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CONSTRUCTIVE MEMBERSHIP TESTS IN SOME INFINITE
MATRIX GROUPS

ALEXANDER HULPKE

ABSTRACT. We describe algorithms and heuristics that allow us to express ar-
bitrary elements of SL, (Z) and Sp,,, (Z) as products of generators in particular
“standard” generating sets. For elements obtained experimentally as random
products, it produces product expressions whose lengths are competitive with
the input lengths. This is the author’s copy of https://doi.org/10.1145/
3208976.3208983

1. INTRODUCTION

The constructive membership problem, that is expressing an element g of a group
G as a word in a generating set (which might be user-chosen) is one of the funda-
mental tasks of computational group theory. We call such a word a factorization
of g (with respect to the chosen generating set). In the case of elementary abelian
groups it is simply the well-studied problem of solving a system of linear equations.

Another special case is discrete logarithm, that is expressing an element in a
cyclic group as a power of a chosen generator. This is a known, difficult problem [21],
thus the best we can hope for are good heuristics rather than a general solution.

We note here that [2] shows that for a large class of groups, including matrix
groups, discrete logarithm to be the only obstacle to efficient group order and
membership test calculations.

The application to puzzles [8] arguably has the largest visibility for the general
public.

In general, factorization underlies much of the functionality for group homomor-
phisms [16] and is thus at the heart of many group theoretic calculations.

While for problems such as the Cayley graph for Rubik’s cube [19, 15] a shortest
word expression is the inherent aim, in most applications the goal is rather to obtain
a word expression that is “reasonably short” for practical purposes, but without
any guaranteed bound in relation to the optimal length (or even just a straight line
program).

For permutation groups, stabilizer chains [22] provide a tool for obtaining such
expressions [18]. For finite matrix groups, composition trees and constructive recog-
nition [1] are tools.

The groups we are interested in here will be particular infinite matrix groups over
rings of integers, namely G = SL,,(Z) or G = Sp,,,(Z) with particular generating
sets. This is motivated by recent work [6] on finitely generated subgroups of these
groups: Given a subgroup S < G given by generating matrices, one often would like
to determine whether S has finite index in G, in which case S is called arithmetic.
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Calculation in finite images of G allow us [6] to determine the index if it is known
to be finite.

Determining whether the index is finite, however requires us® to verify the index
in a finitely presented version of G and thus poses the task to express the generators
of S as words in a particularly chosen generating set of G. While methods for word
expression exist already for the case of SL, the author has been unable to find such
methods for Sp in the literature. The Section 5 below will give an example (taken
from [12]) of doing this using the approach presented in this paper.

While these groups clearly exist in arbitrary dimension, the questions and con-
crete examples studied so far have been of rather limited dimension (< 8). One
reason for this is that products of elements of infinite matrix groups usually very
quickly produce large coefficients, and matrix arithmetic itself becomes a bottle-
neck.

This paper thus is focusing on practically useful methods for small dimensions,
even if they scale badly for larger n.

This use of the factorization also indicates that the appropriate measure of suc-
cess is the length of the resulting words, rather than the time required to obtain
such a factorization: The time for the overall calculation will be dominated by the
coset enumeration, and shorter words often make success of such an enumeration
more likely.

We shall present algorithms that in experiments perform well under this measure,
though we cannot give a provable statement about the quality of the word expression
obtained. In the case of Sp, furthermore we shall present a heuristic that has worked
well for all examples tried, though we cannot prove this statement in general.

2. TWO BASIC ALGORITHMS

We start by fixing notation: We have a group G with a generating sequence
g =1(91,.--,9x). The task is to express an arbitrary e € G as a word in g, that is
a product of the elements in g and their inverses that equals e. We shall call such
a word a word expression for e. The smallest number of factors possible in such a
word expression for e is called the word length of e (with respect to the generating
set g), and such a word is called a shortest word for e.

To simplify notation, we shall also assume now that g = g~! is closed under
taking inverses. -

The Cayley graph T of G = (g) is a digraph with vertex set G and, for z,y € G,
an edge (z,y) labeled by g, existent iff zg = y. The question for a word of minimal
length expressing e € G thus is the same as that of finding an (undirected) path in
T of shortest length from 14 to g.

