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Type-Guided Worst-Case Input Generation

DI WANG, Carnegie Mellon University, USA
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This paper presents a novel technique for type-guided worst-case input generation for functional programs.

The technique builds on automatic amortized resource analysis (AARA), a type-based technique for deriving

symbolic bounds on the resource usage of functions. Worst-case input generation is performed by an algorithm

that takes as input a function, its resource-annotated type derivation in AARA, and a skeleton that describes

the shape and size of the input that is to be generated. If successful, the algorithm ills in integers, booleans,

and data structures to produce a value of the shape given by the skeleton. The soundness theorem states that

the generated value exhibits the highest cost among all arguments of the functions that have the shape of the

skeleton. This cost corresponds exactly to the worst-case bound that is established by the type derivation. In

this way, a successful completion of the algorithm proves that the bound is tight for inputs of the given shape.

Correspondingly, a relative completeness theorem is proved to show that the algorithm succeeds if and only if

the derived worst-case bound is tight. The theorem is relative because it depends on a decision procedure

for constraint solving. The technical development is presented for a simple irst-order language with linear

resource bounds. However, the technique scales to and has been implemented for Resource Aware ML, an

implementation of AARA for a fragment of OCaml with higher-order functions, user-deined data types, and

types for polynomial bounds. Experiments demonstrate that the technique works efectively and can derive

worst-case inputs with hundreds of integers for sorting algorithms, operations on search trees, and insertions

into hash tables.
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1 INTRODUCTION

An important characteristic of a computer program is its resource requirements, that is, the amount
of resource such as time, memory, power, etc. that the program needs to execute. Analyzing
the worst-case resource usage of a program has many applications such as inding performance
bottlenecks, detecting algorithmic complexity vulnerabilities, and identifying information leaks
through side channels.

Besides an analysis of the worst-case behavior, it is often desirable to obtain speciic inputs such
that executing the analyzed program on these inputs exhibits the worst-case performance. For
instance, consider algorithmic complexity attacks where an adversary can construct inputs that
result in unexpected space or time usage that can break or slow down critical software systems.
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13:2 Di Wang and Jan Hofmann

As emphasized in DARPA’s STAC program [Website 2015], worst-case inputs are instrumental for
programmers to understand what could trigger the unexpected behavior and ix the problem to
improve performance. To give a concrete example, the PHP community noticed a Denial-of-Service
vulnerability [Website 2011] that has been ixed [Website 2012b] after an analysis found that it was
based on hash collisions [Website 2012a].
Despite of their usefulness, manual construction of worst-case inputs can be cumbersome,

because (i) programs can be complex, large, and rely on unfamiliar or unavailable library code,
(ii) the worst-case inputs do not seem to follow any universal pattern, e.g., a worst-case quicksort
requires speciic ordering [McIlroy 1999] while a worst-case hash table requires maximal number
of collisions [Crosby and Wallach 2003], and (iii) even if a candidate input is present, it can be still
diicult to prove the input does exhibit the worst-case resource usage.
As a result, automatic methods for worst-case input generation are highly desirable and have

received a lot of attention. On the one hand, there is a large ield of fuzz testing [Forrester and
Miller 2000; Godefroid et al. 2008] and symbolic execution [Godefroid et al. 2005; Sen et al. 2005].
Combinations of these methods have been recently studied for dynamicworst-case analysis [Burnim
et al. 2009; Noller et al. 2018; Petsios et al. 2017]. These dynamic approaches are quite universal in the
sense that they can be applied to arbitrary programs implemented in a widely used programming
language such as Java, but they usually do not formally guarantee that the resulting input exposes
the worst resource usage. On the other hand, there is an active community that employs static
methods such as type systems [Hofmann et al. 2017; Jost et al. 2010] and abstract interpretation
[Albert et al. 2011; Gulwani 2009] to compute upper bounds on the worst-case resource usage.
These static analyses provide sound resource bounds, but they do not generate a concrete witness
to show the derived resource bound is tight.

In this paper, we develop a novel type-guided worst-case input generation algorithm for a purely
functional fragment of Resource Aware ML (RaML) [Hofmann et al. 2017], a resource-aware version
of a subset of the functional programming language OCaml that features higher-order functions
and user-deined data structures. Based on automatic amortized resource analysis (AARA) [Hofmann
and Jost 2003], RaML infers concrete multivariate-polynomial upper bounds, parametrized with a
resource metric, as functions of sizes of the inputs. Our algorithm takes in a RaML function f of
type A→ B along with its resource-annotated typing derivation and a irst-order input skeleton of
type A, which speciies the shape of the input (e.g., the length of a list),1 and then either produces a
concretization of the skeleton (e.g., a concrete list with the speciied length), which is guaranteed
to expose the worst-case resource usage of the function f , or reports a generation failure. Our
algorithm also enjoys relative completeness, in the sense that if the inferred bound in RaML is tight
for an input skeleton (i.e., there does exist a concretization of the skeleton that exhibits the resource
usage exactly as the inferred bound), our generation algorithm always succeeds.2

From the perspective of automatic resource analysis, our work also mitigates a longstanding issue
with current techniques for worst-case resource bound analysis. Existing analysis techniques [Albert
et al. 2015; Brockschmidt et al. 2014; Carbonneaux et al. 2017; Gulwani et al. 2009; Hofmann and
Jost 2003; Kincaid et al. 2017; Sinn et al. 2014] are sound and the derived bounds are thus always
upper bounds on the worst-case behavior. However, there does not exist any guarantee on the
tightness of the result. That includes the constant factors in the bounds as well as the asymptotic
behavior. As a result, users often ind it diicult to interpret the result of the analysis. With this
view, our result can be seen as a way of automatically proving that a bound derived by RaML is
tight for inputs of a given shape or size. From the relative completeness result follows also the

1 We focus on irst-order inputs in the sense that we do not consider the generation of an unknown function in this paper.
2 In fact, our generation algorithm is complete modulo constraint solving. See ğ5 for details.
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Type-Guided Worst-Case Input Generation 13:3

other direction: If we use an oracle for satisiability and are not able to generate a worst-case input
then the derived bound is not tight for the inputs described by the given skeleton.

A key challenge in the development of the worst-case input generation is to ensure soundnessÐfor
a given input skeleton, the generation result must expose the worst resource usage among all
possible concretizations of the skeleton. It is intractable to compare the generation result with all
other concretizations, because it usually requires exploration of the space of all concretizations, the
number of which could be ininite, or enumeration of all the execution paths in the program, the
number of which could be exponential in the size of the input. To address this challenge, we need
to develop a mechanism to generate a worst-case input without exploring the complete space of
candidate concretizations.

The other challenge is to exploit compositionality during the input generationÐin order to scale
the worst-case input generation to large input skeletons, it is usually more eicient to generate a
worst-case input by composing its generated subparts. For example, to generate a worst-case input
for a recursive function, it seems natural to generate a worst-case input for each recursive call, and
then combine them to generate a worst-case input for the function body. However, combining the
results from the recursive calls can be nontrivial: diferent calls can involve the same fragment of
the input and the recursively generated results might not be compatible.
To address the irst challenge, we deine symbolic input skeletons and develop a generation

algorithm based on symbolic execution, which searches the space of all execution paths of a program
and collects path constraints that suices for a concretization of the input skeleton to trigger the
worst-case resource usage. The major novelty of our generation algorithm is that it is type-guidedÐ
it makes use of the typing derivation derived by RaML to guide the search as well as prune the
search space. RaML’s type system is based on amortized analysis, in the sense that it speciies the
potential functions before and after the evaluation of a subexpression to account for resource usage.
Because RaML derives upper bounds on resource usage, these potentials are conservative and allow
for potential waste. If such waste occurs then the corresponding path cannot coincide with the
derived upper bound. Our type-guided generation algorithm utilizes the resource-annotated typing
derivation to detect potential waste as early as possible to prune partial executions that cannot be
extended to expose the resource usage indicated by the derived worst-case bound.

To address the second challenge, we propose the novel concept of compositional input generation

and devise two search heuristics based on the concept. First, we describe uniform execution, which
corresponds to programs that have worst-case inputs that always execute the same branch of each
conditional expression. Second, we introduce skeleton similarity, which corresponds to recursive
functions that have worst-case inputs that execute the same path in the function body for all calls
to itself with inputs of the same shape. Note that skeleton similarity is more general than uniform
execution and includes for instance alternating shapes in recursive calls.

We evaluate our type-guided worst-case input generation algorithm on more than 20 case studies,
including time usage for sorting algorithms, operations in search trees, etc., memory usage for
list operations, and customized resource metrics such as the number of collisions for hash tables.
The experiments show that our algorithm is able to derive nontrivial worst-case inputs, as well as
scale to large input skeletons in some of the case studies, e.g., sorting algorithms with hundreds of
integers.

Contributions. Our work makes four main contributions.

• We develop a novel resource-parametric type-guided worst-case input generation algorithm
for a considerable fragment of purely functional RaML.
• We prove the nontrivial soundness and relative completeness of our generation algorithm.
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let rec lpairs l = match l with

| []→ []

| x1 :: xs→ match xs with

| []→ []

| x2 :: xs’→ if (x1:int) < (x2:int) then (x1, x2) :: lpairs xs’ else lpairs xs’

Fig. 1. The function lpairs will serve as a running example in this paper.

• We propose novel concepts about compositional worst-case input generation, as well as
devise and prove the correctness of two search heuristics to improve scalability.
• We implement our generation algorithm in the existing RaML system that features higher-
order functions, user-deined data types, and polynomial resource bounds, and evaluate its
efectiveness and eiciency on a broad suite of case studies.

2 OVERVIEW

In this section, we illustrate our type-guided worst-case input generation algorithm using a simple
example. The function lpairs in Fig. 1 collects adjacent ordered pairs of integers. For example, the
expression lpairs([1, 2, 3, 4]) evaluates to [⟨1, 2⟩, ⟨3, 4⟩] and lpairs([2, 1, 3, 4]) evaluates to [⟨3, 4⟩].
We write the type of the function as L(int) → L(int × int), where→,× are the standard function
and product types, respectively, and L(T ) is the type of lists with elements of type T . We want to
generate inputs for the function such that it exposes the worst heap-space usage. In this example,
we use a slightly diferent memory model from OCaml’s and assume each datatype constructor
creates a boxed value with a header of length 2, as well as a tuple only consumes the same amount
of resources as its length. Speciically, we assume a nil-node (i.e., an empty list) consumes 2 units
of resource, a cons-node (i.e., a list constructed by a head element and a tail list) consumes 4 units,
a pair constructor consumes 2 units. We do not consider garbage collection.

Resource Bound Analysis. First of all, we use RaML to compute an upper bound on the worst-
case heap space usage, as well as the corresponding typing derivation that our input generation
algorithm demands. RaML derives a linear bound (2 + 3M) for the function lpairs, whereM is the
number of cons-nodes of the argument, i.e., the length of the input list.
The resource analysis in RaML is based on the potential method of amortized analysis [Tarjan

1985]. The intuition is to introduce potential functions that depend on data structures, and the
potential at a program point should be suicient to pay for the cost of the next evaluation step
as well as the potential at the next program point. In RaML, a set of ixed potential functions is
ixed for every data type [Hofmann et al. 2011, 2017; Hofmann and Hofmann 2010; Hofmann and
Jost 2003]. Types of inductive data structures are annotated with nonnegative rational numbers
p ∈ Q+0 . For example, Lp (A) is an annotated list type where A is another annotated type. The
potential of a value a is then deined with respect to its annotated type. If a = [a1, · · · ,an] is a
list of values of type A, its potential Φ(a : Lp (A)) is deined as

∑n
i=1(p + Φ(ai : A)), or equivalently,

n · p +
∑n

i=1 Φ(ai : A). The function types are also annotated and have the form A1
q/q′

−−−→ A2 where
A1 and A2 are annotated argument and result types, and q,q′ ∈ Q+0 stand for the constant potential
before a call to the function and after the call, respectively. For the function lpairs in Fig. 1, RaML

derives a resource-annotated type L3(int)
2/0
−−→ L0(int × int).

A type with positive potential on the result type like in the type L5(int)
3/1
−−→ L2(int × int) is

needed to type an application of lpairs in a composed function like f (lpairs(l)) if f has type

L2(int × int)
1/0
−−→ A for some type A. In general, the type of a function can be described with

variables for the potential annotations and linear constraints that describe their relations.
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The typing rules of RaML’s type system manipulates the coeicients q associated with data
types to ensure that the correct potential is assigned to new data structures or used to pay for

resource usage. RaML’s resource-annotated typing judgment has the form Γ
q′
q
e : A where e is an

expression, q,q′ ∈ Q+0 stand for constant potential before and after the evaluation of the expression,
respectively, Γ is a resource-annotated typing context that maps program variables to annotated
types, and A is a resource-annotated result type. Intuitively, if the initial potential is at least the
amount speciied by Γ, then it is suicient to evaluate e to a value and the leftover potential after
the evaluation is at least the amount speciied by A. For the program in Fig. 1, two examples of
typing judgements are

x1 : int, x2 : int 0
2
⟨x1, x2⟩ : int × int and xs ′ : L3(int) 0

2
lpairs xs ′ : L0(int × int).

The irst typing judgment indicates the evaluation of the pair construction needs 2 units of potential
because the resource metric speciies the pair construction consumes 2 units of heap space. The
second typing judgment indicates that if xs ′ is a list of length N , then the potential (2+ 3N ) suices
for the evaluation of the expression lpairs xs ′.

