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Abstract

This article introduces a novel system for deriving upper bounds on the heap-space requirements
of functional programs with garbage collection. The space cost model is based on a perfect garbage
collector that immediately deallocates memory cells when they become unreachable. Heap-space bounds
are derived using type-based automatic amortized resource analysis (AARA), a template-based technique
that efficiently reduces bound inference to linear programming. The first technical contribution of the
work is a new operational cost semantics that models a perfect garbage collector. The second technical
contribution is an extension of AARA to take into account automatic deallocation. A key observation
is that deallocation of a perfect collector can be modeled with destructive pattern matching if data
structures are used in a linear way. However, the analysis uses destructive pattern matching to accurately
model deallocation even if data is shared. The soundness of the extended AARA with respect to the
new cost semantics is proven in two parts via an intermediate linear cost semantics. The analysis
and the cost semantics have been implemented as an extension to Resource Aware ML (RaML). An
experimental evaluation shows that the system is able to derive tight symbolic heap-space bounds for
common algorithms. Often the bounds are asymptotic improvements over bounds that RaML derives
without taking into account garbage collection.

1 Introduction

The memory footprint of a program is an important performance metric that determines if a program can be
safely executed on a given system. Ideally, developers should describe or approximate the memory footprint
of programs as functions of the inputs. However, such memory bounds are often difficult to derive and to
prove sound. To assist programmers with deriving memory bounds, the programming language community
has developed automatic and semi-automatic analysis techniques [24, 12, 2]. These systems are often special
cases of more general resource bound analyses that are based on abstract interpretation [18, 7, 37|, recurrence
solving [16, 1, 14, 28], type systems [27, 22, 29, 43, 42, 15], program logics [5, 10, 9, 35], proof assistants [33, 11],
and term rewriting [6, 34, 17].

This article introduces a novel type system for automatically deriving upper bounds on the heap-space
requirements of functional programs with garbage collection (GC). Due to the challenges of modeling and
predicting garbage collection, most existing techniques for automating and guiding the derivation of bounds
on the heap memory requirements assume manual memory management or simply ignore deallocation in
the analysis [24, 26, 36, 13, 12, 2]. As a result, the derived bounds are not accurate when the underlying
system employs garbage collection. The only exceptions we are aware of are the works by Albert et al. [3, 4],
Braberman et al. [8], and Unnikrishnan et al. [40, 39]. They analyze the heap-space usage of programs with
GC in two steps. First, they make the deallocation of GC explicit; for example with a static analysis for
estimating object lifetimes [4] or with a program translation [39]. Second, they extract and solve recurrence
relations to derive a bound. The difference of our work is that our technique is based on a type system,
which is proved sound with respect to a formal cost semantics. Advantages of a type-based approach include
natural compositionality and the use of type derivations as certificates for resource bounds.

We model the (highwater mark) memory usage based on a perfect garbage collector that immediately
deallocates memory cells when they become unreachable. The bounds that are derived with respect to this
cost model are not only a good theoretical measure of the heap-space consumption of the program but also
have practical relevance. Consider a function f : A — B and assume we derived a bound by : [A] — N. In
an execution of f(a), we can then keep track of the memory usage and start the garbage collector whenever



the bound by (a) is reached. It is then guaranteed that the evaluation will succeed using by (a) heap-memory
cells.! To improve performance, we could trigger GC more often (to compactify the heap) or allow memory
use of more than by(a) cells (to amortize the cost of garbage collection).

The first technical contribution of the work is a new operational cost semantics that models a perfect
garbage collector. The cost semantics is a big-step (or natural) semantics that keeps track of the reachable
memory cells in the style of Spoonhower et al. [38] and Minamide [30]. Operationally, this cost is the high-
water mark on the heap usage, or the maximum number of cells used in the mutable store during evaluation.
If we traverse the evaluation tree in preorder and view each node as a “step” of the computation, then a
cell is used in the current node if it is reachable from the reminder of the computation. Our formalization
of reachability is identical to the concept that garbage collectors implement to decide if a cell can be freed
during evaluation. For simplicity, we assume that evaluation of the cons node allocates one fresh heap cell
and that all other operations do not allocate heap cells. However, the semantics can be instantiated with
more realistic cost metrics. A difference to existing formulations of cost semantics with GC [31, 38, 30] is
that we update the highwater mark when reachability changes at inner nodes of the derivation of the evalu-
ation judgement instead of at leaves. Moreover, we use a freelist, which represents named cells available for
evaluation. This alternative formulation is equivalent to the existing semantics and mainly motivated by the
soundness proof of our type system for bound analysis. However, the cost semantics is a natural approach
and different enough from its predecessors [38, 30] to be of interest in its own right.

Our second technical contribution is the type system for deriving bounds on the heap-space for programs
with perfect GC. The type system is an extension of type-based automatic amortized resource analysis
(AARA) [24, 27, 41, 21, 22, 32]. AARA is a template-based technique that introduces potential functions
to efficiently and automatically reduce bound inference to linear programming. Existing type systems based
on AARA can derive bounds on the highwater mark of the heap usage for programs with manual dealloca-
tion [27], but can only derive a bound on the number of total heap allocations for programs with GC [22].
This is usually a gross over-approximation of the actual memory requirement. Our extension is based on
the observation that deallocation of a perfect collector can be modeled with destructive pattern matching
(deallocating the matched cell) if data structures are used in a linear way. In the type system, we extend this
observation to non-linear programs and use destructive pattern matching to accurately model deallocation
even if data is shared.

The third technical contribution is to prove the soundness of the extended AARA with respect to the
GC-based cost semantics. The proof is non-trivial and proceeds in two parts: First, we prove the soundness
of the type system with respect to a semantics that copies data structures if they are shared. Second, we
prove for all programs that our GC semantics uses less memory than this copying semantics. While the proofs
are relatively standard, many details—like relating program states of the two semantics in the simulation
proof—are quite involved. Briefly, we have to provide and maintain a mapping « from the heap used in the
GC semantics Hy. to subsets of the heap used in the copying semantics Hcop, such that the image of Hy,
under « forms a partition on the second heap. The intuition is that given a cell | € Hyg., there must be
multiple cells y(I) € Heopy that were allocated during sharing, and thus “morally the same” as [.

The analysis and the cost semantics have been implemented as an extension to Resource Aware ML
(RaML) [21, 22]. RaML is an implementation of AARA for a subset of OCaml that can derive multivariate
polynomial bounds. However, we restrict the technical development in this paper to a simple first-order
language with tuples and lists. The proofs and ideas carry over to the more complex case of RaML.?
An experimental evaluation shows that the system is able to derive tight symbolic heap-space bounds for
common algorithms. Our results suggest that our new analysis provides asymptotic bound improvements to
several classes of commonly used functions and programming patterns. We examine the reasons for these
improvements and design decisions throughout the system.

1We are not considering memory fragmentation, which can be avoided using a copying collector.
2 An exception are function closures that we discuss in the Section 7.
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Figure 1: Simple Types, Values, and Expressions

2 Setting the Stage

In the technical part of the paper, we focus our attention to a first-order, strictly evaluated functional
language. One can think of this language as a simple subset of OCaml or SML. The only recursive data type
in the language is the list type. However, our work extends to the expected algebraic data types definable
in RaML. Being first order, the language does not allow arbitrary local functional definitions. Instead, all
functions are defined at the top level and are mutually recursive by default. The types of these functions
form a signature for the program, and the semantics and typing judgments will be indexed by this signature.
Thus, the function types of the language can be expressed as arrows between zero-order (base) types. Types
are formally defined in Figure 1. Like in all grammars, we provide the abstract (left) and concrete (right)
syntax for every type former [19]. A signature X : Var — FTypes is a map from variables to first-order types.
A program P is a ¥ indexed map from Var to pairs (ys,ey) fex, where X(ys) =7 — 7/, and B;yy : 7 ep : 7/
(the type system is discussed in Section 4). We write P : ¥ to mean P is a program with signature X.

To simplify the presentation, the expressions of our language (see Figure 1) are in let normal form (also
A normal form). The one nonstandard construct is share = as 1,22 in e, which we will explain in more
detail in the following sections. We introduce two distinct notions of linearity, one on the syntactic level, and
one on the semantic level. Syntactic linearity is linearity in expression variables, while semantic linearity is
linearity in locations (defined below). We say that a semantics is linear if it respects semantic linearity.

In line with previous works on space cost semantics [38, 30], we employ a heap, which persistently binds
locations to values (normalized terms). As usual, we derive the cost of a (terminating) program from the
number of heap locations used during execution, which in our case is the mazimum difference between the
sizes of the initial and final freelist. We let Loc be an infinite set of names for addressing the heap. For the
rest of the paper, we use the following: Stack = {V | V' : Var — Val} and Heap = {H | H : Loc — Val} for
the set of stacks and heaps respectively.

Reachability Before we define the rules for the cost semantics, we relate the heap locations to values with
the 3-place reachability relation reach(H,v, L) on Heap x Val x p(Loc), where p is the powermultiset. This
is read as “under heap H, the value v reaches the multiset of locations L”. Write L = reachy(v) to indicate
this is a functional relation justified by the (valid) mode (4, +, —). We say that the reachable set of v is L.

A = reachg(vy) B = reachy (v2) A = reachy (H(1)) v € NU{T,F,Null}
AW B = reachy ({v1, va)) {I} WA =reachg(l) 0 = reachy(v)




In the rules, W is multiset union. L is a multiset because we need to keep track of the number of ways a
location might be reached in order to prove soundness. However, the cost semantics can be read by truncating
any multiset to a set. Furthermore, we will sometimes mix multiset and set operations as the situation calls
for. For example, we will write [ € S for a multiset S if S(I) > 1. Complete definitions and notations can be
found in the appendix.

The notion of reachability naturally lifts to expressions and contexts:

reachy (V) = tl-J reachy (V(x)) locsy,(e) = reachg(V [pv(e))
zedom(V)

Where F'V : Exp — P(Var) denotes the set of free-variables of expressions as usual.

Towards the Garbage Collection Cost Semantics Now we are ready to give a first attempt to modeling
the cost semantics for a tracing garbage collector. Before we present our new semantics, we explain an existing
cost semantics we experimented with [30]. Judgements have the form V,H,R F e ||° v, H', which can be
read as follows. Under stack V' € Stack, heap H € Heap, and continuation set R C Loc, e evaluates to v and
H'’ using s heap locations. The idea is that R keeps track of the set of locations necessary to complete the
evaluation after e is evaluated (hence the name continuation). For example, we have the let rule:

V,H,RWlocsy g (z.ea) - ex 4° vy, Hy Viz — vi], H,RtF ey §°2 vy, Ho
V.,H,RtF let(ey;x : T.eq) M52 0y, Hy

Notice that to evaluate e1, we have to extend the continuation R with locations in ey, which will be used
after ey is evaluated. The total space used is the max of the component, indicating that locations used for
e1 can be reused for ey. This is clear when we look at the variable rule:

V(z)=w
MH,R [ ll\dom(Rli—JreachH(v))\ U,H

It states that evaluating a variable x requires the locations reachable from z as well as the continuation set
R. While this way of counting heap locations does model a tracing garbage collector, it is not compatible
with the existing type systems for amortized analysis. In these systems, such as RaML, the type rules count
the heap locations as data is created, i.e. at each data constructor. Thus looking up a variable incurs no
cost, since it was accounted for during creation. On the other hand, the cost of indexing a variable in the
semantics includes the cost of the entire continuation set, which is potentially unbounded. This mismatch
between the dynamics and statics of language prevents us from proving the soundness of the analysis. We
give a new cost semantics that is 1) compatible with the type system and 2) also a more concrete model of
a garbage collector since costs are realized with explicit locations.

3 Garbage Collection Cost Semantics

In this section, we present our novel cost semantics by combining freelist semantics from [25] with the cost
semantics for modeling perfect GC [30] that we discussed in the previous section. The resulting semantics,
called &, is well suited for proving the soundness of the novel type-based bound analysis.

The garbage collection cost semantics & is defined by a collection of judgement of the form

C FP;EGU,'U,H/,F,

Where C € Stack x Heap x p(Loc) x P(Loc) is a configuration usually written with variables V, H, R, F.
Because the signature ¥ for the mapping of function names to first-order functions does not change during
evaluation, we drop the subscript P : ¥ from Fp.»; when the context of evaluation is clear. Given a configu-
ration C = (V, H, R, F'), the evaluation judgment states that under stack V', heap H, continuation (multi)set



R, freelist F', and program P with signature X, the expression e evaluates to value v, and engenders a new
heap H’ and freelist F’. In comparison with the attempt from the previous section, the key ingredient we
added is the freelist, which serves as the set of available locations. Similar to the predicate reach, We call
R a (multi)set since the fact that it’s a multiset is only useful during the soundness proof. For evaluation,
it is convenient to just view R as a set. Define a computation as a pair (C,e) of a configuration C and an
expression e. Next, we give some coherence conditions to a configuration. For a configuration (V, H, R, F),
denote the garbage w.r.t. a set of locations L as collect(R,L,H,F)={le H|l ¢ FURUL}.

Definition 1. A configuration (V, H, R, F') is well-formed if
1. dom(H) C reachg(V)URUF
2. reachy(V)UR C dom(H) \ F
3. collect(R,reachy(V),H,F) =0
Furthermore, this condition is invariant under evaluation:

Lemma 1. Given a well-formed context (V,H,R,F) and V,H,R,F e || v, H', F’, we have dom(H') C
reachy (v) U RUF’, reachy:(v) UR C dom(H') \ F’, and collect(R,reachy: (v), H | F') = 0.

The well-formed conditions ensure the stack and continuation sets are within the active region of the
heap H \ F, and that the active region of the heap does not contain garbage — all garbage locations are
already in the freelist. From now on, all configurations are implicitly assumed to be coherent in the sense
defined above.

The semantics & is designed to model the heap usage of a program running with a tracing counting
garbage collector: whenever a heap cell becomes unreachable from the root set, it becomes collected and
added to the freelist as available for reallocation. As before, the continuation set R represents the set of
locations required to compute the continuation excluding the current expression. We define the root set as
the union of the locations in the continuation set R and the locations in the current expression e.

The inference rules for the semantics are given in Figure 2. For example, the rule F:CondT states that,
to evaluate a conditional, look in the stack for the value of the branching boolean. In the case it is true, we
proceed to evaluate the first branch. Furthermore, we collect cells in the heap that are not reachable from
the root set (R Ulocsy m(er)) or already in the current free-list F', and add them (g) to the available cells
for evaluating e;.

