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Abstract. We describe algorithms and heuristics that allow us to express ar-

bitrary elements of SLn(Z) and Sp2n(Z) as products of generators in particular
“standard” generating sets. For elements obtained experimentally as random

products, it produces product expressions whose lengths are competitive with

the input lengths. This is the author’s copy of https://doi.org/10.1145/

3208976.3208983

1. Introduction

The constructive membership problem, that is expressing an element g of a group
G as a word in a generating set (which might be user-chosen) is one of the funda-
mental tasks of computational group theory. We call such a word a factorization
of g (with respect to the chosen generating set). In the case of elementary abelian
groups it is simply the well-studied problem of solving a system of linear equations.

Another special case is discrete logarithm, that is expressing an element in a
cyclic group as a power of a chosen generator. This is a known, difficult problem [21],
thus the best we can hope for are good heuristics rather than a general solution.

We note here that [2] shows that for a large class of groups, including matrix
groups, discrete logarithm to be the only obstacle to efficient group order and
membership test calculations.

The application to puzzles [8] arguably has the largest visibility for the general
public.

In general, factorization underlies much of the functionality for group homomor-
phisms [16] and is thus at the heart of many group theoretic calculations.

While for problems such as the Cayley graph for Rubik’s cube [19, 15] a shortest
word expression is the inherent aim, in most applications the goal is rather to obtain
a word expression that is “reasonably short” for practical purposes, but without
any guaranteed bound in relation to the optimal length (or even just a straight line
program).

For permutation groups, stabilizer chains [22] provide a tool for obtaining such
expressions [18]. For finite matrix groups, composition trees and constructive recog-
nition [1] are tools.

The groups we are interested in here will be particular infinite matrix groups over
rings of integers, namely G = SLn(Z) or G = Sp2n(Z) with particular generating
sets. This is motivated by recent work [6] on finitely generated subgroups of these
groups: Given a subgroup S ≤ G given by generating matrices, one often would like
to determine whether S has finite index in G, in which case S is called arithmetic.
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Calculation in finite images of G allow us [6] to determine the index if it is known
to be finite.

Determining whether the index is finite, however requires us1 to verify the index
in a finitely presented version of G and thus poses the task to express the generators
of S as words in a particularly chosen generating set of G. While methods for word
expression exist already for the case of SL, the author has been unable to find such
methods for Sp in the literature. The Section 5 below will give an example (taken
from [12]) of doing this using the approach presented in this paper.

While these groups clearly exist in arbitrary dimension, the questions and con-
crete examples studied so far have been of rather limited dimension (≤ 8). One
reason for this is that products of elements of infinite matrix groups usually very
quickly produce large coefficients, and matrix arithmetic itself becomes a bottle-
neck.

This paper thus is focusing on practically useful methods for small dimensions,
even if they scale badly for larger n.

This use of the factorization also indicates that the appropriate measure of suc-
cess is the length of the resulting words, rather than the time required to obtain
such a factorization: The time for the overall calculation will be dominated by the
coset enumeration, and shorter words often make success of such an enumeration
more likely.

We shall present algorithms that in experiments perform well under this measure,
though we cannot give a provable statement about the quality of the word expression
obtained. In the case of Sp, furthermore we shall present a heuristic that has worked
well for all examples tried, though we cannot prove this statement in general.

2. Two basic algorithms

We start by fixing notation: We have a group G with a generating sequence
g = (g1, . . . , gk). The task is to express an arbitrary e ∈ G as a word in g, that is
a product of the elements in g and their inverses that equals e. We shall call such
a word a word expression for e. The smallest number of factors possible in such a
word expression for e is called the word length of e (with respect to the generating
set g), and such a word is called a shortest word for e.

To simplify notation, we shall also assume now that g = g−1 is closed under
taking inverses.

The Cayley graph Γ of G = 〈g〉 is a digraph with vertex set G and, for x, y ∈ G,
an edge (x, y) labeled by g, existent iff xg = y. The question for a word of minimal
length expressing e ∈ G thus is the same as that of finding an (undirected) path in
Γ of shortest length from 1G to g.