Worst-Case Input Generation. Before describing the input generation algorithm, we informally
analyze the worst-case heap-space usage of the program in Fig. 1. Because all memory operations
are constructions of the result list of pairs, and the total number of adjacent pairs that can be
constructed is ⌊M2 ⌋ whereM is the length of the input list, we deduce that the heap space usage is

at most 2 + (2 + 4) · ⌊M2 ⌋: the irst 2 pays for the nil-node, the second 2 pays for the pair, and the 4
is used to pay for a cons-node. It is the exact usage when all available pairs are orderedÐhence the
resource bound derived by RaML (2 + 3M) is tight ifM is even.
To generate a worst-case input for a program, the user needs to specify an input skeleton. For

the function lpairs, a skeleton can be represented as a list of indeterminate integers. For example,
[int1, int2, int3, int4] is a skeleton of an integer list of length four. A basic approach for worst-case
input generation is to evaluate the program on the input skeleton symbolically: search all possible
execution paths and record path constraints.
We write symbolic executions of an expression e under a skeleton environment γ that maps

program variables to skeletons as judgments of the form γ ⊢ e ⇒ ⟨ϕ, S⟩, where ϕ is the path
constraint of this execution, and S is a value that might contain indeterminates, representing the
evaluation result of e . For example, the symbolic execution of the conditional expression can be
formalized as two rules:

SE-Cond-True

γ ⊢ e1 ⇒ ⟨ϕ, S⟩

γ ⊢ if e then e1 else e2 ⇒ ⟨([γ ]e) ∧ ϕ, S⟩

SE-Cond-False

γ ⊢ e2 ⇒ ⟨ϕ, S⟩

γ ⊢ if e then e1 else e2 ⇒ ⟨¬([γ ]e) ∧ ϕ, S⟩

where [γ ]e transforms e to a symbolic constraint under the environment γ , e.g., if e = (x1 < x2) and
γ (x1) = int1,γ (x2) = int2, then [γ ]e = (int1 < int2). After collecting all possible execution paths
from a symbolic execution of the program, the basic input generation algorithm picks a worst-case
execution path with the largest resource usage with respect to the resource metric, as well as a
satisiable path constraint. For the function lpairs, an example of worst-case execution paths is

l 7→ [int1, int2, int3, int4] ⊢ lpairs l ⇒ ⟨(int1 < int2) ∧ (int3 < int4), [⟨int1, int2⟩, ⟨int3, int4⟩]⟩ (1)

Finally, an SMT solver can be invoked to ind a model for the path constraint. For the execution
path (1), one model is {int1 7→ 0, int2 7→ 1, int3 7→ 0, int4 7→ 1}, which corresponds to a concrete
input list [0, 1, 0, 1] that indeed triggers the worst heap space usage.

The major novelty of our worst-case input generation algorithm is to make use of the resource-
annotated typing derivation during the symbolic execution. RaML’s type system is an aine type
system, which means that each resource in the typing context can be used at most once. Potential
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13:6 Di Wang and Jan Hofmann

waste happens when some resources in the context are never used but carry positive potential.
Our input generation algorithm is designed to ind an execution path with imposed linearity,
i.e., without potential waste. During the symbolic execution, the algorithm relies on the typing
derivation to check if there is any potential waste. If such waste is detected then partial executions
that involve the respective path can be pruned from the search. For example, the typing judgment
of the conditional expression in the function lpairs is

x1 : int, x2 : int, xs
′ : L3(int) 0

8
if (x1 < x2) then (⟨x1, x2⟩ :: lpairs xs

′) else (lpairs xs ′) : L0(int× int)
(2)

and the typing judgments of two branches of the conditional expression are

x1 : int, x2 : int, xs
′ : L3(int) 0

8
⟨x1, x2⟩ :: lpairs xs

′ : L0(int × int) (3)

xs ′ : L3(int) 0

2
lpairs xs ′ : L0(int × int) (4)

Suppose the input skeleton is [int1, int2, int3, int4]. When our algorithm evaluates the conditional
expression for the irst time, the symbolic environment γ is

x1 7→ int1, x2 7→ int2, xs ′ 7→ [int3, int4]

and the potential at the program point with respect to the typing judgment (2) is 8+0+0+3 ·2 = 14.
The then-branch needs 8+ 0+ 0+ 3 · 2 = 14 units of potential to proceed with respect to (3), and the
else-branch needs only 2 + 3 · 2 = 8 units with respect to (4). Hence our algorithm detects potential
waste in the else-branch and decides to only explore the then-branch. By this means our algorithm
is able to prune the search space to contain only one execution path as (1), and know that this
path is the only one that can expose the worst-case resource as given by the initial potential. More
generally, every time our algorithm inds an execution path without potential loss, the associated
path constraint suices for the input skeleton to trigger the worst-case resource usage.

Let us try another input skeleton for the function lpairs: a singleton list [int1]. Note that because
the length of the list is odd, the resource bound derived by RaML is not tight. The typing judgment
of the inner match expression is

x1 : int, xs : L
3(int) 0

5
match xs with [] → [] | · · · : L0(int × int) (5)

and the typing judgment of the nil-case of this match expression is

· 0

2
[] : L0(int × int) (6)

When our input generation algorithm evaluates the inner match expression, the symbolic environ-
ment γ is

x1 7→ int1, xs 7→ []

and the potential at the program point is 5 + 3 · 0 = 5, with respect to the typing judgment (5).
Because xs is mapped to [], the nil-case of the match expression is evaluated in the next step.
However, the nil-case needs only 2 units of potential to proceed with respect to (6), hence this
execution path contains potential waste. For this input skeleton, our algorithm reports a generation
failure, which suggests the resource bound is not tight when the input is a singleton list.

Compositional Input Generation. Our type-guided worst-case input generation algorithm provides
new opportunities to develop search heuristics. In this paper, we focus on heuristics that exploit
compositionality. Intuitively, compositional generation produces a worst-case input for a function
by irst generating subparts of the input that are used in function calls and then combining them.
Because in the function body, diferent function calls can involve the same fragment of the input,
it is more reasonable to generate path constraints that suice for an input skeleton to trigger
the worst-case resource usage, by combining path constraints on subparts of the input generated
from the function calls. Then the major obstacle to compositionality is the exponential number of
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let rec wc_lpairs l = match l with

| []→ (⊤, [])

| x1 :: xs→ match xs with

| []→ (⊥, [])

| x2 :: xs’→ let (ϕ, ret) = wc_lpairs xs’ in ((x1 < x2) ∧ ϕ, (x1, x2) :: ret)

Fig. 2. Pseudo-code of a compositional input generation procedure for the function lpairs in Fig. 1

combinations of branch choices of conditional expressions. To reduce the number of combinations
that the algorithm needs to investigate, we propose two diferent heuristics.

The irst heuristic, named uniform execution, is based on the observation that many programs have
worst-case inputs that trigger the evaluation of the same branch of each conditional expression. For
example, the function lpairs in Fig. 1 always evaluates the then-branch of the conditional expression
to expose its worst-case heap space usage. Therefore, this heuristic enumerates the combinations
of branch choices of conditional expressions in the code and then runs the type-guided symbolic
execution to check whether it has potential waste. Because the number of conditional expressions
in the code is independent of the size of the input, the heuristic can scale to large inputs. We can
use the heuristic for the function lpairs, to derive an input generation procedure for the function
that computes a suicient constraint for worst-case inputs from an input skeleton. Fig. 2 presents
the pseudo-code of this procedure, takes in a symbolic input and returns a path constraint as well
as a symbolic result. The symbols ⊤ and ⊥ stands for true and false, respectively.
The second heuristic, named skeleton similarity, is based on the observation that a recursive

function usually has worst-case inputs such that for all the calls to this function with the same
shape of inputs, it executes the same path in the function body. For example, Fig. 3 shows a
modiied version of the function lpairs in Fig. 1. The function lpairs_alt takes an extra boolean
argument d to pick either an ordered pair or a reversely ordered pair. Then this function collects
adjacent pairs of integers, and these pairs should be ordered and reversely ordered alternatively. The
uniform-execution heuristic does not work hereÐalthough the irst two branches of the conditional
expression do not waste potential, both of them should be executed on a worst-case input because
inside these branches the boolean argument d is inverted. Instead, the function lpairs_alt has
worst-case inputs for skeletons of even lengths, such that if the length of the argument list is a
multiple of four, the function evaluates the second branch, and otherwise, it evaluates the irst
branch. For example, if the argument list has four elements, a worst-case input is ⟨false, [1, 0, 0, 1]⟩,
and if the argument list has two elements, a worst-case input is ⟨true, [0, 1]⟩. Operationally, this
heuristic records satisiable execution paths for diferent shapes of the inputs of the recursive
function. If it encounters a call to the function with an input skeleton of the shape it has already
explored then it tries the recorded execution path irst.

let rec lpairs_alt d l = match l with

| []→ []

| x1 :: xs→ match xs with

| []→ []

| x2 :: xs’→

if d && (x1:int) < (x2:int) then (x1, x2) :: lpairs_alt (not d) xs’

else if (not d) && (x1:int) > (x2:int) then (x1, x2) :: lpairs_alt (not d) xs’

else lpairs_alt d xs’

Fig. 3. A modified version of the function lpairs in Fig. 1
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3 SETTING THE STAGE: RESOURCE AWARE ML

In this section, we introduce a purely functional irst-order fragment of RaML that includes booleans,
integers, pairs, lists, binary trees, recursion, and pattern match. We then present a resource-aware
type systemwith linear potential for upper bounds.Wewill use this language to deine and formalize
our type-guided worst-case input generation algorithm in ğ5. The restriction to this fragment in
the technical development is only for brevity. Our results carry over to the full purely functional
fragment of RaML, which includes multivariate polynomial potential functions, user-deined types,
and higher-order functions [Hofmann et al. 2017]. The reason is that the technical development
is, in principle, independent of the shape of potential functions. Our worst-case input generation
tool has also been implemented for this larger fragment (see ğ7.1).

Syntax. The expressions are in share-let-normal-form [Hofmann et al. 2011], which means that
syntactic forms allow only variables rather than arbitrary terms whenever possible, without loss of
expressivity. Fig. 4 presents the grammar of expressions via abstract binding trees [Harper 2016].
The syntactic form op

^
(x1, x2) represents expressions that perform primitive binary operations ^

on booleans and integers. The syntactic form share(x, x1.x2.e) has to be used to introduce multiple
occurrences of a variable x in an expression. We skip the standard notions of integer constants
n ∈ Z, variable identiiers x ∈ VID, and function identiiers f ∈ FID.

Simple Types. The language has a usual ML-like type system, where well-typed expressions are
assigned with a simple type without resource annotations. As deined in Fig. 4, simple types are
data types A and irst-order types F . A set of semantic values is assigned to each data type A in an
obvious way, written JAK. For example, JT (int × int)K is the set of inite binary trees, each node of
which contains a pair of integers. First-order types F are types of functions. For example, the type
of the function lpairs in Fig. 1 is L(int) → L(int × int).

A typing context Γ is a inite partial mapping from variable identiiers to data types. A signature

Σ is a inite partial mapping from function identiiers to irst-order types. The typing judgment
Σ; Γ ⊢ e : A states that the expression e has type A under the signature Σ and context Γ. The typing
rules are standard and in fact, a subset of the resource-aware typing rules in Fig. 6 by omitting the
resource annotations. Then a program consists of a signature Σ and a family {λx f .e f }f ∈dom(Σ) of
top-level function deinitions with a distinguished variable identiier as the formal parameter, such
that Σ;x f : A ⊢ e f : B if Σ(f ) = A→ B.

Big-Step Operational Cost Semantics. The resource usage of a program is determined by a big-step
operational cost semantics. The cost is parametric in the resource metric and can measure every
quantity whose usage in a single evaluation step can be bounded by a constant. The semantics
is formulated with respect to an environment as usual. A value v ∈ Val is either a null value
null, a boolean constant b ∈ {true, false}, an integer constant n ∈ Z, or a pair of values ⟨v1,v2⟩.
It is convenient to identify tuples like ⟨v1,v2,v3⟩ with the pair ⟨v1, ⟨v2,v3⟩⟩. An environment

e F ⟨⟩ | true | false | n | x | op
^
(x1, x2) | app(f , x) | let(e1, x .e2) | pair(x1, x2)

| matp(x, x1.x2.e) | nil | cons(xh, xt ) | matl(x, e1, xh .xt .e2) | leaf | node(x0, x1, x2)

| mat(x, e1, x0.x1.x2.e2) | if(x, e1, e2) | share(x, x1.x2.e)

^ ∈ {+,−,×, div,mod,=,,, <, >,∧,∨}

A F unit | bool | int | A1 ×A2 | L(A) | T (A)

F F A1 → A2

Fig. 4. Syntax of the language
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Type-Guided Worst-Case Input Generation 13:9

V : VID ⇀ Val is a inite partial mapping from variables to values. The operational evaluation

judgment has the formV
q′
q
e ⇓ v whereq,q′ ∈ Q+0 are nonnegative rational numbers. The intuitive

meaning is that under the environment V and q units of available resource, e evaluates to the
value v without running out of resource and q′ units of resource are available after the evaluation.
Then the evaluation consumes δ = q − q′ units of resource. Fig. 5 show the evaluation rules of the
big-step semantics where K is a resource metric that maps syntactic forms to nonnegative rational
numbers.3 For example, to compute heap space usage, we specify Knil

= 2, Kcons
= 4, Kpair

= 2,
and other syntactic forms are assigned with a zero cost. The evaluation is deterministic in the

sense that there is at most one combination of q′,v such that V
q′
q

e ⇓ v for a given expression

e , an environment V , and q units of initial resource. If v is a value, A is a type, and a ∈ JAK is a
semantic value of type A, we write |= v 7→ a : A to mean that v deines a. We also write |= v : A to
indicate that there exists a semantic value a ∈ JAK satisfying |= v 7→ a : A. We write |= V : Γ, if
|= V (x) : Γ(x) for every x ∈ dom(Γ).

