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Abstract

We study the effects of asymmetry in electrolyte valence (i.e. non z : z electrolytes)

on mean field theory of the electrical double layer. Specifically, we study the effect

of valence asymmetry on finite ion-size effects, the dielectric decrement and ion-ion

correlations. For a model configuration of an electrolyte near a charged surface in

equilibrium, we present comprehensive analytical and numerical results for the poten-

tial distribution, electrode charge density, capacitance, and dimensionless salt uptake.

We emphasize that the asymmetry in electrolyte valence significantly influences the

diffuse-charge relations and prior results reported in the literature are readily extended

to non z : z electrolytes. We develop scaling relations and invoke physical arguments

to examine the importance of asymmetry in electrolyte valence on the aforementioned

effects. We conclude by providing implications of our findings on diffuse-charge dy-

namics and other electrokinetic phenomena.

Keywords: Diffuse-charge, Capacitance, Debye length, Finite ion size, Poisson-Boltzmann
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Introduction

Diffuse charge refers to the distribution of ions in an electrolyte solution adjacent to a charged

solid surface. The charge profile is critical to a variety of applications; in colloid science and

microfluidic applications, diffuse charge is important in electrophoresis,1–3 electroosmosis,1–5

and diffusiophoresis,6,7 while in energy storage devices, the charged layers form the basis of

electrochemical capacitors,8,9 and more recently semi-solid flow capacitors.10 The properties

of diffuse charge are typically determined by the widely used Gouy-Chapman (GC) theory,

which describes the dependence of surface charge density q and capacitance c on the poten-

tial drop ψD across the diffuse-charged region.11–16

The classical GC results are based on a mean-field approximation and provide analytical

expressions for q(ψD) and c(ψD). Due to their relatively simple nature, GC results continue

to be widely used, even though it is well recognized that they suffer from several limita-

tions.17–23 To improve the predictions of the GC results, several modifications have been

suggested in the literature while retaining the mean-field framework of the classical GC re-

sults. In this article, we focus on three such modifications for valence asymmetric (or non

z : z) electrolytes: finite ion-size effects, dielectric decrement and ion-ion correlations, and

we indicate below earlier work in each area.

We first discuss finite ion-size effects, also commonly known as steric effects. The clas-

sical GC results are obtained by solving the Poisson-Boltzmann equations where ions are

treated as point charges. Therefore, the classical GC results predict an unphysical outcome

that ion concentration can increase indefinitely with increase in |ψD|. This limitation was

recognized already 90 years ago by Stern,17 Bikerman18 and Freise,19 and these authors ac-

counted for the finite-ion size effects by assuming a simple hard-sphere model with a finite

diameter of ions. A vast literature is available in this area and we only discuss a few reports

in detail. For a more in-depth review of the literature on finite-ion size effects, including
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more sophisticated models for spherical ions, we refer the readers to references 20, 21, 24–26.

For example, Borukhov et al.27 derived an expression for the concentration of ions with a

finite ion size for a valence symmetric (or z : z), as well as valence asymmetric, or non z : z

electrolyte near a charged substrate. Kilic et al.21,28 and Kornyshev20 derived the modified

Poisson-Boltzmann equations, and provided explicit expressions for q(ψD) and c(ψD) for z : z

electrolytes while assuming that the cation and anion diameters are equal. In these articles,

the authors also discussed the implications of including steric effects on the dynamics of

diffuse charge. More recently, Han et al.29 derived the results for q(ψD) and c(ψD) for z : z

electrolytes but allowed the cation and anion diameters to be unequal, thus extending the

results of Kilic et al.21,28 and Kornyshev.20 We emphasize that equality of cation and anion

valence is a common assumption. In this article, we relax this assumption and we further

extend the above mentioned results to non z : z electrolytes. We show that asymmetry in

cation and anion valence significantly influences the behavior of q(ψD) and c(ψD).

Second, we focus on the effect of the dielectric decrement, which refers to the decrease in

the dielectric constant due to a reduction in the orientational polarizability of the hydrated

ions with increase in electrolyte concentration. A decrease in the dielectric constant lowers

the ability to store charge in the double layer. The dielectric decrement is a well-known

effect and has been recognized in several reports.18,22,26,30–34 Here, we focus on the recent

results of Nakayama and Andelman,32 which describe the interplay between finite ion-size

effects (with equal cation and anion diameters) and the dielectric decrement for z : z elec-

trolytes. In particular, we derive general results for the dielectric decrement for non z : z

electrolytes while also allowing for unequal cation and anion diameters. We then focus on

the effect of valence asymmetry and show that it strongly impacts the double layer properties.

The ion-ion correlation effect, also known as the overscreening effect, relates to the interac-

tion between nearby ions. This effect can be accounted for in the mean-field framework by
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defining a screening length and including an additional fourth-order term in the modified

Poisson-Boltzmann equations, as recently derived by Bazant, Storey and Kornyshev,23,35

who discussed the competition between steric effects and ion-ion correlations. The authors

showed that ion-ion correlations give rise to oscillations in charge density profiles, especially

for large screening lengths.23,35 We note that the article by Bazant and Storey35 considers

1 : 1 and 1 : 2 electrolytes with equal cation and anion diameters. In this article, we extend

these results for non z : z electrolytes with different cation and anion diameters, and inves-

tigate the effect of electrolyte valence on ion-ion correlations.

Before proceeeding further, we acknowledge that we are certainly not the first to investi-

gate non z : z electrolytes. The effect of electrolyte valence has been investigated for the

classical Poisson-Boltzmann equations,11,36–42 e.g., Gouy,11 Levine and Jones37 and Gra-

hame36 analyzed the scenarios of z−/z+ = 2 or z−/z+ = 1/2. On the other hand, Lyklema38

and Levie40 described c(ψD) for a general combination of z+ and z− , though the results are

presented in an awkward dimensional form. However, the equilibrium relationships for non

z : z electrolytes in the modified Poisson-Boltzmann description are not readily available.

Therefore the aim of this article is to investigate the impacts of asymmetry in electrolyte

valence on the modified Poisson-Boltzmann equations. We find that inclusion of asymmetry

in electrolyte valence is critical as it affects all of the effects mentioned above.

We present some physical arguments to broadly highlight the importance of asymmetry

in electrolyte valence. Since the magnitude of valence dictates the force experienced by the

ions, when cations and anions are of different valence, the magnitude of forces experienced by

the cations and anions are unequal, which creates an asymmetry in double layer properties,

or q(ψD) 6= q(−ψD) and c(ψD) 6= c(−ψD). This apparent breaking of symmetry can have

significant implications. For instance, several experimental data sets published in the super-

capacitor literature utilize valence asymmetric electrolytes such as Na2SO4 and CaCl2.43,44
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However, the modeling approaches in this area are still typically restricted to z : z elec-

trolytes,45 and thus studies have not been conducted to exploit valence asymmetry as a way

to tune the energy and power density of supercapacitors. Similarly, valence asymmetry can

be important for capacitive deionization,3,46 a process where toxic ions migrate move from

the bulk to the double layer. Here, capacitance would influence the quantity of toxic ions

depleted as well as the time required for the depletion.3 Since c(ψD) 6= c(−ψD) for valence

asymmetric ions, the direction of the potential drop will impact the efficacy of the process.

We also emphasize that our analysis is general since we consider a combination of valence

asymmetry with other effects, i.e. finite ion sizes, dielectric decrement and ion-ion correla-

tions. To highlight the relative importance of simultaneous effects, we now present a physical

argument for the scenario where the combined effects of valence asymmetry and finite ion

sizes are relevant. Let us assume that in an electrolyte, anions have a higher valence than the

cations. At the same time, the anions have a significantly smaller ion size than the cation.

When such an electrolytes comes in contact with a positively charged surface, the anions

migrate towards the charged surface and cations move away from the surface. The higher

valence of the anions leads to a rapid increase in the anion concentration with increase in

ψD until there is no longer space to accommodate more anions. Therefore, a higher valence

implies that the double layer saturates with anions at a smaller value of ψD. In contrast, the

smaller anion size implies that each ion occupies a smaller volume, and thus saturation of

double with anions occurs at a larger values of ψD. Therefore, valence asymmetry can either

compete or cooperate with other additional effects, and thus provides flexibility in design of

processes where the additional effects are significant.

In this article, we study the influence of asymmetry in electrolyte valence on finite ion-size

effects (with unequal cation and anion diameters), dielectric decrement and ion-ion corre-

lations. For each of these effects, we first derive the diffuse-charge relations for a general
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valence electrolyte and provide analytical and numerical results for the potential distribu-

tion, q(ψD), c(ψD) and dimensionless salt uptake α(ψD). Under appropriate assumptions, we

recover previously reported results for q(ψD) and c(ψD), thus highlighting the generality of

the proposed relations. Since c(ψD) has multiple local extrema, we provide scaling relations

to better explain the dependence of the extrema on different parameters. Lastly, we discuss

the implications of our results on diffuse-charge dynamics and dimensionless parameters that

govern the electrokinetic phenomena. We conclude by providing limitations of the models

and directions for future research.

Problem setup

We consider an electrolyte in equilibrium with a charged surface (Fig. 1). Due to electro-

static attraction, oppositely-charged ions (also referred as counter ions) migrate towards the

charged surface, and compete with thermal or entropic effects to create a region of diffuse

charge. The typical thickness of the region of excess charge, or double layer, is given by the

Debye length λD
15,16,38,47

λD =

√
ε0εskBT

e2
∑

i z
2
i c0,i

, (1)

where ε0 is the electrical permittivity of vacuum, εs is the dielectric constant of the solution

without the electrolyte, kB is the Boltzmann constant, T is temperature, zi is the valence of

the ith ion type, c0,i is the bulk concentration of the ith ion type, and e is the charge on an

electron. The sum is over all ionic species present in the solution. The region close to the

electrode where ions are adsorbed at the surface is known as the Stern layer (Fig. 1). The

(molecular) thickness of the Stern layer is denoted λS.

