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A B S T R A C T : T h e b i s ( 2 - p y r i d y l t h i o ) -
methanidopalladium(II) pincer complex (1), containing
a Pd−C bond, was obtained from the reaction of bis(2-
pyridylthio)methane (H2L) with palladium(II) acetate in
toluene under reflux. When palladium(II) trifluoroacetate
was used, H2L reacted to generate the tetrakis(pyridine-2-
thiol)palladium(II) complex (2). Complex 2 was
converted to a heterobimetallic palladium(II)−iron(II)
paddlewheel complex (3) upon treatment with iron(II)
triflate in the presence of a base in acetonitrile at room
temperature.

Palladium pincer complexes have contributed much to the
development of organometallic catalysis.1 Carbon-donor

pincers generally involve N-heterocyclic carbenes or aromatic
carbanions,1d,f−i and examples of palladium pincer complexes
featuring a donating sp3-hybridized carbon atom are limited.2

Toward the study of C(sp3)−H bond activation by
palladium(II), we have synthesized and characterized a
mononuclear palladium pincer complex of the bis(2-
pyridylthio)methane (H2L) ligand. This ligand has been
shown to form mononuclear or polynuclear coordination
complexes with a variety of metal ions.3 However, to the best
of our knowledge, this is the first example of a direct M−C(sp3)-
bonded pincer complex with this ligand. Furthermore, we were
surprised to find that activation of the C(sp3)−S bond of the
ligand provides tetrakis(pyridine-2-thiol)palladium(II) (2;
CCDC 1860814), which acts as a precursor to the
heterobimetallic paddlewheel complex PdIIFeII(PyS)4(CH3CN)
(3; CCDC 1860815), featuring a partial PdII−FeII metal−metal
bond. Complexes that contain heterometallic metal−metal
bonds are increasingly being employed as molecular magnets
and sensing materials and for addressing important challenges in
biology, energy, and catalysis.4 We report herein the use of H2L
as a precursor to either a pincer or a paddlewheel complex,
depending on the Pd source used.
The reaction between Pd(OAc)2 and H2L (derived from

pyridine-2-thiol, PySH) in toluene under reflux affords a brown
complex, [PdII(HL)(OAc)]·AcOH (1·AcOH; CCDC
1860813), in 43% yield via C−H bond activation (Scheme 1a).
The electrospray ionization mass spectrometry (ESI-MS)

spectrum of 1 in methanol shows signals at m/z 338.924 and
398.945 with the expected isotope distributions calculated for
[Pd(HL)]+ and [Pd(HL)(OAc)]+, respectively (Figure S1). 1H
NMR spectroscopy in CDCl3 shows that the complex is
diamagnetic (Figure S2). The aliphatic proton signal shifts from

5.06 to 6.20 ppm with respect to the free ligand, and this shift is
large compared to the shifts observed for the pyridine protons.
This large shift is due to formation of the Pd−C bond in 1.
X-ray quality single crystals of 1·AcOH were grown by slow

diffusion of pentane into a toluene solution of the complex at
298 K under an inert atmosphere. The complex crystallizes in
the monoclinic space group C2/c (Table S1). The crystal
structure reveals a square-planar geometry of the palladium
center bonded to the monoanionic NCN-donor ligand (HL−)
and to a monodentate acetate ligand (Figure 1a). The anionic
carbon (C6) and one acetate oxygen (O1) coordinate to the
palladium center trans to each other with a Pd1−C6 distance of
1.986(4) Å. The Pd1−O1 bond [2.112(3) Å] is longer than
expected (ca. 2.041 Å)5 because of the trans influence of the
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Scheme 1. (a) Syntheses of Mononuclear Palladium(II) and
Heterobimetallic Palladium(II)−Iron(II) Complexes and
(b) Tautomeric and Resonance Forms of PySH

Figure 1. Thermal ellipsoid plots with ellipsoids drawn at the 50%
probability level for (a) 1·AcOH and (b) 2. All hydrogen atoms are
omitted except the acetic acid hydrogen atom and the ones bound to
the pyridinium nitrogen atoms. Only one CF3COO