Resource-Aware Type System. To apply the potential method of amortized analysis [Tarjan 1985],
one has to establish a mapping from program points to potentials. The potential at a program
point should suice for the cost of any possible evaluation step as well as the potential at the next
program point. Potential functions are usually deined with respect to data structures used in the
program. To assign linear potentials to data structures, inductive data types (i.e., lists and binary
trees) are annotated with a nonnegative rational number p ∈ Q+0 [Hofmann and Jost 2003]. The
intuitive meaning is that every internal constructor in the inductive data structure is assigned with
p units of potential. The following grammar deines the resource-annotated data types A.

AF unit | bool | int | A1 ×A2 | L
p (A) | T p (A) where p ∈ Q+0

Formally, the potential Φ(a : A) of a semantic value a ∈ JAK, where A is a resource-annotated data
type, is deined as follows.4 For a binary tree t ∈ JT (A)K, we write elems(t) for its elements in
pre-order.

Φ(a : A) = 0 if A ∈ {unit, bool, int}

Φ(a : A1 ×A2) = Φ(a1 : A1) + Φ(a2 : A2) if a = ⟨a1,a2⟩

Φ(l : Lp (B)) = n · p +
∑n

i=1 Φ(ai : B) if l = [a1, · · · ,an]

Φ(t : T p (B)) = n · p +
∑n

i=1 Φ(ai : B) if elems(t) = [a1, · · · ,an]

Let v ∈ Val be a value such that |= v 7→ a : A, then the potential Φ(v : A) of v is deined as

Φ(v : A)
def
= Φ(a : A). Further, letV be an environment and Γ be a resource-annotated typing context

that maps variables to resource-annotated data types such that |= V : Γ, then the potential of Γ

under V is deined as ΦV (Γ)
def
=

∑

x ∈dom(Γ) Φ(V (x) : Γ(x)).

Example 3.1. Let an environment be V = {l 7→ ⟨0, ⟨1, ⟨0, ⟨1, null⟩⟩⟩⟩} and a resource-annotated
typing context be Γ = {l : L3(int)}. Then |= V (l) 7→ [0, 1, 0, 1] : L(int). The potential of the typing
context Γ under V is computed as ΦV (Γ) = Φ(V (l) : L3(int)) = Φ([0, 1, 0, 1] : L3(int)) = 4 × 3 = 12.

The resource-annotated irst-order types are then deined with respect to the following grammar.
The intuitive meaning is that q and q′ are constant potentials before a call to the function and after

3 The resource usage can also be negative, which means the evaluation releases some resources, e.g., memory could become

available during evaluation [Hofmann et al. 2011, 2017].
4 The potential of trees depends on the elements but not on the structure of the tree. We inherit this design choice from RaML.

It keeps the type rules simple and ensures compositionality because the potential is invariant under tree transformations.
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V
q′
q

e ⇓ v e evaluates to v with q′ units of resource left over under V and q units of resource

(E-Triv)

V q

q+Kunit

⟨⟩ ⇓ null

(E-Bool)

b ∈ {true, false}

V q

q+Kbool

b ⇓ b

(E-Int)

n ∈ Z

V q

q+K int

n ⇓ n

(E-Var)

x ∈ dom(V )

V q

q+K var

x ⇓ V (x )

(E-Op)

x1, x2 ∈ dom(V )

v = V (x1) ^ V (x2)

V q

q+Kop

op^(x1, x2) ⇓ v

(E-App)

V (x ) = v

V [x f 7→ v]
q′
q

e f ⇓ v ′

V
q′

q+Kapp

app(f , x ) ⇓ v ′

(E-Let)

V q1

q
e1 ⇓ v1

V [x 7→ v1] q′
q1

e2 ⇓ v2

V
q′

q+K let

let(e1, x .e2) ⇓ v2

(E-Pair)

x1, x2 ∈ dom(V )

v = ⟨V (x1),V (x2)⟩

V q

q+Kpair

pair(x1, x2) ⇓ v

(E-MatP)

V (x ) = ⟨v1, v2 ⟩

V [x1 7→ v1, x2 7→ v2] q′
q

e ⇓ v

V
q′

q+KmatP

matp(x , x1 .x2 .e) ⇓ v

(E-Cons)

xh , xt ∈ dom(V )

v = ⟨V (xh ),V (xt )⟩

V q

q+K cons

cons(xh , xt ) ⇓ v

(E-Nil)

V q

q+Knil

nil ⇓ null

(E-MatL-Nil)

V (x ) = null V
q′
q

e1 ⇓ v

V
q′

q+KmatLN

matl(x , e1, xh .xt .e2) ⇓ v

(E-MatL-Cons)

V (x ) = ⟨vh , vt ⟩ V [xh 7→ vh , xt 7→ vt ] q′
q

e2 ⇓ v

V
q′

q+KmatLC

matl(x , e1, xh .xt .e2) ⇓ v

(E-Node)

x0, x1, x2 ∈ dom(V ) v = ⟨V (x0),V (x1),V (x2)⟩

V q

q+Knode

node(x0, x1, x2) ⇓ v

(E-MatT-Leaf)

V (x ) = null V
q′
q

e1 ⇓ v

V
q′

q+KmatTL

mat(x , e1, x0 .x1 .x2 .e2) ⇓ v

(E-MatT-Node)

V (x ) = ⟨v0, v1, v2 ⟩ V [x0 7→ v0, x1 7→ v1, x2 7→ v2] q′
q

e2 ⇓ v

V
q′

q+KmatTN

mat(x , e1, x0 .x1 .x2 .e2) ⇓ v

(E-Cond-True)

V (x ) = true V
q′
q

e1 ⇓ v

V
q′

q+K condT

if(x , e1, e2) ⇓ v

(E-Leaf)

V q

q+K leaf

leaf ⇓ null

(E-Cond-False)

V (x ) = false V
q′
q

e2 ⇓ v

V
q′

q+K condF

if(x , e1, e2) ⇓ v

(E-Share)

V (x ) = v V [x1 7→ v , x2 7→ v]
q′
q

e ⇓ v ′

V
q′
q

share(x , x1 .x2 .e) ⇓ v
′

Fig. 5. Evaluation rules of the big-step operational cost semantics

it, respectively.

F F A1

q/q′

−−−→ A2 where q,q
′ ∈ Q+0

The resource-annotated typing judgment has the form Σ; Γ
q′
q
e : A, where Σ is a inite partial

mapping from function identiiers to nonempty sets of resource-annotated irst-order types, Γ

is a resource-annotated typing context, A is a resource-annotated data type, and q,q′ ∈ Q+0 are
nonnegative numbers. The intuitive meaning is that if there are at least q + Φ(Γ) units of potential,
then it suices to evaluate e to a value v satisfying that there are at least q′ + Φ(v : A) units of
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Σ; Γ
q′
q

e : A e has type A under Σ and Γ, and q,q′ are constant pre- and post-potential

(A-Unit)

· 0
Kunit

⟨⟩ : unit

(A-Bool)

b ∈ {true, false}

· 0
Kbool

b : bool

(A-Int)

n ∈ Z

· 0
K int

n : int

(A-Var)

x : A 0
K var

x : A

(A-Op)

x1 : ^arg1 , x2 : ^arg2 0
Kop

op^(x1, x2) : ^res

(A-App)

A1

q/q′

−−−−→ A2 ∈ Σ(f )

x : A1 q′
q+Kapp

app(f , x ) : A2

(A-Let)

Γ1 q1

q
e1 : A1

Γ2, x : A1 q′
q1

e2 : A2

Γ1, Γ2 q′
q+K let

let(e1, x .e2) : A2

(A-Pair)

x1 : A1, x2 : A2 0
Kpair

pair(x1, x2) : A1 × A2

(A-MatP)

Γ, x1 : A1, x2 : A2 q′
q

e : A

Γ, x : A1 × A2 q′
q+KmatP

matp(x , x1 .x2 .e) : A

(A-Nil)

· 0
Knil

nil : Lp (A)

(A-Cons)

xh : A, xt : Lp (A) 0

p+K cons

cons(xh , xt ) : L
p (A)

(A-MatL)

Γ
q′

q−KmatLN

e1 : A
′

Γ, xh : A, xt : Lp (A)
q′

q+p−KmatLC

e2 : A
′

Γ, x : Lp (A)
q′
q

matl(x , e1, xh .xt .e2) : A
′

(A-Cond)

Γ
q′

q−K condT

e1 : A

Γ
q′

q−K condF

e2 : A

Γ, x : bool
q′
q

if(x , e1, e2) : A

(A-Share)

Γ, x1 : A1, x2 : A2 q′
q

e : A′

.(A | A1, A2)

Γ, x : A
q′
q

share(x , x1 .x2 .e) : A
′

(A-Leaf)

· 0
K leaf

leaf : T p (A)

(A-Node)

x0 : A, x1 : T
p (A), x2 : T

p (A) 0

p+Knode

node(x0, x1, x2) : T
p (A)

(A-MatT)

Γ
q′

q−KmatTL

e1 : A
′

Γ, x0 : A, x1 : T
p (A), x2 : T

p (A)
q′

q+p−KmatTN

e2 : A
′

Γ, x : T p (A)
q′
q

mat(x , e1, x0 .x1 .x2 .e2) : A
′

(A-Weakening)

Γ
q′
q

e : A′

Γ, x : A
q′
q

e : A′

(A-Relax)

Γ
p′
p

e : A q ≥ p q − p ≥ q′ − p′

Γ
q′
q

e : A

(A-Subtype)

Γ
q′
q

e : A A <: B

Γ
q′
q

e : B

(A-Supertype)

Γ, x : B
q′
q

e : C A <: B

Γ, x : A
q′
q

e : C

Fig. 6. Typing rules of the resource-aware type system

potential leftover after the evaluation.5 Then a resource-annotated program consists of a resource-

annotated signature Σ and a family {λx f .e f }f ∈dom(Σ) of function deinitions such that Σ;x f : A
q′
q

e f : B for every A
q/q′

−−−→ B ∈ Σ(f ).
The resource-aware typing rules, in fact, form an aine linear type system. It ensures that every

variable is used at most once by allowing exchange and weakening [Walker 2002]. The rules can be
organized into syntax-directed and structural rules. Fig. 6 lists the typing rules. We assume a ixed
global signature Σ that we omit from the typing rules. While the share expressions make łcopiesž of
a variable, the sharing relation .(A | A1,A2) ensures that the program cannot gain more potential

5 Both the pre- and post-evaluation potentials are needed because resources might be non-monotone for the same reason in

footnote 3. Although we consider monotone resources in this paper, we keep this design to be consistent with RaML.
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13:12 Di Wang and Jan Hofmann

by making copiesÐit apportions the potential indicated by A into two parts to be associated with
A1 and A2. Formally, this relation is deined as follows.

A ∈ {unit, bool, int}

.(A | A, A)

.(A | A1, A2)

.(B | B1, B2)

.(A × B | A1 × B1, A2 × B2)

.(A | A1, A2)

p = p1 + p2

.(Lp (A) | Lp1 (A1), L
p2 (A2))

.(A | A1, A2)

p = p1 + p2

.(T p (A) | T p1 (A1),T
p2 (A2))

The structural rules (A-Weakening),(A-Relax),(A-Subtype),(A-Supertype) can be applied to
every expression. The sub-typing relation A <: B indicates that A and B are structurally identical,
and for every semantic value a, the potential Φ(a : A) is greater or equal than the potential Φ(a : B).
Formally, this relation is deined as follows.

A ∈ {unit, bool, int}

A <: A

A1 <: A2 B1 <: B2

A1 × B1 <: A2 × B2

A1 <: A2 p1 ≥ p2

Lp1 (A1) <: L
p2 (A2)

A1 <: A2 p1 ≥ p2

T p1 (A1) <: T
p2 (A2)

Example 3.2. Recall the program in Fig. 1. An example of a resource-annotated derivation with

the heap space metric established by only using syntax-directed rules is as follows. In this typing

derivation, every variable is used exactly once, which indicates that the annotated potential function

for this expression is tightÐjust enough to pay for all the resource usage to complete the evaluation

under any environment V such that |= V : {y : int × int, xs ′ : L3(int)}.

L3(int)
2/0
−−→ L0(int × int) ∈ Σ(lpairs)

xs′ : L3(int) 0
2
app(lpairs, xs′) : L0(int × int) y : int × int, ys : L0(int × int) 0

4
cons(y, ys) : L0(int × int)

y : int × int, xs′ : L3(int) 0
6
let(app(lpairs, xs′), ys .cons(y, ys)) : L0(int × int)

Following is an example of derivations involving structural rules. The rule (A-Relax) in the derivation

indicates a potential waste of 6 unitsÐhence the annotated potential function for this expression is not
tight. Note the rule (A-Weakening) in the derivation does not indicate potential waste, because the

variables x12, x22 only carry zero potential.