To be specific, we consider an electrolyte with one cation type and one anion type. The

cation and anion valences are denoted z+ and z− respectively. Since the electrolyte in bulk

is neutral, the ion concentrations in bulk are c+ = z−c0 and c− = z+c0. For instance, K2SO4
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Figure 1: An electrolyte with cation valence z+ and anion valence z− is near a charged
surface. The Stern layer thickness is denoted λS and the Debye length is denoted λD. The
potential at the electrode is taken as ψ = ψ0, the potential at the boundary between the
Stern layer and diffuse layer is ψ = ψD, and the potential in bulk is zero.

is denoted by z+ = 1, z− = 2, c+ = 2c0, and c− = c0. Therefore, for a z+ : z− electrolyte,

according to Equation (1), λD is given as

λD =

√
ε0εskBT

z+z−(z− + z+)e2c0

. (2)

Finite ion-size effects

In this section, we consider finite ion-size effects and specifically focus on the effect of valence

asymmetry on double layer properties. For simplicity, we assume that the relative permit-

tivity ε is independent of c± , or ε(c±) = εs. However, we discuss the effect of a change in

dielectric constant ε(c±) separately in the next section. Similarly, we also exclude the ion-ion

correlations in this section but discuss their effect in the subsequent section.
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Derivation

Potential distribution and charge accumulated

To include the finite ion-size effects, we assume a hard-sphere model where ions are spherical

and are described with an effective diameter. Depending on the interaction between differ-

ent ion types, the effective diameter may or may not be the same as the ion diameter. We

refer the readers to references 20, 21, 28 for a more detailed discussion on effective diameters

and the length scale of interactions. Here, we denote the effective diameter of a cation is

a+ . Typically, a+ = O(10−1 − 10) nm, and thus the concentration of cations cannot exceed

1

a3
+

= O(1024− 1030) m−3.21 We also allow for asymmetry in the effective diameter of anions

and cations, and define the effective diameter of an anion as a− . Therefore, the concentration

of anions cannot exceed
1

a3
−

.

The free energy of the system per unit volume F is defined as

F = U − TS, (3)

where U is the internal energy per unit volume, S is the entropy per unit volume, and

F (ψ, c±). U is defined as20,21,32

U = −ε0εs
2

∣∣∣∣dψdx
∣∣∣∣2 + z+ec+ψ − z−ec−ψ, (4)

where ψ(x) is the potential at a location x relative to a reference potential at x → ∞,

or ψ(∞) = 0. The first term in Equation (4) represents the energy stored in the electric

field and the remaining two terms account for the potential energy of the ions. To evaluate

S, we use Boltzmann’s formula to evaluate entropy of mixing S = kB lnω, where ω is the

number of microstates. To estimate ω, we first estimate the number of ways to arrange the

larger ions and then multiply with the number of ways to arrange the smaller ions. Here,
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for convenience, we assume that a+ ≥ a− . We estimate entropy as

− S

kB
= c+ ln

(
a3

+
c+
)

+
1− a3

+
c+

a3
+

ln
(
1− a3

+
c+
)

+

c− ln

(
a3

−c−
1− a3

+
c+

)
+

(1− a3
+
c+ − a3

−c−)

a3
−

ln

(
1− a3

+
c+ − a3

−c−
1− a3

+
c+

)
.

(5)

An equivalent expression of entropy for a− ≥ a+ can be estimated by switching the positive

and negative subscripts. With F (c±) given by Equations (3) - (5), we evaluate the chemical

potentials µ± as

µ+ =
∂F

∂c+
= z+eψ + kBT

[
ln

(
a3

+
c+

1− a3
+
c+

)
−
a3

+

a3
−

ln

(
1− a3

+
c+ − a3

−c−
1− a3

+
c+

)]
, (6a)

µ− =
∂F

∂c−
= −z−eψ + kBT ln

(
a3

−c−
1− a3

+
c+ − a3

−c−

)
. (6b)

We define dimensionless concentrations as n+ =
c+
z−c0

, n− =
c−
z+c0

, and the dimensionless

electric potential as Ψ =
eψ

kBT
. At equilibrium, the chemical potential is constant for all x,

µ±(x) = µ±(∞), and we obtain

n+ =
exp(−z+Ψ)

g(Ψ)
, (7a)

n− =
exp(z−Ψ)f(Ψ)

g(Ψ)
, (7b)

g(Ψ) = f(Ψ) + z−a
3
+
c0

(
exp(−z+Ψ)− f(Ψ)

)
+ z+a

3
−c0f(Ψ)

(
exp(z−Ψ)− 1

)
, (7c)

f(Ψ) =

(
1 +

z+a
3
−c0

(
exp

(
z−Ψ

)
− 1
)

1− z−a3
+
c0

)a3
+

a3
−

−1

. (7d)

Physically, g(Ψ) accounts for the reduction in concentration due to finite ion sizes and f(Ψ)

accounts for the change in concentration due to the contrast in ion sizes (note f(Ψ) = 1

for a− = a+). For a± → 0 in Equation (7), we recover the Boltzmann distribution. For

a+ = a− and z+ = z− , we recover the standard result in reference 21, 27, 28. Furthermore,

9



for a+ 6= a− and z+ = z− , we recover the known result in reference.29 To solve for c± and ψ,

we couple Equation (7) with Gauss’s law,

ε0εs
d2ψ

dx2
= e(z−c− − z+c+). (8)

which is to be solved with boundary conditions ψ0 = ψ(0)− λS
dψ

dx

∣∣∣∣
x=0

and ψ(∞) = 0,

where ψ(0) = ψD is the potential drop across the diffuse layer (Fig. 1). We note that the

boundary condition at the electrode assumes a thin Stern layer.3 We non-dimensionalize

with Ψ =
eψ

kBT
, X =

x

λD
, and ΛS =

λS
λD

to obtain

d2Ψ

dX2
=
n− − n+

z+ + z−
, (9)

with two boundary conditions

Ψ0 = ΨD − ΛS
dΨ

dX

∣∣∣∣
X=0

, (10a)

Ψ(∞) = 0. (10b)

Equations (7) and (9) are governed by four dimensionless parameters: z+ , z− , a3
+
c0, and

a3
+
/a3

− . To solve for Ψ and n± , we assume z+ , z− , a3
+
c0, a3

+
/a3

− , ΛS and Ψ0 (the potential

measured on the solid boundary) are specified. Typically, a3
±c0 = O(10−10 − 10−1). For

a more detailed discussion on the physical interpretation of a3
±c0 and the range of possible

values of a3
±c0, we refer the reader to reference 21. We multiply both sides of Equation (9)

by
dΨ

dX
and integrate once (using (10b)) to find

dΨ

dX
= −sgn(Ψ)

√
2

z+z−(z+ + z−)a3
+
c0

ln g(Ψ), (11)

where sgn(Ψ) is the sign function. For a3
+
c0 → 0, a+/a− = 1, and z+ = z− = z, Equa-

tion (11) becomes
dΨ

dX
= −2 sinh

zΨ

2
, and another integration yields the well-known relation

tanh
zΨ

4
= tanh

zΨD

4
exp(−X),11 where ΨD is related to Ψ0 through the boundary condition
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in Equation (10a). For a+ 6= 0, a+/a− 6= 1 and z+ 6= z− , we numerically integrate Equation

(11) with the Stern layer boundary condition (10a) to obtain Ψ(X), and the results are

discussed later.

Next, we evaluate the surface charge density on the electrode as q = −ε0εs
dψ

dx

∣∣∣∣
x=0

. Sim-

ilarly, we can also calculate the capacitance c, i.e. the charged stored in the electrode

per unit total potential drop, or c =

∣∣∣∣ dqdψ0

∣∣∣∣. It is convenient to non-dimensionalize Q =

q

z+z−(z+ + z−)eλDc0

and C =
cλD
ε0εs

, such that Q = − dΨ

dX

∣∣∣∣
X=0

and C =

∣∣∣∣ dQdΨ0

∣∣∣∣. Thus, from

Equation (11), we find the dimensionless surface charge density

Q = sgn(ΨD)

√
2

z+z−(z+ + z−)a3
+
c0

ln g(ΨD). (12)

Capacitance

To calculate C =

∣∣∣∣ dQdΨ0

∣∣∣∣, we write the Stern layer boundary condition in Equation (10a) as

Ψ0 = ΨD+ΛSQ. Differentiating this relation with respect to ΨD, we get
dΨ0

dΨD

= 1+ΛS
dQ

dΨD

.