Standard “shortest path” algorithms for graphs, such as [7] then motivate an
exhaustive search that “floods” the Cayley graph vertex by vertex, starting with the
identity and stopping once group element e has been reached. The corresponding
algorithm for word expression has been known for a long time and is given as
algorithm 1:

1Structural arguments based on the existence of free subgroups show that there cannot be
deterministic, bounded-time finite index test. Any method that has a chance of determining the

index thus needs to share characteristics of methods for subgroups of finitely presented groups.
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We use the notation L[a] to get a list element associated to a group element a,
this will be implemented though appropriate data structures, such as hashing.

Input : A group G with generating set g and e ∈ G
Output: A word expression in g for e or a memory overflow error

Initialize A := {(1G)};
P := [], P [1G]:=false ; // Marker whether an element was processed

W := []; W [1G] := ∅ ; // Word expressions for elements

if e = 1 then
return ∅;

end

while Memory is not exhausted do
Let A′ = {a ∈ A | P [a] = false};
foreach a ∈ A′ do

foreach x ∈ g do
if ax = e then

return (W [a], x); // Concatenate words

end

else if ax 6∈ A then
add ax to A;

set W [ax] := (W [a], x); // Concatenate words

P [ax]:=false;

end

end

Set P [a]:=true;

end

end

// Stage 2: Word products

foreach a ∈ A do
if ea ∈ A then

return (W [ea],W [a−1]);

end

end

return Memory exhaustion failure;
Algorithm 1: Floodsearch

The first stage of this approach can also be considered as an orbit algorithm [13],
calculating the (partial) orbit A of 1G under right multiplication by G. In this form
it is easily seen that that it is sufficient not to store full word expressions W , but only
the generator labeling the last edge of the shortest path. (In fact, following [4], one
can reduce the storage requirement to 2 bits per element by indicating the length
of the path modulo 3.)

Fundamentally, this is one of the the only two known approaches that can guar-
antee2 to find a shortest word. The other method would be to use a finite, length-
based confluent rewriting system for G. (In general we do not have good confluent

2E.g. the calculation of the diameter of Rubik’s cube [19] ultimately builds on this algorithm



4 ALEXANDER HULPKE

rewriting systems for arbitrary finite groups, furthermore in the infinite case it is
not even known whether such finite systems exist.)

If memory is exhausted, we then can (this is Stage 2) use the fact that all
elements are invertible and that the Cayley graph looks the same from every vertex
to extend the radius by a factor two, before failure: Test whether the ball A (around
1G) and the ball eA (around e) intersect:

If a word of shortest length is desired, we may not stop at the first word that is
found, but must run systematically through all combinations (or run through pairs
according to the length of the product).

The storage requirements, which are O(|A|), show that for every group there is
a maximal word length that can be tested for. Thus this method can cater only for
a finite number of elements in an infinite group. Its use is rather are as “quality
control” of the produced word length for other algorithms, or to find explicit word
lengths for particular elements.

2.1. Modular reduction. Another algorithm is specific to integral matrix groups:
Given e ∈ SLn(Z), we find a word expression in a finite congruence image SLn(Z/pZ),
for example using stabilizer chain methods. Having found such an expression, we
then check whether this expression also holds in characteristic zero. Otherwise
we consider larger congruence images. The implicit expectation here is that for
sufficiently large modulus p no modular reduction happens in evaluating a word
expression for e and the calculation modulo p is in fact the same as the calculation
in Z. This is decried as algorithm 2.

Input : A group G ≤ SLn(Z) with a generating set g and e ∈ G
Output: A word expression in g for e or failure

Let p = 3;

while |SLn(p)| is not too large do
Let ϕ : G→ SLn(p) the congruence homomorphism;

Let H = 〈ϕ(g)〉;
Let w be a word expression for ϕ(e) as a word in ϕ(g);

if w evaluated in g equals e then
return w;

end

Increment p to the next prime;

end

return failure;
Algorithm 2: Word by congruence image

Despite its simplicity, this method often works well to find short word expressions
(as done for example in [5] to find candidates for generic word expression that then
are explicitly proven) and sometimes works faster (and for longer word lengths)
than the previous one. However there is no practical way to determine a priori a
small modulus that would guarantee success.