· · ·

L3(int)
2/0
−−→ L0(int × int) ∈ Σ(lpairs)

xs′ : L3(int) 0
2
app(lpairs, xs′) : L0(int × int)

x12 : int, x22 : int, xs
′ : L3(int) 0

2
app(lpairs, xs′) : L0(int × int)

A-Weakening
8 ≥ 2

x12 : int, x22 : int, xs
′ : L3(int) 0

8
app(lpairs, xs′) : L0(int × int)

A-Relax

b : bool, x12 : int, x22 : int, xs
′ : L3(int) 0

8
if(b , · · · , app(lpairs, xs′)) : L0(int × int)

Soundness. A crucial characterization of a type system is its soundness with respect to an
operational semantics. For resource-aware type systems, soundness theorems state the derived
potential functions at the program points are always suicient to complete the evaluation [Hofmann
et al. 2011, 2017; Hofmann and Jost 2003]. We formalize the soundness theorem of the semantics
and the type system as follows.

Theorem 3.3. If |= V : Γ,V ⊢ e ⇓ v , Σ; Γ
q′
q
e : A, then for all p, r ∈ Q+0 such that p = q+ΦV (Γ)+r ,

there exists p ′ ∈ Q+0 satisfying V
p′
p
e ⇓ v and p ′ ≥ q′ + Φ(v : A) + r .

4 PROBLEM STATEMENT

To formalize the problem of worst-case input generation, we introduce input skeletons. Skeletons
can contain indeterminate booleans, integers, as well as unknown structures of inductive data types.
The following grammar deines these skeletons S ∈ Skel.

S F null | true | false | booli | n | inti | ⟨S1, S2⟩

| nil | cons(Sh, St ) | listof(S1, · · · , Sn)

| leaf | node(S0, S1, S2) | treeof(S1, · · · , Sn)
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Type-Guided Worst-Case Input Generation 13:13

σ ⊢ S : A Skeleton S has type A under σ

σ ⊢ null : unit

b ∈ {true, false}

σ ⊢ b : bool σ ⊢ booli : bool

n ∈ Z

σ ⊢ n : int σ ⊢ inti : int

σ ⊢ S1 : A1 σ ⊢ S2 : A2

σ ⊢ ⟨S1, S2 ⟩ : A1 × A2

σ ⊢ σ (ℓ) : A

σ ⊢ ℓ : A

∀i ∈ {1, · · · , n } : σ ⊢ Si : A

σ ⊢ listof(S1, · · · , Sn ) : L(A)

∀i ∈ {1, · · · , n } : σ ⊢ Si : A

σ ⊢ treeof(S1, · · · , Sn ) : T (A)

σ ⊢ nil : L(A)

σ ⊢ Sh : A σ ⊢ St : L(A)

σ ⊢ cons(Sh , St ) : L(A) σ ⊢ leaf : T (A)

σ ⊢ S0 : A σ ⊢ S1 : T (A) σ ⊢ S2 : T (A)

σ ⊢ node(S0, S1, S2) : T (A)

Fig. 7. Typing rules for skeletons

booli is a boolean indeterminate with index i . inti is a integer indeterminate with index i . nil,
cons(Sh, St ) are list constructors. listof(S1, · · · , Sn) is a a list indeterminate with its elements
in order. leaf, node(S0, S1, S2) are binary tree constructors. treeof(S1, · · · , Sn) is a binary tree
indeterminate with its elements in pre-order.

To allow sharing of unknown data structures in the input skeleton, we introduce pointers ℓ ∈ Loc
as skeletons. Then a skeleton environment γ : VID⇀ Skel is a inite partial mapping from variables
to skeletons, and a skeleton heap σ : Loc⇀ Skel is inite partial mapping from pointers to skeletons.
Fig. 7 deines the typing rules for skeletons under a skeleton heap σ , written σ ⊢ S : A. We also
write σ ⊢ γ : Γ, where Γ is a typing context, if σ ⊢ γ (x) : Γ(x) for every x ∈ dom(Γ). In this paper,
we assume all the data structure skeletons (i.e., list and binary tree constructors) are saved in the
skeleton heap, and the skeleton environment records primitive skeletons (i.e., booleans, integers,
and pairs) as well as pointers to data structures.

Given a program, the worst-case input generation is aimed to ind a concretization of a speciied
input skeleton, which exposes the worst-case resource usage of the program with respect to
the operational cost semantics. A concretization consists of a model M to resolve boolean and
integer indeterminates, and a heap H to resolve unknown structures of inductive data types like
lists and binary trees. Formally, a model M is a inite partial mapping from boolean and integer
indeterminates to constants, and a heap H is a inite partial mapping from pointers to values. Under
a model M and a heap H , the concretization v of a skeleton S , writtenM ;H ⊢ S ⇝ v is formalized
in Fig. 8. We write M ;H ⊢ γ ⇝ V , if M ;H ⊢ γ (x) ⇝ V (x) for every x ∈ dom(γ ). Because the
skeleton environment γ only records primitive skeletons and pointers, the judgmentM ;H ⊢ γ ⇝ V

is deterministic. We also write M ⊢ σ ⊑ H , if M ;H ⊢ σ (ℓ)⇝ H (ℓ) for every ℓ ∈ dom(σ ). We use
the łreinementž operator ⊑ because a skeleton heap might correspond to diferent concrete heaps.
The general worst-case input generation program can be formalized as follows.

Given a program with signature Σ and a function f of type Σ(f ) = A→ B, for a speciied input
skeleton γ ,σ such that σ ⊢ γ : {x f : A} (i.e., σ ⊢ γ (x f ) : A) and a resource metric, generate a

concretization M,H such that M ⊢ σ ⊑ H , M ;H ⊢ γ ⇝ V , V
q′
q

ef ⇓ v , and the resource

consumption δ = q−q′ is greater or equal to the resource consumption of all possible concretizations
of the same input skeleton.

Example 4.1. Recall the function lpairs in Fig. 1. The type of lpairs is L(int) → L(int × int). The
formal parameter of lpairs is l . Let γ = {l 7→ ℓ} and σ = {ℓ 7→ listof(int1, int2, int3, int4)} be an
input skeleton that represents an integer list of length four. A solution to the worst-case input generation

for the heap space usage of the function lpairs isM = {int1 7→ 0, int2 7→ 1, int3 7→ 0, int4 7→ 1}, and

H = {ℓ 7→ ⟨0, ⟨1, ⟨0, ⟨1, null⟩⟩⟩⟩}. Then V (l) represents the list [0, 1, 0, 1].
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M ;H ⊢ S ⇝ v Skeleton S is concretized to v under modelM and heap H

M ;H ⊢ null⇝ null M ;H ⊢ booli ⇝ M (booli ) M ;H ⊢ inti ⇝ M (inti ) M ;H ⊢ ℓ⇝ H (ℓ)

M ;H ⊢ S1 ⇝ v1 M ;H ⊢ S2 ⇝ v2

M ;H ⊢ ⟨S1, S2 ⟩⇝ ⟨v1, v2 ⟩

b ∈ {true, false}

M ;H ⊢ b ⇝ b

n ∈ Z

M ;H ⊢ n ⇝ n M ;H ⊢ listof(·)⇝ null

M ;H ⊢ S1 ⇝ vh M ;H ⊢ listof(S2, · · · , Sn )⇝ vt

M ;H ⊢ listof(S1, · · · , Sn )⇝ ⟨vh , vt ⟩ M ;H ⊢ treeof(·)⇝ null M ;H ⊢ leaf⇝ null

M ;H ⊢ S1 ⇝ v0 M ;H ⊢ treeof(S2, · · · , Sm )⇝ v1 M ;H ⊢ treeof(Sm+1, · · · , Sn )⇝ v2

M ;H ⊢ treeof(S1, · · · , Sn )⇝ ⟨v0, v1, v2 ⟩

M ;H ⊢ nil⇝ null

M ;H ⊢ Sh ⇝ vh M ;H ⊢ St ⇝ vt

M ;H ⊢ cons(Sh , St )⇝ ⟨vh , vt ⟩

M ;H ⊢ S0 ⇝ v0 M ;H ⊢ S1 ⇝ v1 M ;H ⊢ S2 ⇝ v2

M ;H ⊢ node(S0, S1, S2)⇝ ⟨v0, v1, v2 ⟩

Fig. 8. Concretization rules for skeletons

We also consider a restricted version of the general problem: If we know an upper bound on the
resource usage, we want to generate an input with the same resource usage as the bound indicates.

Given a program with resource-annotated signature Σ and a function f of type A
q/q′

−−−→ B ∈ Σ(f ),
for a speciied input skeleton γ ,σ such that σ ⊢ γ : {x f : A}, ind a concretizationM,H satisfying

thatM ⊢ σ ⊑ H , M ;H ⊢ γ ⇝ V , V
p′
p
e f ⇓ v , and p − p ′ = (q + ΦV (x

f : A)) − (q′ + Φ(v : B)).

Intuitively, because Thm. 3.3 guarantees the soundness of the upper bound, every input that
exposes the exact resource consumption as the upper bound is indeed a worst-case input of its
shape. Later we will prove that the solution to the restricted worst-case input generation problem
is always a solution to the general one (see ğ5).

Remark 4.2. This formalization might seem too restricted at a irst glance. However, we ind the

problem still interesting for two reasons: (i) RaML is quite precise and tight in practice [Hofmann

et al. 2017], and our experiments also show the derived bounds are indeed the resource usage of the

worst-case inputs (see ğ7), and (ii) it is straightforward to modify our algorithm to generate d-bounded
worst-case inputs, which allow at most d units of potential waste in the execution (see ğ5).

5 TYPE-GUIDED WORST-CASE INPUT GENERATION ALGORITHM

In this section, we present our worst-case input generation algorithm and prove its soundness as
well as relative completeness.

5.1 Formulation

We formulate our algorithm as a set of rules. The intended purpose of these rules is to search for
an execution path with a path constraint suicient for the input skeleton to expose the worst-case

resource usage. The worst-case input generation judgments are of the form Σ; Γ;γ ;σ
q′
q
e : A⇒

⟨ϕ, S,σ ′⟩ where γ ,σ form an input skeleton such that σ ⊢ γ : Γ, ϕ ∈ L[booli , inti ] is a formula in
some theory of booleans and integers with a decision procedure, and S is a skeleton that is intended
to have type A under the skeleton heap σ ′. In the rules, we restrict the result skeleton S to be either
primitive skeletons or pointers to data structures in σ ′. The intuitive meaning is that under the
environment V that is a concretization of the skeleton environment γ with the skeleton heap σ ′
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Σ; Γ;γ ;σ
q′
q

e : A⇒ ⟨ϕ, S,σ ′⟩ Under γ ,σ , a worst-case path for e returns S,σ ′ with constraint ϕ

(WC-Unit)

·;γ ;σ 0
Kunit

⟨⟩ : unit⇒ ⟨⊤, null, σ ⟩

(WC-Bool)

b ∈ {true, false}

·;γ ;σ 0
Kbool

b : bool⇒ ⟨⊤, b , σ ⟩

(WC-Int)

n ∈ Z

·;γ ;σ 0
K int

n : int⇒ ⟨⊤, n, σ ⟩

(WC-Var)

x ∈ dom(γ )

x : A;γ ;σ 0
K var

x : A⇒ ⟨⊤, γ (x ), σ ⟩

(WC-Op)

x1, x2 ∈ dom(γ ) S = γ (x1) ^ γ (x2)

x1 : ^arg1 , x2 : ^arg2 ;γ ;σ 0
Kop

op^(x1, x2) : ^res ⇒ ⟨⊤, S , σ ⟩

(WC-App)

γ (x ) = S A1

q/q′

−−−−→ A2 ∈ Σ(f )

x f : A1;γ [x
f 7→ S ];σ

q′
q

e f : A2 ⇒ ⟨ϕ , S
′
, σ ′⟩

x : A1;γ ;σ q′
q+Kapp

app(f , x ) : A2 ⇒ ⟨ϕ , S
′
, σ ′⟩

(WC-Let)

Γ1;γ ;σ q1

q
e1 : A1 ⇒ ⟨ϕ1, S1, σ1 ⟩

Γ2, x : A1;γ [x 7→ S1];σ1 q′
q1

e2 : A2 ⇒ ⟨ϕ2, S2, σ2 ⟩

Γ1, Γ2;γ ;σ q′
q+K let

let(e1, x .e2) : A2 ⇒ ⟨ϕ1 ∧ ϕ2, S2, σ2 ⟩

(WC-Pair)

A = A1 × A2

x1, x2 ∈ dom(γ ) S = ⟨γ (x1), γ (x2)⟩

x1 : A1, x2 : A2;γ ;σ 0
Kpair

pair(x1, x2) : A⇒ ⟨⊤, S , σ ⟩

(WC-MatP)

γ (x ) = ⟨S1, S2 ⟩ γo = γ [x1 7→ S1, x2 7→ S2]

Γ, x1 : A1, x2 : A2;γo ;σ q′
q

e : A⇒ ⟨ϕ , S , σ ′⟩

Γ, x : A1 × A2;γ ;σ q′
q+KmatP

matp(x , x1 .x2 .e) : A⇒ ⟨ϕ , S , σ
′⟩

(WC-Nil)