Thus C =

∣∣∣∣ dQdΨD

dΨD

dΨ0

∣∣∣∣, or

C−1 =

∣∣∣∣∣
(
dQ

dΨD

)−1
∣∣∣∣∣+ ΛS, (13)

so that

C−1 =

√
2(z+ + z−) ln g(ΨD)

z+z−a
3
+
c0

1

|n−(ΨD)− n+(ΨD)|
+ ΛS. (14)

Equations (13 - 14) demonstrate the well-known result that we can characterize the system as

an electrical circuit with a capacitor representing the Stern layer and a capacitor representing

the diffuse layer in series. For a+ → 0, a+/a− = 1, and z+ = z− = z, Equations (12) and
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(14) take the form

Q =
2

z
sinh

zΨD

2
, (15a)

C−1 = sech
zΨD

2
+ ΛS, (15b)

which are the classical GC relations.11,12 For a+ → 0 and a+/a− = 1 but different ion

valences, Equations (12) and (14) become

Q = sgn(ΨD)

√√√√ 2

z+z−

(
z+ exp

(
z−ΨD

)
+ z− exp

(
−z+ΨD

)
z+ + z−

− 1

)
, (16a)

C−1 =
z+ + z−

| exp(z−ΨD)− exp(−z+ΨD)|

√
2

z+z−

(
z+ exp(z−ΨD) + z− exp(−z+ΨD)

z+ + z−
− 1

)
+ ΛS , (16b)

which are consistent with the results reported in reference 38. However, the results analogous

to Equation (16) reported in 38 are presented in an awkward dimensional form. Taking the

limit of z+ = z− = z in Equation (16), it is easy to recover the GC relations in Equation

(15). Lastly, for z+ = z− = z and a+ = a− = a, Equations (12) and (14) are evaluated as

Q = sgn(ΨD)

√
1

z3a3c0

ln

(
1 + 4za3c0 sinh2 zΨD

2

)
, (17a)

C−1 =
1 + 4za3c0 sinh2 zΨD

2
| sinh zΨD|

√
1

za3c0

ln

(
1 + 4za3c0 sinh2 zΨD

2

)
+ ΛS, (17b)

which agree with the relations presented in references 21, 28. We summarize the validity of

aforementioned diffuse charge relations for Q(ΨD) and C(ΨD) in Table 1. To the best of our

knowledge, Equations (12) and (14) are the most general charge and capacitance relations

reported in literature accounting for ion valence and finite ion size.
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Table 1: Summary of Q(ΨD) and C(ΨD) relations that account for ion valence and finite ion
size. For simplicity, we assume ΛS = 0.

Conditions Diffuse charge relations References

z+ = z− = z
a± → 0

Q =
2

z
sinh

zΨD

2

C = cosh
zΨD

2

11, 12

z+ 6= z−
a± → 0

Q = sgn(ΨD)

√√√√ 2

z+z−

(
z+ exp

(
z−ΨD

)
+ z− exp

(
−z+ΨD

)
z+ + z−

− 1

)

C =
| exp(z−ΨD)− exp(−z+ΨD)|

(z+ + z−)|Q|

38, 40

z+ = z− = z
a+ = a− = a

Q = sgn(ΨD)

√
1

z3a3c0
ln

(
1 + 4za3c0 sinh2 zΨD

2

)
C =

| sinh zΨD|

z

(
1 + 4za3c0 sinh2 zΨD

2

)
|Q|

20, 21, 28

z+ = z− = z
a+ 6= a−

n+ =
exp(−zΨ)

g(Ψ)
, n− =

exp(zΨ)f(Ψ)

g(Ψ)

f(Ψ) =

(
1 +

za3
−c0 (exp (zΨ)− 1)

1− za3
+
c0

)a3
+

a3
−

−1

g(Ψ) = f(Ψ) + za3
+
c0 (exp(−zΨ)− f(Ψ)) +

za3
−c0f(Ψ) (exp(zΨ)− 1)

Q = sgn(ΨD)

√
1

z3a3
+
c0

ln g(ΨD)

C =
|n−(ΨD)− n+(ΨD)|

2z |Q|

29

z+ 6= z−
a+ 6= a−

n+ =
exp(−z+Ψ)

g(Ψ)
, n− =

exp(z−Ψ)f(Ψ)

g(Ψ)

f(Ψ) =

(
1 +

z+a
3
−c0

(
exp

(
z−Ψ

)
− 1
)

1− z−a3
+
c0

)a3
+

a3
−

−1

g(Ψ) = f(Ψ) + z−a
3
+
c0

(
exp(−z+Ψ)− f(Ψ)

)
+

z+a
3
−c0f(Ψ)

(
exp(z−Ψ)− 1

)
Q = sgn(ΨD)

√
2

z+z−(z+ + z−)a3
+
c0

ln g(ΨD)

C =
|n−(ΨD)− n+(ΨD)|

(z+ + z−) |Q|

this work
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Salt uptake

Both Q and C are measures of the net charge inside the double layer. However, the formation

of a double layer also depletes salt from the bulk. As noted in references 3, 46, the amount of

salt uptake directly dictates the dynamics of the double layer formation process, as explained

later. We define the length scale of the bulk as L and estimate a dimensionless measure of

the excess salt uptake as

α =

∫∞
0

(
c+ + c− − (z+ + z−)c0

)
dx

(z+ + z−)c0L
. (18)

When α � 1, the solution to double layer charging for an electrolyte between two parallel

plates can be reliably approximated as an electrical circuit.3 However, if α = O(1), this ap-

proximation is no longer reliable. Therefore, estimation of α is important for time-dependent

problems. To estimate α, we utilize Equations (7) and (11) to obtain

α =
λD
L

√
a3

+
c0z+

2(z+ + z−)

∣∣∣∣∣
∫ ΨD

0

z−(n+ − 1) + z+(n− − 1)√
ln g(Ψ)

dΨ

∣∣∣∣∣ , (19)

where n+, n− and g(Ψ) are evaluated from Equation (7). In the limit a+ → 0, a+/a− = 1,

and z+ = z− = z, we recover the well-documented result3 of α =
4λD
L

sinh2 zΨD

4
. We

numerically integrate Equation (19) to evaluate the dependence of α on different parameters

and the results are discussed later.

Potential Distribution Ψ(X)

We now discuss the numerical solution to Equation (11) with the Stern layer boundary condi-

tion (10a). We first report the effect of changes in a3
+
c0 on Ψ(X) with Ψ0 = 5, z+ = 1, z− = 3,

a+/a− = 1 and ΛS = 0; see Fig. 2(a). Physically, for a larger value of a3
+
c0, i.e. larger steric

effects, |Q| is smaller. Since Q = − dΨ

dX

∣∣∣∣
X=0

, a larger a3
+
c0 implies a more gradual decrease

in Ψ with X.
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Figure 2: Effect of asymmetry in electrolyte valence on finite ion-size effects for Ψ(X), as
given by the numerical solution of Equation (11) with boundary condition (10a) for Ψ0 = 5.
(a) Different a3

+
c0 with z+ = 1, z− = 3, a+/a− = 1 and ΛS = 0. (b) Different z+ and z− with

a3
+
c0 = 0.2, a+/a− = 1 and ΛS = 0. (c) Different a3

+
/a3

− with z+ = 1, z− = 3, a3
+
c0 = 0.2,

and ΛS = 0. (d) Different ΛS with z+ = 1, z− = 3, a3
+
c0 = 0.2, and a3

+
/a3

− = 1.

The effect of change in z+ and z− on Ψ(X) with Ψ0 = 5, a3
+
c0 = 0.2, a+/a− = 1 and

ΛS = 0 is provided in Fig. 2(b). The trend shows that the fastest decay in Ψ occurs for

z+ = z− = 1 whereas the decay is slowest for z+ = 2, z− = 1. Physically, for a3
+
c0 = 0.2,

the ion concentration is high even in the bulk and thus finite ion-size effects are important.

We assume that for Ψ ≈ 5, c− ≈ 1/a3
− , z+c+(0) � z−c−(0), and it can be estimated that

dΨ

dX
≈ −

√
2Ψ

z+(z+ + z−)a3
−c0

; see Equation (9). This approximation explains the trend we

observe in Fig. 2(b). Similarly, for z+ = 1, z− = 3, a3
+
c0 = 0.2 and ΛS = 0, we find that a

smaller a− increases the magnitude of

∣∣∣∣ dΨ

dX

∣∣∣∣, and thus the change in Ψ is more rapid for a

smaller a− , as observed in Fig. 2(c).
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The effect of ΛS on Ψ(X) enters through the boundary condition (10a). We present the

results of changes in ΛS on Ψ(X) with Ψ0 = 5, a3
+
c0 = 0.2, z+ = 1, z− = 3 and a+/a− = 1

in Fig. 2(d). A thicker Stern layer, or a larger ΛS, implies a larger potential drop across the

Stern layer. Therefore, we see that ΨD = Ψ(0) decreases for an increase in ΛS. Further, a

smaller ΨD indicates a lower |Q| (see below), and thus for a larger ΛS, the rate of decay of

Ψ is smaller.

Charge accumulated

We present the dependence of accumulated charge Q on different parameters according to

Equation (12). Fig. 3(a) shows the dependence of Q with ΨD for different values of a3
+
c0

with z+ = 1, z− = 3 and a+/a− = 1. A larger a3
+
c0 implies that steric effects are stronger, and

thus Q is smaller. Increasing ΨD increases the concentration of ions and thus Q increases.

For a large ΨD, steric effects start to become more important and the increase in Q is smaller

since the rate of change in ion concentration is lower.

Next, we consider valence asymmetry for a3
+
c0 = 0.2 and a+/a− = 1. Since finite ion-

size effects are significant here, for ΨD > 0, we assume c−(0) ≈ 1/a3
− and z+c+(0)� z−c−(0)

to obtain

Q = − dΨ

dX

∣∣∣∣
x=0

≈
√

2ΨD

z+(z+ + z−)a3
−c0

. (20)

We find good agreement between computed values from Equation (12) and approximate

values from Equation (20), especially for large |ΨD| since concentration approximations are

more accurate for large |ΨD|. Q is highest for z+ = z− = 1 followed by z+ = 1, z− = 3 and

z+ = 2, z− = 1 (see Fig. 3(b)). Similarly, for a3
+
c0 = 0.2, z+ = 1 and z− = 3, a smaller a−

leads to a larger Q, as predicted by Equation (20). This observation is corroborated in Fig.