Another example is the rule F:Let for let expressions: to evaluate the expressions let(e;;z:7.e2), we
evaluate the first expression with the corresponding restricted stack V; and an expanded continuation set
R’. The extra locations come from the free variables of e5 (not including the bound variable ), which we
cannot collect during the evaluation of e;. Next, we restrict the extended stack to only free variables of es,
and evaluate es with this stack and the original continuation set R. The other rules are similar.

Note that in contrast to the semantics in the previous section, evaluating a variable does not incur any
cost. This ensures that we will be able prove the soundness of the type system. Also, since we don’t allow
local function definitions, we do not create closures during evaluation. Also note that we restrict the domain
of the stack to the appropriate variables during evaluation. This is only to facilitate the proof of the linearity
of the copying semantics introduced later, and not necessary for the implementation.

For example, we can implement the append and appTwice function, which has variable sharing. First,
we analyze the heap usage of append under &.. We case on the first component of the input. In case it’s
nil, we just return 12, and there are no allocations or deallocations. In case it’s cons of x and xs, we need
to allocate one heap location for the cons cell binding x and the recursive result, for which we can use the
just matched-on cell. Again, the net overhead is zero. Thus, the total space overhead of append is zero.

For appTwice, we first share the list 1 as 11 and 12. In the first let, the locations in 12 are added to the
continuation set, which prevents the first call to append from destructing 11. Thus size of 11 new locations
are allocated from the freelist to construct 11°. The second call has no net increase in heap allocations since
12 can be destructed along the way. The return value is a pair which is stack-allocated and doesn’t require
a heap allocation. Thus, the total space overhead for appTwice is size of the input list 1.
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Figure 2: Cost Semantics for Perfect Garbage Collection

From this, we see that the minimum size for the initial freelist to successively evaluate a call to appTwice
is exactly the length of the input. In general, we define the cost of a closed program to be the minimum size
of the initial freelist that guarantees successful evaluation, which is equivalent to the cost annotation in the
previous cost semantics introduced in Section 2.

4 Automatic Amortized Heap-Space Analysis with GC

Automatic Amortized Resource Analysis (AARA) The idea of AARA |24, 27, 21, 22] is to automate
the potential method of amortized analysis using a type system. Types introduce potential functions that
map data structures of the given type to non-negative numbers. The type rules ensure that there is always
sufficient potential to cover the evaluation cost of the next step and the potential of the next program state.

To illustrate the idea, we informally explain the linear potential method for the functions in Figure 3.
We will use the allocation/heap metric which simply counts the number of cons constructor calls during the



evaluation.® With this metric, the cost of evaluating append(11,12) is m, where m is the number of cons

0/0 .
constructors in 11, and the resource annotated type of append is L!(int) x L°(int) o0, L°(int). This type

says that to type append(11,12), we need 11 to have 1 potential per element, 12 to have 0 per element, and
the result will be a list with 0 potential per element. Additionally, the function uses 0 constant potential,
and leaves 0 constant potential after evaluating. This translates to a bound which states that the number of
allocations append makes is bounded by 1 times size of the first list. For appTwice(1), the cost under the
heap metric is 2m, where m is the number of cons constructors in 1. This is because we have to share the
input list across two calls of append, which each requires lists with unit potential per element. For example,
if 1 : L?(int), then 11 and 12 both get 1 potential per element so that 11 : L'(int), 12 : L'(int), which
covers the cost of the next 2 calls to append, and the resulting pair of lists both have 0 potential per element.
More generally, we can give the following types to append and appTwice:

append : LP(int) x L(int) o L*(int), where p > s+ 1, ¢ > sand r > 1’
appTwice : L”(int) LA L"(int) x L*(int), where p > r+s+2 and ¢ > ¢

Notice that the constant potentials » and ¢ are uncon-
strained since the functions don’t use any potential in the base
cases. With AARA, the type system keeps track of this col-
lection of constraints on resource annotations and passes them
to an off-the-shelf LP-solver which finds the minimum solu-
tion. This is then translated to concrete resource bounds like
the ones we derived by hand. It has been shown that this
technique can be extended to polynomial potential functions,
user-defined data types, and higher-order functions while still
relying on linear constraint solving [21, 22].

let rec append (11, 12) =
match 11 with
| 0 ->12
| x::xs -> x::(append (xs, 12))

let appTwice 1 =
share 1 as 11,12 in
let 11’ = append (11, []) in
let 12’ = append (12, []) in
(11°,12°)

Linear Potential Functions Before giving the type rules, Figure 3: Functions append and appTwice
we need to formalize linear potential as explained above. Since
potential is associated with the structure of a value and not
the particular heap locations, it is helpful to introduce a mapping from heap values to semantic values
of a type. First, we give a denotational semantics for (define the structures of) the first-order types:

[unit] = {val(Null)} [A; x As] = [A1] x [A42]
[bool] = {val(T),val(F)} nil € [L(A)]
[nat] =N cons(a;l) € [L(A)] if a € [A] and I € [L(A)]

The meaning of each type is the least set such that the above holds. As usual, we write [a1,...,a,] for
cons(as;, ..., cons(a,;nil)).

In Figure 4 we give the judgements relating heap values to semantic values, in the form ,
which can be read as follows: Under heap H, heap value v defines the semantic value a € [A]. Given a
stack V', we write H £V : T" if dom(V') C dom(T") and for every x — v € V, HE V(z) — a: I'(z) for some
a € [A].

We introduce linear potential for structures corresponding to the base types. The definition of linear
potential is standard [20]. Below is the grammar for resource-annotated types:

BTypes A = FTypes p =

.. arr(Ay; As;piq) Ay p/—q> Ay
listP(A) LP(A)

3This is in contrast to the highwater mark for the GC semantics g that is targeted by our new analysis.



n €7z
H Eval(n) — n:nat

(V:ConstI) (V:ConstI)

H E val(Null) — val(Null) : unit

A € BType

H F val(Null) — val(Null) : L(A) (V:Nil) (V:True)

H E val(T) — val(T) : bool

H|:v1»—>a1:A1 H'ZWQI—)GQZAQ(

V:Fal
( ase) Hﬁ(’l}l,’l)2>+—)<a1,a2>1A1 XAQ

V:Pai
H E val(F) — val(F) : bool air)

[ € Loc H(l) = (vn,ve) HEv,—a: A HE v [az,...,an] : L(A)
HElw—[a1,...,an]: L(A)

(V:Cons)

Figure 4: Mapping Locations to Semantic Values

The intended meaning is that a list of LP(A) has p units of potential per cons cell, and a function of type

A M) B takes constant potential p to run and ¢ is the constant potential left afterwards.
With linear potential, each component of a structure is associated with a constant amount of potential.
Given a structure a in a heap H, where H F v — a : A, we define its potential ®p(a : A) by recursion on A:

Spy(v:A)=0 if A € {unit,bool,nat}
CI)H(<U17’U2> : A1 X AQ) = (I)H(Ul : Al) + @H(Ug : A2)
Op(l: LP(A)=p+Py(vy : A) + Py (vr : LP(A)) it H(l) = (vp,vp)

Write (DV,H(F) for erdom(\/)‘I’H(V(ﬂf) . F(:L'))
Now define A Y Ay, A3, n as the sharing relation for resource-annotated types:

LP(A) Y™ LY(Ay), L (A2) ifp=q+r+nand AY™ Ay, A
AXBY™A; X B1,As X By if AY™ Ay, Ay and B Y" By, By
AYTAA if A € {unit,bool,nat}

The sharing relation captures the amount of potential needed to copy a type A where each cons node in any
structure in [A] has a copying overhead n.

Type Rules The type system FOY® consists of rules of the form | X;T l% e : A|, read as under signature

Y : Var — FTypes, typing environment I' : Var — BTypes, e has type A starting with ¢ units of constant
potential and ending with ¢’ units.

Our type system is based on the one of classic linear AARA [24]. We give a review of the rules in Figure 5.
Since we are interested in the number of heap locations, there is an implicit side condition in all rules which
ensures all constants are assumed to be nonnegative.

For example, L:Cons states that to add an element to a list with p potential per element, we need p + 1
units of constant potential: p to maintain the potential of the list, and 1 for allocating the cons cell. L:MatL
states that matching on a list with type LP(A), we need to type the nil case with the same constant potentials,
and we need to type the cons case with an additional p units of constant potential, since we get the spill of p
from the definition of linear potential. As the last example, we look at L:Share, which states that to share a
variable x of type A, we need to split the potential between A; and As, and type the rest of the expression
with the two new variables x1 : A1, o : As.

New Rules The new type system for programs with garbage collection replaces the rules L:MatL and
L:Share. The observation is that if we ensure that locations are used linearly, we can use destructive pattern



E(f):A%B E;F};f,et:B E;F};f,ef:B

(L:Var) 7 (L:Fun) T
E;IZA}qff(I)ZB E;I‘,m:bool}qf,lfa:thenetelseef:B

L:Cond
Z;m:B}%x:B ( )

;0,21 : A1, 22 1 Ao %e:B

Yixy: A1, xo 1 Ao }% (z1,72) : A1 X A2 (L:Pair) S:T,x: (Ag, Ag) };f,match z {(z1;22) < €} : B(L:Matp)
%0 }%nil : LP(A) (L Siap A,y LP(A) }% cons(zp; i) : LP(A) (LCons)
T }:*, e1: B S0 ap t Ayxe o LP(A) }q:i/p ex: B (LMatL)
T,z : LP(A) }Zf,matchx{nil ey | cons(zn;w) > ea}: B
A Y Ap,As E;le:A17x2:A2}:7/e:B(L;Share) ¥ }%ele Z;F27W:A}:7162:B(L:Let)

q - q
»Tx: A }qf,share T as x1,z2ine: B YT, T2 }qf,let(m;x :T.e2): B

Figure 5: Type Rules of Classic AARA [24]

matching to model local garbage collection by returning the potential associated with the constructor location
(notice the extra +1 in the second premise):

E;F}:f,elzB Z;F,xh:A,mt:Lp(A)}(H—:*lGQZB

T,z LP(A) }:*,matchm{nil <> eq | cons(xp;xe) —ex}: B

(L:MatLD)

This is validated by the fact (Lemma 10) that in the auxiliary copying semantics (introduced in later),
once a cons-cell is matched on, there can be no live references from the root set to it, and thus we are justified
in restituting the potential to type the subexpression es.

However, the rule L:MatLD is not sound for programs with aliasing of data. We address this issue by
replacing the rule L:Share with the rule L:ShareCopy:

AYl A1,A2 E;F,l‘liAhZL'g:AQ}i,e:B
q
E;F,x:A}i,sharemas:cl,xg ine: B
q

(L:ShareCopy)

To share a variabe of type A, we need to split the potential between two new annotated types A; and As
as usual. In addition, we have to pay an “overhead” of 1 for every cons node in any structure in [A]. The
idea is that we treat data as if it is actually copied. This is sound w.r.t. the copying semantics because the
size of the domain of the reachable set of a value v is exactly the linear potential of v : A with all resource
annotations set to 1.

For example, Figure 6 contains derivations for append and appTwice. Here, A is short for int and

Y = [append — LP(A) x LP(A) LN LP(A)] is the program signature.
From these derivations, we get the improved space overhead bound to append and appTwice:

append : LP(int) x L(int) LN L*(int), where p > s, ¢>s, and r > 1’
q

appTwice : LP(int) ya, L"(int) x L*(int), where p > 7+ s+ 1 and ¢ > ¢

Cost Metrics In previous versions of AARA [27, 21], the typing judgment and cost semantics are
parametrized by a cost metric m : res_const — QQ, which assigns a constant cost to each step in the se-
mantics. Recall the heap metric introduced above; formally, this is the function k — 1x_gens. We instantiate



S(append) = LP(A) x LP(A) 2% L[7(A)
a+p+1 L:App pw—— L:Cons
3512 : LP(A),zs : LP(A) }W append(zs,12) : LP(A) S;x: A, LP(A) }T x:r: LP(A)
3502 LP(A),z: Ajzs : LP(A) }% let (append(zs,[2);r.x :: r) : LP(A)

L:LeT

L:Var
502 LP(A) & 12 : LP(A)

3;11: LP(A),12: LP(A) }%matchL{ll}(ZZ;x,xs.let (append(zs,12);r.a :: r)) : LP(A)

L:MatL

L:PaIr

S50 L7(A), 12 : L3 (A) [+ (117,12') : L7 (A) x L*(A)
: (12,]]) : L*(A) x L*(A)
S(append) = L*(A) x L*(A) L% 15(4) g
: 3512 : L°(A) }% append(12,[]) : L°(A)
$512: L3(A), 11" : L"(A) [+ eo : L™(A) x L*(A)

Fun
L:LeT

(I1,]]) : L"(A) x L"(A) X(append) = L"(A) x L"(A) /4, L"(A)

3;01: L7(A) }% append(l1,[]) : L"(A) :
3;01: L"(A),12: L°(A) }% let (append(I1,[]);11’.e0) : L"(A) x L°(A)
LAY Y1 L7 (A), LF (A) :

il LTHsTL(A) }% share(l;11,12. 1et (append(l1,[]);{1’.e0)) : L"(A) x L5(A)

L:Fun
L:LeT

L:ShareCopy

Figure 6: Type derivations for the functions append and appTwice. In the derivation for appTwice we write
eo for let (append(l2, []);12'.(11",12")).

the previous type system with this metric (which only accounts for heap allocations), resulting in a concrete
type system RaML". We give a full evaluation of the improvements of FO over RaML" in Section 7.
Although we defined the constructor to cost 1 heap location (as shown in L:Cons and L:MatLD), it can be
any constant as long as the introduction and elimination rules agree on the constant. Thus we can extend
the type system to accurately track constructors which vary in size depending on the argument.

Type Inference One of the benefits of AARA is efficient type inference using off-the-shelve LP solvers [24],
even for non-linear potential functions [21, 22]. The new rules do not complicate inference and previous
techniques still apply. In a nutshell, inference is performed in three steps: First, perform a standard Hindley-
Milner type inference for the base types. Then, annotate the type derivation with (yet unknown) variables
for the potential annotations and collect linear constraints that are derived from the type rules. Finally,
solve the constraints with an LP solver and minimize the potential annotations of the inputs. Details can
be found in previous work [24, 22].

5 Soundness of FOY

We seek to prove the following theorem.

Theorem 2 (Soundness). Let H E V:I', ;T I% e: B, and V,H Fé» ¢ || v, H' . Then for all configurations
W, Y,F,R, if V,H ~W,Y and |F| > &y g (T') + q, there ezists a value w, and a freelist F' such that

W,Y,R, FFés el w Y F' and v~ w.