ℓ < dom(σ )

·;γ ;σ 0
Knil

nil : Lp (A) ⇒ ⟨⊤, ℓ, σ [ℓ 7→ nil]⟩

(WC-MatL-Cons)

γ (x ) = ℓ σ (ℓ) = cons(Sh , St ) γ ′ = γ [xh 7→ Sh , xt 7→ St ]

Γ, xh : A, xt : Lp (A);γ ′;σ
q′

q+p−KmatLC

e2 : A
′ ⇒ ⟨ϕ , S , σ ′⟩

Γ, x : Lp (A);γ ;σ
q′
q

matl(x , e1, xh .xt .e2) : A
′ ⇒ ⟨ϕ , S , σ ′⟩

(WC-Cons)

xh , xt ∈ dom(γ ) R = cons(γ (xh ), γ (xt ))

ℓ < dom(σ ) σ ′ = σ [ℓ 7→ R] Γ = xh : A, xt : Lp (A)

Γ;γ ;σ 0

p+K cons

cons(xh , xt ) : L
p (A) ⇒ ⟨⊤, ℓ, σ ′⟩

(WC-MatL-Nil)

e = matl(x , e1, xh .xt .e2) γ (x ) = ℓ

σ (ℓ) = nil Γ;γ ;σ
q′

q−KmatLN

e1 : A
′ ⇒ ⟨ϕ , S , σ ′⟩

Γ, x : Lp (A);γ ;σ
q′
q

e : A′ ⇒ ⟨ϕ , S , σ ′⟩

(WC-MatL-List-Empty)

γ (x ) = ℓ σ (ℓ) = listof(·) Γ;γ ;σ [ℓ 7→ nil]
q′

q−KmatLN

e1 : A
′ ⇒ ⟨ϕ , S , σ ′⟩

Γ, x : Lp (A);γ ;σ
q′
q

matl(x , e1, xh .xt .e2) : A
′ ⇒ ⟨ϕ , S , σ ′⟩

(WC-MatL-List-NonEmpty)

γ (x ) = ℓ σ (ℓ) = listof(S1, · · · , Sn ) ℓt < dom(σ ) St = listof(S2, · · · , Sn )

Γ, xh : A, xt : Lp (A);γ [xh 7→ S1, xt 7→ ℓt ];σ [ℓ 7→ cons(S1, ℓt ), ℓt 7→ St ] q′
q+p−KmatLC

e2 : A
′ ⇒ ⟨ϕ , S , σ ′⟩

Γ, x : Lp (A);γ ;σ
q′
q

matl(x , e1, xh .xt .e2) : A
′ ⇒ ⟨ϕ , S , σ ′⟩

Fig. 9. Rules of the type-guided worst-case input generation algorithm (I)

and satisies the constraint ϕ, it furthermore takes q + ΦV (Γ) units of resource to evaluate e to a
value v , which is the corresponding concretization of S and there are exactly q′ + Φ(v : A) units
of resource left over. These rules essentially formulate a type-guided symbolic execution of the
expression e . Figs. 9 and 10 present the syntax-directed rules. We assume a ixed global signature Σ.
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Σ; Γ;γ ;σ
q′
q

e : A⇒ ⟨ϕ, S,σ ′⟩ Under γ ,σ , a worst-case path for e returns S,σ ′ with constraint ϕ

(WC-Leaf)

ℓ < dom(σ )

·;γ ;σ 0
K leaf

leaf : T p (A) ⇒ ⟨⊤, ℓ, σ [ℓ 7→ leaf]⟩

(WC-MatT-Leaf)

γ (x ) = ℓ σ (ℓ) = leaf Γ;γ ;σ
q′

q−KmatTL

e1 : A
′ ⇒ ⟨ϕ , S , σ ′⟩

Γ, x : T p (A);γ ;σ
q′
q

mat(x , e1, x0 .x1 .x2 .e2) : A
′ ⇒ ⟨ϕ , S , σ ′⟩

(WC-Node)

x0, x1, x2 ∈ dom(γ ) R = node(γ (x0), γ (x1), γ (x2)) ℓ < dom(σ )

x0 : A, x1 : T
p (A), x2 : T

p (A);γ ;σ 0

p+Knode

node(x0, x1, x2) : T
p (A) ⇒ ⟨⊤, ℓ, σ [ℓ 7→ R]⟩

(WC-MatT-Node)

γ (x ) = ℓ σ (ℓ) = node(S0, S1, S2)

Γ, x0 : A, x1 : T
p (A), x2 : T

p (A);γ [x0 7→ S0, x1 7→ S1, x2 7→ S2];σ q′
q+p−KmatTN

e2 : A
′ ⇒ ⟨ϕ , S , σ ′⟩

Γ, x : T p (A);γ ;σ
q′
q

mat(x , e1, x0 .x1 .x2 .e2) : A
′ ⇒ ⟨ϕ , S , σ ′⟩

(WC-MatT-Tree-Empty)

γ (x ) = ℓ σ (ℓ) = treeof(·) Γ;γ ;σ [ℓ 7→ leaf]
q′

q−KmatTL

e1 : A
′ ⇒ ⟨ϕ , S , σ ′⟩

Γ, x : T p (A);γ ;σ
q′
q

mat(x , e1, x0 .x1 .x2 .e2) : A
′ ⇒ ⟨ϕ , S , σ ′⟩

(WC-MatT-Tree-NonEmpty)

γ (x ) = ℓ σ (ℓ) = treeof(S1, · · · , Sn ) ℓ1, ℓ2 < dom(σ )

R1 = treeof(S2, · · · , Sm ) R2 = treeof(Sm+1, · · · , Sn ) σo = σ [ℓ 7→ node(S1, ℓ1, ℓ2), ℓ1 7→ R1, ℓ2 7→ R2]

Γ, x0 : A, x1 : T
p (A), x2 : T

p (A);γ [x0 7→ S1, x1 7→ ℓ1, x2 7→ ℓ2];σo q′
q+p−KmatTN

e2 : A
′ ⇒ ⟨ϕ , S , σ ′⟩

Γ, x : T p (A);γ ;σ
q′
q

mat(x , e1, x0 .x1 .x2 .e2) : A
′ ⇒ ⟨ϕ , S , σ ′⟩

(WC-Cond-True)

γ (x ) = S Γ;γ ;σ
q′

q−K condT

e1 : A⇒ ⟨ϕ , S
′
, σ ′⟩

Γ, x : bool;γ ;σ
q′
q

if(x , e1, e2) : A⇒ ⟨S ∧ ϕ , S
′
, σ ′⟩

(WC-Cond-False)

γ (x ) = S Γ;γ ;σ
q′

q−K condF

e2 : A⇒ ⟨ϕ , S
′
, σ ′⟩

Γ, x : bool;γ ;σ
q′
q

if(x , e1, e2) : A⇒ ⟨¬S ∧ ϕ , S
′
, σ ′⟩

(WC-Share)

γ (x ) = S Γ, x1 : A1, x2 : A2;γ [x1 7→ S , x2 7→ S ];σ
q′
q

e : A′ ⇒ ⟨ϕ , S ′, σ ′⟩ .(A | A1, A2)

Γ, x : A;γ ;σ
q′
q

share(x , x1 .x2 .e) : A
′ ⇒ ⟨ϕ , S ′, σ ′⟩

Fig. 10. Rules of the type-guided worst-case input generation algorithm (II)

Most of these rules are deterministicÐfor a coniguration of the input skeleton γ ,σ and the
expression e , the generation algorithm is usually able to pick a unique evaluation step. For example,
for the expression let(e1, x .e2), the rule (WC-Let) irst generates a candidate worst-case execution
path for e1 and then returns a path constraint ϕ1 together with the corresponding result skeleton S1.
The rule then generates a worst-case execution path for e2 under the same skeleton environment
with the binding variable x updated with S1. If the path constraint for e2 is ϕ2, the conjunction of
two path constraints ϕ1 ∧ ϕ2 is a suicient condition for the let-expression to expose worst-case
resource usage.
The rule (WC-App) for function applications looks up the skeleton of x in the current skeleton

environment, and passes it to the function body e f to generate a candidate worst-case execution
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path. We treat inductive data structures diferently from the operational cost semantics in Fig. 5.
For list and binary tree constructors, we create a fresh pointer and put the data structure in the
inductive skeleton heap. For example, the rule (WC-Node) for the expression node(x0, x1, x2) irst
looks up the skeletons of x0, x1, x2 in the current skeleton environment as S0, S1, S2, respectively.
Then it creates an inductive skeleton for a binary tree node as node(S0, S1, S2), and puts it in a fresh
location of the skeleton heap.
There are three rules that exhibit nondeterminism: (WC-Cond-True), (WC-Cond-False), and

(WC-MatT-Tree-NonEmpty). The irst two rules are nondeterministic because the predicate
of a conditional expression might not be able to resolve because the predicate might refer to
indeterminate booleans and integers. For example, for the conditional expression if(x, e1, e2), the
rule (WC-Cond-True) looks up the skeleton of x in the current skeleton environment as S , and
then tries to ind a path constraint ϕ for e1 to trigger worst-case behavior, and then return a path
constraint S ∧ϕ that indicates the expression evaluates the then-branch. The nondeterminism of the
rule (WC-MatT-Tree-NonEmpty) arises because the structure of the binary tree being matched is
unknown. Suppose the inductive skeleton for the tree is treeof(S1, · · · , Sn). Because the elements
are in pre-order, the element assigned to the root of this tree is S1, and the input generation algorithm
tries to partition {S2, · · · , Sn} into the left and right subtrees. Suppose R1 = treeof(S2, · · · , Sm) and
R2 = treeof(Sm+1, · · · , Sn) are two inductive skeletons for the left and right subtrees, respectively.
Then the algorithm records the partition in the skeleton heap and then proceeds to search path
constraints for the body expression of the match-expression.

Example 5.1. Recall the program in Fig. 1 and consider the subexpression

let(app(lpairs, xs ′),ys .cons(y,ys)). Let an input skeleton be γ = {y 7→ ⟨int1, int2⟩, xs ′ 7→ ℓ1}, σ =
{ℓ1 7→ cons(int3, cons(int4,nil))}. For the heap spacemetric, our algorithm derives the following judg-

ment for the function call: xs ′ : L3(int);γ ;σ 0

2
app(lpairs, xs ′) : L0(int × int) ⇒ ⟨int3 < int4, ℓ3,σ1⟩

where σ1 = σ [ℓ2 7→ nil, ℓ3 7→ cons(⟨int3, int4⟩, ℓ2)]. Then for the body expression of the let-expression,
our algorithm derives the following judgment by setting the binding variable ys to ℓ3 in the skeleton

heap σ1: y : int × int;ys : L0(int × int);γ [ys 7→ ℓ3];σ1 0

4
cons(y,ys) : L0(int × int) ⇒ ⟨⊤, ℓ4,σ2⟩

where σ2 = σ1[ℓ4 7→ cons(⟨int1, int2⟩, ℓ3)]. Thus by rule (WC-Let) we have the following:

y : int × int, xs ′;γ ;σ 0

6
let(app(lpairs, xs ′),ys .cons(y,ys)) : L0(int × int) ⇒ ⟨int3 < int4, ℓ4,σ2⟩.

The list that ℓ4 points to then corresponds to [⟨int1, int2⟩, ⟨int3, int4⟩].

In order to formulate our input generation algorithm for structural typing rules, we deine the

potential of skeletons, written Φ̃σ (S : A), as follows.

Φ̃σ (S : A) = 0 where A ∈ {unit, bool, int}

Φ̃σ (S : A1 ×A2) = Φ̃σ (S1 : A1) + Φ̃σ (S2 : A2) where S = ⟨S1, S2⟩

Φ̃σ (ℓ : A) = Φ̃σ (R : A) where R = σ (ℓ)

Φ̃σ (nil : L
p (A)) = 0

Φ̃σ (cons(Sh, St ) : L
p (A)) = p + Φ̃σ (Sh : A) + Φ̃σ (St : L

p (A))

Φ̃σ (listof(S1, · · · , Sn) : L
p (A)) = n · p +

∑n
i=1 Φ̃σ (Si : A)

Φ̃σ (leaf : T
p (A)) = 0

Φ̃σ (node(S0, S1, S2) : T
p (A)) = p + Φ̃σ (S0 : A) + Φ̃σ (S1 : T

p (A)) + Φ̃σ (S2 : T
p (A))

Φ̃σ (treeof(S1, · · · , Sn) : T
p (A)) = n · p +

∑n
i=1 Φ̃σ (Si : A)

Fig. 11 shows the rules for worst-case input generation against structural rules. Our algorithm
supports structural rules but forces these rules not to waste potential. The rule (WC-Weakening)
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Σ; Γ;γ ;σ
q′
q

e : A⇒ ⟨ϕ, S,σ ′⟩ Under γ ,σ , a worst-case path for e returns S,σ ′ with constraint ϕ

(WC-Weakening)

Γ;γ ;σ
q′
q

e : A′ ⇒ ⟨ϕ , S ′, σ ′⟩

γ (x ) = S Φ̃σ (S : A) = 0

Γ, x : A;γ ;σ
q′
q

e : A′ ⇒ ⟨ϕ , S ′, σ ′⟩

(WC-Relax)

Γ;γ ;σ
p′
p

e : A⇒ ⟨ϕ , S , σ ′⟩ q ≥ p q − p = q′ − p′

Γ;γ ;σ
q′
q

e : A⇒ ⟨ϕ , S , σ ′⟩

(WC-Subtype)

Γ;γ ;σ
q′
q

e : A⇒ ⟨ϕ , S , σ ′⟩ A <: B

Φ̃σ ′ (S : A) = Φ̃σ ′ (S : B)

Γ;γ ;σ
q′
q

e : B ⇒ ⟨ϕ , S , σ ′⟩

(WC-Supertype)

Γ, x : B;γ ;σ
q′
q

e : C ⇒ ⟨ϕ , S ′, σ ′⟩ A <: B

γ (x ) = S Φ̃σ (S : A) = Φ̃σ (S : B)

Γ, x : A;γ ;σ
q′
q

e : C ⇒ ⟨ϕ , S ′, σ ′⟩

Fig. 11. Rules of the resource-aware worst-case input generation algorithm (III)

requires the variable x that is thrown away to carry zero potential. The rule (WC-Relax) still
permits adding some constant number to the potential functions, but the amounts added to the
potential before evaluation of an expression and after the evaluation must be identical. Sub-typing
is permitted if the skeleton has the same potential with respect to the types A,B where A is a
sub-type of B.