3(c). Lastly, ΛS does not influence the variation of Q versus ΨD. However, for the same
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Figure 3: Effect of asymmetry in electrolyte valence on finite ion-size effects for Q(ΨD), as
given by the Equations (12) and (20). The solid lines represent results from Equation (12)
and the dotted lines denote results from (20). (a) Different a3

+
c0 with z+ = 1, z− = 3 and

a+/a− = 1. (b) Different z+ and z− with a3
+
c0 = 0.2 and a+/a− = 1. (c) Different a3

+
/a3

−

with z+ = 1, z− = 3 and a3
+
c0 = 0.2.

value of Ψ0, values of ΨD will be smaller for a larger ΛS (Equation (10a), see Fig. 2(d)).

Capacitance

Capacitance C is a measure of the amount of charge stored per unit total potential drop,

i.e.

∣∣∣∣ dQdΨ0

∣∣∣∣. We discuss the dependence of C on different parameters based on Equation (14).

Fig. 4(a) plots the variation of C with ΨD for different values of a3
+
c0 with z+ = 1, z− = 3,

a+/a− = 1 and ΛS = 0 as constants. Depending on the value of a3
+
c0, capacitance exhibits

different behaviour.

For dilute ion concentrations in the bulk, i.e. a3
+
c0 . O(10−2), C (ΨD) displays a camel

shape with one local minimum and two local maxima. Physically, this occurs because for

small values of |ΨD|, counter ion concentration increases with increase in |ΨD|. For large

values of |ΨD|, the counter ion concentration saturates around ΨD = ΨD,max, beyond which

the capacitance decreases. Fig. 4(a) shows that the curves are asymmetric when the cation

and anion valences are not equal, or C(−ΨD) 6= C(ΨD) for z+ 6= z− . We note that the

location of the minimum ΨD = ΨD,min 6= 0 for z+ = 1 and z− = 3, unlike valence symmetric
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electrolytes. Similarly, the location of two maxima are not equal and opposite for unequal

cation and anion valences.

For large bulk ion concentrations, i.e. a3
+
c0 & O(10−1), C (ΨD) curves show a bell shape

with no local minimum and one local maximum. Since the ion concentration is high even

in bulk, the local minimum disappears and only one local maximum remains. We find that

since cation and anion valences are unequal, ΨD,max 6= 0. Though the camel shape and bell

shape curves have been reported previously,20 here we emphasize that the shapes and the

ΨD,max and ΨD,min are significantly influenced by z+ and z− . In the subsequent subsection,

we use a scaling analysis to detail a more quantitative estimate of extrema and their depen-

dence on z+ and z− .

Next, we present the results for a3
+
c0 = 0.2, a+/a− = 1 and ΛS = 0 but with different

cation and anion valences in Fig. 4(b). We find that the position of a local maximum in

the bell shape capacitance is also dictated by the valence and ΨD,min > 0 when z− > z+ and

ΨD,min < 0 when z+ > z− . We note that an approximation for C is possible by assuming

c+(0) ≈ 1/a3
+
, z−c−(0) � z+c+(0) for ΨD < 0 and c−(0) ≈ 1/a3

− , z+c+(0) � z−c−(0) for

ΨD > 0. We can estimate C by differentiating Equation (20) to obtain

C ≈
(
2|ΨD|z−(z− + z+)a3

+
c0

)−1/2
for ΨD < 0, (21a)

C ≈
(
2|ΨD|z+(z− + z+)a3

−c0

)−1/2
for ΨD > 0. (21b)

Equation (21) is more accurate for large a3
±c0 and |ΨD| since the assumptions for ion concen-

trations are more readily satisfied. Therefore, Equation (21) predicts a decrease in C with

an increase in |ΨD| and does not predict the extrema near ΨD = 0. However, it correctly

captures the trends and relative position of C reported in Fig. 4(b) for |ΨD| & O(1) for

different combinations of z+ and z− .
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Figure 4: Effect of asymmetry in electrolyte valence on finite ion-size effects for C(ΨD),
as given by the Equations (14) and (21). The solid lines represent results from Equation
(14) and the dotted lines denote results from (21). (a) Different a3

+
c0 with z+ = 1, z− = 3,

a+/a− = 1 and ΛS = 0. (b) Different z+ and z− with a3
+
c0 = 0.2, a+/a− = 1 and ΛS = 0. (c)

Different a3
+
/a3

− with z+ = 1, z− = 3, a3
+
c0 = 0.2, and ΛS = 0. (d) Different ΛS with z+ = 1,

z− = 3, a3
+
c0 = 0.2, and a3

+
/a3

− = 1.

We note that Equation (21) suggests that C also depends on a3
+
/a3

− . Typical results are

presented in Fig. 4(c) with a3
+
c0 = 0.2, z+ = 1, z− = 3 and ΛS = 0 for different a3

+
/a3

− .

Equation (21) explains the collapse of curves for ΨD < 0 and the increase in C for higher

a3
+
/a3

− for ΨD > 0.

Lastly, we discuss the effect of ΛS. For different values of ΛS, Fig. 4(d) presents the variation

of C with ΨD for different with a3
+
c0 = 0.2, z+ = 1, z− = 3 and a+/a− = 1. We find that C

decreases with an increase in ΛS, and becomes almost independent of ΨD for larger values

of ΛS. This change in behavior occurs since the Stern layer capacitor and the diffuse layer
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Figure 5: Effect of asymmetry in electrolyte valence on finite ion-size effects for α(ΨD), as
given by the Equation (19). (a) Different a3

+
c0 with z+ = 1, z− = 3 and a+/a− = 1. (b)

Different z+ and z− with a3
+
c0 = 0.2 and a+/a− = 1. (c) Different a3

+
/a3

− with z+ = 1, z− = 3
and a3

+
c0 = 0.2.

capacitor are in series; an increase in ΛS results in the effective capacitance to be dictated

by the Stern layer capacitance.

Salt uptake

In this section, we describe the variation of the dimensionless salt uptake α(ΨD) as given by

Equation (19). As noted previously, α dictates the dynamics of double layer charging. Fig.

5(a) shows the dependence of α for different a3
+
c0 with z+ = 1, z− = 3 and a3

+
/a−

3 = 1. As

expected, an increase in a3
+
c0 decreases salt uptake since the ion concentration saturates due

to finite ion-size effects.

In Fig. 5(b), we present the dependence of valence on salt uptake for a3
+
c0 = 3 and

a+/a− = 1. We find that αλD/L is largest for z+ = 1, z− = 1 followed by z+ = 2, z− = 1 and

z+ = 1, z− = 3. This trend occurs since for ΨD > 0, anion concentration saturates inside the

double layer. This saturation occurs for smaller values of ΨD for z+ = 1, z− = 3 and thus

lower salt is depleted from the bulk when compared to z+ = 2, z− = 1 and z+ = z− = 1.

Further, though these two cases might achieve anion concentration saturation at similar val-

ues of ΨD, a larger number of anions in the bulk for z+ = 2, z− = 1 leads to a lower level of
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salt depletion. Fig. 5(c) summarizes the effect of a3
+
/a3

− for a3
+
c0 = 0.2, z+ = 1 and z− = 3.

We find that salt depletion is maximum for smaller values of a− since the saturation concen-

tration of anions is larger, and thus more salt can be depleted. A quantitative prediction of

α(ΨD), similar to Equations (20) and (21) for Q and C, is challenging since we need to find

an approximate description for dψ/dx for all x (and not just at x = 0 as in Equations (20)

and (21)); see Equation (18).

Scaling analysis

A unique feature of the derived diffuse-charge relations is the presence of extrema in the

dependence of C with ΨD and their dependence on the values of z+ and z− . We now present

physical arguments to predict the location of local extrema. Local maxima occur when the

ion concentration inside the diffuse layer is on the order of 1/a3
± . For ΨD > 0, negative ions

will be attracted and the condition for a local maximum implies c− = O(1/a3
−). On the

other hand, for ΨD < 0, the condition for a local maximum becomes c+ = O(1/a3
+

). Thus,

assuming the c± follow the Boltzmann distribution, we estimate

z−c0 exp(−z+ΨD,max) = O(1/a3
+

) for ΨD ≤ 0, (22a)

z+c0 exp(z−ΨD,max) = O(1/a3
−) for ΨD ≥ 0, (22b)

or

ΨD,max = O
(
z−1
+

ln(z−a
3
+
c0)
)

for ΨD ≤ 0, (23a)

ΨD,max = −O
(
z−1
− ln(z+a

3
−c0)

)
for ΨD ≥ 0. (23b)

Equation (23) demonstrates that ΨD,max is strongly influenced by z+ and z− . We observe

a good quantitative agreement between the predictions of Equation (23) and the computed

values (obtained from Equation (14)), as illustrated in Fig. 6(a,b). The scaling relations
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Figure 6: Scaling analysis of finite ion-size effects. Comparison of computed ΨD,max with
Equation (23) for (a) ΨD < 0 and (b) ΨD > 0. (c) Comparison of computed ΨD,min with
Equation (24). The red points are cases with the camel shape, i.e. two local maxima and
one local minima, and the blue points are cases with the bell shape, i.e. one local maximum.
For computations, 10−6 ≤ a3

+
c0 ≤ 0.2, 1 ≤ a3

+
/a3

− ≤ 8, 1 ≤ z+ ≤ 3, and 1 ≤ z− ≤ 3.

accurately capture the behavior, especially for the camel-shape capacitance curves, i.e. with

two local maxima and one local minima. However, the scaling relation is not as accurate

for the bell shape capacitance curves, i.e. only one local maximum and no local minimum,

since the assumption that concentration follows a Boltzmann distribution is less accurate.

Nevertheless, Equation (23) correctly captures the dependence of ΨD,max on z+ , z− , a3
+
c0,

and a+/a− .