− anion is shown for
2.
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carbanionic ligand2b (Table S2). The other oxygen atom of the
acetate ligand forms a strong hydrogen-bonding interaction with
one molecule of acetic acid with a O3···O2 distance of 2.602(6)
Å (Table S2). The coordinated acetate ion and noncoordinated
acetic acid molecule exchange quickly on the NMR timescale at
room temperature. Using variable-temperature 13C NMR
spectroscopy, we find that the two separate acetate groups are
distinguishable below −15 °C (Figure S3). This result
emphasizes the trans effect of the Pd−C(sp3) bond.
Interestingly, the reaction of H2L with Pd(CF3COO)2 does

not yield an analogue of 1 but instead gives the dark-orange
complex [PdII(PySH)4](CF3COO)2 (2) in 15% yield (Scheme
1a) and insoluble black residue. Oxidative C−S bond activation
of H2L has been shown to occur with anions of copper(II) salts,
but this is the first example with palladium.3a Umakoshi et al.
have synthesized an analog of 2 with chloride counteranions in
77% yield by the reaction of [PdCl2(CH3CN)2] and PySH at
high temperatures in dioxane.6 Here, an alternate synthesis of 2
was carried out with PySH and palladium(II) trifluoroacetate in
acetonitrile at room temperature, which gives 2 in 90% yield.
The IR spectrum of 2 shows bands at around 1191−1130 cm−1

attributable to ν(C−F) stretches of the trifluoroacetate
counteranion. Complex 2 has signals at m/z 274.98 and
662.95 in its ESI-MS spectrum, each consistent with the
expected isotope distributions calculated for [Pd(PySH)4]

2+ and
[Pd (PySH)4(CF3COO)]+, respectively (Figure S4). The
diamagnetic complex 2 was further characterized by 1H NMR
spectroscopy in CD3CN, which shows peaks between 8.18 and
7.21 ppm for the pyridine protons (Figure S5). The broad peak
at 14.85 ppm is assigned to the NH protons.
The X-ray crystal structure of 2 reveals a four-coordinate

square-planar geometry at the palladium center with HPyS
ligands (Figure 1b). The Pd−S bond lengths vary in the range of
2.3326(7)−2.3269(7) Å, and C−S bond lengths vary strictly
from 1.716(2) to 1.713(2) Å (Table S3). These lengths are
comparable to those in palladium tetrathiolate complexes.6,7

The short Pd−S bond distances are indicative of monoanionic
thiolates (instead of thiones) bound to the palladium(II) center
like other metal−PySH complexes.8 Thus, the PySH ligands in 2
bind in a zwitterionic form, HPyS (bottom, Scheme 1b). All of
the protonated pyridinium nitrogen atoms participate in strong
hydrogen-bonding interactions with the trifluoroacetate coun-
terions with N1···O1 and N2···O1 distances of 2.763(2) and
2.797(3) Å, respectively (Table S3).
The reaction of 2 and Fe(OTf)2 in acetonitrile, followed by

treatment with trimethylamine (Me3N) at room temperature
under an inert atmosphere yields an orange-red complex, 3
(Scheme 1a). This is an improvement from the conditions used
by Kinoshita et al., who synthesized platinum-based hetero-
bimetallic complexes with first-row transitionmetals and a PySH
derivative at higher temperatures in sealed-tube reactions.9

Wagler and co-workers synthesized rhodium−antimony hetero-
bimetallic paddlewheel complexes with this ligand, but these are
insoluble in common organic solvents.10 The matrix-assisted
laser desorption/ionization MS (MALDI-MS) of 3 shows a
signal at m/z 603.521 with the expected isotope distribution for
[PdFe(PySH)4]

+ (Figure S6). The 1H NMR spectrum of
complex 3 in CD3CN at room temperature shows sharp peaks
for the pyridine protons with paramagnetic shifts (Figure S7)
consistent with retention of the paddlewheel structure in
solution and the presence of high-spin iron(II).11

The structure of 3 reveals four sulfur atoms coordinated to the
palladium center, with distances similar to those reported for 2.

Four pyridine nitrogen atoms coordinate to the iron center upon
deprotonation by Me3N, forming the (4,0) isomer of the
heterobimetallic palladium−iron complex 3 (Figure 2). The

acetonitrile molecule and palladium center coordinate to the
iron atom trans to each other, occupying the axial positions with
a Pd1−Fe1−N5 angle of 176.66(6)°, a short Fe1−Pd1 distance
of 2.595(10) Å, and a Fe1−N5 distance of 2.180(2) Å (Table
S4). The Pd−Fe bond distance is comparable to the Pd−Fe
bond distances reported recently in Fe−Pd−Fe trimetallic
molecules11b,12 and shorter than that of palladium ferrocenyl
complexes, which have Pd−Fe distances ranging from 2.63 to
>2.9 Å.13 The geometry about the iron center is reminiscent of
the iron complex with the N4Py ligand (Figure 2, inset),
although [(N4Py)Fe(NCCH3)]