After the worst-case input generation algorithm establishes a judgment Σ; Γ;γ ;σ
q′
q

e : A⇒

⟨ϕ, S,σ ′⟩, we use the decision procedure for L[booli , inti ] to ind a modelM for the path constraint
ϕ. If the modelM is found, we can then use it to concretize the input skeleton γ ,σ to a concrete
input that will expose the worst-case resource consumption.

Example 5.2. Recall the program in Fig. 1 with the function lpairs. Let an input skeleton be

γ = {l 7→ ℓ1}, σ = {ℓ1 7→ cons(int1, cons(int2, cons(int3, cons(int4,nil))))}. For the heap space

metric, our algorithm derives

l : L3(int);γ ;σ 0

2
app(lpairs, l) : L0(int × int) ⇒ ⟨(int1 < int2) ∧ (int3 < int4), ℓ4,σ

′⟩

where σ ′ = σ [ℓ2 7→ nil, ℓ3 7→ cons(⟨int3, int4⟩, ℓ2), ℓ4 7→ cons(⟨int1, int2⟩, ℓ3)]. The constraint
(int1 < int2) ∧ (int3 < int4) is satisiable in the modelM = {int1 7→ 0, int2 7→ 1, int3 7→ 0, int4 7→ 1}.

Hence our algorithm inds a worst case input [0, 1, 0, 1] for the function lpairs.

Remark 5.3. A practical relaxation of the formalization for worst-case input generation problem

could be that we allow a bounded amount of resource waste from the inferred resource bound. We call

the problem that allows d units of potential waste the d-bounded worst-case input generation. It
is straightforward to extend our algorithm by adding a component to record current potential waste

and forcing the waste not to exceed the speciied bound d . For example, the rule (WC-Relax) can be

modiied as follows wherew,w ′ ∈ Q+0 stand for potential waste.

(WC-Relax)

Γ;γ ;σ
p′
p

e : A⇒ ⟨ϕ , S , σ ′,w ⟩ q ≥ p q − p ≥ q′ − p′ w ′ = w + ((q − p) − (q′ − p′)) w ′ ≤ d

Γ;γ ;σ
q′
q

e : A⇒ ⟨ϕ , S , σ ′,w ′⟩

5.2 Proof

Complete proofs are included in the extended version of this paper [Wang and Hofmann 2018].

Soundness. The soundness theorem states that if for a function f with a resource-annotated
type, the worst-case input generation algorithm terminates with ⟨ϕ, S,σ ′⟩ under the skeleton
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environment γ and the skeleton heap σ , then the evaluation of the function f under the concrete
environment V that is the concretization of γ ,σ that satisies ϕ consumes the amount of resource
exactly the same as the inferred upper bound.

Theorem 5.4 (Soundness). If Σ;x f : A1;γ ;σ q′
q

e f : A2 ⇒ ⟨ϕ, S,σ ′⟩, σ ⊢ γ : (x f : A1),

M is a model for ϕ, M ⊢ σ ′ ⊑ H , and M ;H ⊢ γ ⇝ V , then there exists a value v , satisfying

V
q′+Φ(v :A2)

q+ΦV (x
f :A1)

e f ⇓ v , andM ;H ⊢ S ⇝ v .

To establish soundness, we prove the following generalized theorem.

Theorem 5.5. If Σ; Γ;γ ;σ
q′
q

e : A⇒ ⟨ϕ, S,σ ′⟩, σ ⊢ γ : Γ, M is a model for ϕ, M ⊢ σ ′ ⊑ H , and

M ;H ⊢ γ ⇝ V , then for all p, r ∈ Q+0 such that p = q + ΦV (Γ) + r , there exist p
′ ∈ Q+0 and a value v ,

satisfying V
p′
p
e ⇓ v , p ′ = q′ + Φ(v : A) + r , andM ;H ⊢ S ⇝ v .

Proof. By induction on the derivation of Σ; Γ;γ ;σ
q′
q
e : A⇒ ⟨ϕ, S,σ ′⟩. □

Remark 5.6. Suppose f is a function with the signature A1

q/q′

−−−→ A2 ∈ Σ(f ) with q′ = 0 and

.(A2 | A2,A2), i.e., the result type carries only zero potential. Given an input skeleton γ ,σ such that

σ ⊢ γ : (x f : A1), let Ψ = q+ Φ̃σ (γ (x
f ) : A1), then for every concretizationM,H such thatM ⊢ σ ⊑ H ,

M ;H ⊢ γ ⇝ V , we have Ψ = q + Φ(V (x f ) : A1) = q + ΦV (x
f : A1). Hence by Thm. 3.3, for every V

such that |= V : (x f : A1), if V p′
p
e f ⇓ v , then p − p ′ ≤ (q + ΦV (x

f : A1)) − (q
′
+ Φ(v : A2)) = Ψ. If

Σ;x f : A1;γ ;σ q′
q

e f : A2 ⇒ ⟨ϕ, S,σ
′⟩, M is a model for ϕ, M ⊢ σ ′ ⊑ H , and M ;H ⊢ γ ⇝ V , then

by Thm. 5.5, there exists a value v such that V 0

Ψ
e f ⇓ v , and henceM,H exposes the resource usage

that is greater or equal to the resource consumption of all other concretizations.

Relative Completeness. We nowwant to study the completeness of our worst-case input generation
algorithm. Although the theory L[booli , inti ] for booleans and integers might be undecidable, we
prove our algorithm is completemodulo constraint solving. If a function f with a resource-annotated
type has a worst-case input that is a concretization of the input skeleton γ ,σ and exposes exactly
the same resource usage as the inferred upper bound, then our algorithm is able to ind a path
constraint that corresponds to the concretization.

Theorem 5.7 (Completeness). If Σ;x f : A1 q′
q

e f : A2, |= V : Γ, V
q′+Φ(v :A2)

q+ΦV (x
f :A1)

e ⇓ v ,

σ ⊢ γ : (x f : A1), M ⊢ σ ⊑ H , and M ;H ⊢ γ ⇝ V , then there exist ϕ, S,σ ′, satisfying Σ;x f :

A1;γ ;σ q′
q
e f : A2 ⇒ ⟨ϕ, S,σ

′⟩, andM is a model for ϕ.

To establish completeness, we prove the following generalized theorem.

Theorem 5.8. If Σ; Γ
q′
q

e : A, |= V : Γ, V
p′
p

e ⇓ v , p = q + ΦV (Γ) + r , p
′
= q′ + Φ(v : A) + r ,

σ ⊢ γ : Γ, M ⊢ σ ⊑ H , and M ;H ⊢ γ ⇝ V , then there exist ϕ, S,σ ′,H ′, satisfying Σ; Γ;γ ;σ
q′
q

e :

A⇒ ⟨ϕ, S,σ ′⟩,M is a model for ϕ, H ⊆ H ′,M ⊢ σ ′ ⊑ H ′,M ;H ′ ⊢ γ ⇝ V , andM ;H ′ ⊢ S ⇝ v .

Proof. By induction on the derivation ofV
p′
p
e ⇓ v and the derivation of Γ

q′
q
e : A, where the

derivation of the evaluation judgment takes priority over the typing judgment. □

6 HEURISTICS FOR COMPOSITIONAL INPUT GENERATION

The type-guided worst-case input generation algorithm developed in ğ5 could become ineicient
when the input skeleton is large and there remain a lot of candidate execution paths to investigate,
even after the resource-annotated derivation has already helped prune the search space.
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Let us irst investigate the possible causes of ineiciency. As we already discussed in ğ5.1, most
of the generation rules are deterministic, except the following three rules: (WC-Cond-True), (WC-

Cond-False), and (WC-MatT-Tree-NonEmpty). For the irst two rules, the nondeterminism occurs
because our algorithm does not know the actual value of the predicate of a conditional expression.
For the third rule, the nondeterminism comes from the enumeration of possible tree structures.
When the size of the input skeleton increases, the total number of combinations that come from
the nondeterministic rules is likely to exhibit an exponential blowup.

One way to improve the scalability of our input generation algorithm is to exploit composition-

alityÐspeciically, we hope to restrict the combinations of execution paths inside the function
boundaries. Intuitively, when we search for a candidate path constraint for a function on an input
skeleton, we want to irst generate feasible path constraints for function calls inside the function
body on subparts of the input skeleton, and then combine these constraints in a sound way.

Thm. 5.5 provides soundness guarantee for our input generation algorithm. The theorem implies
that even if we only enable a subset of the generation rules, the algorithm always returns correct
suicient constraints for worst-case inputs, if it terminates with some results. This property gives
us several opportunities to devise search heuristics that can enable, disable, and prioritize partial
executions during the generation algorithm. In this section, we develop two search heuristics for
compositional input generation.

6.1 Uniform Execution

To get rid of nondeterministic rules for conditional expressions, one idea is to force the algorithm
to choose the same branch for each conditional expression. Because on worst-case inputs the
program always executes the same branch, we call this heuristic uniform execution. In this way, the
algorithm only needs to enumerate a global coniguration for conditional expressions. Formally,
given a global coniguration config : Exp→ {←,→}, the worst-case input generation algorithm
proceeds as follows for conditional expressions.
(WC-Cond-True)

config(if(x , e1, e2)) =← γ (x ) = S

Γ;γ ;σ
q′

q−K condT

e1 : A⇒ ⟨ϕ , S
′
, σ ′⟩

Γ, x : bool;γ ;σ
q′
q

if(x , e1, e2) : A⇒ ⟨S ∧ ϕ , S
′
, σ ′⟩

(WC-Cond-False)

config(if(x , e1, e2)) =→ γ (x ) = S

Γ;γ ;σ
q′

q−K condF

e2 : A⇒ ⟨ϕ , S
′
, σ ′⟩

Γ, x : bool;γ ;σ
q′
q

if(x , e1, e2) : A⇒ ⟨¬S ∧ ϕ , S
′
, σ ′⟩

If for some function, the uniform-execution heuristic succeeds for every input skeleton then we
can extract a compositional input generation procedure from the original function by embedding
our type-guided input generation rules. In ğ2 we already showed the procedure wc_lpairs in
Fig. 2 for the function lpairs in Fig. 1. As another example, Fig. 12b is the pseudocode of an input
generation procedure extracted from an implementation of quicksort in Fig. 12a, where l1 ++ l2
returns the concatenation of two lists l1, l2.

6.2 Skeleton Similarity

The uniform-execution heuristic might fail when there does not exist a global coniguration of
conditional expressions such that on worst-case inputs the function always executes the same
branch of a conditional expression. However, intuitively, a function is likely to execute the same
execution path on worst-case inputs of the same shape. We then develop skeleton similarity, a
heuristic that reuses the search results for input skeletons of similar shapes.