We now present a physical argument to predict ΨD,min which is only observed in the camel-

shape capacitance curves. We know that the magnitude of charge per unit volume carried by

the cations and anions is proportional to z+c+ and z−c− respectively. For instance, in bulk,

by definition, z+c+ = z−c− , and the charges balance. However, the magnitude of the rate of

change in charge with ΨD of cations and anions is proportional to z2
+
c+ and z2

−c− (assuming

the Boltzmann distribution, see Equation (7)). We argue that ΨD,min can be estimated when
z2
+
c+

z2
−c−

= O(1). Assuming the Boltzmann distribution, this condition yields

ΨD,min = O
(

ln(z+/z−)

z+ + z−

)
. (24)

22



Therefore, physically, ΨD,min is the potential at which the rate of change of both positive

and negative charges with ΨD are equal. Due to symmetry, this occurs at ΨD = 0 for

z+ = z− = 1. We show that predictions of Equation (24) are in good agreement with

computed results (obtained from Equation (14)) in Fig. 6(c).

Physical significance

We now discuss the physical significance and implications of valence asymmetry of finite

ion-size effects. For this discussion, we briefly restore dimensions for charge q(ψD) and

capacitance c(ψD). By converting Equations (20) and (21) to dimensional form, we obtain

q ≈ −
(
2ε0εsz+a

−3
+
|ψD|

)1/2
for ψD < 0, (25a)

q ≈
(
2ε0εsz−a

−3
− |ψD|

)1/2
for ψD > 0, (25b)

c ≈
(
0.5ε0εsz+a

−3
+
|ψD|−1

)1/2
for ψD < 0, (25c)

c ≈
(
0.5ε0εsz−a

−3
− |ψD|−1

)1/2
for ψD > 0. (25d)

Equation (25) clearly shows that q(ψD) = q(−ψD) and c(ψD) = c(−ψD) only when z+a
−3
+

=

z−a
−3
− . Physically speaking, z+/a

3
+

and z−/a
3
− are, respectively, a measure of the maximum

positive charge density and negative charge density that can be stored inside the double

layers. Therefore, the condition z+a
−3
+

= z−a
−3
− implies that the double layer formation is

symmetric only when the magnitude of maximum charge densities accumulated inside the

double layer are the same irrespective of the sign of the potential drop. Moreover, the in-

dividual factors z+a
−3
+

and z−a
−3
− combine the relative importance of ion valence and finite

ion size, and suggest that a higher valence and a lower ionic diameter increases the amount

of charge stored and the capacitance. This result is consistent with physical intuition since

increasing the valence increases the magnitude of force that attracts the ion towards the

charged surface and a smaller ion size allows for a larger number of ions per unit volume to

accumulate in the double layer. Moreover, the square root dependence highlights a quanti-
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tative feature that is important for practical applications. As an example, we consider the

case of CaCl2, which is a possible electrolyte candidate for supercapacitors,44 among many

applications. For this salt, z+ = 2, z− = 1, a+ = 0.11 nm and a− = 0.17 nm. Here, the

factor

(
z+a

−3
+

z−a
−3
−

)1/2

= 2.71, which informs us that for the same magnitude potential drop

across the charged surface, when the surface is negatively charged, the double layer will

accumulate almost thrice as much net charge. This breaking of symmetry is significant and

is important for supercapacitor applications where the amount of charge stored dictates the

energy density. We note that the asymmetry in the double layer properties that arise (or

are reduced) due to asymmetry in ion valence is the novel aspect of this work and creates

opportunities for future research.

Dielectric decrement effect

In this section, we relax the assumption of a constant dielectric constant, i.e. ε = ε0εs. As

previously discussed, changes in the dielectric constant with ion concentration can reduce

the ability to store charge inside a double layer, and thus this effect can have a major impact

on diffuse layer properties. Here, we assume that the decrease in the dielectric constant is

linear with ion concentrations, or

ε(c±) = εs − γ+c+ − γ−c− , (26)

where γ± are constants. Though Equation (26) is not obtained from a theoretical derivation,

experiments have shown that this dependence works reasonably well for ion concentration

up to a few molars.32,34,48 Typical values of γ± range from γ± = O(10−27 − 10−26) m−3 (see

authors 32).
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Derivation

To derive charge and capacitance relationships for a variable dielectric constant, Equations

(3 - 5) remain identical except εs is replaced by ε(c±), as given by Equation (26). Due

to the dependence of the dielectric constant on c± , the chemical potentials µ± also have a

dependence on ε, or

µ+ =
∂F

∂c+
= −ε0

2

∂ε

∂c+

∣∣∣∣dψdx
∣∣∣∣2 + z+eψ + kBT

[
ln

(
a3
+
c+

1− a3
+
c+

)
−
a3
+

a3
−

ln

(
1− a3

+
c+ − a3

−c−
1− a3

+
c+

)]
, (27a)

µ− =
∂F

∂c−
= −ε0

2

∂ε

∂c−

∣∣∣∣dψdx
∣∣∣∣2 − z−eψ + kBT ln

(
a3
−c−

1− a3
+
c+ − a3

−c−

)
.(27b)

Though it is possible to find an explicit relationship for concentration by equating

µ±(x) = µ±(∞), the presence of

∣∣∣∣dψdx
∣∣∣∣2 in Equation (27) make the expression inconvenient.

Therefore, we exploit the relationships built in references 32–34 for osmotic pressure π(x),

i.e.

π(x) = −ε0ε

2

∣∣∣∣dψdx
∣∣∣∣2 − z+ec+ψ + z−ec−ψ + TS + c+µ+ + c−µ− . (28)

Using Equation (5), (26) and (27) in Equation (28) yields

π(x) = −ε0

2

(
εs − 2γ+c+ − 2γ−c−

) ∣∣∣∣dψdx
∣∣∣∣2

−kBT

(
1

a3
−

ln
(
1− a3

+
c+ − a3

−c−
)

+

(
1

a3
+

− 1

a3
−

)
ln
(
1− a3

+
c+
))

.

(29)

Furthermore, utilizing the equilibrium requirements π(x) = π(∞) and µ±(x) = µ±(∞), we

obtain three equations to relate c±(x), ψ(x), and

∣∣∣∣dψdx
∣∣∣∣2. Thus, using these three equations

at x = 0, we can evaluate c±(ψD) and

∣∣∣∣dψdx
∣∣∣∣ (ψD), and by extension evaluate q(ψD) and

c(ψD). To simplify our calculations, we assume that steric effects and Stern layer effects are

negligible. However, as clear from the above derivation, no such restriction is necessary and

the results can also be evaluated for the general scenario. We note that since we have used
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osmotic pressure to generate an additional relationship, we have not utilized Gauss’s law

with variable dielectric constant.

We first evaluate π(x) = π(∞) and µ±(x) = µ±(∞) in the absence of steric effects, i.e.

in the limit a3
+
c0 → 0 and a+/a− = 1. Consistent with the earlier discussion, we define

dimensionless variables as n+ =
c+
z−c0

, n− =
c−
z+c0

, X =
x

λD
, and Ψ =

eψ

kBT
, and obtain

∣∣∣∣ dΨ

dX

∣∣∣∣2 =
2εs(z−(n+ − 1) + z+(n− − 1))

(z+ + z−)z+z−(εs − 2γ+c0z−n+ − 2γ−c0z+n−)
, (30a)

γ+c0

(
z−(n+ − 1) + z+(n− − 1)

εs − 2γ+c0z−n+ − 2γ−c0z+n−

)
+ z+Ψ + ln(n+) = 0, (30b)

γ−c0

(
z−(n+ − 1) + z+(n− − 1)

εs − 2γ+c0z−n+ − 2γ−c0z+n−

)
− z−Ψ + ln(n−) = 0. (30c)

Equation (30) is governed by the dimensionless parameters z± , γ+c0, γ+/γ− and εs. We solve

Equation (30) numerically for specified values of Ψ(0) = ΨD, z± , γ+c0, γ+/γ− and εs = 80

(typical of water), and obtain the functions n±(ΨD) and

∣∣∣∣ dΨ

dX

∣∣∣∣ (ΨD).

Once we have obtained

∣∣∣∣ dΨ

dX

∣∣∣∣ (ΨD), it is straightforward to obtain Ψ(X) through numer-

ical integration. Next, we evaluate Q = −
(εs − γ+c0z−n+ − γ−c0z+n−)

εs

dΨ

dX

∣∣∣∣
X=0

. Moreover,

since we assume ΛS = 0, then Ψ0 = ΨD (see Equation (10a)), and C =

∣∣∣∣ dQdΨD

∣∣∣∣, which is

evaluated through numerical differentiation. We also numerically calculate the dimensionless

salt uptake as α =
λD
L

∣∣∣∣∣∣∣
∫ ΨD

0

z−(n+ − 1) + z+(n− − 1)

(z+ + z−)
dΨ

dX

dΨ

∣∣∣∣∣∣∣. We note that though Equation

(30) has been derived in the limit a± → 0 and a+ = a− , the results are readily extended to

the general case. Also, we find that in the limit γ+c0 → 0 and γ+/γ− = 1 (the absence of

the dielectric decrement), Equation (30) gives results consistent with Equation (16).
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Figure 7: Effect of asymmetry in electrolyte valence on dielectric decrement for Ψ(X), as
given by the solution of Equation (30) for ΨD = 5. (a) Effect of γ+c0 with z+ = 1, z− = 3
and γ+/γ− = 1. (b) Effect of z+ and z− with γ+c0 = 3 and γ+/γ− = 1. (c) Effect of γ+/γ−

with γ+c0 = 3 with z+ = 1 and z− = 3. εs = 80 is assumed for all calculations.