3. Norm based methods for SL

We now consider the special case of G = SLn(Z) with generators being elemen-
tary matrices. We denote by ti,j the matrix that is the identity with an extra entry
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one in position i, j and set

g =
{
t±1i,j | q ≤ i 6= j ≤ n

}
.

Then [11] (which is a basic linear algebra argument) shows that SLn(Z) = 〈g〉.
A word in these generators can be considered as performing a sequence of ele-

mentary matrix operations, and the inverse of a word expression for g ∈ G would
be a sequence of elementary operations that transform g to the identity, which is
also its Hermite Normal Form (HNF). (As the normal form is the identity, the
calculation of Hermite Normal Form is effectively the same as that of the Smith
Normal Form in this case.)

Calculating Normal Forms of matrices is a classical problem in Computer Al-
gebra [23, 20]. If we perform such a calculation and accumulate the sequence of
elementary operations not in transforming matrices, but as words, we obtain a
word expression in terms of elementary matrices. We shall call this algorithm 3 the
HNF-based algorithm.

Input : A group G ≤ SLn(Z) with a generating set g consisting of
elementary matrices, and e ∈ G

Output: A word expression in g for e
Calculate the HNF for e and the transforming matrix T such that Te = 1.
While doing so keep T as a word expression in the elementary matrices g.;

return T−1 ; // Use T−1 since T converts e to 1
Algorithm 3: The HNF-based algorithm

An implementation of this algorithm was built on top of the GAP [9] implemen-
tation of Hermite Normal Form. For matrices with moderate entries (respectively
those who have word length in the generators of not more than 20-30) it produces
satisfactory results, but not if examples of longer word length are considered. This
is because longer products correlate with larger coefficients. For such matrices the
first steps in a normal form calculation are to reduce a row by subtracting the k-th
multiple of another row, typically for a large k. Such steps produce an elementary
matrix in k-th power and thus makes for very long words. This is corroborated by
the examples in section 5.

Note also that this approach only applies if the group is generated by all elemen-
tary matrices. It thus is only applicable for SL, not subgroups thereof.

We thus consider further strategies used for calculating normal forms, rather
than to utilize the forms themselves.

The starting observation is that matrix multiplication in characteristic zero tends
to produce a product that has larger entries than either factor. Reducing the overall
size of entries of the matrix thus is expected to be more promising than trying to
zero out off-diagonal entries systematically row-by-row and column-by-column.

We shall use the (squared) 2-matrix norm ‖M‖2 =
∑

i,j m
2
i,j . A smaller norm

corresponds to overall smaller entries. In fact, as we know the normal form to be
the identity, we use the measure ‖M − I‖2 (I being the identity matrix) in place
of ‖M‖2.

We shall denote ‖M − I‖2 from now on as height.
The algorithm for factorization now iterates a reduction process for the entries

of a matrix a ∈ SLn(Z), as given by algorithm 4: We try to reduce matrix height
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by forming products with generators. In a greedy algorithm we form products with
all generators and choose the one that produces the largest height reduction. If no
such generator exists we fall back on the proven HNF-based method.

Input : A group G ≤ SLn(Z) with generating set g (that is assumed, but
not required, to contain elementary matrices) and e ∈ G

Output: A word expression in g for e or failure

Let w = ∅, a := e;

while a 6= I do
foreach gi ∈ g do

Calculate ‖a · gi − I‖2 and ‖gi · a− I‖2, and find for which gi and
product order the value m is minimal;

end

if m ≥ ‖a‖2 then
Factor a with the HNF-based method (algorithm 3), obtaining a word
v for a;

return v · w−1;

end

Replace a with the product that produced minimal height;

Replace w by (the corresponding) (w, gi), respectively (gi, w);

end

return w − 1;
Algorithm 4: Height-based reduction

Applying this algorithm to random elements of SLn(Z) produces in most cases a
significant reduction in the matrix coefficients, but do not reach the identity before
having to default to algorithm 3:

For example, let g the set of all 4 × 4 elementary matrices and consider the
element

a =


1 0 1 −1
1 0 0 0
0 −1 2 0
0 −1 0 1

 .