Formally, we deine the similarity relation between skeletons in Fig. 13, written σ ,σ ′ ⊢ρ S ∼ S ′,
where ρ is a mapping between indeterminates. We omit the ixed ρ from these rules. We also write
⊢ρ ϕ ∼ ϕ ′ for the similarity of formulas, which is deined in an obvious way. Intuitively, if for a
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let rec partition a = function

| []→ ([], [])

| x :: xs→

let (cs, bs) = partition a xs in

if (x:int) ≥ (a:int) then

(cs, x :: bs)

else

(x :: cs, bs)

let rec qsort = function

| []→ []

| x :: xs→

let (ys, zs) = partition x xs in

let left = qsort ys in

let right = qsort zs in

left ++ (x :: right)

(a) Original code

let rec wc_partition a = function

| []→ (⊤, ([], []))

| x :: xs→

let (ϕ, (cs, bs)) = wc_partition a xs in

(¬ (x ≥ a) ∧ ϕ, (x :: cs, bs))

let rec wc_qsort = function

| []→ (⊤, [])

| x :: xs→

let (ϕ_p, (ys, zs)) = wc_partition x xs in

let (ϕ_l, left) = wc_qsort ys in

let (ϕ_r, right) = wc_qsort zs in

(ϕ_r ∧ ϕ_l ∧ ϕ_p, left ++ (x :: right))

(b) Pseudocode of compositional input generation

Fig. 12. The quicksort example
function call app(f , x), we already established Σ;x f : A1;x

f 7→ Sr ;σr q′
q

e f : A2 ⇒ ⟨ϕr , S
′
r ,σ
′
r ⟩,

and we want to ind a worst-case execution path for another input skeleton with the same shape,
i.e., S,σS such that σS ⊢ S : A1, σr ,σS ⊢ρ Sr ∼ S for some mapping ρ, then we can use ρ to
substitute the boolean and integer indeterminates in S ′r ,σ

′
r as a candidate generation result, i.e.,

σ ′r ,σ
′
S ⊢ρ S ′r ∼ S ′. Formally, we introduce the following rule, where σ1 ⊗ σ2 is the conjunction of

two separated skeleton heaps.
(WC-App-Skel-Sim)

x f : A1; x
f 7→ Sr ;σr q′

q
e f : A2 ⇒ ⟨ϕr , S

′
r , σ

′
r ⟩

γ (x ) = S σS ⊢ S : A1 σr , σS ⊢ρ Sr ∼ S σ ′r , σ
′
S ⊢ρ S ′r ∼ S

′ ⊢ρ ϕr ∼ ϕ

x : A1;γ ;σ ⊗ σS q′
q+Kapp

app(f , x ) : A2 ⇒ ⟨ϕ , S
′
, σ ⊗ σ ′S ⟩

Example 6.1. Recall the program in Fig. 1 which deines the function lpairs. Let Sr = ℓ1, σr =

{ℓ1 7→ cons(int1, cons(int2,nil)) be a recorded input skeleton. Then a possible generation result

is ϕr = (int
1 < int2), S ′r = ℓ3, σ

′
r = σr [ℓ2 7→ nil, ℓ3 7→ cons(⟨int1, int2⟩, ℓ2)]. Suppose later we

encounter a function call with S = ℓ4, σS = {ℓ4 7→ cons(int3, cons(int4,nil))}. Let ρ = {int1 7→
int3, int2 7→ int4}, then we have σr ,σS ⊢ Sr ∼ S . By substitution of integer indeterminates with respect

to ρ, we derive σ ′S = σS [ℓ5 7→ nil, ℓ6 7→ cons(⟨int3, int4⟩, ℓ5)], S
′
= ℓ6, and ϕ = (int

3 < int4). In this

way, our algorithm proceeds without investigating again the function body.

Theorem 6.2. The rule (WC-App-Skel-Sim) is sound.

σ ,σ ′ ⊢ρ S ∼ S ′ Skeleton S under σ is similar to skeleton S ′ under σ ′

σ , σ ′ ⊢ null ∼ null

b ∈ {true, false}

σ , σ ′ ⊢ b ∼ b

ρ(booli ) = boolj

σ , σ ′ ⊢ booli ∼ boolj

n ∈ Z

σ , σ ′ ⊢ n ∼ n

ρ(inti ) = intj

σ , σ ′ ⊢ inti ∼ intj

σ , σ ′ ⊢ σ (ℓ) ∼ σ ′(ℓ′)

σ , σ ′ ⊢ ℓ ∼ ℓ
′

σ , σ ′ ⊢ nil ∼ nil

σ , σ ′ ⊢ Sh ∼ S
′
h σ , σ ′ ⊢ St ∼ S

′
t

σ , σ ′ ⊢ cons(Sh , St ) ∼ cons(S ′h , S
′
t )

∀i ∈ {1, · · · , n } : σ , σ ′ ⊢ Si ∼ S
′
i

σ , σ ′ ⊢ listof(S1, · · · , Sn ) ∼ listof(S ′1, · · · , S
′
n )

σ , σ ′ ⊢ leaf ∼ leaf

∀i ∈ {0, 1, 2} : σ , σ ′ ⊢ Si ∼ S
′
i

σ , σ ′ ⊢ node(S0, S1, S2) ∼ node(S ′0, S
′
1, S
′
2)

∀i ∈ {1, · · · , n } : σ , σ ′ ⊢ Si ∼ S
′
i

σ , σ ′ ⊢ treeof(S1, · · · , Sn ) ∼ treeof(S1, · · · , Sn )

Fig. 13. Skeleton similarity relation
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Proof. It suices to show x : A1;γ ;σS q′
q+K app

app(f , x) : A2 ⇒ ⟨ϕ, S
′,σ ′S ⟩. The proof proceeds

by induction on the derivation of x f : A1;x
f 7→ S ;σr q′

q
e f : A2 ⇒ ⟨ϕr , S

′
r ,σ
′
r ⟩. □

Operationally, this heuristics can be implemented with a skeleton cache cachef for a function f ,
such that cachef (Sr ,σr ) = (ϕr , S

′
r ,σ
′
r ). When the input generation algorithm encounters a function

call, it irst looks up the cache to see if there is a similar input skeleton that has been processed. If
there is a cache record then the algorithm tries the recorded path constraint. Otherwise, it proceeds
as with the original rules and, after generating a satisiable path constraint for the function call,
records the result into the cache.

7 EVALUATION

In this section, we describe the implementation of our worst-case generation algorithm building
on RaML, a summary of an evaluation with 22 benchmark programs, and multiple detailed case
studies. The source code of the benchmark programs is included in the extended version of this
paper [Wang and Hofmann 2018].

7.1 Implementation

We integrate our type-guided worst-case input generation algorithm in the existing RaML system
[Hofmann et al. 2017]. The algorithm is implemented in OCaml and consists of about 1600 lines of
code. To generate a worst-case input for a top-level function in a source program, the user needs
to specify a resource metric, a maximal degree of the resource bounds, and an input skeleton. We
then invoke RaML’s type inference to derive an upper bound on the resource usage and a resource-
annotated type-derivation tree. The input generation rules are implemented as a recursive function
on the derivation tree in continuation-passing style. Our implementation resolves nondeterminism
in the rules systematically via two continuations, one for generation success and one for generation
failure. When a path constraint is generated, we use the of-the-shelf SMT solver Z3 [de Moura
and Bjùrner 2008] to check its satisiability and generate models to resolve boolean and integer
indeterminates in the input skeleton. If the SMT solver succeeds, we use the generated model
to obtain a concrete heap via the relation M ⊢ σ ⊑ H and concretize the input skeleton via the
relationM ;H ⊢ S ⇝ v . Otherwise, we continue to search for other path constraints.
We have also implemented the two heuristics for compositional worst-case input generation,

which can be enabled by the user. The uniform-execution heuristic is implemented by enumerat-
ing global conigurations for all conditional expressions in the given program before the input
generation. The skeleton-similarity heuristic is implemented by employing a hash table as the
generation cache. Instead of the similarity relation, we deine signatures for input skeletons such
that skeletons of the same signature are similar to each other. Then we use the signature as the
hash key in the generation cache. When processing function calls, we extract the signature of the
current input skeleton and look it up in the cache. If a recorded generation result does not exist,
we use the original rules to generate a worst-case path constraint as well as the corresponding
output skeleton, and record them in the cache. Otherwise, we instantiate the recorded constraint
and output skeleton for the current input skeleton.
We also apply several simple optimizations. First, we cache the results of potential functions

to eliminate redundant computation. Second, we try to simplify the skeletons during the input
generation via partial evaluation, in order to deduce the value of predicates in the conditional
expressions. Third, we insert satisiability checking of path constraints during the input generation
to get rid of unsatisiable execution paths as early as possible.
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Table 1. Case studies. In the bounds n is the size of the first argument,mi are the sizes of the elements of the
first argument, and x is the size of the second element.

Function Description Metric Inferred Bound Time

lpairs : L(int) → L(int2) Example in Fig. 1 Heap space 3n + 2 0.01s
lpairs_alt : L(int) → L(int2) Example in Fig. 3 Heap space 3n + 2 0.01s
find : int × L(int) → bool Find an element in a list Eval. steps 12x + 3 0.01s
compare : L(int)2 → int Lexicographic comparison Eval. steps 20x + 5 0.01s
opairs : L(int) → L(int2) Generate ordered pairs Eval. steps 26

(n
2

)

+ 17n + 3 0.02s
queue : L(bool × int) → unit Functional queue Eval. steps 34.5n + 12 0.01s
eratos : L(int) → L(int) Sieve of Eratosthenes Eval. steps 21

(n
2

)

+ 25n + 3 0.02s
isort : L(int) → L(int) Insertion sort Eval. steps 20

(n
2

)

+ 15n + 10 0.02s
qsort : L(int) → L(int) Quicksort Eval. steps 29

(n
2

)

+ 28n + 10 0.04s

qsort_pairs : L(int2) → L(int2) Tail-recursive quicksort of pairs Eval. steps 37
(n
2

)

+ 32n + 13 0.04s
qsort_lists : L(L(int)) → L(L(int)) Lexicographic quicksort Eval. steps

∑

1≤i< j≤n 20mj + 39
(n
2

)

+ 34n + 10 0.33s

sort_all : L(L(int)) → L(L(int)) Quicksort all buckets Eval. steps
∑

1≤i≤n (33
(mi
2

)

+ 34mi ) + 20n + 3 0.18s
zigzag : T (unit) → unit Zigzag on a tree Eval. steps 11n + 3 0.01s
subtrees : T (unit) → L(T (unit)) Collect all subtrees Eval. steps 9

(n
2

)

+ 26n + 3 0.03s
find_tree : int ×T (int) → bool Find an element in a search tree Eval. steps 18n + 3 0.01s
build_tree : L(int) → T (int) Build a search tree by insertion Eval. steps 16

(n
2

)

+ 15n + 3 0.02s

hashtbl : L(int8) → L(int × L(int8)) Create a hash table for 8-char strings Ticks
(n
2

)

0.14s

split_sort : L(int2) → L(int2) Group pairs by key and sort each bucket Ticks 2
(n
2

)

+ n 0.14s
kth : int × L(int) → int Quickselect Ticks

(x
2

)

0.08s

sum_avl : T (int2) → int Sum all nodes of an AVL tree Ticks n 0.01s
dfs_avl : T (int2) → L(int) Depth-irst-search and sort the nodes Ticks

(n
2

)

+ n 0.06s

bfs_avl : T (int2) → L(int) Breadth-irst-search and sort the nodes Ticks
(n
2

)

+ 9n + 4 0.27s

7.2 Evaluation Setup

Research Questions. We evaluate our algorithm to answer the following questions.

• RQ1: Is our algorithm able to generate worst-case inputs for OCaml programs in practice?
• RQ2: Is our algorithm scalable to large input skeletons?
• RQ3: How does our algorithm compare to existing methods in terms of efectiveness and
eiciency?

Evaluated programs. Tab. 1 gives an overview of 22 programs on which we evaluate our algorithm.
It lists each case study’s function name,6 description, resource metric, inferred upper bound, and
time of type inference in RaML. The functions lpairs and lpairs_alt are the running examples we
use in ğ2. The functions isort, qsort, and hashtbl are similar to the benchmarks used by Noller
et al.’s Badger [Noller et al. 2018]. We collect some interesting programs from RaML’s examples
[Hofmann et al. 2017]. We also implement new benchmarks such as the functions sum_avl, dfs_avl,
bfs_avl that operate on AVL trees. In most of these functions, we specify a standard heap space
metric or an evaluation step metric. We also include some case studies where we use a customized
metric (that we refer to as łticksž), for example, for the function hashtbl we specify a metric to
count the number of hash collisions.

Experiment Execution. For all functions we ran three variations: (i) ALG: our type-guided worst-
case input generation algorithm, (ii) ALG+H1: the algorithm with the uniform-execution heuristic
enabled, and (ii) ALG+H2: the algorithm with the skeleton-similarity heuristic enabled. For each
function, we evaluated all these algorithms on four input skeletons of diferent sizes. We ran our
experiments fo 5 times with a 15-minute timeout and computed the 20% trimmed mean of the
running time. Tab. 2 presents the statistics of running time of all the experiments.

6 Although our implementation takes a top-level function as its input, the program can contain auxiliary functions that

could be invoked by the analyzed function.
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Table 2. Running time statistics (in seconds). łT/Ož stands for timeout.