Potential

We present the variation of Ψ(X) for ΨD = 5 in Fig. 7. First, we discuss the effect of the

change in γ+c0 with z+ = 1, z− = 3 and γ+/γ− = 1. The change in Ψ(X) is less rapid with

an increase in γ+c0 as shown in Fig. 7(a). In the dielectric decrement effect, much like the

finite-ion size effect, the concentration of the counter ion saturates beyond some |ΨD|. Here,

the saturation occurs because the lowering of the dielectric constant implies that the charge

storage capacity of the solution is reduced, and thus the concentration of the counter ion

saturates. Since it is difficult to parse the dependence of different parameters from Equa-

tion (30a), we present a simplified model to understand the effect of the dielectric decrement.

Since ΨD > 0, we assume that z+c+(0) � z−c−(0) and

∣∣∣∣dc−dx
∣∣∣∣
x=0

= 0. These assump-

tions physically imply that majority of the repelled ions have been depleted and that the

dielectric decrement leads to a saturation of the counter ions at the surface, and thus the

gradient of the counter ion vanishes. These assumptions allow us to simplify Gauss’s law at

x = 0 as

d

dx

(
ε0ε(c±)

dψ

dx

)∣∣∣∣
x=0

= e(z−c− − z+c+)
∣∣
x=0

=⇒ ε0εs
d2ψ

dx2

∣∣∣∣
x=0

≈ z−ec−
∣∣
x=0

. (31)
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Next, we invoke the chemical potential equality µ−(x) = µ−(∞) with a± → 0 in Equation

(26) and (27b) to get

ε0γ−

2

∣∣∣∣dψdx
∣∣∣∣2 − z−eψD + kBT ln

(
c−(x)

z+c0

)
≈ 0. (32)

We differentiate Equation (32) with respect to x and utilize Equation (31) to evaluate c−(0)

and
dψ

dx

∣∣∣∣
x=0

as

c−(0) ≈ εs
2γ−

, (33a)

ε(c−(0)) ≈ εs/2, (33b)

dψ

dx

∣∣∣∣
x=0

≈ −sgn(ψD)

√√√√√2

(
z−eψD − kBT ln

(
εs

2γ−z+c0

))
ε0γ−

. (33c)

Non-dimensionalizing Equation (33c) we arrive at

dΨ

dX

∣∣∣∣
X=0

≈ −sgn(ΨD)

√√√√√2εs

(
ΨD −

1

z−
ln

(
εs

2γ−z+c0

))
z+(z+ + z−)γ−c0

. (34)

We emphasize that Equation (34) is an approximation and assumes that z+c+(0)� z−c−(0)

and

∣∣∣∣dc−dx
∣∣∣∣
x=0

= 0. Moreover, the argument inside the square root needs to be positive, or

ΨD >
1

z−
ln

(
εs

2γ−z+c0

)
, and thus the relation is only applicable for large ΨD. However,

there are useful insights to be gained from (34). The equation suggests that increasing γ−c0

leads to a more gradual decay in Ψ, consistent with the numerical observations in Fig. 7(a).

The variation of Ψ with z+ and z− is presented in Fig. 7(b) for γ+c0 = 3 and γ+/γ− = 1. From

Equation (34), we learn that
dΨ

dX

∣∣∣∣
X=0

is largest for z+ = 1, z− = 1, followed by z+ = 1, z− = 3

and z+ = 2, z− = 1. This trend is consistent with the results shown in Fig. 7(b). However,

Equation (34) is only valid at X = 0 and the variation in Ψ for other values of X are not
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Figure 8: Effect of asymmetry in electrolyte valence on dielectric decrement for Q(ΨD), as
given by the solution of Equations (30) and (35). The solid lines represent results from
Equation (30) and the dotted lines denote results from (35). (a) Effect of γ+c0 with z+ = 1,
z− = 3 and γ+/γ− = 1. (b) Effect of z+ and z− with γ+c0 = 3 and γ+/γ− = 1. (c) Effect of
γ+/γ− with γ+c0 = 3 with z+ = 1 and z− = 1. εs = 80 is assumed for all calculations.

captured in Equation (34). Nonetheless, the results in Fig. 7(b) and Equation (34) clearly

show that Ψ(X) depends on the cation and anion valence. Next, we discuss the effect of

γ+/γ− with γ+c0 = 3, z+ = 1 and z− = 3. We observe in Fig. 7(c) that an increase in γ+/γ−

leads to a more rapid decay in Ψ with X, although the difference is relatively minor. This

observation is consistent with the prediction of Equation (34).

Charge accumulated

We now discuss the dependence of the charge accumulated Q on ΨD. Since the dielectric

decrement saturates the counter ion concentration, an increase in γ+c0 reduces Q; see Fig.

8(a) where the trends are presented for z+ = 1, z− = 3 and γ+/γ− = 1. By utilizing Equation

(33), we predict

Q ≈ sgn(ΨD)

√√√√√εs

(
ΨD −

1

z−
ln

(
εs

2γ−z+c0

))
2z+(z+ + z−)γ−c0

, for ΨD >
1

z−
ln

(
εs

2γ−z+c0

)
. (35)

Equation (35) shows that increasing γ− reduces Q, consistent with the trends observed in

Fig. 8(a). The dependence of Q on z+ and z− is presented in Fig. 8(b). We find qualitative
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agreement between the computed values from Equation (30) with the predictions of Equation

(35). Fig. 8(c) shows the variation of Q on γ+/γ− for γ+c0 = 3, z+ = 1 and z− = 3. The

results suggest a larger Q for a smaller γ− , qualitatively consistent with the prediction

of Equation (35). The disagreement between the solutions from Equations (30) and (35)

occur since the approximation of z+c+(0) � z−c−(0) and c−(0) ≈ εs
2γ−

is more accurate for

ΨD = O(10). Nonetheless, Equation (35) provides a convenient analytical expression to infer

the dependence of different parameters on Q.

Capacitance

We now focus on the dependence of capacitance C on ΨD. Fig. 9(a) shows the dependence

of C on γ+c0 for z+ = 1, z− = 3 and γ+/γ− = 1. First, we note that for γ+c0 = 0, i.e. no

dielectric decrement, C has only one local minimum at ΨD = ΨD,min < 0. This response

has been described in detail in the previous section; see Equation (24). We observe that

increase in γ+c0 leads to a decrease in C. In addition, with finite dielectric decrement, we

start observing a maximum in C for ΨD = ΨD,max, leading to the camel shape curves. For

very large γ+c0, we find that ΨD,min disappears and only one of the maxima ΨD,max remains,

leading to a bell shape curve, similar to the finite-ion size effects (see Fig. 4(a)). However,

increase in γ+c0 also influences the C at ΨD = 0 unlike the increase in a3
+
c0 for finite-ion size

effects; see Fig. 4(a).

To understand the capacitance response more quantitatively, we build on our simplified

model for dielectric decrement. Here, we assume that for ΨD > 0, z+c+(0) � z−c−(0) and

c−(0) ≈ εs
2γ−

(see Equation (33)), and thus by extension for ΨD < 0, z−c−(0)� z+c+(0)and

c+(0) ≈ εs
2γ+

. Based on these assumptions, we previously derived Q(ΨD) (see Equation (35))
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Figure 9: Effect of asymmetry in electrolyte valence on dielectric decrement for C(ΨD), as
given by the solution of Equations (30) and (36). The solid lines represent results from
Equation (30) and the dotted lines denote results from (36). (a) Effect of γ+c0 with z+ = 1,
z− = 3 and γ+/γ− = 1. (b) Effect of z+ and z− with γ+c0 = 3 and γ+/γ− = 1. (c) Effect of
γ+/γ− with γ+c0 = 3 with z+ = 1 and z− = 1. εs = 80 is assumed for all calculations.

and C =

∣∣∣∣ dQdΨD

∣∣∣∣ is thus calculated as

ε2
sC−1 ≈ 8z−(z+ + z−)γ+c0

(
|ΨD| −

1

z+
ln

(
εs

2γ+z−c0

))
for −ΨD >

1

z+
ln

(
εs

2γ+z−c0

)
,

ε2
sC−1 ≈ 8z+(z+ + z−)γ−c0

(
|ΨD| −

1

z−
ln

(
εs

2γ−z+c0

))
for ΨD >

1

z−
ln

(
εs

2γ−z+c0

)
.

(36)

We investigate the effect of z+ and z− on C for γ+c0 = 3 and γ+/γ− = 1 in Fig. 9(b). We

find that changes in z+ and z− creates asymmetry in the capacitance curves. We are able to

qualitatively capture the asymmetry and relative positions for different combinations of z+

and z− in Equation (36). However, Equation (36) does not predict a maximum and suggests

that C is a strictly decreasing function with |ΨD|. This discrepancy between the computed

results from Equation (30) and approximated results from Equation (36) arise due since the

assumptions of cation and anion concentration are less accurate for |ΨD| . O(1). In Fig.

9(c), we describe the dependence of C with ΨD for different γ+/γ− , γ+c0 = 3, z+ = 1, and

z− = 3. We find that decreasing γ− increases C for ΨD > 0 whereas keeping γ+ constant

collapses curves for ΨD < 0, consistent with the prediction of Equation (36).
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Figure 10: Effect of asymmetry in electrolyte valence on dielectric decrement for α(ΨD), as
given by the solution of Equation (30). (a) Effect of γ+c0 with z+ = 1, z− = 3 and γ+/γ− = 1.
(b) Effect of z+ and z− with γ+c0 = 3 and γ+/γ− = 1. (c) Effect of γ+/γ− with γ+c0 = 3,
z+ = 1 and z− = 1. εs = 80 is assumed for all calculations.