Here, Eqper is a standard big-step semantics, with judgments of the form ’ V,HFel| v, H ‘ derived from

Eec; V.H ~ W,Y is context equivalence, and v N{f,, w is value equivalence (these are defined below). The



theorem states that, given a terminating expression and a freelist that is sufficiently large (as predicated by
the type derivation), a run with & will normalize to an equivalent value.

To facilitate the proof, we define an intermediate semantics oy Which is semantically linear. The proof
has two stages: First, we show E.p, Over-approximates &g, meaning that any computation that succeeds
with & will succeed with an equally-sized or smaller freelist with £. Then we show FO? is sound with
respect to Ecopy, and thus by the previous step sound with respect to Eg.

As mentioned above, we introduce a big step semantics Eqper that does not use freelists or account for
garbage collection. We use it to characterize expressions that normalize to values when initialized with a
sufficient freelist. This technique has also been employed in earlier work on AARA [25]. In the judgment
V,H t el v, H', the “freelist” is the whole ambient set of locations Loc, thus we never run out of locations
during evaluation. This introduces a problem for value and context equivalence: when comparing evaluation
results between a run with Eopy and Eqper, the return values might not be syntactically equal. Consider the
following expression e = let _ = [4] in [5]. Let Loc = N, the natural numbers. Consider the evaluation
0,0,0,{1} < e || vy, Hy, Fy. First, 1 is allocated and mapped to [4]. Then, since the first subexpression
[4] is not used afterwards, we collect 1, and reuse it and map again to [5]. Thus v; = 1. In an evaluation
0,0,0,{1} Feer e || vy, Hy, Fy, we also first map 1 to [4], but then allocate a new location, say 2, and map it
to [5], and vo = 2. Due to the difference in allocation strategies and the fact that both are nondeterministic,
we need a more robust notion of equality for values. Luckily, the structures from the denotational semantics
(defined in Section 4) does the job. In both runs, the return value maps to the semantic value [5]. Thus
we use semantical equality as the basis for value and context equivalence:

Definition 2 (Value Equivalence). Two values vy, vs are equivalent (with the presupposition that they are

well-formed w.r.t. heaps Hy, Hs), iff Hy E v1 — a: A and Hy F vy — a : A. Write value equivalence as
H,

U1 NH2 V9.

Definition 3 (Context Equivalence). Two contexts (Vi, Hy), (Va, Hz) are equivalent iff dom (V1) = dom(Vz)
and for all x € dom(Vy), Vi(x) Ng; Va(x). Write context equivalence as (Va, Ha) ~ (Va, H)

Stated simply, two contexts are equivalent when they have the same domain and equal variables bind
equal semantic values.

Linear Garbage Collection Cost Semantics To establish the soundness of the type system, we need
an intermediary semantics Eopy, Which is semantically linear. As mentioned in Section 2, this means that
locations are treated linearly, that is, no location can be used twice in a program. Variable sharing is achieved
via copying: the shared value is created by allocating a fresh set of locations from the freelist and copying
the locations of the original value one by one. This is also sometimes referred to as deep copying. Let
copy(H, L,v, H',v") be a 5-place relation on Heap x P(Loc) x Val x Heap x Val. Similar to reachability, we
write this as H',v = copy(H, L, v) to signify the intended mode for this predicate: (+,+, 4+, —, —).

v € {n,T,F,Null} el H',v = copy(H, L\ {lI'}, H(]))
H,v = copy(H, L,v) H'{l' = v},l' = copy(H, L,1)

LiuL,CL |L1| = |dom(reachm (v1)|
|L2| = |dom(reachm (v2)| Hy,vi = copy(H, L1, v1) Ho, vy, = copy(Hi, L2, v2)

H27 <U17U§> = copy(H7 L7 <’l}1,’l}2>)

Primitives require no cells to copy; a location value is copied recursively; a pair of values is copied
sequentially, and the total number of cells required is the size of the reachable set of the value. Now,
consider & with the share rule F:Share replaced with the following rule.

Vi(z) =2
LCF |L| = |dom(reachm (v"))| H' v" = copy(H, L,v") V= (Vzi = v, 22 = 20"]) PV (e)
F'=F\L g={leH|l¢F URUlocsyryle)}y V' ,H RF UglelvH F"
V,H,R,F + share x as z1,22 ine v, H" F"

(E:Share)



To share a variable, we first copy the shared value. The number of cells required is equal to the size of
the reachable set from the value. This copying sharing semantics is what justifies the analysis to restitute
the potential when matching on a cons node, since even if the node was shared, we had to pay for the cost by
copying the node when sharing the original value. Next, we restrict the stack to the appropriate variables.
Lastly, any locations not reachable from the current subexpression e are collected. This is for the case when
a variable is shared but not used later.

Recall that a computation is a pair (C, e) consisting of a configuration C = (V, H, R, F') and an expression
e. Since the cost semantics can only preserve the linearity of a computation, we restrict our attention
to computations that are linear initially, and show that E.p, respects the linearity of any initially linear
computation. This motivates the following definitions:

Definition 4. (Linear context) Given a context (V, H), let z,y € dom(V), x # y, and r, = reachy(V(z)),
ry = reachy(V (y)). It is linear given that set(r;), set(r,), and r, N7, = 0.

Where set(S) means S a proper set (Vz,S(z) < 1). Denote this by linearCtxt(V, H). Whenever
linearCtxt(V, H) holds, there is at most one path from a variable on the stack V' to any location in H.
Now we can formalize our intuition for linear computations:

Definition 5 (Linear computation). Given a configuration C = (V, H, R, F') and an expression e, we say the
5-tuple (C, e) is a computation; it is a linear computation given that dom(V) = F'V (e), linearCtxt(V, H), and
disjoint({ R, F,locsy g (e)}). And we write linearComp(V, H, R, F, e) (equivalently linearComp(C, ¢)) to denote
this fact.

Intuitively, we expect that any terminating compuation with E.p, has a corresponding run with &g that
can be instantiated with an equally-sized or smaller freelist. Although this seems quite straightforward to
prove, a complete characterization of the relationship between the space allocations of two runs with each
semantics is necessary. To demonstrate the difficulties involved, consider the following proof attempt:

Attempt 1. Let Co = (V,H,R,F) be a configuration and (Ca,e) be a linear computation. Given that
Cy Feow e |l v, H', F', for all configurations C; = (W,Y, R, M) such that W,Y ~ V,H and |M| = |F|, there
exists a triple (w,Y’, M") € Val x Heap x Loc such that

CiF el w,Y' M’ and v~ w and |M'| > |F'| .

We proceed with induction on the derivation of the judgment in £.p,. Almost every case goes through,
save for E:Let. First, we get W1,Y ~ Vi, H and we have the following from induction on the first premise:

Wl,}/,R/,M Fggc e U, ’LU17Y1,M1 and (%] N}I_/Ill w1 and |M1‘ > |F1|

To instantiate the induction hypothesis on the second premise, we need to show that, among other things,
|My U j| > |Fy U g|, where j is the set of collected locations in the & judgment. We cannot show this
precisely because g might contain more cells then j due to the linearity of £.py, thus preventing a piecewise
comparison. But of course |j] is always less than |g|, since & doesn’t copy to share values! This shows that
there is a mismatch between the induction hypothesis and the relationship between the sizes of the respective
freelists and the garbage sets. Specifically, we need to know exactly how much larger M; is compared to F;
at any given step.

Having a sense of what is missing, we formulate the criteria which characterize the required equivalence
between two configurations, which we call copy extension.

Definition 6. A configuration Co = (Va, Ha, Re, F3) is a copy extension of another configuration C; =
(VlaHlaRlaFl) lﬁ

1. ‘/17H1 ~ V27H2

2. There is a proper partition v : dom(H;) \ F1 — P(dom(Hz) \ Fz) such that for all I € dom(v),
[y (D] = reachy, (Vi)(1) + Ra (1)



3. For all | € dom(v), = € dom(Vh), sequence of directions P which is valid w.rt. Vi(z),
|reachpr, (Va(z; P)) Nv(1)| = reachm, (Vi (z; P))(1).

4. For all I € dom(7y), |[v(I) N Ra| = R1 (1)

5. |Fi| = [F2| + [ @ (v)], where @(7) = Upeeer) P\ {rep(P)}
Write this as C; < Cs.

The intention is that C is a configuration for an evaluation using E.py, and C; a configuration for &,.
The first condition is the straightforward context equivalence. The second condition requires the existence
of a mapping  that tells us given a location in H; \ Fy, which locations in Hy \ F» are shared instances.

For example, consider the expression share = as x1,z2 in e and assume the stack is [x — 1], and
the heap equals [1 — (0,Null)], i.e. x is the list [0]. In an evaluation with &, the stack becomes
[x1 +— 1,x2 +— 1], and the heap does not change. With E.py, we allocate a new location in the heap:
[1+— (0,Null),2 +— (0,Null)], and the stack changes accordingly: [x1 — 1,%2 +— 2]. Now v would map 1 to
{1,2}, since both are shared instances of the former.

Thus, the image of v is a collection of disjoint subsets whose union is dom(Hs) \ F», and each location
in dom(Hs) \ F> belongs to a unique class whose preimage is the unique representative in dom(Hy) \ Fi.
Furthermore, we noticed it is crucial to include the fact that the size of (l) must be the sum of the number
of references from the stack and the continuation set. Furthermore, we also require each subset v(I) (also
referred to as class) to be nonempty (this is the proper partition condition).

While « gives us a relation between the active regions of two respective heaps, we still need to know
exactly how variables on the stack factor in this relationship. Let [ € Hy. Specifically, we need to know that
the number of references to [ from every subvalue in V; is equal to the size of the corresponding part of the
class y(I). First, we need to access subvalues of a value using directions:

Definition 7. Let Dir be the set {L,R,N}, denoting left, right, and next respectively. We define the function
gety : (1@ Val) x Dir — 1 @ Val which indexes values via directions:

getg (Just({v,v2)),L) = Just(vq) getg (Just(l),N) = Just(H(l))
getg (Just({(v1,v2)),R) = Just(ve) getg(_, ) = None

Let P € S(Dir), where S(X) denotes the set of sequence with elements from X. We define findpg :
(1@ Val) x §(Dir) — 1 @ Val extending gety to sequences of directions:

findg (v, D :: P) = findg(gety (v, D), P)
findg(v,[]) =v

Call P valid w.r.t. a value v if findy(v, P) = Just(v') for some v’. Given a valid sequence P w.r.t.
V(z), write Vi (x; P) for fromJust(findy(V(z), P)) and reachy(V(z; P)) for reachy (Vi (x; P)). A map
my : X — S(dir) is a subvalue map given that X C dom(V) and each x € X is mapped to a sequence
P which is valid w.r.t. V(z). Given a subvalue map my, define its action as reachPathy g(X,m) =
W,ex reachy (V(z;m(x))).

With this, the third condition gives us a more fine grained restriction: for any subvalue in V7, the number
of references from it to [ is equal to the size of the intersection of the reachable set of the corresponding
subvalue in V5 with the appropriate class v(I) .

The next condition simply states that the continuation sets respect . Lastly, we have that F} is greater
than Fh, with the overhead ©(y) being exactly the sum 37, [y({)| — 1. Here ec(y) is the image of v:
{y(1) | I € dom(~)}. Since each class v() is non-empty, we use rep(l) to choose an arbitrary element from
the class.

Below are some expected properties of a copy extension:

Lemma 3. Let Vi,H; ~ Va,Hy. Then for all x € dom(Vy) and sequence of directions P, FEither
findg, Vi (z), P) = findm,(Va(z),P) = None or findg, (Vi(z),P) = vi, findm,(Va(z),P) = ve and

V1~ U2



Lemma 4. Let V3, Hy, Ry, F5 F° e | v, H', F', and V1, Hy, R1, F1 = V3, Hy, Ro, Fy, where vy is the partition
satisfying the copy extension property. Then for all I € dom(y) and subvalue map my : X — S(dir),
~(1) C collect(Ra, reachPathy, m,(X,m), He, Fy) iff | € collect(Ry, reachPathy, m, (X, m), Hy, F1).

Now we can state the key lemma:

Lemma 5. Let (Co,e) = (V,H,R,F,e) be a linear computation. Given that Cy Féo» e | v, H', F', for
all configurations Cy such that Cy =< Ca, there exists a triple (w,Y’', M') € Val x Heap x Loc and + :
dom(Y')\ M" — P(dom(H') \ F') s.t.

1. CFoe e fw, Y, M’

H'

2. v~y w

3.+ is a proper partition, and for alll € dom(v"), |/ (I)| = |reachy, (w1)(1)| + S(1)

4. For all 1 € dom(v') and P € S(Dir) that is valid w.r.t. v, |reachy (findg (v;P)) N ~'(1)| =
reachy(findy:(w; P))(1)

5. Foralll € dom(®'), Y()NR=~(1)NR

6. |M'| = |F'|+]o ()

Proof. Induction on the evaluation judgment <. We illustrate the ideas with the case CondT:
V(z)=T
V=V [Fvie) g={leH|l¢ FURUlocsy m(e1)} VI HRFUgte v H F
V.H,R, F F if(z;eq;e0) v, H' | F’
Let W,Y,S, M be a configuration such that W,Y,S,M <V, H, R, F. Define W' =W [ o vy and j = {l €
Y|l ¢ MUSUlocsw,y(e1)}. To instantiate the induction hypothesis, we need to show that W', Y, S, M Uj <
V' H,R,F U g, giving us 5 obligations:

Case:

(1) W.Y~V' H
(2) Give a proper partition v : dom(Y) \ (M U j) — P(dom(H) \ (F Ug))
(8) TFor alll € dom(v'),z € dom(W'), P € S(Dir) a valid sequence w.r.t. W'(z),
lreachy (V' (z; P)) N+ (1)] = reachy (W' (x; P))(1)
(4) Forallle S, |v'()NR|=5S()
(5) IMUjl=|FUgl+|o ()
(1) is satisfied since W, Y ~ V, H. For (2), we take ¥'(I) = v [gom(yv)\(muj) (1) \ g. First, we show that
Y

is a partition. Let [,1’ € dom(Y) \ (M U j) be two arbitrary locations. Then ~'(1) N+/(I') = () since v is a
partition. Now Consider the image of ~':

' (dom(Y)\ (M U j)) = y(dom(Y) \ (M U j)) \ g
= U 2on\Uro\g

ledom(Y)\M lej

= ((dom(H)\ F)\ | J7(D) \ g (v is a partition)
lej

= (dom(H)\ F)\ g (Use; 7(1) € g by Lemma 4)

= dom(H) \ (FUg)

Hence +' is a partition. Next we need to show it is proper, or that every class is nonempty. Let [ €
dom(Y) \ (M U j) be any location. Since v'(I) = (1) \ g, it suffices to show that the class v(I) is not all
collected. For the sake of contradiction, assume () C g. But then I € j by Lemma 4, and we have a



contradiction since we assumed [ ¢ j. Lastly, |y/(I)| = reachy (W’)(I) + S(I) follows from the definition of g
and the second and third condition of copy extension. Conditions (%) and (4) follow similarly.