Then ‖a− I‖ = 7, but for no generator gi ∈ g we get a smaller height.

In such a situation the matrix a typically will have undergone prior reduction and
thus have comparatively small coefficients. Thus using the HNF-based algorithm
as fall-back is less likely to incur the word length penalty we noted before.

Investigating this example further, we find (using algorithm 1) that a can be
written as a product t−11,4t2,1t

−1
3,2t
−1
1,2t
−1
2,3t
−1
4,2 of length 6. If we calculate the heights

of partial products of this word we get 1, 2, 3, 5, 7, 7 if we take subwords starting
from the left, respectively 1, 2, 4, 6, 7, 7 from the right. The reason for the failure
of the height-based approach thus is that the first, as well as the last factor of the
product, do not increase the height.

This failure to reduce is the result of small height values and looking at only
single generators. If instead we would have considered products of length 2, we
would have noticed a jump from 7 to ≤ 6 by multiplying with a product of length
2.
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Obviously, one could try also longer products. In an ad-hoc compromise between
length and number of products we decided to consider products of length up to 3,
as this includes conjugates of generators by other generators.

Let

h = g ∪ g2 ∪ g3.

When the height-based reduction then reaches the stage at which no element of
g reduces, we repeat the same attempt of height reduction through generators,
albeit with h in place of g. To avoid a careless accumulation of longer products,
we furthermore weigh the height change achieved by the length of the product
expression used.

If use of the generating set h achieves a height reduction we change a and w
accordingly. If also use of h achieved no improvement we pass to the HNF-based
algorithm 3. Otherwise the calculation then continues again with reductions by g.

In experiments with random input (see section 5) we found that the words pro-
duced by this approach seemed to be of acceptable length.

The time taken in the examples considered was short enough that we did not
look into ways to speed up the calculation, though there are many obvious ways
to do so, e.g. by looking at changes locally rather than always processing a whole
matrix.

4. The Symplectic Group

The symplectic group of degree 2n is the group of matrices in SL2n(Z) that
preserve the bilinear form

J =

(
0 In
−In 0

)
with In denoting an n× n identity matrix. Thus

Sp2n(Z) =
(
M ∈ SL2n(Z) |MJMT = J

)
.

A presentation for Sp2n(Z) has been calculated by Birman [3], based on prior
work by Klingen [14] and unpublished thesis work of Gold [10]. Klingen’s re-
sults shows that the given elements indeed generate Sp, but is very much non-
constructive. It thus does not facilitate an algorithm for decomposition in these
generators.

The work in [3] minimally adjusts the generating set of [14] and uses

Sp2n(Z) = 〈Yi, Ui, Zj | 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1〉

with Yi = t−1i,n+i, Ui = tn+i,i and

Zi = (ti+1,n+i/ti+1,n+i+1)
ti,i+1 =

(
In Bi

0 In

)
with Bi the matrix with submatrix

(
−1 1

1 −1

)
at positions i, i + 1 along the

diagonal (and all other entries zero).

The generators Zi are not elementary, which does not augur well for simply
replicating the approach used for SL. We thus note that by [11] we can generate Sp
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as well from a generating set consisting of short products of elementary matrices,
resulting in a second generating set that overlaps with the previous one:

Sp2n(Z) = 〈{ti,n+jtj,n+i, tn+i,jtn+j,i | 1 ≤ i < j ≤ s}
∪ {ti,n+i, tn+i,i | 1 ≤ i ≤ n}〉.

We however do not have a presentation in this second generating set (though one
could produce one through a modified Todd-Coxeter algorithm, albeit at the cost
of relator lengths). We simply add these elements as further generators (together
with relations that express them as products in the original generating set).

To find the necessary product expressions, we need to express the elements
ti,n+jtj,n+i (whose factors lie outside Sp) as product of our chosen (primary) gen-
erators for Sp.