Salt uptake

An overview of the effect of dielectric decrement on dimensionless salt uptake is provided in

Fig. 10. First, we focus on the effect of γ+c0 for z+ = 1, z− = 3, and γ+/γ− = 1. We observe

in Fig. 10(a) that an increase in γ+c0 decreases αL/λD. This response is expected since an

increase in dielectric decrement leads to a larger saturation of ion concentration and thus

less salt is absorbed in the diffuse layer. Fig. 10(b) presents the variation of αL/λD on z+

and z− . Based on our analysis for finite-ion size effects, here also, we expect αL/λD to be

lowest for z+ = 1, z− = 3 since saturation would occur at the smallest value of ΨD. However,

we find a different trend in Fig. 10(b). Though αL/λD for z+ = 1, z− = 3 does become

lowest for large ΨD, it is maximum for small ΨD. Furthermore, αL/λD for z+ = 2, z− = 1 is

higher than z+ = 1, z− = 1, in contrast to finite-ion size effects. These differences arise due

to trends in
dΨ

dX
; see Equation (30a) and Fig. 7(b).

The effect of γ+/γ− on αL/λD is summarized in Fig. 7(c) for γ+c0 = 3, z+ = 1 and

z− = 1. The dimensionless salt uptake αL/λD increases for decrease in γ− since for ΨD > 0,

the saturation concentration of anions is larger; see Equation (33). Therefore, a larger

amount of salt can be taken up by the double layer.
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Scaling analysis

We now develop scaling relations to better analyze the effect of the dielectric decrement.

To estimate the location of extrema in C versus ΨD and their dependence on the values of

z+ and z− , we invoke physical arguments. For ΨD > 0, negative ions will be attracted to

the surface and the condition for a local maximum implies c− = O
(
εs

2γ−

)
. In contrast, for

ΨD < 0, the condition for a local maximum becomes c+ = O
(
εs

2γ+

)
. Thus, assuming the

c± follow the Boltzmann distribution, we get

z−c0 exp(−z+ΨD,max) = O
(
εs

2γ+

)
for ΨD ≤ 0,

z+c0 exp(z−ΨD,max) = O
(
εs

2γ−

)
for ΨD ≥ 0,

(37)

or

−ΨD,max = O
(
z−1
+

ln

(
εs

2z−γ+c0

))
for ΨD ≤ 0,

ΨD,max = O
(
z−1
− ln

(
εs

2z+γ−c0

))
for ΨD ≥ 0.

(38)

We hypothesize that to predict a local minimum follows the same argument as before; see

Equation (24). We summarize our results from the scaling analysis in Fig. 11. We find that

both Equation (38) and (24) are in good agreement with the computed values.

In this section, we evaluated the influence of electrolyte valence on the dielectric decrement

effect. Though we analyzed the case of a linear dielectric decrement, it is straightforward

to extend this analysis to the case of non-linear dielectric decrement. We refer the readers

to reference 32 for more details. Next, we analyze the effect electrolyte valence of ion-ion

correlations on double layer properties.
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Figure 11: Scaling analysis of dielectric decrement effects. Comparison of computed ΨD,max

with Equation (38) for (a) ΨD < 0 and (b) ΨD > 0. (c) Comparison of computed ΨD,min

with Equation (24). The red points are cases with the camel shape i.e. two local maxima and
one local minima, and the blue points are cases with the bell shape i.e. one local maximum.
For computations, 0.25 ≤ γ+c0 ≤ 3, 1 ≤ γ+/γ− ≤ 4, 1 ≤ z+ ≤ 3, and 1 ≤ z− ≤ 3. εs = 80 is
assumed for all calculations.

Physical significance

We now present physical arguments to explain the significance of electrolyte valence on the

dielectric decrement, which relates to the decrease in dielectric constant due to reduction in

orientational polarizability. Simply put, a decrease in dielectric constant relates to reduction

in the ability of the electrolyte to accumulate charge. The dielectric constant decreases with

increase in ion concentration, and in this article we assume a linear decrement; see Equation

(26). When the electrolyte comes in contact with a charged surface, due to electrostatic

attraction, the concentration of counter ions increases closer to the surface. Consequently,

the dielectric constant, and the ability to store charge, decrease closer to the surface. For a

large potential drop across the double layer, these two effects are comparable and result in

saturation of the counter ions near the surface; see Equation (33). It might appear that this

effect is very similar to finite ion size where the concentration of counter ions also saturates,

and thus equivalent expressions can be derived by replacing the maximum ion concentration

1

a3
−

with
εs

2γ−

and
1

a3
+

with
εs

2γ+

. However, upon comparison of Equations (20) and (35),

we note two differences, (i) a reduction by a factor of 2, and (ii) an apparent decrease in

ΨD. The reduction by a factor of 2 occurs because the dielectric constant is reduced by a
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factor of 2 at the surface; see Equation (33). On the other hand, the apparent decrease in

ΨD occurs because when the dielectric decrement is included, the energy stored in electric

field also varies with ion concentration. Therefore, to keep the double layer in equilibrium,

the electric field energy negates the potential energy, leading to a smaller effective potential

drop across the double layer.

The effect of asymmetry in electrolyte valence is non-trivial, as shown in Fig. 8(b) and

Fig. 9(b). We observe that the effect of electric field energy dominates for small potential

drops such that Q for z+ = 1, z− = 1 is lower than Q for z+ = 1, z− = 3, unlike Fig. 3(b).

Furthermore, inclusion of valence asymmetry leads to asymmetry in capacitance values, see

Fig. 9(b), similar to the case with finite ion size. Therefore, regardless of which effect (the

finite ion size or the dielectric decrement) dominates, the inclusion of valence asymmetry

leads to asymmetry in capacitance values. As noted before, the asymmetry in capacitance

is valuable since capacitance influences the charge storage capacity and time scale of double

layer formation. Therefore, for applications such as capacitive deionization,3,46 it will be

crucial to account for valence asymmetry since it significantly impacts the process variables.

In summary, dielectric decrement leads to the counter-ion saturation, the decrease in di-

electric constant at the surface, and the decrease in the effective potential drop across the

double layer due to variation in electric field energy with ion concentration. The effect of

valence is non-trivial, especially for small ΨD, when the effect of variation in electric field

energy is dominant. Furthermore, an asymmetry in electrolyte valence results in asymmetric

double layer properties.
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Ion-ion correlations

In this section, we consider the combined effect of ion-ion correlations and the steric effect.

For simplicity, we do not consider the effect of the dielectric decrement and Stern layer in this

section. For ion-ion correlations, we build on the work of Bazant, Storey and Kornyshev,23,35

and we refer the readers to these references for the derivation of the modified Gauss law,

which is given as

ε0εs

(
l2c
d4ψ

dx4
− d2ψ

dx2

)
= z+ec+ − z−ec− , (39)

where lc is the correlation length that quantifies the effect of ion-ion correlations. Equation

(39) is to be solved with boundary conditions ψ(0) = ψD,
d3ψ

dx3

∣∣∣∣
x=0

= 0, and ψ(∞) = 0. We

non-dimensionalize Equation (39) with X =
x

λD
, n+ =

c+
z−c0

, n− =
c−
z+c0

, Lc =
lc
λD

to arrive

at

L2
c

d4Ψ

dX4
− d2Ψ

dX2
=
n+ − n−

z+ + z−
, (40)

where n± are given by Equation (7). We numerically integrate Equation (40) to find Ψ(X)

and n±(X). From the numerical integration, we evaluate the dimensionless charge and salt

uptake as

Q =

∫ ∞
0

(
n− − n+

z+ + z−

)
dX, (41a)

αL

λD
=

∫ ∞
0

(
z−n+ + z+n−

z+ + z−
− 1

)
dX. (41b)

Lastly, we can also numerically evaluate the dimensionless capacitance as C =

∣∣∣∣ dQdΨD

∣∣∣∣. We

also note that analytical solutions of Equation (40) are only possible for |ΨD| � 1, and we

refer the readers to reference 35 for more details.
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Figure 12: Effect of asymmetry in electrolyte valence on ion-ion correlations.
Variation of Ψ with X as given by the solution of Equation (40) for ΨD = 5. (a) Effect of
Lc with a3

+
c0 = 0.2, a+/a− = 1, z+ = 1 and z− = 3. (b) Effect of z+ and z− with Lc = 1,

a3
+
c0 = 0.2 and a+/a− = 1.

Potential

We first the discuss the effect of Lc = lcλ
−1
D on the potential Ψ(X). For a3

+
c0 = 0.2, a+/a− =

1, z+ = 1 and z− = 3, we find that for small values of Lc, i.e Lc ≤ 0.5, the variations in Ψ(X)

are not significant. However, for larger values of Lc, we start to see oscillations in Ψ(X), as

previously described by Bazant and coworkers.23,35

Similar to finite-ion size and dielectric decrement effects, the effect of asymmetry in elec-

trolyte valence is significant for ion-ion correlation effects. Fig. 12(b) shows the effect of

change in z+ and z− for Lc = 1, a3
+
c0 = 0.2 and a+/a− = 1. We find that combination

of cation and anion valence also influences the Ψ(X) and the degree of oscillations. The

parameters a3
+
c0 and a+/a− can also be varied. However, these effects have already been

discussed in detail in the previous sections and we expect the qualitative trend to remain

the same even with the inclusion of ion-ion correlations.
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Figure 13: Effect of asymmetry in electrolyte valence on ion-ion correlations for Q(ΨD),
as given by the solution of Equations (40) and (41a), plotted here in solid lines. We also
represent the approximate solution as given by Equation (20) for Lc = 0 with dotted lines.
(a) Effect of Lc with a3

+
c0 = 0.2, a+/a− = 1, z+ = 1 and z− = 3. (b) Effect of z+ and z−

with Lc = 1, a3
+
c0 = 0.2 and a+/a− = 1.