Standard “shortest path” algorithms for graphs, such as [7] then motivate an
exhaustive search that “floods” the Cayley graph vertex by vertex, starting with the
identity and stopping once group element e has been reached. The corresponding
algorithm for word expression has been known for a long time and is given as
algorithm 1:

1Structural arguments based on the existence of free subgroups show that there cannot be
deterministic, bounded-time finite index test. Any method that has a chance of determining the
index thus needs to share characteristics of methods for subgroups of finitely presented groups.
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We use the notation L[a] to get a list element associated to a group element a,
this will be implemented though appropriate data structures, such as hashing.

Input : A group G with generating set g and e € G
Output: A word expression in g for e or a memory overflow error
Initialize A := {(1¢)};

P :=1], P[lg]:=false ; // Marker whether an element was processed
W=1[; W[lg] :=0; // Word expressions for elements
if e =1 then

‘ return (;

end

while Memory is not exhausted do

Let A" = {a € A| Pla] = false};

foreach a € A’ do

foreach xz € g do

if ax = e then

| return (W(a], z); // Concatenate words

end

else if ax ¢ A then
add ax to A;
set Wlaz] := (Wla], z); // Concatenate words
Plax]:=false;

end

end
Set P[a]:=true;
end

end
// Stage 2: Word products
foreach a € A do
if ea € A then
| return (Wlea], W[a™']);
end
end

return Memory exhaustion failure;
Algorithm 1: Floodsearch

The first stage of this approach can also be considered as an orbit algorithm [13],
calculating the (partial) orbit A of 1 under right multiplication by G. In this form
it is easily seen that that it is sufficient not to store full word expressions W, but only
the generator labeling the last edge of the shortest path. (In fact, following [4], one
can reduce the storage requirement to 2 bits per element by indicating the length
of the path modulo 3.)

Fundamentally, this is one of the the only two known approaches that can guar-
antee? to find a shortest word. The other method would be to use a finite, length-
based confluent rewriting system for G. (In general we do not have good confluent

2E.g. the calculation of the diameter of Rubik’s cube [19] ultimately builds on this algorithm
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rewriting systems for arbitrary finite groups, furthermore in the infinite case it is
not even known whether such finite systems exist.)

If memory is exhausted, we then can (this is Stage 2) use the fact that all
elements are invertible and that the Cayley graph looks the same from every vertex
to extend the radius by a factor two, before failure: Test whether the ball A (around
1¢) and the ball eA (around e) intersect:

If a word of shortest length is desired, we may not stop at the first word that is
found, but must run systematically through all combinations (or run through pairs
according to the length of the product).

The storage requirements, which are O(|A|), show that for every group there is
a maximal word length that can be tested for. Thus this method can cater only for
a finite number of elements in an infinite group. Its use is rather are as “quality
control” of the produced word length for other algorithms, or to find explicit word
lengths for particular elements.

2.1. Modular reduction. Another algorithm is specific to integral matrix groups:
Given e € SL,,(Z), we find a word expression in a finite congruence image SL,,(Z/pZ),
for example using stabilizer chain methods. Having found such an expression, we
then check whether this expression also holds in characteristic zero. Otherwise
we consider larger congruence images. The implicit expectation here is that for
sufficiently large modulus p no modular reduction happens in evaluating a word
expression for e and the calculation modulo p is in fact the same as the calculation
in Z. This is decried as algorithm 2.

Input : A group G < SL,(Z) with a generating set g and e € G
Output: A word expression in g for e or failure
Let p = 3;
while |SL,,(p)| is not too large do
Let ¢p: G — SL,(p) the congruence homomorphism;
Let H = (p(g));
Let w be a word expression for ¢(e) as a word in ¢(g);
if w evaluated in g equals e then
‘ return w; B

end

Increment p to the next prime;
end

return failure;
Algorithm 2: Word by congruence image

Despite its simplicity, this method often works well to find short word expressions
(as done for example in [5] to find candidates for generic word expression that then
are explicitly proven) and sometimes works faster (and for longer word lengths)
than the previous one. However there is no practical way to determine a priori a
small modulus that would guarantee success.

3. NORM BASED METHODS FOR SL

We now consider the special case of G = SL,,(Z) with generators being elemen-
tary matrices. We denote by ¢; ; the matrix that is the identity with an extra entry
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one in position ¢, j and set
+ . .
g:{tm-l|q§z7éj§n}.
Then [11] (which is a basic linear algebra argument) shows that SL,(Z) = (g).