In [3] we already find an expression for some of these products: For i ≤ n − 1
we have that

ti,i+1t
−1
n+i+1,n+i = Y −1i Y −1i+1U

−1
i+1Y

−1
i+1ZiUi+1Yi+1 and

ti+1,it
−1
n+i,n+i+1 = Yi+1YiUiYiZ

−1
i U−1i Y −1i

(Algorithm 1 confirms that these are word expressions of minimal length.)
We similarly used algorithm 1 to suggest short expressions for other products,

and obtained for 3 ≤ i ≤ n that:

ti−2,it
−1
n+i−2,n+i = [Yi−1Z

−1
i−1UiYi, Ui−1Yi−1Z

−1
i−2U

−1
i−1],

and

ti,i−2t
−1
n+i,n+i−2 = [Yi−1Z

−1
i−2Ui−2Yi−2,

Ui−1Yi−1Z
−1
i−1U

−1
i−1]

with [a, b] = a−1b−1ab denoting the commutator.
These expressions are easily verified in general by considering the images of

standard basis vectors under the left hand size products and the right hand side
products.

The identity tj,i+j = [tj,i+j−1, ti+j−1,i+j ] finally allows us to form all other prod-

ucts ti,jt
−1
n+j,n+i as commutators of products with smaller index difference.

From now on g̃ shall denote this extended generating set, consisting of the Ui,
Yi, Zj and products ti,n+jtj,n+i, tn+i,jtn+j,i (and inverses thereof).

We experimented with algorithm 4 with this generating set g̃ (of course with the
HNF-based method replaced by an error message) on a number of random elements.

The results of these experiments were disappointing: Almost all elements we
tried reduced only partially and still left matrices with large entries for which no
further reduction process could be found, not even by introducing further short
products.

4.1. Decomposing the Symplectic group. Thus a more more guided reduction,
adapted to the structure of the symplectic group, is required. We should emphasize
however that the following approach is purely heuristic in that we have is no proof
of it succeeding in general. In a large number of examples in small dimension, we
however also were unable to find a single example in which the approach failed.
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We start with a structural observation: The products ti,jt
−1
n+j,n+i for all 1 ≤ i 6=

j ≤ n clearly generate a subgroup

S =

{(
M 0
0 M−1

)
|M ∈ SLn(Z)

}
≤ Sp2n(Z).

such that S ∼= SLn(Z). The definition of the symplectic group (and the fact that Z
has only two units) shows that for

T =

{(
? 0
0 ?

)
∈ SL2n(Z)

}
and

R = T ∩ Sp2n(Z) =

{(
M 0
0 M−1

)
∈ SL2n(Z)

}
we have that S ≤ R is of index 2.

This subgroup R lies at the heart of the new approach. If we have an element
e ∈ R, we can use multiplication by

(Y 2
1 U1)2 =

(
A 0
0 A

)
with A =


−1 0

1

0
. . .

1


to obtain e′ ∈ S. (Of course remembering such an extra factor for the product
expression.)

Using algorithm 4 for SLn(Z), we then can write the {1, . . . , n} × {1, . . . , n}
minor M of e (respectively e′) as a product of elementary matrices in dimension n.

As the generating set g̃ also contains (product expressions for) matrices that
act on this minor M as elementary matrices: Let w be an SLn(Z) word for M .
Evaluating w in the generators ti,jt

−1
n+j,n+i ∈ g̃ then gives an expression for e in

generators for Sp2n(Z).

It thus is sufficient to map an element e ∈ Sp2n(Z) into R.

An element a = (ai,j) ∈ Sp2n(Z) lies in R, if the height function

h(a) =
n∑

i=1

n∑
j=1

(
a2i,n+j + a2n+i,j

)
has value zero. This suggests that we can transform e ∈ Sp2n(Z) into an element
of R by running algorithm 4 with this new height function h (even though it does
not have a unique minimal element).