2+ and its derivatives are all low-
spin.14

The optical spectrum of the complex 1·AcOH in acetonitrile
under an inert atmosphere exhibits a shoulder at 390 nm (ε =
4300 M−1 cm−1) corresponding to a ligand-centered transition.
Complex 2 shows an absorption peak at 483 nm (ε = 3600 M−1

cm−1), which may be assigned to a metal-to-ligand (palladium-
(II)-to-thiolate π*) charge-transfer transition (MLCT; Figure
3). Similarly, complex 3 exhibits an absorption peak at 430 nm

(ε = 2000 M−1 cm−1) and a shoulder at 490 nm (ε = 1700 M−1

cm−1) corresponding to an iron(II)-to-pyridine π* or a
palladium(II)-to-thiolate π* MLCT (Figure 3).
The cyclic voltammogram (CV) of 1·AcOH shows

irreversible oxidation peaks at E = 0.89 and 1.17 V versus
ferrocene/ferrocenium (Fc/Fc+), which are assigned to [HLPd-
(OAc)]2+/3+ and [HLPd(OAc)]3+/4+, respectively (Figure S8).
The CV of 2 shows irreversible oxidations at 0.42 and 1.22 V,
which may be assigned to oxidation at the palladium center for
PdII → PdIII and PdIII → PdIV, respectively (Figure S9).
Similarly, the CV of 3 has an irreversible oxidation at 0.08 V

Figure 2. Thermal ellipsoid plots with ellipsoids drawn at the 50%
probability level for 3. All hydrogen atoms are omitted. The inset is the
binding motif for the FeII-N4Py complex.

Figure 3. Optical spectra of complexes 1·AcOH, 2, and 3 (0.5 mM) in
acetonitrile at room temperature under an inert atmosphere.
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versus Fc/Fc+ attributed to [PdFe(PyS)4]
4+/5+, which may be

assigned to an oxidation localized at the iron center. The nature
of the CV is similar to that of the previously reported
[(N4Py)Fe(NCCH3)]

2+.15 Moreover, the additional oxidations
at 0.47 and 1.62 V attributed to [PdFe(PyS)4]

6+/5+ and
[PdFe(PyS)4]

7+/6+ may both be assigned to oxidations localized
at the palladium center (Figure S10).
Magnetic susceptibility data (plotted as χT vs T) for 3 are

modeled as an S = 2 system. A sharp downward feature is seen in
the χT versus T plot below 50 K, indicative of zero-field splitting
(Figure S11). The data were fitted with gx = gy = 1.83, and gz =
3.27; D = −21.6 ± 0.26 cm−1 (Table S5).
In addition to the magnetic susceptibility measurement, the

solid-state Mössbauer spectrum of 3 was collected at 77 K. The
isomer shift and quadruple splitting were 1.087 and 0.995 mm
s−1, respectively, indicative of a high-spin iron(II) center within
the complex (Figure S12).
Density functional theory calculations further help to evaluate

the electronic structure and nature of Pd−Fe bonding in 3. The
S = 2 state is predicted to be more stable compared to the S = 0
state by 7.32 kcal mol−1, in agreement with experiments. The
molecular orbital (MO) diagram of the S = 2 state (Figure 4)

indicates a σ-type bonding between palladium and iron
involving three electrons, a two-center three-electron bond.16

The σ-bonding orbital is polarized toward palladium, while the
σ* has more iron character. The four unpaired 3d electrons of
iron exist mostly localized at dxy, dyz, dx2−y2, and dz2, with the latter
involved in the σ bond to palladium.
In summary, three types of palladium(II) complexes derived

from the PySH ligand have been isolated and characterized. The
pincer complex 1 contains a rare Pd−C(sp3) bond within the
NCN-donor environment. C−S bond cleavage of the NCN-
donor ligand by trifluoroacetic acid forms the zwitterionic
monodentate PySH ligand, which yields the square-planar
palladium complex 2. Complex 2 was rationally employed as a
precursor in the synthesis of the heterobimetallic palladium−
iron complex 3, taking advantage of hard-soft acid-base theory to
target the (4,0) isomer of the complex. Complex 3 has structural
similarities with the well-known [(N4Py)Fe(NCCH3)]

2+ but is
high-spin with S = 2. The syntheses reported in this work
provide useful insights in designing bioinspired complexes
containing metal−metal bonds. Reactivity studies in this
direction are presently being carried out in our laboratory.
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