A word in these generators can be considered as performing a sequence of ele-
mentary matrix operations, and the inverse of a word expression for g € G would
be a sequence of elementary operations that transform g to the identity, which is
also its Hermite Normal Form (HNF). (As the normal form is the identity, the

calculation of Hermite Normal Form is effectively the same as that of the Smith
Normal Form in this case.)

Calculating Normal Forms of matrices is a classical problem in Computer Al-
gebra [23, 20]. If we perform such a calculation and accumulate the sequence of
elementary operations not in transforming matrices, but as words, we obtain a
word expression in terms of elementary matrices. We shall call this algorithm 3 the
HNF-based algorithm.

Input : A group G < SL,(Z) with a generating set g consisting of
elementary matrices, and e € G B
Output: A word expression in g for e
Calculate the HNF for e and the transforming matrix T such that Te = 1.
While doing so keep T' as a word expression in the elementary matrices g.;
return 77! ; // Use T~! since T converts e to 1
Algorithm 3: The HNF-based algorithm

An implementation of this algorithm was built on top of the GAP [9] implemen-
tation of Hermite Normal Form. For matrices with moderate entries (respectively
those who have word length in the generators of not more than 20-30) it produces
satisfactory results, but not if examples of longer word length are considered. This
is because longer products correlate with larger coefficients. For such matrices the
first steps in a normal form calculation are to reduce a row by subtracting the k-th
multiple of another row, typically for a large k. Such steps produce an elementary
matrix in k-th power and thus makes for very long words. This is corroborated by
the examples in section 5.

Note also that this approach only applies if the group is generated by all elemen-
tary matrices. It thus is only applicable for SL, not subgroups thereof.

We thus consider further strategies used for calculating normal forms, rather
than to utilize the forms themselves.

The starting observation is that matrix multiplication in characteristic zero tends
to produce a product that has larger entries than either factor. Reducing the overall
size of entries of the matrix thus is expected to be more promising than trying to
zero out off-diagonal entries systematically row-by-row and column-by-column.

We shall use the (squared) 2-matrix norm [|[M||? = i m7 ;. A smaller norm
corresponds to overall smaller entries. In fact, as we know the normal form to be
the identity, we use the measure ||M — I||?> (I being the identity matrix) in place
of || M.

We shall denote ||M — I]|? from now on as height.

The algorithm for factorization now iterates a reduction process for the entries

of a matrix a € SL,(Z), as given by algorithm 4: We try to reduce matrix height
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by forming products with generators. In a greedy algorithm we form products with
all generators and choose the one that produces the largest height reduction. If no
such generator exists we fall back on the proven HNF-based method.

Input : A group G < SL,(Z) with generating set g (that is assumed, but
not required, to contain elementary matriGes) and e € G

Output: A word expression in g for e or failure

Let w =10, a:=e¢;

while a # I do

foreach g; € g do

Calculate [la - g; — I||? and |g; - @ — I||?, and find for which g; and
product order the value m is minimal;

end

f m > ||a|* then

Factor a with the HNF-based method (algorithm 3), obtaining a word
v for a;

e

return v - w1

end

Replace a with the product that produced minimal height;
Replace w by (the corresponding) (w, g;), respectively (g;, w);
end

return w — 1;

Algorithm 4: Height-based reduction

Applying this algorithm to random elements of SL,,(Z) produces in most cases a
significant reduction in the matrix coefficients, but do not reach the identity before
having to default to algorithm 3:

For example, let g the set of all 4 x 4 elementary matrices and consider the
element B

1 01 -1
o= 1 0 0 0
0 -1 2 0
0 -1 0 1

Then |la — I|| = 7, but for no generator g; € g we get a smaller height.

In such a situation the matrix a typically will have undergone prior reduction and
thus have comparatively small coefficients. Thus using the HNF-based algorithm
as fall-back is less likely to incur the word length penalty we noted before.

Investigating this example further, we find (using algorithm 1) that a can be
written as a product tf_}ltgylt;étf’;tiét& of length 6. If we calculate the heights
of partial products of this word we get 1,2,3,5,7,7 if we take subwords starting
from the left, respectively 1,2,4,6,7,7 from the right. The reason for the failure
of the height-based approach thus is that the first, as well as the last factor of the

product, do not increase the height.