Lastly, we need to show that the overhead is preserved: |M|+ |j| = |F|+ |g| +| @ (7')]. By assumption,
|M| = |F|+ ] © ()], so it suffices to show |j| + | @ (7)| = |g| + | @ (7’)|. Since g and the image of 7' are
disjoint, it suffices to define a bijection f : j & @(y) — g U @(y'). First, we separate the classes ec(y) into
those that are completely collected into g and those that are only partially collected: C; = {y(1) | I € j}
and Cz = ec(y) \ C1. Further, let D1 = Jgee, C \ {rep(C)} and D2 = Jgee, C \ {rep(C)}. Then we have
@(y) = D1 U Dy and by Lemma 4, g = (Ugee, C) U L for some L. Therefore, we need to find a bijection
f:1i®D1UD2) = (Ugee, €) U LU@(Y). It suffices to find the bijections f1 : j & D1 — Ugee, C and
fa: Dy — LU@(v'). First, we define fi:

2) = rep(y(1)) = (inl,1)
h@) { x = (inr, 1)

Note that f; simply maps the set of representatives into their respective classes and is the identity on the
rest of the class. Thus fi is a bijection, and |j| + |D1| = [Ugee, CI- Next, note that

Ca| = lec(y) \ {v(1) |1 € 5} = lec(y laom(y\aruj)| = lec(v)]

Which means that Co has the same number of classes as 7’ (even though the actual classes might be different).
Since both v and v/ are proper partitions, we can keep class representatives for each class when defining the
bijection:
|Ds| = LU ()]
= | U o\{rep@}=ILU | C\{rep(C)}]

CeCs Ceec(y')
= ||J =1Ly |J ¢
CeCs Ceec(v’)

In fact, the latter two sets are equal. Let [ € Ucecz C. If [ is collected into g, | must be in L since it is not from
a class in Cq. If [ is not collected, it remains in UCEEC(W,) C. For the other direction, let [ € L L UCEec(’y’) C.
If I € L, then it is in a class that was not completely collected, which means [ € UCECz C. Otherwise, [ is in
a class that is disjoint from ¢, which means again that [ € UCecz C'. Hence f5 is simply the identity.
Finally, we have the copy extension W'Y, S, FUj < V', H, R, F Ug. Now we instantiate the induction
hypothesis to obtain the triple (w,Y’, M') and new partition 7" with the expected properties. Applying the
rule F:CondT to the evaluation W'Y, S, FUj - e; |} w,Y’, M’ given by the first property from induction, we
get WY, S, F F if(x;e1;5e2) b w,Y', M', which inherits the required conditions (2) - (6) from induction. [

Thus, we have shown that we can execute a computation using & given that the computation suceeded
in a run with &.py, which means that Epy is an over approximation of Eg.
Soundness of FO® For the second part of the proof, we show FOY is sound w.r.t. Ecopy. Below are

selected lemmas used in the soundness theorem:

Definition 8 (Stability). Given heaps H, H’, a set of locations is stable if VI € R. H(l) = H'(l). Denote
this by stable(R, H, H').

Lemma 6. Let H F v — a: A. For all sets of locations R, if reachy(v) C R and stable(R, H,H'), then
H Evw—a: A and reachy(v) = reachy (v).

Lemma 7 (Stability of copying). Let H',v' = copy(H, L,v). For alll € H, if | ¢ L, then H(l) = H'(l).
Further, reachy:(v") C L.

Lemma 8 (Copy is copy). Let H' ,v' = copy(H,L,v). f HE v a: A, then H Fv' +— a: A.



Lemma 9. Let AY™ Ay, As, HEv: A, v~ v, and v~ vy. Then @p(v: A) = Oy (vy : Ar) + Pp(ve
As) +n - |dom(reachy (v))]

Lemma 10 (Linearity of Eopy). Let C be a configuration, C < e | v, H',F’, and ;T F e : B. Given
that linearComp(C, ), we have that set(reachy (v)) and disjoint({ R, F', reachy (v)}).

Theorem 11 (Soundness). let H, E V, : T, ;T l% e: B, Vo,,H, Fe | v,,H,. Then VC € QF and
configuration (V,H, R, F') s.t.

1.V, H,~V,H
2. linearComp(V, H, R, F e)
3. |F|>®yul)+q+C

then there exists a triple (v, H', F"), and a freelist F' s.t.
1. V.H,R,F o ¢ || v, H', F'

/

2. v, Ng? v
3 NF>®g(v:B)+4d +C

In other words, given a terminating expression (verified by succeeding with the run using Eoper) and given
a freelist that is sufficiently large (as predicated by the type derivation), a run with Epywill normalize to an
equivalent value, and the resulting freelist will be sufficiently large (as predicated by the type derivation).

6 Implementation and Evaluation

Implementation We have implemented the novel cost semantics and the type system in Resource Aware
ML (RaML). The implementation covers full RaML, including user-defined data types, higher-order func-
tions, and polynomial potential functions. However, there is no destructive match for function closures and
analyzing the heap-space usage of closures still amounts to counting allocations only. The main changes
that where necessary have been in the rules for sharing and pattern matching as described earlier. We also
needed to change some elaboration passes that were no longer cost preserving with the GC cost model.
The garbage collection cost semantics is implemented as an alternative evaluation module inside RaML.
As mentioned before, RaML leverages the syntax of OCaml programs. First, we take the OCaml type
checked abstract syntax tree and perform a series of transformations. The evaluation modules operate
on the resulting RaML syntax tree. In the gc evaluation module, evaluate has the following signature:

evaluate : (’a, unit) Expressions.expression -> int -> ((’a value * ’a heap * Int.Set.t) option)

Here, the second argument int specifies the size of the initial freelist. The result is an option triple of
the return value, heap, and freelist; None is returned in case the freelist was not sufficient for the evaluation.
Whereas the normal evaluation boxes every value (everything evaluates to a location), the gc module follows
the cost semantics and only boxes data constructors. The rationale is that the size for other values can be
computed statically and thus stack allocated. One difference between the cost semantics and its implementa-
tion is that while in the language presented here list is the only data type, our implementation supports user
defined data types. The extension is straightforward except the treatment of the nil constructor, or generally
“empty” constructors that have arity zero. For simplicity of presentation, we evaluate all nil constructors
to the same null value in the cost semantics. This is natural for lists because all nil constructors are the
same, and every list has at most one nil node. However, for custom data types that have more than one
kind of empty constructor, it is not possible to map every constructor to the same null value. Thus, the
implementation treats all constructors uniformly, so each empty constructor also costs one heap location.

As mentioned before, all functions used in a program are declared in a global mutually recursive block, and
we do not account for the constant space overhead for this block in the cost semantics. In order to implement



this global function block, we allow closure creation during program evaluation. However, we allocate all
closures from a separate freelist into a separate heap. This ensures that data constructors are allocated from
the correct freelist and no space overhead is created by allocating closures for function declarations.

Evaluation We evaluated our new analysis

: ; function type
on a number of functions. Table 1 contains a quicksort [a ->"a ->bool; ’a list] ->’a list
representative compilation. It shows the type  pergesort [a; "a] ->bool; "a list] ->’a list
signature for each function. Table 2 presents  ocamlsort [[’a; *a] ->bool; ’a list] ->’a list
the test data that showcase the difference be-  selection sort int list ->int list
tween RaML"P_ the previous RaML type sys-  eratosthenes  int list ->int list
tem instantiated with the heap metric (the old  dfs [btree; int] ->btree option
analysis which only counts heap allocations),  bfs [btree; int] ->btree option
and FOY, which includes deallocations and  transpose 'a list list ->’a list list o
copying cost for sharing. For each type system, mgp_lt [a ?>’b; "a list hst] ->"b list list * *b list list
pairs ‘a list ->("a * ’a) list

we show the heap space bound computed by
RaML, the number of constraints generated,
and the time elapsed during analysis. The last
column gives the expression for the exact heap high watermark derived by hand and verified by running the
cost semantics.

Except for bfs and dfs, all functions in the table take a principal argument of type list. The variables in
the table refer to this argument (for example, the type of the principal argument of quicksort is ’a list). In
general, M refers to the number of cons constructors of the principal argument (or the number of outer cons
nodes in case of nested lists); L refers to the maximum number of cons nodes of the inner lists.

For the sorting functions, aside from mergesort, the new analysis using the gc metric derived asymptot-
ically better bounds when compared to the heap metric. Furthermore, all bounds are ezact with respect
to the cost semantics. In regards to mergesort, the analysis was not able to derive a tight bound due to
the limitations of AARA in deriving logarithmic bounds. A particularly nice result is that for quicksort, we
derive that the space usage is exactly 0, which justifies its use as a zero space-overhead (or “in place”) sorting
algorithm.

Next, we have have the graph search algorithms operating on a binary tree. Again, the gc metric was able
to derive exact space overheads, while the heap metric derived linear bounds for both. For transpose, the gc
metric derived an asymptotically better bound, but was not able to derive the exact overhead. We implement
matrices as lists-of-lists in row-major order. The transpose function is implemented tail-recursively, with the
accumulator starting as the empty list. When “flipping” the first row r of the input and appending this to
the accumulator, we need to create || many new nil and cons constructors to store the row as a column.
While this overhead only occurs once, RaML is unable to infer this from the source code, and thus the cost
is repeated over the entire input matrix, resulting in the linear bound (w.r.t. the size of the matrix). This
artifact is unrelated to the new extension; it is a limitation due to the implementation of RaML.

The last two functions demonstrate how the gc metric performs when there is variable sharing. map it
maps the input function across each list in the principal argument twice, returning a tuple of nested lists.
The gc metric dictates that every outer data constructor in the principal argument needs to be copied, and
thus gives the linear bound M + 1. In this case, the bound is exact. The function “pairs” takes a list and
outputs all pairs of the input list which are ordered ascending in input position. For example, pairs [1;2;3;4]
=(1,2);(1,3);(1,4);(2,3);(2.4);(3,4)]. For pairs, the gc metric derived a bound that is asymptotically the same
as the heap metric, but with better constants. An exact bound could not be derived because the deallocation
potential from the pattern match in the definition of pairs is wasted since the matched body could already
be typed with zero cost. However, this deallocation is used as usual in the cost semantics. Thus the slack in
the bound totals to the size of the input.

Table 1: Signature of Test Functions



RaML"? FO9

function computed bound constraints time computed bound constraints time optimal
quicksort 1.00 + 3.50M + 1.50M2 8515 052 0 8519 048 0

mergesort 1.00 — 4.67M + 6.33M? 9572 0.64 —0.50M +0.50M?2 9578 0.58 |log(M)|
ocamlsort 7.50 + 5.50M + 1.00M2 8565 0.51  1.00 4+ 1.00M 8573 0.50 M+1
selection sort  2.00 + 3.00M + 1.00M?2 639 0.06 0 642 005 0

eratosthenes  1.00 + 1.50M + 0.50M2 515 0.06 0 517 004 0

dfs 3.00 + 2.00M 5481 090 2 5483 0.36 2

bfs 5.00 4+ 10.00M 24737 4.15 4 24742 1.62 4

transpose 1.00 4+ 3.50LM + 0.50LM? 10680 0.50 1.00+2.00LM 10684 0.50 max(0,2L — 1)
map_ it 2.00 4+ 2.00LM + 4.00M 30699 1.58 1.00M +1.00 30703 1.57 M+1

pairs 1.00 + 1.00M2 10214 0.60  0.50M + 0.50M? 10217 0.64 0.5M? —1.5M +2

Table 2: Automatic Bound Analysis with RaML

7 Conclusion and Future Work

In this article, we introduced a novel operational cost semantics that models a perfect tracing garbage
collector and an extension to AARA that is sound with respect to the new semantics. We implemented
the new semantics and analysis as modules in RaML and found through experimental testing that the
extended AARA was able to derive asymptotically better bounds for several commonly used functions and
programming patterns; often, the bounds are optimal with respect to the cost semantics.

One direction for future work is using the cost free metric cf to model global garbage collection. In cf,
all resource constants, including constructor nodes, are set to 0. A cost-free typing judgment then captures
how an expression manipulates the structures in the context into the structure induced by its type. Using
this fact, we could express the mazimum space usage in the sequential composition let(ej;x : T.e2) by
analyzing e; twice—once with the cost-free metric and once with the regular metric—and assign potential
to x using the result type in the cost-free typing. In prior work [23], the authors have successfully employed
this cost-free metric to analyze parallel programs. Here, the difficulty is showing the simultaneous soundness
of both destructive pattern matching and the cost-free composition. Another complication is the choice
between local variable sharing and global context sharing. We leave the exploration of this area to future
work.

Another direction for future work are function closures. The current treatment in our implementation
is unsatisfactory since there is no equivalent to the destructive pattern match for closures. As a result,
the GC metric in RaML only accounts for allocation of closures, which is not an improvement over the
existing implementation. Ideally, we would like to account for deallocation at function applications and treat
closures similar to other data structures in sharing. However, the size of closures cannot be determined easily
statically and closures can not capture potential and are currently shared freely in RaML. As a result, the
techniques we developed here do not directly carry over to closures.

Finally, we are interested in exploring if our work can be used to improve the efficiency of garbage
collection in languages like OCaml. A guaranteed upper bound on the heap space can be used in different
ways to control the frequency of the collections and the total memory that is requested from the operating
system.
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Notation

For a finite mapping f : A — B, we write dom for the defined values of f. Sometimes we shorten z € dom(f)
to x € f. We write f[z — y] for the extension of f where x is mapped to y, with the constraint that
x ¢ dom(f).



Given possibly non-disjoint sets A4, B, let the disjoint union be A®B defined by {(inl, a) | a € A}U{(inr,d) |
b € B}.

Let a multiset be a function S : A — N, i.e. a map of the multiplicity of each element in the domain.
Write z € S iff S(z) > 1. If for all s € S, u(s) =1, then S is a property set, and we denote this by set(S).
Addtionally, AW B denotes counting union of sets where (AW B)(s) = A(s) + B(s), similarly, (AN B)(s) =
min A(s), B(s). Furthermore, AU B denotes the usual union where (A U B)(s) = max (A(s), B(s)). For
the union of disjoint multi-sets A and B, we write A LU B to emphasize the disjointness. For a collection of
pairwise disjoint multi-sets C, i.e. VX, Y € C. X NY = (), we write disjoint(C).

