

4.2. Individual Aschbacher classes. Some Aschbacher classes may not occur in a given degree.

For example, the tensor product classes C4 and C7 are empty in degree 4. Consonant with the

approach of [4], we show how to determine the primes p such that ϕp(H) lies in a group in Ci 6∈

{C4,C7,S }, using tests that do not involve ad(H). The following is vital.
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Lemma 4.4. Let H ≤ SL(n,Q) be dense. If N EH is non-scalar then N is dense, thus absolutely

irreducible.

Proof. This follows from Proposition 3.7: since N is non-scalar, ϕp(N) is a normal non-scalar

subgroup of SL(n, p) for almost all primes p. �

4.2.1. Testing imprimitivity. Suppose that H ≤ GL(n,F) is imprimitive, so H ≤ GL(a,F) ≀

Sym(b) for some a, b > 1 such that n = ab. If Sym(b) has exponent k then 〈hk : h ∈ H〉 ≤

GL(a,F)b is reducible. Hence we have the following procedure.

PrimesForPrimitive

Input: dense H = 〈S〉 ≤ SL(n,Q).

Output: the set of primes p for which ϕp(H) is imprimitive.

1. Select h ∈ H such that he is non-scalar, where e = exp(Sym(n)).

2. P := PrimesForAbsIrreducible(he, S).

3. Return all p ∈ P such that ϕp(H) is imprimitive.

Once more [18] is used in implementing the last step. Lemma 4.4 guarantees termination and

correctness of the output.

If we happen to know a prime p such that ϕp(H) = SL(n, p), then PrimesForPrimitive

simplifies in the familiar way (i.e., by computing in a congruence image and then lifting).

PrimesForPrimitive, modified.

1. Let p be a prime for which ϕp(H) = SL(n, p).

2. Find n2 elements hi ∈ H such that the ϕp(h
k
i ) span Mat(n,Fp), where k := exp(Sym(n)).

3. Return all p ∈ PrimesForAbsIrreducible(hk
1, . . . , h

k
n2) such that ϕp(H) is

imprimitive.

The hi exist by Step 1 and Lemma 4.4.

4.2.2. Testing for field extensions. The second derived subgroupG(2) of G ∈ C3 is quasisimple and

reducible ([3, p. 66] and [14, §4.3]). Accordingly, PrimesForReducibleSecondDerived

selects a non-scalar double commutator g in the dense group H then returns PrimesForAbs-

Irreducible(g, S). By Lemma 4.4, this will yield all primes modulo which H is in a group in

C3.

If we know a prime p such that ϕp(H) = SL(n, p) then PrimesForReducibleSecond-

Derived can be modified along the lines of our modification of PrimesForPrimitive. We

search for double commutators (rather than kth powers) in ϕp(H) that span Mat(n,Fp); these exist

because ϕp(H) = SL(n, p) is perfect (if n > 2 or p > 3).

4.2.3. Excluding classes. For prime n or n = 4, the results of Sections 4.2.1 and 4.2.2, together

with those of [4], enable us to avoid ad(H) in computing Π(H). We use the procedures below to

rule out individual Aschbacher classes in those degrees.

C1: PrimesForAbsIrreducible.

C2: PrimesForPrimitive.

C3: PrimesForReducibleSecondDerived.

C6, S : PrimesForOrder.

C8: PrimesForSimilarity, as in [4, Section 2.5].
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5. EXPERIMENTS

Our algorithms have been implemented in GAP [10], enhancing previous functionality for com-

puting with dense groups [6]. The software can be accessed at

http://www.math.colostate.edu/˜hulpke/arithmetic.g

We report on experiments undertaken with the implementation. One major task is computing all

congruence quotients of a finitely generated dense group H ≤ SL(n,Z) from Π(H), as explained

in [4, Section 4.1].

5.1. Explicit order bounds. We will let f(n) be a bound on the largest element order for the abso-

lutely irreducible groups of degree n in C6 ∪ S that are irreducible in their adjoint representation.

The tables in [3, Section 8] furnish bounds for n ≤ 12. We construct an example of each such

group in C6 ∪ S using the MAGMA [2] implementation that accompanies [3]. Then we use GAP

to calculate conjugacy class representatives and their orders.