This failure to reduce is the result of small height values and looking at only
single generators. If instead we would have considered products of length 2, we
would have noticed a jump from 7 to < 6 by multiplying with a product of length
2.
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Obviously, one could try also longer products. In an ad-hoc compromise between
length and number of products we decided to consider products of length up to 3,
as this includes conjugates of generators by other generators.

Let

h-gug’ug’
When the height-based reduction then reaches the stage at which no element of
g reduces, we repeat the same attempt of height reduction through generators,
albeit with h in place of g. To avoid a careless accumulation of longer products,
we furthermore weigh the height change achieved by the length of the product
expression used.

If use of the generating set h achieves a height reduction we change a and w
accordingly. If also use of h achieved no improvement we pass to the HNF-based
algorithm 3. Otherwise the calculation then continues again with reductions by g.

In experiments with random input (see section 5) we found that the words pro-
duced by this approach seemed to be of acceptable length.

The time taken in the examples considered was short enough that we did not
look into ways to speed up the calculation, though there are many obvious ways
to do so, e.g. by looking at changes locally rather than always processing a whole
matrix.

4. THE SYMPLECTIC GROUP

The symplectic group of degree 2n is the group of matrices in SLs,(Z) that
preserve the bilinear form
0o I,
=(5 %)

with I,, denoting an n x n identity matrix. Thus
Spon (Z) = (M € SLy,(Z) | MIMT = J).

A presentation for Sp,,, (Z) has been calculated by Birman [3], based on prior
work by Klingen [14] and unpublished thesis work of Gold [10]. Klingen’s re-
sults shows that the given elements indeed generate Sp, but is very much non-
constructive. It thus does not facilitate an algorithm for decomposition in these
generators.

The work in [3] minimally adjusts the generating set of [14] and uses

Spon(Z) = (Yi,U;, Z; |1 <i<n,1<j<n-—1)

with Y; =t} .., U; = t, 1, and

i,n+17

tq;i I’I B
Zi = (tix1nti/tivcinrivn) "7 = < 0 InZ )

-1 1

with B; the matrix with submatrix ( 1 1

) at positions 4,7 + 1 along the
diagonal (and all other entries zero).

The generators Z; are not elementary, which does not augur well for simply
replicating the approach used for SL. We thus note that by [11] we can generate Sp
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as well from a generating set consisting of short products of elementary matrices,
resulting in a second generating set that overlaps with the previous one:

SPon(Z) = {tim+jtjnti>tnyijtnyg |1 <i<j < s}
U{tint+istntii | 1 <i<n}).

We however do not have a presentation in this second generating set (though one
could produce one through a modified Todd-Coxeter algorithm, albeit at the cost
of relator lengths). We simply add these elements as further generators (together
with relations that express them as products in the original generating set).

To find the necessary product expressions, we need to express the elements
tin+tjitjnti (Whose factors lie outside Sp) as product of our chosen (primary) gen-
erators for Sp.

In [3] we already find an expression for some of these products: For i <n —1
we have that

-1 —1y—177—1vy—1
tiitityiivinre = Yo YipUin Vg ZiliyYin and
ti+1,it;—&1-i,n+i+l = YiHYiUin‘Z;lUiilYiil
(Algorithm 1 confirms that these are word expressions of minimal length.)

We similarly used algorithm 1 to suggest short expressions for other products,
and obtained for 3 < i < n that:

tz‘—2,z‘t;1ri,2’n+i = i1 Z U, Ui Y Z 55U,
and
ti,i—Zt;ii)n.H‘_Q = [Yi1Z Ui oY o,

Ui Y1 Z U

with [a,b] = a~ b~ 'ab denoting the commutator.

These expressions are easily verified in general by considering the images of
standard basis vectors under the left hand size products and the right hand side
products.

The identity ¢; ;1 = [t;i4j-1,ti+;—1,i+;] finally allows us to form all other prod-
ucts ¢;, jt;}r jm+i @ commutators of products with smaller index difference.

From now on g shall denote this extended generating set, consisting of the Uj,
Y;, Z; and products t; njtjniis tntijtntj,i (and inverses thereof).

We experimented with algorithm 4 with this generating set g (of course with the
HNF-based method replaced by an error message) on a number of random elements.

The results of these experiments were disappointing: Almost all elements we
tried reduced only partially and still left matrices with large entries for which no
further reduction process could be found, not even by introducing further short
products.