1 ifzed

O.W.

In the rest of the paper, we sometimes treat a set A sets as multiset A: A — N via x

when convenient. For instance, if an operation defined on multisets is used on sets and multisets, the set is
thus promoted.

Given a set A, let P(A) be the powerset of A. Given a multiset A, let p(A) be the power multiset of A,
i.e. the set of all submultisets of A.

For a partition f: A — P(B), we write the set of equivalence classes as ec(f) = {f(x) | x € A} = f(A),
i.e. the image of f on its domain A. Furthermore, a partition is proper if for any = € A, f(x) # 0.

Given a proper partition f : A — P(B), for every a € A, we can choose an arbitrary b € f(a) to be the
representative for that part; call this rep(a).

B Linearity of Copy Semantics

In the soundness proof of FOY“, we used an important lemma: that Ecopyis semantically linear, i.e. locations
are used linearly. To see why, consider the second premise in the rule L:MatLD. In addition to the p units of
potential justified by the definition of linear potential, we get 1 unit from deallocating the cons cell itself. This
is only sound if in the corresponding rule in £cpya location was actually collected. Consider the evaluation
in question:

Viz)=1 H()=(vp,v) V"= (V][zh = vn,2 = 0]) [rv(en)
g={leH|l¢ FURUlocsy» mg(e2)} V' H R FUg ey v,H F
V,H,R,F +matchz {nil <> e; | cons(zp;z¢) = ea} |} v, H' | F’

(S1)

If all the variables in V' was mapped to values with disjoint reachable sets, then we see that [ is only in
the reachable set of z (assuming that well-typed expressions don’t have duplicate occurences of variables,
ie. x ¢ FV(e1)UFV(ez). Then it follows that [ € g given that locations in V', R, and F are also all disjoint,
and this is what we needed to justify the rule L:MatL. Thus we have to show that E.p,preserves the linearity
invariant: given a linear computation, the evaluation result is also linear.

First, we characterize semantically linear contexts:

Definition 9. (Linear context) Given a context (V, H), let x,y € dom(V), x # y, and r, = reachy(V(x)),
ry =reachy(V(y)). It is linear given that:

1. set(ry),set(ry)
2.y N1y =10
Denote this by linearCtxt(V, H).

Whenever linearCtxt(V, H) holds, visually, one can think of the stack as a collection of disjoint, directed
trees with locations as nodes; consequently, there is at most one path from a variable on the stack V' to any
location in H. Now we can formalize our intuition for linear computations:

Definition 10 (Linear computation). Given a configuration C = (V, H, R, F') and an expression e, we say
the 5-tuple (C,e) is a computation; it is a linear computation given the following:



1. dom(V) = FV(e)
2. linearCtxt(V, H)
3. disjoint({ R, F,locsy,m(e)})
And we write linearComp(V, H, R, F, e) to denote this fact.

Given a semantically linear computation (one with no sharing between the underlying locations), the
resulting value is linear (expressed by item 1. and 2. below):

Lemma 12 (Linearity of Ecopy). For all stacks V and heaps H, let V,H,R,F el v,H,F' and ;T - e : B.
Then given that linearComp(V, H, R, F, e), we have the follwoing:

1. set(reachy:(v))
2. disjoint({R, F', reachy (v)}), and
3. stable(R, H, H')

Where stable is a predicate on P(Loc) x Heap x Heap, defined below. The premises of this lemma is a
subset of the premises of the soundness theorem. Thus, we could have merged the proof of this lemma directly
into the soundness proof. However, we think this makes the presentation clearer; furthermore, the linearity
of Ecopyls an interesting in itself, regardless of the accompanying type system. Some auxiliary lemmas:

Define 1 : LP(A) — L(A) as the map that erases resource annotations. This gives a simplified jugdment

YTt e: BT | used in proofs where the resource annotations are not necessary.
T L. .t . Bt
Lemma 13. Ifz,FITe : B, then Xt: Tt e : BT,
Proof. Induction on the typing judgement. O

Define FV* : Exp — @(Var), the multiset of free variables of expressions, as the usual F'V inductively
over the structure of e. This version of F'V reflects the multiplicity of variable occurences.

Lemma 14. If ;T % e: B, then set(FV*(e)) and dom(T) = FV (e).
Proof. Induction on the typing judgement. O

Definition 11 (Stability). Given heaps H, H', a set of locations is stable if VI € R. H(l) = H'(l). Denote
this by stable(R, H, H').

Lemma 15. Let HF v — a: A. For all sets of locations R, if reachy(v) C R and stable(R, H, H'), then
H Evw—a:A and reachy(v) = reachpy: (v).

Proof. Induction on the structure of H E v +— a : A. O

Corollary 16. Let H =V :T'. For all sets of locations R, if |,y reachy(V(z)) € R and stable(R, H, H'),
then H' EV . T.

Proof. Follows from Lemma 6. O

Lemma 17 (stability of copying). Let H',v' = copy(H,L,v). For alll € H, ifl ¢ L, then H(l) = H'(l).
Further, reachy: (v') C L.

Lemma 18 (copy is copy). Let H',v' = copy(H,L,v). If HE v+ a: A, then H Ev' +— a: A.

Lemma 19. Let AY™ Ay, Ay, HE vy : Ay, HE vy : Ag, and H E v : A. Then ®y(v: A) = Oy(v; :
A1)+ Py (ve : As) + n - |[dom(reachy (v))]

Lemma 20. Let HEV :T', X;TFe: A, and V,HF el v,H'. Then H Ev: A.



Now the proof for linearity of Ecopy:

Proof. Nested induction on the evaluation judgement and the typing judgement.

Case 1: E:Var

Case 2:

Suppose H EV : T',dom(V) = FV (e), linearCtxt(V, H), disjoint({ R, F, locsv u (€)})

set(reachy (v)) (linearCtxt(V, H))
disjoint({ R, F, reachg (v)}) (disjoint({ R, F, locsy. m(€)}))
linearCtxt(V, H) (Sp.)
stable(R, H, H') (H = H)

E:Const* Due to similarity, we show only for E:Constl

Suppose H EV : T',dom(V) = FV (e), linearCtxt(V, H), disjoint({ R, F, locsy, x(€)})

set(reaachy (v)) (reachp (v) = 0)
disjoint({R, F,0}) (disjoint(R, F))
linearCtxt(V, H) (Sp.)
stable(R, H, H') (H=H')

Case 4: E:App
Case 5: E:CondT Similar to E:MatNil
Case 6: E:CondF Similar to E:CondT
Case 7: E:Let

V,H,R,F F let(ey;x: T.ea) || vy, Hy, F (case)
Vi,H,R ,Fte Jo, Hy,F (ad.)
3T, To F let(er;z: 7e2) : B (case)
STike: A (ad.)
Suppose H EV : T',dom(V) = FV (e), linearCtxt(V, H), disjoint({ R, F, locsv, x (€)})

HEV : I (def of W.D.E and Lemma 14)

By IH, we have invariant on the first premise

NTS (1) - (3) to instantiate invariant on the first premise

(1) dom(Vy) = FV(ey) (def of 1)
(2) linearCixt(V1, H) (linearCtxt(V,H) and V; C V)
(3) disjoint(R', F,locsy m(e1))

FNR =0 (F Nlocsy,u(e) =0 and locsy,, g (lam(z : 7.e3)) C locsy,m(e))
FV(e1) N FV(lam(x : T.e3)) =0 (Lemma 14)
locsy g (er) Nlocsy, g(lam(z : T.e2)) =0 (linearCtxt(V, H))
R' Nlocsy p(er) =0 (disjoint({ R, locsy, i (€)}))
Fnlocsy,p(er) =0 (Sp.)
Thus we have disjoint(R’, F, locsy m(e1))

By TH,

1.(1) set(reachp, (v1))



1.(2) disjoint({R', F1,reachy, (v1)})
1.(3) stable(R',H, H;)

VQ’,Hl,R, FiUglkes | va, Ho, Fo
iTg,x: Ak ey: B
HiEVy:(Ty,z: A)

By IH, we have invariant on the second premise

(ad.)
(ad.)

(Lemma ?7)

NTS (1) - (3) to instantiate invariant on the second premise

(1) dom(V5) = FV(e2)
(2) linearCtxt(Vy, Hy)
Let x1, 20 € V2', 21 # x5 be arb.
case: T1 #IT,T2 X
reachy (Vy(z1)) C R’
reachy (Vy(z2)) C R’

(def of V3)

(reachg (Vy(x1)) C locsyy p(lam(x : T.ez)))
(reachp (V3(w2)) C locsyy p(lam(z : T.€2)))

reachy (Vy(x1)) = reachy, (Vy(x1)), reachy (Vy(x2)) = reachy, (V4 (x2))

(stable(R', H, H1) and Lemma 6)

reachp, (Vy(x1)) = reachy (V(z1)), reachy, (Vy(x2)) = reachy (V(x2))

linearCtxt(V,, Hy)
case: 1 =I,Ty # X

reachy, (Vy(x1)) = reachy, (v1)

reachp, (V3(z2)) C R
set(reachp, (v1))
reachy, (Vy(x2)) = reachy (V(x2))

set(reachp, (Vs (x2)))
reachy, (Vy(x1)) Nreachy, (Vy(xs)) =
Thus we have linearCtxt(Vy, Hy)
(3) disjoint({ R, F1 U g,locsyy m, (e2)})
RNE =0
RN(FLug)=10
NTS (Fy Ug) Nlocsyy m,(e2) =0
Let [ € locsyy g, (e2) be arb.
I € reachy, (Vy(z")) for some z’ € Vy
case: ¥’ # 1z
reachy (Va(2')) = reachy, (V5 (')
reach, (Vi(')) € R
reachy, (Vy(x')) N Fy =0
case: ' =«
reachy,(Vy(z')) = reachy, (v1)
reachy, (Vy (') N Fy =0
reachp, (V4 (z')) C locsV/ 1, (e2)
reachy, (Vy(2'))Ng

(stable(R', H, H) and Lemma 6)
(linearCtxt(V, H))

(def of V3

(same as above

(same as above
(linearCtxt(V, H
(disjoint({R', reachp, (v1)}

~— ~—

(disjoint({R’, F1}) from 1.2 and R C R)
(def of g)

(same as above)
(def of R')
(disjoint({R’, F1}) from 1.2)

(def of V3)

(disjoint({ F1, reachg, (v1)}) from 1.2)
(def of locsy, i)

(def of g)



Thus reachy, (Vy(z')) N (FLUg) =0
NTS RnNlocsyy i, (e2) =0

Let I € locsyy i, (e2) be arb.

I € reachy, (V3(2")) for some z’ € V,

case: 7' # 1z

reachy (Va(z')) = reachy, (V4 (z")) (same as above)

1 €locsy mu(e) (def of locsy, m)

l¢R (disjoint({ R, locsy, i (e)}) from 0.3)
case: 7' =z

reachy, (Vs (x')) = reachy, (vy) (def of V)

reachy, (Vay(x'))NR =10 (disjoint({ R/, reachp, (v1)}) from 1.2 and R C R')

Thus reachy, (Vy(z')) "R =10

Hence we have (3) disjoint(R, F1 U g,locsyy u, (e2))

By instantiating the invariant on the second premise , we have

2.(1) set(reachm,(v2))

2.(2) disjoint({R, F3,reachp,(v2)})

2.(8) stable(R, Hy, Hs)

Lastly, showing (1) - (3) holds for the original case :

(1) set(reachp,(va)) (By 2.1)
(2) disjoint({R, F», reachp,(v2)}) (By 2.2)
(3) stable(R, Hy, H)

Let I € R be arb.

H(l) = H:() (stable(R', H, Hy) from 1.3)
Hl(l) = Hg(l) (stable(R, Hl,HQ) from 23)
H(l) = Hy(1)

Hence stable(R, H, H)

Case 8: E:Pair Similar to E:Var

Case 9: E:MatP Similar to E:MatCons
Case 10: E:Nil Similar to E:Const*
Case 11: E:Cons

V.H,R,F el I,H" F' (case)
Suppose H EV : T',dom(V) = FV (e), linearCtxt(V, H), disjoint({ R, F, locsv,u(e)})

NTS (1) - (3) holds after evaluation

(1) set(reachgy (1))

stable({locsy,m(e)}, H, H") (disjoint({F, locsy, i (€)}) and copy only updates | € L C F)
reachy (V(x;)) = reachy»(V(z;)) (reachpy (V(x;)) Clocsy,g(e) and 6 for i =1,2)
reachg (1) = {l} Ureachy(V(z1)) Ureachy, (V(z2)) (def of reachyr)
set(reachg (1)) (I ¢ locsy, m(e) and linearCixt(V, H))



(2) disjoint({R, F’',reachy(1)})

RNE =0 (F' C F and disjoint({R, F'}))
Rnreachyn (1) =0 (I € F and disjoint({R, locsv,i(€)}))
F'Nnreachy» (1) =0 (F' C F and disjoint({F, locsv,r(€)}))
Thus we have (2) disjoint({R, F’,reachg(1)})

(3) stable(R, H,H") (since copy only updates [ € L C F and FN R =0)

Case 12: E:MatNil
Suppose H EV : T',dom (V') = FV (e), linearCtxt(V, H), disjoint({ R, F, locsy, iz (e)})

Y I"Fe : B (ad.)
VI ,HRFUglFe v, H F (ad.)
HEV T (def of W.D.E)

By IH, we have invariant on the premise

NTS (1) - (3) to instantiate invariant on the premise

(1) dom(V') = FV(e) (def of V')
(2) linearCtxt(V', H) (linearCtxt(V, H) and V' C V)
(3) disjoint({R, F,locsy m(e1)}) (disjoint({ R, F,locsv g (e)}) and locsy: m(e1) C locsy g (e))
Instantiating invariant on premise ,

(1) set(reachp (v))

(2) disjoint({ R, F1, reachy: (v)})

(3) stable(R,H,H')

Case 13: E:MatCons

Viz)=1 a
H(l) = (vp,vy) a
=T z:L(A)

5V xp: Ajzy : L(A) Feg : B
V//vHvR»FUg F €2 ‘U’U27H27FI
Suppose H EV : T',dom (V) = FV (e),linearCtxt(V, H), disjoint({ F, R, locsy, iz (e)})

/—\/—\/g?/—\/—\
[oFp e c Pl o P ol

HEV(z): L(A) (def of W.D.E)
HEwv,: A, HE v : L(A)
HEV": T ap: Az : L(A) (def of W.D.E)