Function ALG ALG+H1 ALG+H2 ALG ALG+H1 ALG+H2 ALG ALG+H1 ALG+H2 ALG ALG+H1 ALG+H2

lpairs
n = 10 n = 50 n = 100 n = 200

0.01 0.01 0.06 0.01 0.01 0.26 0.02 0.02 0.57 0.03 0.03 1.15

lpairs_alt
n = 10 n = 30 n = 100 n = 200

0.11 0.79 0.08 321.83 T/O 0.25 T/O T/O 0.84 T/O T/O 1.73

find
n = 10 n = 50 n = 100 n = 200

0.01 0.01 0.11 0.01 0.01 0.55 0.02 0.02 1.11 0.03 0.03 2.34

compare
n = 10, x = 10 n = 50, x = 50 n = 100, x = 100 n = 200, x = 200

0.01 0.01 0.12 0.02 0.02 0.64 0.03 0.03 1.31 0.07 0.07 2.91

opairs
n = 10 n = 50 n = 100 n = 200

0.03 0.03 0.14 1.52 1.52 2.41 20.70 20.71 25.24 353.85 354.55 389.12

queue
n = 10 n = 50 n = 100 n = 200

0.04 0.09 0.15 3.54 35.33 7.77 36.90 709.71 109.35 444.64 T/O T/O

eratos
n = 10 n = 14 n = 18 n = 20

2.19 2.19 12.62 2.70 2.70 19.75 4.20 4.19 35.77 T/O T/O T/O

isort
n = 10 n = 50 n = 100 n = 200

0.02 0.02 0.14 0.29 0.26 1.24 1.33 1.20 7.07 7.74 6.97 94.81

qsort
n = 10 n = 64 n = 100 n = 200

1.38 0.07 0.19 T/O 2.99 4.84 T/O 8.67 15.34 T/O 53.23 157.21

qsort_pairs
n = 10 n = 50 n = 100 n = 200

0.03 0.03 0.25 0.51 0.50 2.07 2.56 2.50 9.35 14.96 14.79 71.68

qsort_lists
n = 10,mi = n − i + 1 n = 50,mi = n − i + 1 n = 75,mi = n − i + 1 n = 100,mi = n − i + 1
0.19 0.19 0.33 16.83 16.80 33.87 113.47 113.47 662.13 439.35 438.79 T/O

sort_all
n = 10,mi = 10 n = 50,mi = 10 n = 100,mi = 10 n = 200,mi = 10

T/O 0.32 0.67 T/O 1.46 0.73 T/O 2.95 0.89 T/O 6.52 1.66

zigzag
n = 10 n = 15 n = 100 n = 200

3.47 6.96 0.16 110.35 222.40 0.25 T/O T/O 1.74 T/O T/O 4.87

subtrees
n = 10 n = 13 n = 100 n = 200

0.23 0.23 0.12 1.75 1.76 0.16 T/O T/O 8.79 T/O T/O 112.35

find_tree
n = 10 n = 50 n = 100 n = 200

0.01 0.01 0.11 0.02 0.02 0.63 0.03 0.03 1.26 0.06 0.06 2.78

build_tree
n = 10 n = 50 n = 100 n = 200

0.02 0.02 0.23 0.32 0.32 1.48 1.55 1.53 6.69 9.22 9.16 88.56

hashtbl
n = 5 n = 10 n = 30 n = 64

0.50 0.49 0.68 2.16 2.16 16.30 3.07 3.08 60.14 7.64 7.62 181.74

split_sort
n = 10 n = 50 n = 100 n = 200

703.22 0.12 1.99 T/O 3.02 T/O T/O 14.60 T/O T/O 85.70 T/O

kth
n = 10 n = 50 n = 100 n = 200

0.03 0.03 0.11 0.35 0.35 1.24 1.60 1.57 6.02 8.78 8.67 54.36

sum_avl
n = 5 n = 10 n = 30 n = 50

0.18 0.18 0.17 70.06 70.13 0.93 T/O T/O 33.39 T/O T/O 240.88

dfs_avl
n = 5 n = 8 n = 30 n = 40

2.72 72.09 0.37 805.29 T/O 1.46 T/O T/O 260.55 T/O T/O T/O

bfs_avl
n = 5 n = 8 n = 12 n = 14

4.77 136.14 1.60 T/O T/O 16.54 T/O T/O 492.49 T/O T/O T/O

Evaluation Platform. Our experiments were performed on a machine with an Intel Core i7 3.6
GHz processor and 16GB of RAM under macOS High Sierra 10.13.5.

7.3 Case Studies

For every function in Tab. 1, our type-guided worst-case input generation algorithm is able to ind
worst-case inputs for some input skeletons of 5ś200 nodes. This suggests that the inferred bounds
by RaML are tight for all these functions. We present a detailed description of the experiments for
several functions below.

Example 1: Quicksort of Integers. We use a mutually recursive implementation of the quicksort
algorithm in [Xi 2002]. This implementation is interesting because the worst-case inputs are not
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reversely ordered lists as usual. Although ALG runs out of time for input lists of length 64, 100, and
200, both ALG+H1 and ALG+H2 are able to generate a worst-case input for each of these lengths
in 3 minutes. Intuitively, the reason why ALG fails is that the number of candidate execution paths
is O(2n) where n is the length of the input list. For example, for the input list of length 10, ALG
generates the worst-case input [0,−2,−4,−6,−8,−9,−7,−5 − 3,−1].

Example 2: Sequential Insertions in a Hash Table. We implement an OCaml program that models
the hash table function from Badger [Noller et al. 2018]. We insert an expression tick(1.0) when a
hash collision happens. By specifying the number of ticks as the resource metric, RaML derives an
upper bound

(n
2

)

on the number of collisions, where n is the number of insertions. In this function,
each key in the hash table has a length of 8 characters, and we model it as a tuple type (abbreviated
as int8). The hash values are in the range [0, 64). We implement the DJBX33A hash function used
in a vulnerable PHP implementation [Website 2011]. The program performs 64 insertions into
an empty hash table and we want to generate an insertion sequence to trigger the worst-case
number of hash collisions. ALG and ALG+H1 are able to generate a list of 64 strings of length 8 in
20 seconds that cause the greatest number of hash collisions, i.e., all keys are diferent from each

other but have the same hash value, hence this insertion sequence triggers
(64
2

)

hash collisions,
while ALG+H2 takes a longer time. We think the reason why ALG+H2 runs much slower is that
the typing information is able to prune a suiciently large part of the search space so the overheads
of caching dominate the running time.

Example 3: Lexicographic Quicksort of Lists of Lists. This function is from RaML’s standard
benchmark set. It implements a standard quicksort that lexicographically sorts lists of lists. To
lexicographically compare two lists, one needs linear time in the length of the shorter list. For the
worst-case input generation, we specify input skeletons such that the lengths of inner lists are
strictly decreasing. ALG and ALG+H1 succeed in generating worst-case inputs for input lists of
length 100, while ALG+H3 runs out of time. The worst-case inputs they generate set all integers in
the inner lists to zero. However, if the inner lists of the input skeleton are not reversely ordered by
length, these algorithms report a generation failure. It suggests that the inferred bound by RaML is
not tight for these input skeletons. We think it is because currently, RaML does not support the
min operator in the resource polynomials, and in this example, it always assigns potential to the
second argument of a list comparison, hence when the irst list has a shorter length, there exists
potential waste.

Example 4: Zigzagging on a Binary Tree. We implement a tree traversal that visits the left and
right child alternatively. For a ixed size, the worst-case tree should arrange all its nodes on a
łzigzagž path so that the traversal needs to visit all its nodes. ALG and ALG+H1 become ineicient
when the size of the tree is 15, while ALG+H2 can easily generate a worst-case input for a tree of
size 200, because a subtree of a zigzagging tree is indeed zigzagging.

Example 5: Summing up nodes of an AVL Tree. We implement another tree traversal that simply
sums up the values of all nodes but expresses some constraints on the tree structure. Basically,
we record a height in each node and then we require the height of a node should be one plus the
maximum of the heights of its children and the diference of heights of its left child and its right
child should not exceed one. This corresponds to AVL trees that are well-known balanced search
trees. The worst-case input generation algorithm is then able to generate valid AVL trees for a
given size. Like the last example, ALG and ALG+H1 time out on small input skeletons, but ALG+H2
is able to scale to large input skeletons. The reason is that every subtree of an AVL tree is an AVL
tree.
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Discussion.

• RQ1: Our evaluation shows that our type-guided worst-case input generation algorithm is
able to handle a broad suite of OCaml programs, on condition that RaML infers tight bounds
on the programs. Moreover, as we discussed earlier in the paper, our algorithm is easy to
modify to handle d-bounded worst-case inputs, so if the RaML-inferred bound is not tight
but only difers from the original bound by a constant, our algorithm should also work.
• RQ2: Our evaluation shows that, in general, the time complexity of our input generation
algorithm is exponential in the size of the input skeleton. Nevertheless, the two heuristics,
uniform-execution and skeleton-similarity, can be helpful in practice. For example, if the
worst-case input data structure satisies some inductive properties, e.g., it is a zigzagging tree
or an AVL tree, then the skeleton-similarity heuristic can scale to large input skeletons.
• RQ3: Although we do not perform a systematic comparison to existing techniques, we argue
that we make signiicant progress on some benchmark functions. For the quicksort and hash
table examples, Noller et al. evaluated Badger [Noller et al. 2018] on Java implementations
for 5 hours, but did not generate an input that exposes worst-case resource consumption
among all possible inputs, e.g., on the hash table example, Badger produced an insertion
sequence with half of the worst-case number of hash collisions. Moreover, they only ran
their tool to generate inputs of size smaller or equal to 64 for sorting algorithms and hash
tables. In contrast, we ran our tool on several benchmarks including sorting algorithms with
input size up to 200.

8 RELATED WORK

Input Generation. Most closely related to our work are techniques for generating worst-case
inputs based on symbolic execution. WISE [Burnim et al. 2009] exhaustively explores all program
paths for small inputs to ind worst-case paths. These paths are then used as a heuristic to limit
the search space for inputs of larger sizes. Similarly, SPF-WCA [Luckow et al. 2017] uses path
policies to prune parts of the search space during symbolic execution. It also takes into account
calling contexts and łexecution historiesž to guide the search. Badger [Noller et al. 2018] combines
symbolic execution with fuzz testing for generating resource intensive inputs to entirely avoid
exhaustive exploration. There are also pure fuzzers like SlowFuzz [Petsios et al. 2017] that aim at
generating inputs that cause programs to have high resource consumption. The main diference in
our work is that we use RaML’s type derivations to prune the search space. Advantages of this
approach are that it is more eicient, guarantees that the generated inputs are indeed witnesses for
the worst-case behavior, and, as a side efect, proves that the bounds derived by RaML are tight. A
disadvantage is that the technique is only applicable to programs for which RaML derives a bound.
There are tools for random testing such as QuickCheck [Claessen and Hughes 2000], Small-

check [Runciman et al. 2008], and QuickChick [Lampropoulos et al. 2018] that use type information
and additional properties to generate random tests. However, we are not aware that these tools
have been used to generate worst-case inputs or tests for exposing high resource usage.

Resource Analysis. Automatic resource bound analysis has been extensively studied.
AARA has been introduced [Hofmann and Jost 2003] for automatically deriving linear worst-

case bounds for irst-order functional programs. The technique has been generalized to derive
polynomial bounds [Hofmann et al. 2011; Hofmann and Hofmann 2010; Hofmann andMoser 2015],
lower bounds [Ngo et al. 2017], higher-order functions [Hofmann et al. 2017; Jost et al. 2010], lazy
functional programs [Simões et al. 2012; Vasconcelos et al. 2015], user deined data types [Hofmann
et al. 2017; Jost et al. 2009], and numeric imperative program [Carbonneaux et al. 2017, 2015]. It
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also has been integrated into separation logic [Atkey 2010] and proof assistants [Charguéraud and
Pottier 2015; Nipkow 2015].
Beyond AARA, there exist many other approaches to automatic worst-case resource bound

analysis. They are based on sized types [Vasconcelos 2008], linear dependent types [Lago and
Gaboardi 2011; Lago and Petit 2013], reinement types [Çiçek et al. 2017, 2015; Wang et al. 2017],
annotated type systems [Crary and Weirich 2000; Danielsson 2008], defunctionalization [Avanzini
et al. 2015], recurrence relations [Albert et al. 2015; Danner et al. 2015; Flores-Montoya and Hähnle
2014; Kincaid et al. 2017], abstract interpretation [Blanc et al. 2010; Gulwani et al. 2009; Sinn
et al. 2014; Zuleger et al. 2011], and techniques from term rewriting [Avanzini and Moser 2013;
Brockschmidt et al. 2014; Frohn et al. 2016; Noschinski et al. 2013].
In contrast to all the aforementioned works, we study the problem of automatically deriving

worst-case inputs. These inputs are also witnesses for the tightness of the derived bounds. We are
not aware of existing works that leverage automatically-derived bounds to compute worst-case
inputs.

Symbolic Execution. A lot of techniques have been developed to improve efectiveness and
eiciency of symbolic execution in practice. Dynamic symbolic execution [Godefroid et al. 2005;
Sen et al. 2005] uses a speciic concrete execution to drive the symbolic execution in the sense
that the concrete execution provides resolution of branches in the program. Selective symbolic
execution [Chipounov et al. 2012] interleaves concrete and symbolic executions in order to explore
only some components of a program. Symbolic backward execution [Chandra et al. 2009; Dinges
and Agha 2014] performs in the reverse direction of normal execution to identify an input instance
to satisfy a given post-condition. Diferent path selection strategies are proposed for diferent
analysis goals [Cadar et al. 2008; Ma et al. 2011; Zhang et al. 2015]. Our worst-case input generation
algorithm essentially performs symbolic execution with a depth-irst path selection strategy, but
utilizes typing derivations to prune the search space as well as guide the search.

9 CONCLUSION

We have presented a type-guided worst-case input generation algorithm for functional programs
that is based on automatic amortized resource analysis. We have proved of soundness and relative
completeness of our algorithm and developed sound heuristics to ind worst-case inputs more
eiciently. Finally, an implementation of our algorithm has been integratedwith RaML and evaluated
with benchmark programs.

In the future, we plan to add support for negative resources to generate inputs that trigger
worst-case high-water marks. We will also work on mechanisms that use the absence of worst-case
inputs to improve the precision of resource-bound analyses. Another research direction is to support
side efects and more complex resource bounds such as those involving heights of trees. We are
also looking into symbolic execution techniques that can further improve the scalability of the
worst-case input generation algorithm.
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