4.1. Decomposing the Symplectic group. Thus a more more guided reduction,
adapted to the structure of the symplectic group, is required. We should emphasize
however that the following approach is purely heuristic in that we have is no proof
of it succeeding in general. In a large number of examples in small dimension, we
however also were unable to find a single example in which the approach failed.
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We start with a structural observation: The products ti,jt;ij,n 4 forall 1 <i#
j < n clearly generate a subgroup

S = {< ]‘04 Yt > | M e SLn(Z)} < Spy(Z).

such that S 2 SL,,(Z). The definition of the symplectic group (and the fact that Z
has only two units) shows that for

T{<8 S)GSLgn(Z)}

R=1T0Spy, (Z) = {( ]O” e > € SL%(Z)}

we have that S < R is of index 2.

This subgroup R lies at the heart of the new approach. If we have an element
e € R, we can use multiplication by

and

-1 0

A0 1

(Y2U,)? = ( 0 A ) with A =
1

to obtain ¢’ € S. (Of course remembering such an extra factor for the product
expression.)

Using algorithm 4 for SL,(Z), we then can write the {1,...,n} x {1,...,n}
minor M of e (respectively €’) as a product of elementary matrices in dimension n.

As the generating set g also contains (product expressions for) matrices that
act on this minor M as elementary matrices: Let w be an SL,(Z) word for M.
Evaluating w in the generators tiyjt;_sl_jyn 4; € g then gives an expression for e in
generators for Sp,,,(Z).

It thus is sufficient to map an element e € Sp,,,(Z) into R.

An element a = (a; ;) € Sp,y,(Z) lies in R, if the height function

n n

h(a) = Z Z (azz,n—l-j + a’121+i,j)

i=1 j=1

has value zero. This suggests that we can transform e € Sp,,,(Z) into an element
of R by running algorithm 4 with this new height function & (even though it does
not have a unique minimal element).

We thus modify the height-based approach of algorithm 4 as follows:

(1) The stopping condition, in the outermost while-loop, is for h(A) = 0 rather
than a = I;

(2) Tt returns not only the word expression, but also the reduced element a;

(3) the case m > ||a|| first uses the above modification of the algorithm that
first tries an extended generating set, formed by adding short products in
the generators, before triggering an error if this also found no reduction.
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Again, experiments with this approach failed, producing matrices that had only
a few nonzero entries in the top right and bottom left quadrant with no way to also
zero out these remaining entries. The goal to reduce all entries at the same time
led to a local, not global, minimum from which escape was not possible.

To avoid such a behavior, we switched to a more localized reduction. Based on
the observation that single nonzero entries are hard to clean out if the rest of their
row is zero, we switch to an iterated process, reducing row-by-row. That is we
define a series of height functions by

hy = 0
2n
hi = hi,1 + Z CL?J-, if 4 S n
j=n+1
n
h;, = h;_1 +Zaf’j, if i >n.
j=1

We then run algorithm 4 to reduce by height function h;. Afterwards, we reduce
further with height function ho and so on, up to height function hs, = h. If
the resulting matrix lies in S, we proceed as described above, producing a word
expression for e. We call this approach Algorithm 5.

We note that this improved heuristic succeeded in all examples we tried (i.e found
a matrix a € S). We did not encounter a single example in which this approach
failed.

It also produced words of acceptable length. Alas, proving these statements as
general facts seems to be beyond the capabilities of the author.

What seems to be happening is that the localized heights are willing to accept
reduction step that reduce the current row, even if they grow the entries in other
places that are not covered by the height.

Contrary to the overall height function h, this approach thus does not forbid a
reduction to zero (which might produce a very small height reduction), just because
it combines with a growth of larger, not yet reduced, entries of the matrix (note that
an entry change m to m+ 1 increases the height by roughly (m+1)%2 —m? = 2m+1,
while a reduction 1 to 0 reduces by 1 only).

5. EXAMPLES

As mentioned in the introduction, our main interest has been to obtain short
words for Sp. We thus did not measure run times (which can be heavily biased by
setup costs or cleverness in avoiding duplicate calculations of elements) systemati-
cally, but rather the quality of words obtained. This was done in a GAP [9] imple-
mentation of the algorithms described here, that is part of the author’s routines for
arithmetic groups, available at www.math.colostate.edu/~hulpke/arithmetic.
g.