We thus modify the height-based approach of algorithm 4 as follows:

(1) The stopping condition, in the outermost while-loop, is for h(A) = 0 rather
than a = I;

(2) It returns not only the word expression, but also the reduced element a;
(3) the case m ≥ ‖a‖ first uses the above modification of the algorithm that

first tries an extended generating set, formed by adding short products in
the generators, before triggering an error if this also found no reduction.
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Again, experiments with this approach failed, producing matrices that had only
a few nonzero entries in the top right and bottom left quadrant with no way to also
zero out these remaining entries. The goal to reduce all entries at the same time
led to a local, not global, minimum from which escape was not possible.

To avoid such a behavior, we switched to a more localized reduction. Based on
the observation that single nonzero entries are hard to clean out if the rest of their
row is zero, we switch to an iterated process, reducing row-by-row. That is we
define a series of height functions by

h0 = 0

hi = hi−1 +
2n∑

j=n+1

a2i,j , if i ≤ n

hi = hi−1 +
n∑

j=1

a2i,j , if i > n.

We then run algorithm 4 to reduce by height function h1. Afterwards, we reduce
further with height function h2 and so on, up to height function h2n = h. If
the resulting matrix lies in S, we proceed as described above, producing a word
expression for e. We call this approach Algorithm 5.

We note that this improved heuristic succeeded in all examples we tried (i.e found
a matrix a ∈ S). We did not encounter a single example in which this approach
failed.

It also produced words of acceptable length. Alas, proving these statements as
general facts seems to be beyond the capabilities of the author.

What seems to be happening is that the localized heights are willing to accept
reduction step that reduce the current row, even if they grow the entries in other
places that are not covered by the height.

Contrary to the overall height function h, this approach thus does not forbid a
reduction to zero (which might produce a very small height reduction), just because
it combines with a growth of larger, not yet reduced, entries of the matrix (note that
an entry change m to m+1 increases the height by roughly (m+1)2−m2 = 2m+1,
while a reduction 1 to 0 reduces by 1 only).

5. Examples

As mentioned in the introduction, our main interest has been to obtain short
words for Sp. We thus did not measure run times (which can be heavily biased by
setup costs or cleverness in avoiding duplicate calculations of elements) systemati-
cally, but rather the quality of words obtained. This was done in a GAP [9] imple-
mentation of the algorithms described here, that is part of the author’s routines for
arithmetic groups, available at www.math.colostate.edu/~hulpke/arithmetic.

g.

For a small example, section 7.2 in [17], using Mathematica, computes word
expressions for selected elements of SL3(Z), namely X0 of length 8 and Y0 of length
14; algorithm 4 obtained word expressions of length 7 and 13, respectively. Similarly
an element X−2 is given by a word of length 13 and Z−2 by a word of length 16;
algorithm 4 calculated expressions of lengths 16 and 10 respectively. The new
approach thus performs on par with an existing method.

www.math.colostate.edu/~hulpke/arithmetic.g
www.math.colostate.edu/~hulpke/arithmetic.g
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The next example is the group G(3, 4) from [12], already considered in [6]. Using
the implementation in GAP we construct a homomorphism from a finitely presented
version of Sp4(Z) to a matrix version, using the extended generating set based
on [3]. We also form G(3, 4) as a matrix group. We then express (this uses the
symplectic method) the group generators as words, and form the subgroup S of the
finitely presented Sp4(Z) that is generated by these words. We finally determine
the index [Sp4(Z) : S] through a coset enumeration. (This calculation, incidentally,
independently verifies that G(3, 4) is arithmetic.)

gap> hom:=SPNZFP(4);

[ Y1, Y2, U1, U2, Z1 ] ->

[[[1,0,-1,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]], [...]

gap> G34:=HofmannStraatenExample(3,4);

<matrix group with 2 generators>

gap> w:=List(GeneratorsOfGroup(G34),

> x->PreImagesRepresentative(hom,x));

[ U1*(U2^-1*U1*U2^-1)^2*Y1^-1*Y2^-1*U2^-1*Y2^-1

*Z1*U2*Y2, Y2^-1 ]

gap> S:=Subgroup(Source(hom),w);;

gap> Index(Source(hom),S);

3110400

In this example, finding the word expressions (of length 14, respectively 1) takes 0.1
seconds (while the coset enumeration confirming the index takes about 4 minutes).