By IH, we have invariant on the premise
NTS (1) - (3) to instantiate invariant on the premise
(1) dom(V") = FV(es) (def of V")
(2) linearCtxt(V", H)
Let x1, 20 € V" 21 # x9,75, = reachy (V" (x1)), 1z, = reachy (V" (x2))
case: w1 ¢ {xp,x:}, 2 & {ap, Tt}
(1), (2) from linearCtxt(V, H)
case: T1 = xp, T2 & {xh, Tt}
set(ry,) (since set(reachy (V(x))) from linearCtxt(V, H))



set(rs,) (since linearCtxt(V, H))
x2 € FV(e) (def of F'V)
reachy (V(z))Nry, =0 (def of reach and linearCtxt(V, H))
hence ry, N1y, = 0
case: x1 = Ip,Ta = Ty
set(ry, ) since set(reachy(V(z))) from linearCtxt(V, H)
set(ry,) since set(reachy(V(z))) from linearCtxt(V, H)
Toy N7y =10 (set(reachy (V (x)))
case: otherwise
similar to the above
Thus we have linearCtxt(V", H)
(8) disjoint({R, F U g,locsy m(ea)})
(FUg)NR=1 (since F N R = () and by def of g)
NTS RNlocsyr p(ez) =0
Let I' € locsyr p(e2) be arb.

case: I' € reachy (V" (2")) for some 2’ € FV (e2) where 2’ ¢ {zp,z:}

eV (def of V")
' € reachy (V ("))

z' € FV(e) (def of FV)
' € locsy, p(e) (def of locsy,p)
"¢ R (disjoint({ R, F, locsy,m(e)}))

case: ' € reachy (V" (xp))

' € reachp (vp)

' € reachy(V(z)) (def of reach)
' € locsy p(e) (def of locsy, i)
'¢R (since disjoint({F, R, locsy, i (€)}))

case: ' € reachy (V" (x;))

similar to above
Hence RN locsyr p(ez) =0
Fnlocsyr m(ex) =10 (Similar to above)
gNlocsyr m(ex) =0 (def. of g)
(FUg)Nlocsyr m(es) =10
Thus disjoint({R, F'U g, locsy m(e2)})
Instantiating invariant on the premise,
(1) set(reachy:(v))
(2) disjoint({R, F',reachg (v)})
(8) stable(R, H, H')

Case 13: E:Share

e = share r as 71,73 in € (case)

Suppose H EV : T',dom(V) = FV(e), linearCtxt(V, H), disjoint({ R, F, locsv,r(e)}) (def. of wfc)



Let Vo = (V]zy = v/, 22 = V")) [Fv(e
We show the subsequent computation is also well-formed to invocate the IH:
(1) dom(Vs) = FV(€) (dom(V) = FV (e) and def of FV)
(2) linearCixt((V]zy = v', z2 = v"]) [Fy(ery, H)
Let 2’ — v € V'[z1 + v'].STS reachy: (v"") Nreachg: (v"") =0

reachy: (v'') C L CF (definition of copy)
reach (V") C locsy [z, s0) 1 (€') C locsy, g (e) (By Lemma 7)
but since F' Nlocsy, g (e) = 0, we have the result. (linearComp(V, H, R, F,¢))

(3) disjoint({R, F \ L,locsy, u(€')})

Disjointedness involving F follows from assumption. Last one follows since locsy, g (e') C locsy,g(e) U L

By IH:

(1) set(reachp:(v))

(2) disjoint({R, F',reachg(v)})

(3) stable(R,H', H")

STS stable(R, H, H'), which follows from L N R = () and Lemma 7

C Soundness

Theorem 21 (Soundness). let H, F V, : I, ;T l% e: B, Vo,Hy, el v,,H,. Then VC € Q% and
configuration V., H, R, F' s.t.

1.V, H,~V,H
2. dom(V) = FV(e)
3. linearCtxt(V, H)
4. disjoint({R, F,locsy,m(€e)})
5 |F|>®yul)+q+C
then there exists a triple (v, H', F"), and a freelist F' s.t.
1. V,H,R FtelvH, F
2. v, Ngé’ v
3. |F'| >0 (v:B)+¢ +C
Call this the existence clause.

Proof. Nested induction on the evaluation judgement and the typing judgement.

Case 1: E:Var

Vo, Ho = 4 Vo(z), Ho (case)
E;:z::BI%z:B (case)



Let C € Q", well-formed configuration V, H, R, F s.t. V,, H, ~V,H and |F| > ®y y(z: B) +q+C

NTS the conclusions for the existence clause:

(1) V,H R, FFel| V(x),HF (E:Var)
(2) Vo(z) ~be V() (assumption)
(8) And we have FF > ®y y(xz: B)+ ¢+ C

=0y (V(z): B)+q+C (definition of )

Case 2: E:Const* Similar to E:Var

Case 4: E:App

Vo, Ho = () 4 vo, Hy (case)
Vo(z) =v), (admissibility)
Let P(f) = (ys,ef)

lyr— vl Ho Fep v, H) (admissibility)
Yix: Al% f(z): B (case)
S(f)=AY B (admissibility)

Let C € QT, well-formed configuration V, H, R, F s.t. V,, H, ~V,H and |F| > ®y y(z: A) +q+C
iy A l% er: B

Let V(z) =4, g = collect(R,locsy u(ef), H, F)

By IH on [y — V'], H, R, F U g, have the existence clause. NTS the following conditions:

(1) lys — vl),Hy ~ [yg — V'], H (v}, ~He v by assumption)
(2) - (4) Have by assumption
(5) NTS |[FUg| > @y sy u(z:A)+q+C
STS |F| > @y, s0,m58(ys : A) +q+C
|F| > ®ypg(z:A)+q+C
=0y(v' :A)+q+C
= Ppy, o1y A) +a+C
Applying the existence clause and E:App, we’re done.
Case 5: E:CondT
I'=T',z:bool (ad.)
HEV:T (def of W.F.E)
ST Fr e B (ad.)
V,H R FUgFe v H F (ad.)
[FUgl—|F'| < QvuT)+q— (2n(v:B)+4q') (IH)

[F| = |F'| < @v.u(T) + ¢ — (Pur(v: B) + ¢)

Case 6: E:CondF Similar to E:CondT



Case 7: E:Let

Vo, Ho e b vy, HY) (case)
V:)/ =V, rdom(FV(el) (a‘d)
Vo/aHo Fel ‘Uvé)vH:) (ad)
=T % let(eq;x: T.e2) : B (case)
I'= Fl,rg (ad)
I l% e1: A (ad.)
HEV,:Ty (def of F)

Let C € QF, well-formed configuration V, H, R, F s.t. V,, H, ~ V,H and |F| > ®y y(T) + ¢+ C
NTF ’UQ,HQ,FQ s.t.
1.V, H R, F+el vy, Hy, F5 and

"

2.0y~ Vo
3.|Fy| > ®p,(vy: B)+¢ +C
Let R' = RUlocsy g (FV(e2) \ {x})
disjoint({R', F, locsy,m(e1)}) (Similar to case in Lemma 10)
Let Vi =V ldom(Fv(e)
Instantiate IH with C = C + ®y, g(I2),V=V;,H=H,F =F,R=R
we get existence clause on the first premise
NTS (1) - (4) to instantiate existence clause on the first premise:
(1) V), Hy ~ Vi, H (assumption)
(2) - (4)Same as in 10

(4) |F| = v, 5 (T'1) + ¢+ C + Py ()
(‘F‘ > (IJV’H(F) +q+ C and CI)VwH(F) > (I)Vl,H(Fl) + @V,H(FQ))

Instantiating existence clause on the first premise , we get vy, Hy, F} s.t.
Fact 1. Vi, H,R,Fte; v, Hi, Fy
Fact 2. v Ngé v
Fact 3. ‘Fl‘ > (I)HI(U1 : A) +p+ C+ @VQ,HI(FQ)

For the second premise:

V) = (Volz = vp]) [PV (e2) (ad.)
VILHL e U ol B (ad)
Z;Fg,x:Alz;,egsB (ad.)
H Ev : A (By Lemma 6 and ?7?)
HiEV,:Ty,x: A (def of F)

Let Vo = (V[z = v1]) [pv(es)

Let g={l € Hy |l ¢ F1 URUlocsvy, m, (e2)}

Instantiate IH with C = C,V = Vo, H = H1, FF = F} Ug, R = R, we get existence clause on the second premise
NTS (1) - (4) to instantiate existence clause on the second premise:

(1) V' H] ~ Vy, Hy (assumption and Fact 2.)

(2) - (4) Same as Lemma 10

(5) |FiUg| > @y, u, (Lo, : A)+p+C



STS |F1| > ¢V2’H1(F27$ : A) +p+C
Have |Fy| > @V, H1(T'y) + @, (v : A) +p+ C (By Fact 3.)

Instantiate the existence clause on the second premise and apply E:Let and we’re done

Case 8: E:Pair Similar to E:Const*
Case 9: E:MatP Similar to E:MatCons
Case 10: E:Nil Similar to E:Const*
Case 11: E:Cons

Vo, H, = cons(z1;22) U 1o, H, (case)
H(lo) = (Vo(x1), Vo(x2)) (admissibility)

Yimxy: Ayt LP(A) l% cons(x1;xe) : LP(A)
Let C € QT, well-formed configuration V, H, R, F s.t.

Voo Ho ~ V,H and |F| > @y (1 : A,z : LP(A) + (g+p+1)+C
Let v=(V(x1),V(x2)),l € F,H = H{l = v}, F' = F\ {l}
(1) V,H,R, F - cons(xq;x2) |} |, H', F’ (E:Cons)
(2) 1, NZ‘:’ l (assumption)
(3|F'| > ®p/(l: LP(A) +q+C

|F| > @y (1 Ayzo s LP(A) + (p+q+1)+C

=®y(l: LPA)+qg+14+C

|F'|=|F|—1>®g/(:LP(A)+q+C

Case 12: E:MatNil Similar to E:Cond*
Case 13: E:MatCons

Vo(z) =1, (ad.)
Ho(lo) = (vg,vg) (ad.)
I =TI z:LP(A) (ad.)
Z;F/,.’I}hIA,J}tZLp(A)|q+:++1GQZB (ad.)
Vo = (Volzn = v), 2 = 0))]) TFv(es) (ad.)
V! H, Fexlv,, H (ad.)
HEV(x): LP(A) (def of )
HEwv,: A, HE v : LP(A) (Inversion on F)
HEV! T xp: Az 0 LP(A) (def of W.D.E)

Let C € QT, well-formed configuration V, H, R, F s.t. V,, H, ~ V,H and |F| > ®y () + ¢+ C
NTF v, H', F' s.t.
1.V,H R, FFelv,H F and

’

H
200 ~gt v
2|F/| > (I)H/(’U : B) —|—q’ +C



Let V(z) =1
H(l) = (vp,vt) (I, ~He | by assumption)
Let V' = (V[zn = vn, 26 = ve]) [Fv(es)
Let g={l€e H|l ¢ FURUlocsy' r(e2)}
NTS g nonempty, in particular, that [ € g
l¢ FUR (I € locsy, g (e) and disjoint({ R, F, locsy g (e)}))
AFSOC I € locsy m(e2)
Then [ € reachy (V'(z")) for some z’ € dom(V")
case 2’ € {xp, 2} :
WLOG let 2’ =z,
But then reachy (V(z))(l) > 2 and set(reach(V(z))) doesn’t hold
case 1’ ¢ {xp, 1} :
z' € dom(V)
x=a (I € reachg (V(z)) and linearCtxt(V, H))
Contradiction, x ¢ domuv (V")

1 ¢ locsyr pm(e2)

Hencel € g
By IH with ¢’ =C,V =V',H = H,R = R, F, = F U g we have the existence clause. NTS the following:
(1) V! ,H,~V' H (assumption)

(2) - (4) Same as Lemma 10
(5) |F1| > ®v: g(T zp s Ay LP(A)+q+p+1+C:

[Fi| = [F Uyl

= [F[ +g] (F and g disjoint)
2 Qv a() +q+C+]gl (assumption)
=@y I,z Az : LP(A)) +q+p+ C+ gl (definition of ®)
=Cy (I ap: Az LP(A) +q+p+1+C (g nonempty)

By existence clause have v, H', F’ s.t.

Fact 1.V, H R, FUgl ey | v, H | F’

Fact 2 .|F'| > ®y/(v: B)+q¢ +C
Apply E:MatCons and we’re done

Case 14: E:Share

V,, H, I share x as x1,72 in €' |} v,, H,, (case)
V,(z) =), (ad.)
Vo = (Vo[z1 = v, 22 = v,]) [PV (e

V! H,t¢e | v, H, (ad)
Tzt A l% share = as z1,%2 ine’ : B (case)
AY Ay Ay, 1 (ad.)
Z;I‘,xl:Ath:Ag%e’:B (ad.)

Let C € QT, well-formed configuration V, H, R, F s.t. V,, H, ~V,H and |F| > ®y y(L,z: A) +q+C
NTF v, H', F" s.t.



1.V,H R,FFel v, H' F" and
2.0, Ng‘:’, v
3|F"| > ®yu(v:B)+q¢ +C
Let V(z) =", L C F,|L| = |[dom(reachy (v"))|, H',v" = copy(H, L,v"),V' = (V[z1 = v/, 22 = 0"]) [Fv (e
F'=F\Lg={le H|l¢ F URUlocsy g (e)}
By IH with C, V', H', R, F’ U g, have the existence clause. NTS the following:
(1) Vy,Ho ~ V', H' (By Lemma 7 and assumption)
(2) - (4) same as lemma 10
(5) |F'Ug|l > ®v: g (D1 Ap,z0 0 Ag) +q+ C
STS (F\L)Ug| > @y g(Tyzq 0 A1, 22 Ag) +q+C
= (IF|=|L]) +|g| = @vr @ (T) + @vr o (21 A1) + @y o220 A2) + g+ C
STS [F| > v g/ (D) + Pvr g (w1 0 A1) + Pyr (22t A2) + |L] + g+ C
= |F| 2@y w()+Qvu(z: A)+q+C (By Lemma 9)
= |F| =z QyuT2:A)+q¢+C (By Lemma 7)

Instantiate the existence clause and apply E:Share, and we’re done

D &.py over-approximates &

Definition 12. A configuration (V, H, R, F') is well-formed if
1. dom(H) C reachg(V)URUF
2. reachyg(V)UR C dom(H) \ F
3. collect(R,reachy(V),H,F) =10

For a context (V, H, R, F'), denote the garbage w.r.t. a set of locations L as collect(R, L, H', F') = {l €
H |l¢ FFURUL}.

Lemma 22. Given a well-formed context (V,H,R,F) and V,H,R,F + e | v,H',F', dom(H') C
reachy(v) U RUF’, reachy(v) UR C dom(H') \ F' and collect(R, reachy (v), H', F") = ().