For a small example, section 7.2 in [17], using Mathematica, computes word
expressions for selected elements of SL3(Z), namely X, of length 8 and Y; of length
14; algorithm 4 obtained word expressions of length 7 and 13, respectively. Similarly
an element X_» is given by a word of length 13 and Z_5 by a word of length 16;
algorithm 4 calculated expressions of lengths 16 and 10 respectively. The new
approach thus performs on par with an existing method.
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The next example is the group G(3,4) from [12], already considered in [6]. Using
the implementation in GAP we construct a homomorphism from a finitely presented
version of Sp,(Z) to a matrix version, using the extended generating set based
on [3]. We also form G(3,4) as a matrix group. We then express (this uses the
symplectic method) the group generators as words, and form the subgroup S of the
finitely presented Sp,(Z) that is generated by these words. We finally determine
the index [Sp,(Z) : S] through a coset enumeration. (This calculation, incidentally,
independently verifies that G(3,4) is arithmetic.)

gap> hom:=SPNZFP(4) ;

[ Y1, Y2, U1, U2, Z1 ] ->

ccee,0,-1,01,0,1,0,0]1,[0,0,1,0],[0,0,0,11], [...]

gap> G34:=HofmannStraatenExample(3,4);

<matrix group with 2 generators>

gap> w:=List(Generators0fGroup(G34),

> x->PreImagesRepresentative (hom,x)) ;

[ ULx(U27-1xU1xU27-1) "2xY1"-1%Y2"-14U2"-1*%Y2" -1
*Z1xU2xY2, Y2°-1 ]

gap> S:=Subgroup(Source (hom) ,w) ; ;

gap> Index(Source(hom),S);

3110400

In this example, finding the word expressions (of length 14, respectively 1) takes 0.1
seconds (while the coset enumeration confirming the index takes about 4 minutes).

With algorithm 1, we verified (in 20 minutes) that there is an expression for
the first generator of length 12. Using this shorter word did not seem to have a
meaningful impact on the time required by the coset enumeration.

The input to all other experiments were matrices obtained as random words,
of a preselected length len, in the matrix generators of SL, respectively Sp. This
produced matrices in the respective group for which an upper bound for the length
of a word expression was known. The dimensions considered were chosen for be
< 8, as the motivating examples from [6] do not exceed this bound.

We then calculated for each of the matrices a word expression, using the algo-
rithms described in this paper. If an algorithm produced a word of length a for a
chosen input length len, we use the scaled ratio ¢ := 100 - a/len as a a measure
for the quality of the word expression obtained. The diagrams given indicate a
distribution of how often (the ordinate) certain ratios ¢ (the abscissa) occur. (In-
cidentally, the required runtime is reasonably approximated by this ratio, as the
fundamental step in all algorithms is to divide off one generator matrix, building
the word in steps of length one.)

The lengths considered were 20 and larger which led to matrices whose entries
were frequently in the thousands or more. We therefore did not attempt compar-
isons with algorithms 1 or 2.

As we only had time for a limited number of trials — we used 20000/len matrices
of input length len — we discretized the distribution in the following way to produce
diagrams that are easily reproduced in print. We grouped the ratios ¢ into intervals
of length 10 each, and for each interval calculated the percentage of cases within
the experiments for which the obtained ratio fell into this interval. To allow for
multiple experiments within one diagram we did plot these results as piecewise
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FicUuRE 1. Comparison between HNF-based algorithm 3 and
height-based algorithm 4 for SL

linear curves (that somewhat approximate a Gaussian distribution), rather than
as bar graphs. So for example in the top-left diagram in figure 1 the continuous
black line indicates that about 5% of experiments resulted in a ratio in the interval
[40,50), 32% in the interval [50,60), 42% in the interval [60, 70) and (this is hard
to see) 17% in the interval [70, 80), with the remaining 4% of experiments resulting
in ratios outside this range (and too low to really show up in the diagram).

The first series of experiments, given in figure 1, compares the HNF-based algo-
rithm 3 (dashed lines) with the height-based algorithm 4, including the improve-
ments by short products, on matrices in SL, (Z) (continuous lines). We tested input
lengths 20, 50 and 100 with darker colors representing longer input lengths, that is
len = 100 is black, len = 50 is mid-gray and len = 20 is light gray. (For a given
input length. The same set of matrices was used for both algorithms.)