With algorithm 1, we verified (in 20 minutes) that there is an expression for
the first generator of length 12. Using this shorter word did not seem to have a
meaningful impact on the time required by the coset enumeration.

The input to all other experiments were matrices obtained as random words,
of a preselected length len, in the matrix generators of SL, respectively Sp. This
produced matrices in the respective group for which an upper bound for the length
of a word expression was known. The dimensions considered were chosen for be
≤ 8, as the motivating examples from [6] do not exceed this bound.

We then calculated for each of the matrices a word expression, using the algo-
rithms described in this paper. If an algorithm produced a word of length a for a
chosen input length len, we use the scaled ratio q := 100 · a/len as a a measure
for the quality of the word expression obtained. The diagrams given indicate a
distribution of how often (the ordinate) certain ratios q (the abscissa) occur. (In-
cidentally, the required runtime is reasonably approximated by this ratio, as the
fundamental step in all algorithms is to divide off one generator matrix, building
the word in steps of length one.)

The lengths considered were 20 and larger which led to matrices whose entries
were frequently in the thousands or more. We therefore did not attempt compar-
isons with algorithms 1 or 2.

As we only had time for a limited number of trials — we used 20000/len matrices
of input length len — we discretized the distribution in the following way to produce
diagrams that are easily reproduced in print. We grouped the ratios q into intervals
of length 10 each, and for each interval calculated the percentage of cases within
the experiments for which the obtained ratio fell into this interval. To allow for
multiple experiments within one diagram we did plot these results as piecewise
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Figure1.Comparisonbetween HNF-basedalgorithm3and
height-basedalgorithm4forSL

linearcurves(thatsomewhatapproximateaGaussiandistribution),ratherthan
asbargraphs.Soforexampleinthetop-leftdiagraminfigure1thecontinuous
blacklineindicatesthatabout5%ofexperimentsresultedinaratiointheinterval
[40,50),32%intheinterval[50,60),42%intheinterval[60,70)and(thisishard
tosee)17%intheinterval[70,80),withtheremaining4%ofexperimentsresulting
inratiosoutsidethisrange(andtoolowtoreallyshowupinthediagram).

Thefirstseriesofexperiments,giveninfigure1,comparestheHNF-basedalgo-
rithm3(dashedlines)withtheheight-basedalgorithm4,includingtheimprove-
mentsbyshortproducts,onmatricesinSLn(Z)(continuouslines). Wetestedinput
lengths20,50and100withdarkercolorsrepresentinglongerinputlengths,thatis
len=100isblack,len=50ismid-grayandlen=20islightgray.(Foragiven
inputlength.Thesamesetofmatriceswasusedforbothalgorithms.)
Oneimmediatelynotesfromthefiguresthattheheightbasedalgorithmproduced

resultsthat(withsomegoodwill)canbeconsideredasapproximationsofaGaussian
distributions,centerednottoofaroff100.
ThepureHNF-basedalgorithminsteadproduceda muchwiderspectrumof

results(thecurvescontinuebeyondtherightedgeofthediagram,whichisthe
reasonthedashedblackcurvesarepracticallyinvisible),withtheaveragelength
ratiobecomingworsewithlongerwordlengths.Concretely,inthecaseofdimension
4andinputlength100,theHNF-basedalgorithmproducedwordswhoselength
rangedbetween290and8,600,000(withanaverageof350,000), makingthem
uselessinpractice.
Wethusconclude(somewhatunsurprisingly,givenwhatisknownaboutinteger

normalformcalculations)that,atsimilarruntime,algorithm4producessignifi-
cantlyshorterwordsthanasystematicHNFcalculation.