Now consider two well-formed configurations C; = (Vi, Hy, Ry, F1),Co = (Va, Ha, Ro, F3).

A mapping f : A — P(B) is a partition on B the image of A forms a disjoint union of B (e.g.
Va,y € A, f(x)N f(y) =0 AU f(A) = B). Furthermore, a partition is proper if for any = € A, f(x) # (.
Given a proper partition f, we can choose an arbitrary b € f(a) to be the representation for that part; call
this singlet set {b} rep(a).

A simple corollary is the fact that if Vo, Hy is a linear context (e.g. linearCtxt(Va, Hz) holds), then
[v(D)] = [(reachw, (V1))(1)|, where reachp, (Vi) = W, ciom(v) reachmn, (). In general for a multiset S, when
this holds, we say that 7 is a counting partition for S.

For a partition f: A — P(B), we write the set of equivalence classes as ec(f) = {f(x) | x € A} = f(A),
i.e. the image of f on its domain A.



Definition 13. Let dir be the set {L,R,N}, denoting left, right, and next respectively. We can index values
via directions:

getm (Just({vy,va),L))
gety (Just({v1,v2), R))
gety (Just((v1,v2)),
getm (Just(l),N) = Just(H(l))
gety (Just(l), )
getp(r, )
Let P be a sequence of directions. Extend get to sequence of directions:
findg (v, D :: P) = findg(gety (v, D), P)
findg(v,]]) =v

Call P valid w.r.t. avalue v if findgy (v, P) = Just(v') for some v'. Write Vi (z; P) for fromJust(findg(V(z), P))
given a valid sequence P w.r.t. V(z), and reachy(V(x; P)) for reachy (Vi (z; P)). Given a map m : X —
S(dir) from varibles to valid sequences of directions, Define reachPathy, (X, m) = . x reachy (V(x;m(x))).
Lemma 23. Let Vi, H; ~ Va,Hy. Then for all x € dom(Vy) and sequence of directions P, FEither
findg, Vi (z), P) = findm,(Va(z),P) = None or findg, (Vi(z),P) = vi, findm,(Va(z),P) = ve and

1
U1 ~p, V2

Proof. Induction on length of P and then H v — a : A. O

Definition 14. A configuration Co = (Va, Ha, Ro, F») is a copy extension of another configuration C; =
(Vi,Hy, Ry, Fy) iff

1. I/"17]{1 ~ V27H2

2. There is a proper partition v : dom(Hy) \ F1 — P(dom(Hz) \ F:) such that for all I € dom(v),
(D] = reachm, (Vi)(1) + Ra(1)

3. foralll € dom(), z € dom(V7), valid sequence of directions P w.r.t. Vi (z), |reachp, (Va(z; P))Ny(1)| =
reachg, (Vi(z; P))(1).

4. for all [ € dom(y), |v(I) N Re| = R1(1)

5. 1Rl = |Fo] 4+ @ ()], where @(3) = Upeeuy) C \ 7ep(C)
Write this as C; < Cs.

Note that = is reflexive. Now the key lemma:

Lemma 24. Let (Co,¢e) be a linear computation. Given that Co FP e | v, H' | F’, for all well-formed
configurations C1 such that C1 < Ca, there is exists a triple (w,Y’, M) € Val x Heap x Loc and ' : dom(Y")\
M’ — P(dom(H')\ F') s.t.

1. C Fe e L w, Y, M’

2. v N{f,/ w

3. 7' is a proper partition, such that for alll € dom(v'), |7 (1)| = reachy, (w1)(l) + S(1)
4. For all P wvalid w.r.t. v, |reachg (findg (v; P)) N~'(1)| = reachy(findy (w; P))(l)
5

Sledom(®),Y(ONR=~()NR



6. |M'| = |F|+]o ()

Lemma 25. Let‘/g, HQ, RQ, FQ <Y ¢ ll v, H,, F/, and Vl,Hl, Rl,Fl = ‘/Q,HQ, R27F2 because (7,"}/,’/], - 7)
Then the following hold: for all I € dom(Hy) \ F1, X C dom(V), m : X — S(dir), I € dom(y), v(I) C
collect(Ryg, Ca, reachPathv, m, (X, m), Ha, F3) iff | € collect(Ry, reachPathy, g, (X, m), Hy, F1).

Proof. —

(1) N (F> U Ry UreachPathy, m,(X,m)) =0
NTS | ¢ Fy U Ry Ureachy, (X)
(1)1 ¢ Fy
(2)1 ¢ Ry
Know y(I) N Ry =0
Iy(1) N Ry| = Ry (1) =
l¢ Ry
(3) | ¢ reachPathy, p, (X, m)
Know (1) N reachPathy, mg,(X,m) =0
Let z € X
~v(1) Nreachg, (Va(z;m(x))) =0
() 1 reachur, (Va(s m(z)))| = reachs, (Vi(a; m())) (D)
reachg, (Vi(z;m(x)))(1) =0
reachPathy, g, (X,m)(I) =0
l ¢ reachPathy, m, (X, m)
Thus, | € collect(R1,reachPathy, g, (X, m), Hi, Fi)

1 ¢ (F1 U Ry UreachPathy, g, (X, m))
NTS (1) N (F2 U Ry U reachPathy, m,(X,m)) =0
(1) 41y F =0
(2)y() "Ry =0
Iv() N Rz| = Ra(1)
=0
YO NRy =10
(3) v(1) NreachPathy, m,(X,m) =0
Let z € X
[v(1) Nreachp, (Va(w;m(x)))| = reachm, (Vi(z;m(x)))(1)
=0
~(1) Nreachy, (Vo(z;m(z))) = 0
v(1) NreachPathy, m,(X,m) =0
(1) N (Fy U Ry U reachPathy, g, (X, m)) =0
(1) € collect(Rz, reachPathy, m,(X,m), Ha, F?)

(definition of clean)

(assumption)

(condition 4. of <)

(condition 3. of =)

(assumption)

(condition 4. of =)

(assumption)

(condition 3. of =)

(assumption)

O

Lemma 26. Given a proper partition v : dom(Y) \ M — P(dom(H) \ F), equivalent values v ~ w, and

the following:



1. LCF

2. |L| = |dom(reachy (v))]
8. H',v" = copy(H, L,v)
4 F'=F\L

there is a proper partition ' : dom(Y)\M — P(dom(H)\F’) s.t. |y ()] = |v(D)|+reachy (w)(1), |reachy (v)N

V(D] = |reachy (v') Ny (D)] = [reachr (v) N y(D)].
Proof. Induction on copy.
Now the proving £copy over approximates Egc:

Proof. Induction on the evaluation judgement.

Case 1: E:Var Trivial

Case 2: E:Const* Trivival

Case 4: E:App Similar to E:CondT
Case 5: E:CondT

V,H,R,F o if(x;ei;es) |} v, H' | F'

Let W,Y,S,M < V,H,R, F

Let W =W rdom(V’)

Let j={leY|l¢ MUSUlocsw,y(e1)}

NTS WY, S,MUj <=V H R FUg

(1) W.Y~V' H

(2) NTF a proper partition v : dom(Y) \ (M U j) — P(dom(H) \ (F Ug))
Let v'(1) = laom)\(vuj) (1) \ g
First, show 7' is a partition
Let I,I" € dom(Y) \ (M U j)
Y ()N (1) =0
V(dom(Y)\ (MU 1)) = v(dom(¥) \ (MU )\ g
= L] @\ ]r)\g

O

(case)

(WY ~V,H)

(7y is partition)

ledom(Y)\M lej

= ((dom(H)\ F)\ (]~ \ ¢ (y is partition)
lej

= (dom(H)\ F')\ g (Lie; v(1) € g by lemma 4)

=dom(H)\ (FUyg)
Hence 7' is a partition

~' is also proper:

Let I € dom(Y) \ (M U j)
Y () =~v\g
AFSOC~(l)C g

lej

(By Lemma 4)



Contradiction since assumed [ ¢ j
Now, NTS |¥'(1)| = reachy (W')(1) + S(1)
Let I € dom(y")

Y (1) =~

)\ g

Y (D] = D] = (1) Nyl

= reachy (W)(1) + S(I) —
g =reachy(V

() Nyl
ldom(VI\FV (e1))

Iv(1) N g| = reachy (W laommw v (er)) (1)

Thus, [7/(1)| = reachy (W)(1) +
=reachy (W [py(e;))(l) + S(1)
= reachy (W')(1) + S(1)

(3) Letl e dom(y),x € dom(W'), P valid sequence w.r.t. W’(z). NTS
N+ (1) = reachy (W'(z; P))(1)
(Y1) \ 9)I = reachy (W' (x; P))(1)

|reachy (V' (z; P))

STS |reachy (V' (x; P)) N
P)) =0
P))n

g Nreachy (V' (z;

|reachy (V' (z

|reachy (V'
(

= reachy (W (x;

|reachy

V(x; P
P

(z; P)) N

nn
)

(v

v(1)
(1)

= reachy (W'(z; P))(1)
(4) S Cdom(Y)\ (MUj)since SNj=0

Let I € S. NTS |y/(I) N R| =
J\Ng)NR

STS |(v(!

(YO\g)NnR=~(1)N
=Nk

()N ER|

0

(5) NTS |MUj| =

STS [M|+ |j| =

S()

(R\g)

S(1) — reachy (W [aomw\Fv (e.))(l)

S()

[Fugl+|o ()]

By assumption , |M| =

First, we know that g = (|_| ~(1))

Fl+ gl + 1@ ()]

IFl+ @ ()]
STS [jl+ 1@ (W] =gl +]2 ()]
NTF a bijection f:j® @(y) = gU (v

lej

U L for some L

Let C1 = {y(l) |l € j},Ca = ec(y) \ C1

Clearly, © (v) =

Let D1 =

We define the bijection f by parts: fi:j® Dy — |_| C,fa: Dy — LUK

fl(x):{

c

e

ceCy

rep(y(1))
l

|_| C\rep(C)U

€

rep(C)
x = (inl, 1)
x = (inr,1)

CeCq

Dy = |_| C\rep(C)

CeCq

|_| C\ rep(C

(D\ g)l = [(reachy (V' (x; P)) \ g) Ny ()]
|

)

CeCy

(definition)

(condition 3. of =)

(definition of g)

(condition 3. of =)

(gNR=10)
(condition 4. of =)



Clearly, f1 is a bijection, and |j| + |D1| = | |_| C|
ceC
To avoid the problem of maintaining a single representative for a class (which might be collected),
note the following:
|Cal = ec(m) \ {~(1) | I € 5}
= lec(¥ Taomy)\(mus))|
= lec(v")]
Meaning that Co has the same number of classes as 7' (note these classes might be different)
Since both «v,~" are proper partitions we have the following:
Do = [Luo()ift| | | C\rep(@)|=|Lu || C\rep(O)]iff| | | Cl=|Lu || C]
Cec, Ceec(y') Cec, Ceec(y’)
In fact, the latter two sets are equal:
let '€ | | C
CeCs
'e H\F (Def. of partition)
casel € g

Ul |y (Def. of Cs)

lej
I'elL (Def. of g)
'eLu || c
Ceee(v')
case ' ¢ g
I'e H\ (FUg)
Exists C € ec(y/) s.t. ' € C (Def. of partition)
re || ¢
Ceec(v’)
'eLu || c
Ceec(v’)
For the other direction, let I’ € L LI |_| C
Ceec(v')
case ' € L
'e H\F (Def. of L)
Exists C € ec(y) s.t. I' € C (Def. of partition)

e ||

Ceec()
I'e H\ (FUg) (Def. of partition)
l'cH\F
Exists C € ec(y) s.t. ' € C (Def. of partition)

e || c©

Ceec(y)



Hence we show that |Ds| = |L U @(y')|, and together with the previous equality, [j| + | @ (7)] = |g9]| + | @ (7/)]
Thus we have W'Y, S, FUj < V' H,R,FUg
VI H R FUg F°® ¢ v, H F (case)
By IH on (V',H,R, F Ug), we have (w,Y’, M’ ~") such that
(1) W'.Y,S,MUjFe; Jw,Y' M
(2) v~ w
(3) +' is a proper partition, and |y (1)| = reachy(w)(l) + R(l)
(4) Y"ONR=~(1)NR
YONR=(O\gNR=~0NR
(5) M) =F|+]| (")
Apply F:CondT to (1), we are done.

Case 6: E:CondF Similar to E:CondT
Case 7: E:Let

V,H, R, F 5 let(ey;x : T.e3) || vg, Ho, Fy (case)
W, Y,SSM < V,H,R, F (assumption)
Vi,H, R, F 5 ey || vy, Hy, Fy (admissibility)

Let Wi =W [pv(e,), S’ = S W locsw,y (lam(z : T.€2))
NTS W1,Y,S'.M < Vi,H,R,F

(1) Wi,Y ~Vi,H (condition 1. of <)
(2)a. -~ is a proper partition (condition 2. of <)
(2).b NTS |y(I)| = reachy (W')(1) + S’(1)

[v(D)] = reachy (W)(1) + S(1) (condition 2. of <)

= Teachy( )(l) + T@aChy(W rFV(eg)\{z})(l) + S(l)
= reachy (W')(1) + S’ (1)
(3) Let. | € dom(y),x € dom(W'), P valid sequence of directions. Have

lreachy (V' (z; P)) N~y(l) = reachy (W'(z; P))(1) (condition 3. of <)
(4).a NTS S Cdom(Y)\ M

S Cdom(Y)\ M (condition 4. of =)

locsw,y (lam(z : T.e2)) C reachy (W) C dom(Y)\ M (well-formed configuration)

S" Cdom(Y)\ M
(4).b Letl e S'.NTS |y()NR'|=5(l)
STS |y() N (RUreachy (FV (e2) \ {z})| = S(I) + reachy (FV (e2) \ {2})(])
STS |(v() N R) U (v(I) Nreachu (V(EV (e2) \ {z})))| = S(I) + reachy (W(FV (e2) \ {}))(])

STS |(v(1) N R)|[ + [v() Nreachy (V(FV (e2) \ {z}))| = S(1) + reachy (W(FV (e2) \ {z}))(l)
(RNreachy(V(FV(ea) \ {z}))

— )
STS |v(l) Nreachy (V(FV (e2) \ {z}))| = reachy (W (FV (e2) \ {z}))() (condition 4. of <)
STS |y(1) N U reachy (V(z'))| = ( L-ﬂ reachy (W(x')))(1)
z'€FV (e2)\{z} z'€FV (e2)\{z}

Let 2’ € FV(ez) \ {z}
Iv(1) Nreachy (V(2'))| = reachy (W (2"))(1) (condition 3. of <)