For completeness, Table 1 gives maximal subgroup order, maximal element order, and the least

common multiple of exponents. The column ‘Geometric’ lists the number i of each Aschbacher

class Ci that can occur.

We include, for degrees n ∈ {3, 4, 5, 7, 11}, the element order bounds from [4] for all groups in

C6 ∪ S . The rows with these bounds have nS in the Degree column. For n = 3, 4, 5 the bounds

agree, and so we have omitted the row beginning with n.

Degree Geometric Group Order Element order Exponent lcm

3S 1, 2, 3, 6, 8 1080 21 1260

4S 1, 2, 3, 6, 8 103680 36 2520

5S 1, 2, 3, 6, 8 129600 60 3960

6 1, 2, 3, 4, 8 39191040 60 2520

7 1, 2, 3, 6, 8 115248 56 168

7S 115248 84 168

8 1, 2, 3, 4, 6, 8 743178240 120 5040

9 1, 2, 3, 6, 7, 8 37791360 90 360

10 1, 2, 3, 4, 8 4435200 120 9240

11 1, 2, 3, 6, 8 244823040 198 637560

11S 244823040 253 637560

12 1, 2, 3, 4, 8 5380145971200 156 360360

TABLE 1. Order bounds in small degrees

5.2. Implementation and experimental results.

5.2.1. Triangle groups. Let ∆(3, 3, 4) be the triangle group 〈a, b | a3 = b3 = (ab)4 = 1〉. In [15,

Theorem 1.1], a four-dimensional real representation of ∆(3, 3, 4) is defined by

ρk(a) =















k(3− 4k + 4k2) −1− 4k − 8k2 + 16k3 − 16k4 0 0

1− k + k2 −1− 3k + 4k2 − 4k3 0 0

k(1− 2k + 2k2) −3− 4k − 2k2 + 8k3 − 8k4 1 0

2(1− k + k2) −2(1 + 2k − 4k2 + 4k3) 0 1















,

http://www.math.colostate.edu/~hulpke/arithmetic.g
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ρk(b) =









1 0 −4 0

0 1 0 −1

0 0 −1 −1

0 0 1 0









.

Let H(k) = 〈ρk(a), ρk(b)〉. If k ∈ Z then H(k) ≤ SL(4,Z).

Let F (k) be the image under ρk of 〈[a, b], [a, b−1]〉. Calculations by D. F. Holt (personal commu-

nication) using kbmag [12] establishes that the latter is a free subgroup of ∆(3, 3, 4). All groups

H(k) (resp. F (k)) are 2-generated, and of the same structure; as k varies we are just changing

the size of matrix entries. Note that the entries of the generators of F (k) have roughly twice the

number of digits as those of H(k). Our experiments justify that H(k), F (k) are dense (for H(k)

this follows independently from [15]), and non-arithmetic, i.e., thin. As C4 and C7 do not figure in

degree 4, the algorithm from Section 4.2 can be utilized here. This will illustrate the benefit of the

improvements in Sections 4.1 and 4.2.

In Table 2, M is the level of cl(H) and ‘Index’ is |SL(4,Z) : cl(H)|. We remark that com-

puting Π(H), M , and indices is not possible with our previous methods [4, 5]. Other columns

give runtimes in seconds on a 3.7GHz Xeon E5 (2013 MacPro). Column tA gives the runtime of

PrimesNonSurjectiveSL. Column tI gives the time of the Meataxe-based algorithm from

Section 4.1. Due to the randomized nature of the Meataxe calculations, timings turned out to be

variable. Consequently we give a timing of ten experiments and list minimum, maximum, and

average runtime in the format min–max; average. Column tB gives runtimes of the algorithm in

Section 4.2 (computing Π(H) without ad(H)), and the final column tM is runtime to compute M

and Index from Π(H).