One immediately notes from the figures that the height based algorithm produced
results that (with some goodwill) can be considered as approximations of a Gaussian
distributions, centered not too far off 100.

The pure HNF-based algorithm instead produced a much wider spectrum of
results (the curves continue beyond the right edge of the diagram, which is the
reason the dashed black curves are practically invisible), with the average length
ratio becoming worse with longer word lengths. Concretely, in the case of dimension
4 and input length 100, the HNF-based algorithm produced words whose length
ranged between 290 and 8,600,000 (with an average of 350,000), making them
useless in practice.

We thus conclude (somewhat unsurprisingly, given what is known about integer
normal form calculations) that, at similar runtime, algorithm 4 produces signifi-
cantly shorter words than a systematic HNF calculation.

In the second series of experiments in figure 2 we considered only algorithm 4,
but for a broader set of lengths. The input consisted of matrices given by random
words of lengths 20, 50, 100, 500 and 2000, with darker colors again representing
longer lengths. Again we used 20000/len words of length len.
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F1GURE 2. Comparison of obtained word length for SL,, in differ-
ent dimensions

As before we observe curves that approximate a Gaussian distribution, with
peaks shifting to the left as the input length increases, and shifting to the right as
dimension increases. In the dimension range tested, both changes are small enough
to be considered as linear with small constant.

We did not try larger dimensions systematically, as calculations quickly became
unreasonably costly.

We note that the seeming improvement in the resulting word lengths for longer
input might instead indicate that random words are less likely to be optimally
reduced as the length increases.

As for comparison with the optimal word length, this optimal length alas is
unknown in the examples (and because of memory limitations cannot be determined
for examples with input length 100). Considering the rapid growth observed for
small lengths in the number of different elements that can be expressed as words of a
particular length, however it seems plausible to have optimal length of the elements
considered would differ from the input length by a factor that is logarithmic in the
word length rather than linear.

The third series of experiments concerns elements of Sp for various dimensions
and lengths, using algorithm 5.

Figure 3 gives the results of these experiments. (Input lengths used and colors
are as in the second series.) For each of the random example matrices tested, the
approach found a factorization.

In dimension 4 the result is very similar as for SL. With growing dimension the
behavior changes: The larger number of generators acting locally on matrices make
it more likely that randomly chosen generators commute. If the word length is
short one can almost read off the generators involved from the positions of nonzero
matrix entries.

Longer words in larger dimensions however show an increased widening of the
bell shape and a shift of the peak towards significantly longer words — about 200%
for dimension 6 and 400% for dimension 8. This seems to indicate that the approach
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FiGure 3. Comparison of obtained word length for Sp,, in differ-
ent dimensions

is feasible for small dimensions (not least for the lack of alternatives) with word
lengths not increasing by too much and no observed failure, but that for larger
dimensions the ratio to optimal word length gets exponentially worse.

6. CLOSING REMARKS

We have seen practically feasible methods to express elements of SL,(Z) and
Spa,(Z) (in small dimensions) as products in particular (standard) generating sets.

What is clearly lacking is a proof (and not just experimental evidence) of the
approach succeeding in general for Sp, as well as of the produced words being
not too worse than the minimal word lengths for the matrices. (The latter seems
difficult as the algorithm for SL which is proven to succeed within limited memory
— the HNF-based one — produced words of unusable length.) Even without such a
proof the heuristic presented will be useful, as long as it produces a result.

The tools motivating our approach were taken from integral matrix normal forms.
This raises the question on whether further synergies in either way can be obtained
from these problems. A first caveat is that the normal form in the factorization
case is always the identity matrix, and that any experiments done here were in tiny
dimensions compared with those usually considered for normal forms.

What might be more promising (but we have not investigated) is a relation
between word length and size of matrix entries for the transforming matrices for
e.g. the Smith Normal Form. We observed that an initial norm-based global
reduction of matrix norms produced significantly shorter words. If this can be
translated to smaller matrix entries, it would be useful for applications such as the
homomorphisms to abelianizations G/G’ of finitely presented groups.

7. ACKNOWLEDGMENTS

The author’s work has been supported in part by Simons Foundation Collabo-
ration Grants 244502 and 524518 which are gratefully acknowledged. The author
also would like to thank the anonymous referees for their helpful remarks.