Inthesecondseriesofexperimentsinfigure2weconsideredonlyalgorithm4,
butforabroadersetoflengths.Theinputconsistedofmatricesgivenbyrandom
wordsoflengths20,50,100,500and2000,withdarkercolorsagainrepresenting
longerlengths.Againweused20000/lenwordsoflengthlen.
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Figure2.ComparisonofobtainedwordlengthforSLnindiffer-
entdimensions

AsbeforeweobservecurvesthatapproximateaGaussiandistribution,with
peaksshiftingtotheleftastheinputlengthincreases,andshiftingtotherightas
dimensionincreases.Inthedimensionrangetested,bothchangesaresmallenough
tobeconsideredaslinearwithsmallconstant.
Wedidnottrylargerdimensionssystematically,ascalculationsquicklybecame

unreasonablycostly.

Wenotethattheseemingimprovementintheresultingwordlengthsforlonger
input mightinsteadindicatethatrandomwordsarelesslikelytobeoptimally
reducedasthelengthincreases.

Asforcomparisonwiththeoptimalwordlength,thisoptimallengthalasis
unknownintheexamples(andbecauseofmemorylimitationscannotbedetermined
forexampleswithinputlength100). Consideringtherapidgrowthobservedfor
smalllengthsinthenumberofdifferentelementsthatcanbeexpressedaswordsofa
particularlength,howeveritseemsplausibletohaveoptimallengthoftheelements
consideredwoulddifferfromtheinputlengthbyafactorthatislogarithmicinthe
wordlengthratherthanlinear.

ThethirdseriesofexperimentsconcernselementsofSpforvariousdimensions
andlengths,usingalgorithm5.
Figure3givestheresultsoftheseexperiments.(Inputlengthsusedandcolors

areasinthesecondseries.)Foreachoftherandomexamplematricestested,the
approachfoundafactorization.
Indimension4theresultisverysimilarasforSL. Withgrowingdimensionthe

behaviorchanges:Thelargernumberofgeneratorsactinglocallyonmatricesmake
itmorelikelythatrandomlychosengeneratorscommute.Ifthewordlengthis
shortonecanalmostreadoffthegeneratorsinvolvedfromthepositionsofnonzero
matrixentries.
Longerwordsinlargerdimensionshowevershowanincreasedwideningofthe

bellshapeandashiftofthepeaktowardssignificantlylongerwords–about200%
fordimension6and400%fordimension8.Thisseemstoindicatethattheapproach



14 ALEXANDERHULPKE

Figure3.ComparisonofobtainedwordlengthforSpnindiffer-
entdimensions

isfeasibleforsmalldimensions(notleastforthelackofalternatives)withword
lengthsnotincreasingbytoomuchandnoobservedfailure,butthatforlarger
dimensionstheratiotooptimalwordlengthgetsexponentiallyworse.

6.Closingremarks

WehaveseenpracticallyfeasiblemethodstoexpresselementsofSLn(Z)and
Sp2n(Z)(insmalldimensions)asproductsinparticular(standard)generatingsets.
Whatisclearlylackingisaproof(andnotjustexperimentalevidence)ofthe

approachsucceedingingeneralforSp,aswellasoftheproducedwordsbeing
nottooworsethantheminimalwordlengthsforthematrices.(Thelatterseems
difficultasthealgorithmforSLwhichisproventosucceedwithinlimitedmemory
–theHNF-basedone–producedwordsofunusablelength.)Evenwithoutsucha
prooftheheuristicpresentedwillbeuseful,aslongasitproducesaresult.
Thetoolsmotivatingourapproachweretakenfromintegralmatrixnormalforms.

Thisraisesthequestiononwhetherfurthersynergiesineitherwaycanbeobtained
fromtheseproblems. Afirstcaveatisthatthenormalforminthefactorization
caseisalwaystheidentitymatrix,andthatanyexperimentsdoneherewereintiny
dimensionscomparedwiththoseusuallyconsideredfornormalforms.
What mightbe morepromising(butwehavenotinvestigated)isarelation

betweenwordlengthandsizeofmatrixentriesforthetransformingmatricesfor
e.g. theSmithNormalForm. Weobservedthataninitialnorm-basedglobal
reductionof matrixnormsproducedsignificantlyshorterwords.Ifthiscanbe
translatedtosmallermatrixentries,itwouldbeusefulforapplicationssuchasthe
homomorphismstoabelianizationsG/G offinitelypresentedgroups.
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