H M Index tA tI tB tM
H(1) 2572 24133537619 63 7−69; 27 4 7

H(2) 23313 217325213·97·101·1812 54 10−104; 30 7 1373

H(3) 257·199 24336537·11·19·13267·19801 62 9−90; 43 7 334

H(4) 237·607 22135557·13·19·101·7369·9463 90 22−65; 37 19 5938

H(5) 2552409 244335617·31·55897·83641 73 13−107; 48 11 2883

H(6) 237·31·97 22737557·13·19·37 85 14−144; 63 7 308

·331·941·3169

H(10) 23527·919 22638587213·17·19231 93 67−390; 235 14 30382

·37·101·113·163

F (1) 253272 25338547619 77 595−707; 645 3 16

F (2) 24327·13·313 23839567·13·17·97·101·1812 78 689−831; 750 11 5986

F (3) 25327·29 262315567311·19·67·137 106 718−851; 769 10 10094

·37·199 ·421·13267·19801

F (4) 24337·59·607 237315577·13·19·29·101 102 719−899; 798 19 74079

·1741·7369·9463

F (5) 2533527 2663155107·17·31·2521 139 700−1010; 881 27 129470

·71·409 ·55897·83641

TABLE 2. Experimental data for the groups H(k), F (k) ≤ SL(4,Z)
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After computing M , we can find all congruence quotients of H(k), and hence a set of finite

quotients of ∆(3, 3, 4). We see from the results for k = 1, 2 that ∆(3, 3, 4) has quotients PSL(4, p)

for p > 2. On the other hand, a calculation with the GAP operation GQuotients shows that

∆(3, 3, 4) has no quotient isomorphic to PSL(4, 2). Furthermore, since ∆(3, 3, 4) has quotients

isomorphic to Alt(10), which cannot be a section of a matrix group of degree 4 over a finite field,

H(k) is thin for all k ∈ Z. The F (k) are thin because they are free.

5.2.2. Other experiments. We used the following constructions of dense groups, including exam-

ples that permit tensor decomposition modulo some primes.

(i) Let K(a, b,m) be the subgroup of SL(ab,Z) generated by SL(a,Z) ⊗ SL(b,Z) and the

elementary matrix mt1,a+1 (two generators per factor of the Kronecker product).

(ii) For distinct monic polynomials p(x), q(x) ∈ Z[x] of equal degree n, let C(p, q) be the

subgroup of SL(n,Z) generated by the companion matrices Cp and Cq for p(x) and q(x).

Regarding density of the K(a, b,m), cf. [4, Lemma 3.15]. By [21, Theorem 1.5], C(p, q) is dense

if it is non-abelian, Cq has infinite order, and p(x) is irreducible with Galois group Sym(n).

The runtimes in Table 3 have the same interpretation as in Table 2. Some computations with the

larger groups did not complete for several hours. In that event, the pertinent column entry is blank.

Indices are not listed for space reasons.

Group Degree Primes M tA tI tM
K(2, 2, 275) 4 5, 11 5211 101 1−3; 1 8

K(2, 3, 441) 6 3, 7 3372 37951 4−47; 17 107

K(3, 2, 8959) 6 17, 31 17231 39873 8−43; 28 3946

K(2, 4, 100) 8 2, 5 2452 17−96; 53 956

K(3, 3, 11979) 9 3, 11 33113 81−246; 180 4283

C(x4−x+ 1, x4 + 5x3−x2 + 1) 4 11, 61 11·61 58 3−26; 8 2131

C(x6 + 2x4 + x+ 1, x6 − x2 + 1) 6 7, 23 12−305; 73

C(x8 + x+ 1, x8 − x+ 1) 8 2 22 52−368; 150 10

C(x8 + 2x+ 1, x8 + x4 + 1) 8 2, 3, 5 243·5 33−1982; 505 35813

TABLE 3. Experimental data for the groups K(a, b,m) and C(p, q)

5.2.3. Performance. The runtime to find Π(H) is roughly proportional to the magnitudes of its

elements. In fact, runtime is dominated by tests to ensure that no prime p returned is a false positive,

i.e., that the p-congruence image really is a proper subgroup of SL(n, p).

The timings show that the method of Section 4.2 is clearly superior to the default, with the

Meataxe-based algorithm performing better unless matrix entries become very large. This pattern

becomes more pronounced in larger degrees.
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