CONSTRUCTIVE MEMBERSHIP TESTS IN SOME INFINITE MATRIX GROUPS 15

REFERENCES

[1] Henrik Bédrnhielm, Derek Holt, C. R. Leedham-Green, and E. A. O’Brien. A practical model
for computation with matrix groups. J. Symbolic Comput., 68(part 1):27-60, 2015.

[2] Lészlé Babai, Robert Beals, and Akos Seress. Polynomial-time theory of matrix groups. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, pages 55-64. ACM Press, 2009.

[3] Joan S. Birman. On Siegel’s modular group. Math. Ann., 191:59-68, 1971.

[4] Gene Cooperman and Larry Finkelstein. New methods for using Cayley graphs in intercon-
nection networks. Discrete Appl. Math., 37/38:95-118, 1992.

[5] A. S. Detinko, D. L. Flannery, and A. Hulpke. Algorithms for arithmetic groups with the
congruence subgroup property. J. Algebra, 421:234-259, 2015.

[6] A. S. Detinko, D. L. Flannery, and A. Hulpke. Zariski density and computing in arithmetic
groups. Math. Comp., 87(310):967-986, 2018.

[7] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1:269-271,
1959.

[8] Sebastian Egner and Markus Piischel. Solving puzzles related to permutation groups. In Oliver
Gloor, editor, Proceedings of the 1998 International Symposium on Symbolic and Algebraic
Computation, pages 186-193. The Association for Computing Machinery, ACM Press, 1998.

[9] The GAP Group, http://www.gap-system.org. GAP — Groups, Algorithms, and Program-
ming, Version 4.8.6, 2016.

[10] Phillip Gold. On the mapping class and symplectic modular group. PhD thesis, New York
University, 1961.

[11] Alexander J. Hahn and O. Timothy O’Meara. The classical groups and K-theory, volume
291 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences]. Springer-Verlag, Berlin, 1989.

[12] Jorg Hofmann and Duco van Straten. Some monodromy groups of finite index in Sp4(Z). J.
Aust. Math. Soc., 99(1):48-62, 2015.

[13] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of Computational Group
Theory. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL,
2005.

[14] Helmut Klingen. Charakterisierung der Siegelschen Modulgruppe durch ein endliches System
definierender Relationen. Math. Ann., 144:64-82, 1961.

[15] Daniel Kunkle and Gene Cooperman. Twenty-six moves suffice for Rubik’s cube. In ISSAC
2007, pages 235—-242. ACM, New York, 2007.

[16] Charles R. Leedham-Green, Cheryl E. Praeger, and Leonard H. Soicher. Computing with
group homomorphisms. J. Symbolic Comput., 12:527-532, 1991.

[17] D. D. Long and A. W. Reid. Small subgroups of SL(3,Z). Exp. Math., 20(4):412-425, 2011.

[18] Torsten Minkwitz. An algorithm for solving the factorization problem in permutation groups.
J. Symbolic Comput., 26(1):89-95, 1998.

[19] Tomas Rokicki. Twenty-two moves suffice for rubiks cube. The Mathematical Intelligencer,
32:33-40, 2010.

[20] David Saunders and Zhendong Wan. Smith normal form of dense integer matrices, fast algo-
rithms into practice. In ISSAC 2004, pages 274-281. ACM, New York, 2004.

[21] René Schoof. The discrete logarithm problem. In Open problems in mathematics, pages 403—
416. Springer, [Cham], 2016.

[22] Charles C. Sims. Computational methods in the study of permutation groups. In John Leech,
editor, Computational Problems in Abstract Algebra, pages 169-183. Pergamon press, 1970.

[23] Arne Storjohann. Computing Hermite and Smith normal forms of triangular integer matrices.
Linear Algebra Appl., 282(1-3):25-45, 1998.

COLORADO STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS, 1874 CAMPUS DELIVERY,
ForT CoLLINS, COLORADO, 80523-1874 USA
E-mail address: hulpke@colostate.edu


http://www.gap-system.org

	1. Introduction
	2. Two basic algorithms
	2.1. Modular reduction

	3. Norm based methods for SL
	4. The Symplectic Group
	4.1. Decomposing the Symplectic group

	5. Examples
	6. Closing remarks
	7. Acknowledgments
	References