(5) Have |M|=|F|+]|0 (v)] (condition 5. of =)
By IH on first premise, there is (w1, Y1, My) and 7 s.t.
Fact 1LW',Y, 8", M % e |l wi, Y1, M,
Fact 2.v NY w
Fact 3.y, is a proper partition, such that for all [ € dom(v1),

(D] = [reachy, (wi)(D] + S(1)
Fact 4.For all P,|reachp, (findg, (v1; P)) Ny1(1)| = reachy, (findy, (wi; P))(1)
Fact 5.1 (1) N R' =~() N R and S’ C dom(Y1) \ M,
Fact 6.[My] = |[Fi| + ] @ (n)]
Vo, Hy,R,F1 Ugt es | vo, Ha, F (admissibility)
Let Wo = (W(z = w1]) [pv(e,),J = {l € Hi |1 ¢ M1 US Ulocsw,,y,(e2)}
NTS Wa, Yy, 8, My Uj < Vo, Hy, R, Fy Ug
(1) Wa, Y1 ~ Vo, Hy (condition 1. of < and Fact 1)
(2) Let y2 : dom(Y1) \ (M1 Uj) = P(dom(Hy) \ (F1 Ug)) be defined by v(1) =11 (1) \ g

NTS |y2(1)] = reachy, (W2)(1) + S(I)

STS | (D] = |y (1) N g| + reachy, (Wa) (1) + S(1)

case z € FV(es) :

g = collect(R',v1, Hy, Fy)

=0 (By 22)
Iy (D)] = reachy, (wi)(1) + S'(1) (Fact 3)
= reachy, (w1)(l) + reachy (W [py (e)\{z}) (1) +S(1)

= reachy, (W2)(l) + S(1)
case z ¢ FV(ez) :

g = collect(R',v1, Hy, Fy) Ureachy, (v1)

= reachp, (v1) (By 22)
[v1 (1) N g| = reachy, (wq) (Fact 3)
STS | (D)| = reachy, (w1)(1) + reachy, (W) (1) + S(I)
= reachy, (w1)(l) + S’(1) (Fact 3)
= reachy, (w1)(1) + reachy (W [ rv (e fa}) (1) + S(1)
= reachy, (w1)(l) + reachy, (W [ py(e,)\(23) () +S() (By 6)

= reachy, (W2)(l) + S(1)
(3) Letl € dom(y2),x" € dom(Ws), P valid sequence w.r.t. Wa(z"). NTS
[reach, (Va(z'; P)) N2 (1)| = reachy, (Wa(x'; P))(1)
case 7' =1 :
[reachp, (Va(z'; P)) N2 (1)| = reachy, (Wa(z'; P))(1) (Fact 4)
case 1’ # 1 :

|reachp, (Va(z'; P)) N ()| = reachy, (Wa(z'; P))(1) (stability and condition 3. of <)

|reachy, (Va(z'; P)) Ny1(1)| = reachy, Wa(z'; P))(1)  (reachm, (Vz(2'; P)) C R’ and Fact 5.)

[reachs, (Va(z'; P)) Ny (1) = reachy, (Wa(z'; P))(1) (gNR =0)
(4).a NTS S C dom(Yy)\ (M Uj)

S" C dom(Y7) \ M, (Fact 5.)



S Cdom(Yr) \ My
Snj=0
S Cdom(Yy)\ (M; Uj)
()b Let 1€ S. NTS |yo(l) N R| = S(I)
[v2(t) N R = |(m() \ g) N R|
= [n () NR|
= [v()) N R|

(gNR=10)
(Fact 5.)

=5() (condition 4. of <)

(5) NTS [MyUj|=[FiUg[+@(v2)
Exactly the same as in E:CondT

Thus W, Y1, S, M1 Uj < Vo, Hi,R, F1 Ug

By IH on the second premise, we have (ws, Y2, M3) and 3 s.t.

Fact 1'.Wa, Y1, 8, My U j F& ey L wo, Ya, My

Fact 27.v9 N% Wa

Fact 3’.y3 is a proper partition, such that for all I € dom(~s3),
s(D)] = [reachy, (w2)(D)] + ) + 115D

Fact 4’.For all P, |reachp, (findm,(ve; P)) Ny3(l)| = reachy, (findy, (wa; P))(1)

Fact 5.v3(1) N R =72(1) N R and S C dom(Y3) \ M,
YO)NR=n)NR

(gNR=10)

=~v()NR (Fact 5. from first premise)

Fact 6".|Ma| = |[F2| + [ © (v3)]
Apply F:Let to (1), we are done.

Case 8: E:Pair Similar to E:Const*
Case 9: E:MatP Similar to E:CondT
Case 10: E:Nil Similar to E:Const*
Case 11: E:Cons

V,H,R,F F cons(x1;z2) 4 I, H', F\ {l}
W,Y,S,M <V,H,R,F

Let w = (W(x1), W(x2))

Let me€ M,Y' =Y {m — w}

(1) V,H,R,F + cons(z1;22) 4 m,Y', M \ {m}
(2) v~y w

(3) Let v" : dom(Y")\ M’ — P(dom(H') \ F') be defined by ~v'(I') = vy[m — {I}](I')

(case)

(assumption)

(F:Cons)

(assumption)

~' is a proper partition (v proper and [ ¢ dom(H) \ F)

NTS |5/ (I")] = reachy(m)(l') + S(I")
STS |y[m — {I}(I")| = reachy(m)(1") + S(I')
case ' =m:
[y[m = )] = {1} =1
reachy(m)(I') + S(I') = 1 + reachy (w1 )(m) + reachy (ws)(m) + S(I")



=14 S5(m)
=1

case I' £#m :
[y[m — {1}(1")] = |7 ()] = reachg (W)(1") + S(I') (condition 2. of <)
= reachy: (w1)(l') + reachg (w2) (") + S(U')
={m — 1}(") + reachy (w1)(I") + reachy: (w2)(I') + S(I")
= reachg (m)(I') + S(I')

(4) Let I € dom(¥'), P be a valid path w.r.t. I. NTS |reachy (findy: (I; P)) N~'(I")| = reachy(findy:(m; P))(l")
case P = |

|reachg (findg: (1; P)) N~'(I")| = |reachg (1) N~'(I')]
= |({l} Ureachy (v1) Ureachy: (v2)) N~ (I')]
= {1} Ny(1")| + |reachy (v1) N~ (I")] + |reachy: (ve) N~ (1')]
= 1y—m + reachy (w1)(I") + reachy (w2)(l")
= reachy:(m)(l")
= reachy(findy (m; P))(l")
case P=N: P
|reachy: (findg (I;N 2 P')) N+ (I")| = |reachp: ((vi,v2)) N (')
= reachy: (findy:(m; P))(I")
(5) NTS S C dom(v")
Let I' € dom(y'). NTSv(I') NnR=~()NR
STS yfm = {I}](I) "R = ~(') N R
case ' =m:
Vm = A{m)NR={} N R
=0
=y")NR
case I' #m :
Ym = {Bm)NR=~)NR
(6) NTS |M'] = || + 2(v)
|M'| = [M] -1
[F'|=[F| -1
2 (7) = o(m — {1}])
=JC eec(v)C\ (rep(C))
= ({\{HuJC € ec(r)C\ (rep(C))
— 0 € eel)C\ (rep(C)
=JC eec(n)C\ (rep(0))
= o)
STS [M|—1=|F| -1+ ()
Have |M| = |F|+ @(y)

(M Nreachy (W) = 0)
(MNS=10)

(condition 3. of =)

(similar to above)
(condition 4. of =< and dom(y) C dom("))

(well-formed configuration)

(well-formed configuration)

(condition 5. of =)

Case 12: E:MatNil Similar to E:Cond*



Case 13: E:MatCons

V,H,R,F F» matchx {nil < e | cons(zp;x;) < eg} I v, H', F' (case)
W,Y,S,M <V,H R, F (assumption)
VI HRFUg Fe | v,H F (admissibility)

Let W =W [dom(\//)

Let j={leY|l¢ MUSUlocsw y(e2)}

NTS W',Y,S,MUj <V’ ,H,R,FUg

Let o : dom(Y)\ (M U j) — P(dom(H) \ (F U g)) be defined by v'(I) = v(I) \ g

()WY ~V' H (similar to E:CondT)
Let W(z) =m

H(m) = (wp, w), vp N{/I Wh, V¢ N}I_/I Wy ((1)
(2) ¥'(1) is a proper partition . (similar to E:CondT)

Let I € dom(v)
Now, NTS |¥'(I')| = reachy (W')(1) + S(I')
Consider |y(I') Nreachy (V(x))]
— ") A {1} + 1 (F) A reachss(wn)| + (E) A reachss (v
= reachy (W (z))(l") (condition 3. of <)
= ({m — 1} Wreachy (wy) & reachy (wy))(l")
= {m  1}(') + reachy (wp)(I") + reachy (w;)(I")
Note |y(I") N reachy (vy)| = [v(I') Nreachy (V (z; [N, L]))]
= reachy (W (x; [N, L]))(1")
= reachy (wp)(l")
Similarly, [y(I") Nreachy (vy)| = reachy (wp)(l')
Thus |y (1) A 1)) = fm > 1}(F) = Loy
Back to the NTS:
YTy =~1")\g (definition)
H()] = h(0)] ~ ) gl
= reachy (W)(I') + S(I') = |v(I') N g|
case {zp,z,} C FV(eg):
g = {1} Ureachug(V Taom(V)\(FV(es)Ufz})) (definition of g and 10)

() Ngl = (v N {1} U (v (1) Nreachsr (V Taom(v(FV (es)ufa}))]
(condition 3. of =)

Thus, |v' (') = reachy (W)(I') + S(I') — (Ly=pm + reachy (W [aom@w\#V(ea)ufap) (1)

= reachy (W gy (es)ufa}) () + SU) = Ly—p,
= reachy (W gy (e,))(I') + reachy (m)(I') + reachy (wy,)(I') + reachy (w)(I') + S(I') = Ly—m
= reachy (W gy (e,)) (") + reachy (wy)(I') + reachy (w)(I") + S(I')
= reachy (W')(l') + S(I')
case zj, € FV(e2),x: ¢ FV(ea) :
g = {1} Ureachug(V aom)\(FV(es)ufa})) U reachy (ve) (definition of g and 10)

Iy Ngl = [y() N {4 v (') Nreacha (V Taomvn\(Fv(es)ufah))| + [7(1) Nreachs (vy)]
(condition 3. of =)



= Ly—m + reachug (V laomv)\(Fv(e2)ufz})) (') + reachy (we) (1) (condition 3. of <)
Thus, | ()] = reachy (W)() + S(') — (L + reachy (W Laomw(rv(enyotey) (1) + reachy (we)(D)
= reachy (W gy (e,))(I') + reachy (m)(I') + reachy (wy)(I') 4+ reachy (w)(I') + S(I') = Ly—p, — reachy (w)(1))
= reachy (W gy (e,))(I") + reachy (wy)(I') + S(I')
= reachy (W')(I') + S(I")
case x; € FV(ea),xp ¢ FV(e2) and {xp,x:} N FV(e2) =0 : symmetric to above
(3) Let I' € dom(v'), 2" € dom(W'"), P valid sequence w.r.t. W’(z'). NTS
[reachy (V' (z"; P)) N~/ (I')| = reachy (W'(z'; P))(I')
case 7’ ¢ {xp, 2} :
reachn (V' (s P)) 1/ ()] = reachs (V' (&' P)) 1 (+(0) \ g)
= |reachy (V'(z'; P)) n~(l")] (g Nreachy(V'(z)) =0)
= reachy (W'(z; P))
= reachy (W (x; P))

)N
(@)
)
case ' =,
[reachy (V' (2" P)) N~/ (I')| = |reachy (find g (vn, P)) N~ (1")]
|reachy (findyg (v, P)) N (v(I')\ 9)]
|reachy (findg (vn, P)) N~y(l')] (gNreachy (V') =0)
= |reachy (findg (I,N = L= P))n~(")]
= |reachy (V(z,N:: L= P))n~y(l")|
= reachy (W(x,N :: L :: P))(I") (condition 3. of <)
= reachy (findg(m,N = L :: P))(I')
= reachy (findg (vy, P))(l")
= reachy (W'(zp; P))(l")
(4) Similar to E:CondT
(5) Similar to E:CondT
Apply IH and F:MatCons and we're done

Case 14: E:Share

V,H,R,F < share x as 21,20 ine | v, H', F’ (case)
W)Y, S,M <V,H,R, F (assumption)
VI H R F Ug FelvH' F (admissibility)
Let W(x) = v’

v ~Y (condition 1 of. <)

Let W' = (Wlzy = w', 22 = w']) [Fv(e)
Let j={leY|l¢ MUSUlocsw y(e)}
NTS W', Y,S,MUj<V' . H,R,FUg
Let 7' : dom(Y) \ (M Uj) — P(dom(H) \ (F U g)) be defined by 7'(I) =~v(1) \ ¢
(1) WY ~V' H (Similar to E:CondT)
(2) Have proper partition 7' : dom(Y)\ M — dom(H') \ F’ (By 26)
Let j={le H|l ¢ MUSUlocsw y(e)}
Let v"(1) : dom(Y) \ (M U j) — dom(H') \ (F' Ug) by defined by v"(1) =+'(l) \ g
~" is a proper partition (Similar to E:CondT)



Let I € dom(vy")
Now, NTS |v"(1)| = reachy (W')(1) + S(')
Y1) =+ 1)\g (definition)
Y'Ol=1W Ol =Ny
= [y + Liereachy (wy — 1V () N gl
= reachy (W)(l) + S(l) + reachy (w')(1) — |7/ (1) N g

case {z1,22} C FV(e):
g = collect(R,reachy (V),H, F) =) (well-formed configuration)
IV"(1)| = reachy (W)(1) + S(1) + reachy (w')(1) (By 26)
= reachy (W')(I) + S(I)

case x1 € FV(e),xa & FV(e):

g = collect(R,reachy (V), H, F) Ureach’y (v') = reachy (v') (well-formed configuration)
V' ()| = reachy (W)(1) + S(1) + reachy (w")(1) — |¥'(I) N reachgy (v")|
= reachy (W)(l) + S(I) + reachy (w')(1) — |v(1) N reachy (v')| (By 26)
= reachy (W)(l) + S(1) + reachy (w')(1) — reachy (w')(l) (condition 3. of <)
= reachy (W)(1) + 5(I)
— reachy (W)(1) + S(1)

case x € FV(e),z1 ¢ FV(e) and {z1,22} N FV(e) = () : symmetric to above

(3) - (5) Similar to E:MatCons
Applying the TH then F:Share, and we’re done.
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