Charge accumulated

The oscillations in Ψ(X) due to ion-ion correlations impact the charge accumulated inside

the double layer. The effect of Lc on Q for a3
+
c0 = 0.2, a+/a− = 1, z+ = 1 and z− = 3 is

provided in Fig. 13(a). We expect that oscillations in Ψ(X) to be larger for larger value of

Lc. Therefore, Q decreases with increase in the value of Lc. However, we emphasize that the

shape of the curves are similar to the scenario without ion-ion correlations and for Lc ≤ 0.5,

Equation (20) can be used as a first-order approximation of Q, as shown in Fig. 13(a).

The effect of z+ and z− on Ψ(X) for Lc = 1, a3
+
c0 = 0.2, a+/a− = 1 is provided in Fig.

13(b). The trends in Q are qualitatively similar to the results discussed in Fig. 3(b) and

Equation (20). However, since Lc = 1, the magnitude of Q is slightly lower; see Fig. 13(a).
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Figure 14: Effect of asymmetry in electrolyte valence on ion-ion correlations for C(ΨD),
as given by the solution of Equations (40) and (41a), plotted here in solid lines. We also
represent the approximate solution as given by Equation (21) for Lc = 0 with dotted lines.
(a) Effect of Lc with a3

+
c0 = 0.2, a+/a− = 1, z+ = 1 and z− = 3. (b) Effect of z+ and z−

with Lc = 1, a3
+
c0 = 0.2 and a+/a− = 1.

Capacitance

We now discuss the effect of ion-ion correlations on the capacitance C. Since C measures

the amount of charge per unit potential drop, we expect the ion-ion correlations to have a

similar impact on C as it has on Q. Fig. 14(a) describes the variation of C for different Lc

and a3
+
c0 = 0.2, a+/a− = 1, z+ = 1 and z− = 3. We note that since a3

+
c0 = 0.2, C versus ΨD

is a bell shaped curve with the maximum at ΨD > 0, similar to Fig. 4(a). Upon increase in

the value of Lc, the shape of the curve doesn’t change. However, the values of C decrease

with increase in ΨD, because an increase in Lc leads to fluctuations in charge density profiles,

which in turn leads to a smaller amount of charge stored. We note that for Lc ≤ 0.5, the

change in C(ΨD) is not significant and we can use Equation (21) to approximate C(ΨD),

especially for large |ΨD|, as shown.

As mentioned previously, Lc does not significantly influence the shape of C versus ΨD.

Therefore, the effect of z+ and z− should be similar to the results reported in Fig. 4(b),

which is indeed the case as shown in Fig. 14(b) where C values are calculated for different

z+ and z− with Lc = 1, a3
+
c0 = 0.2 and a+/a− = 1. As expected, we find that the shape of C
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Figure 15: Effect of asymmetry in electrolyte valence on ion-ion correlations.
Variation of αL/λD with ΨD as given by numerical integration of solution of Equation (40)
and (41b). (a) Effect of Lc with a3

+
c0 = 0.2, a+/a− = 1, z+ = 1 and z− = 3. (b) Effect of z+

and z− with Lc = 1, a3
+
c0 = 0.2 and a+/a− = 1.

versus ΨD remains a bell shape. However, the position of a local maximum shifts due to the

change in z+ and z− . For z+ = 1 and z− = 1, C versus ΨD is symmetric and has a maximum

at ΨD = 0. However, for z+ = 2 and z− = 1, the maximum shifts to ΨD < 0, similar to the

results shown in Fig. 4(b). We also show that we can approximate the capacitance C for

large ΨD using Equation (21).

Salt uptake

Due to the oscillations in potential arising from ion-ion correlations, both charge Q and

capacitance C decrease with increase in the correlation length Lc since a larger amount of

repelled ions migrate inside the double layer. Therefore, these oscillations could result in an

increase in the total amount of dimensionless salt uptake, which is in fact what we observe

in Fig. 15(a) where αL/λD is measured for different Lc with a3
+
c0 = 0.2, a+/a− = 1, z+ = 1

and z− = 3. Here, we see the increase in αL/λD is relatively insignificant for Lc ≤ 0.5.

However, for larger values of Lc we find that the increase in αL/λD is quite significant.

We now discuss the effect of z+ and z− on αL/λD with Lc = 1, a3
+
c0 = 0.2 and a+ =
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Figure 16: Scaling analysis of ion-ion correlation effects. Comparison of computed
ΨD,max with Equation (23) for (a) ΨD < 0 and (b) ΨD > 0. (c) Comparison of computed
ΨD,min with Equation (24). The red points are cases with the came shape i.e. two local
maxima and one local minima, and the blue points are cases with the bell shape i.e. one
local maximum. For computations, 0.02 ≤ a3

+
c0 ≤ 0.2, 1 ≤ a3

+
/a3

− ≤ 4, 1 ≤ z+ ≤ 3,
1 ≤ z− ≤ 3 and 0.1 ≤ Lc ≤ 5.

1/a− = 1, see Fig. 15(b). The trends of z+ and z− with the ion-ion correlations is the same

as without finite-ion size effects; see Fig. 5(b). For instance, when we compare z+ = 1, z− = 3

with z+ = 1, z− = 1. Since ΨD > 0, ΨD at which ions saturate is lower for z+ = 1, z− = 3

than z+ = 1, z− = 1 and thus, αL/λD is lower for z+ = 1, z− = 3. In other words, the trends

of α(ΨD) remain similar even though αL/λD is higher due to ion-ion correlations.

Scaling analysis

As mentioned above, the effect of ion-ion correlations typically do not significantly influence

the shape of Q, C and αL/λD but does affect the magnitude of these properties. Therefore,

we predict that ΨD,max and ΨD,min follow Equation (23) and (24). We summarize a com-

parison of predicted values using Equation (23) and (24), and computed values in Fig. 16,

where our predictions are in good agreement with the computations. We note that though

the location of ΨD,max and ΨD,min is similar to the scenarios without ion-ion correlations, the

magnitude of Q and C are different upon inclusion of ion-ion correlations.
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Physical significance

As noted before, the inclusion of ion-ion correlations leads to oscillations in charge density

profiles. Therefore, the values of Q and C decrease with increase in correlation length since

the repelled ions are present in the double layer at higher concentration. The effect of z+

and z− is similar to finite ion size and dielectric decrement, i.e. the asymmetry in valence

leads to asymmetry in double layer properties. As shown in Fig. 14(b), even when ion-

ion correlations are significant, the asymmetry in electrolyte valence breaks the symmetry

of the capacitance, which underscores the need to incorporate the effect for more accurate

predictions.

Summary and Outlook

In this article, we studied the effect of asymmetry in electrolyte valence on finite ion size,

dielectric decrement and ion-ion correlation effects. For finite ion size, we considered the

scenario with different cation and anion diameters. We analytically derived expressions for

surface charge density Q(ΨD), capacitance C(ΨD) and dimensionless salt α(ΨD), and nu-

merically solved for the variation of the potential distribution Ψ(X). These results have

been discussed in Equation (12), (13) and (19). To the best of our knowledge, these are the

most general expressions for diffuse-layer properties with steric effects. Wherever possible,

we derived simplified expression for Q(ΨD) and C(ΨD), and these results are provided in

Equation (20) and (21). Furthermore, we developed scaling relations for local extrema such

as ΨD,max and ΨD,min observed in the behavior of C versus ΨD, and these results are pre-

sented in Equation (23) and (24).

For the dielectric decrement, we considered the scenario of a linear dielectric decrement. We

derived the fundamental equations that enable us to numerically solve for Ψ(X), Q(ΨD),

C(ΨD) and α(ΨD) for non z : z electrolytes. These results are presented in Equation (30).
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We also present simplified expressions for Q(ΨD) and C(ΨD) in Equations (35) and (36).

The scaling relations for dielectric decrement results are presented in Equation (38) and (24).

Lastly, for ion-ion correlations, we numerically solve Equation (40) to obtain Ψ(X), Q(ΨD),

C(ΨD) and α(ΨD). Here, we emphasize that Equations (20) and (21) provide a good start-

ing approximation for small values of the correlation length Lc. We also show that scaling

relations for finite-ion size effects, i.e. Equations (23) and (24), are applicable even after the

inclusion of ion-ion correlations.

Our findings are important for mean field double layer theory, diffuse-charge dynamics and

electrokinetics. We show that asymmetry in cation and anion valences play an important

role in diffuse-layer properties and should be included in calculations of Q(ΨD), C(ΨD), and

α(ΨD). Going forward, we expect our results to be also useful in time-dependent prob-

lems. For instance, since z+ and z− influence α(ΨD), asymmetry in electrolyte valence

will also influence the charging-discharging dynamics of the electrolyte between electrodes.

Charging-discharging dynamics, which is relevant for the design of energy storage devices,8,9

is especially important at large |ΨD| where finite-ion size and dielectric decrement effects

are pronounced, and valence asymmetry effects can be potentially exploited to control these

effects. We also expect that our description of chemical potentials can be directly used to

derive modified Nerst Plank equations in future studies. Moreover, the dimensionless salt

uptake α(ΨD) could influence the adsorption quality and time scale for toxic heavy metal

ion separations in capacitive deionization.3,46

We note that though we incorporated several modifications to the classical Poisson-Boltzmann

model for valence asymmetric electrolytes, there are some limitations in our analysis and fu-

ture work should focus on overcoming these limitations. For instance, we considered a simple

hard-sphere model to include the steric effects and future work can focus on extending the
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analysis of asymmetry in electrolyte valence on more accurate approaches to include steric

effects.25,49,50 Further, we assume a linear dielectric decrement model. Though the linear

model works reasonably for electrolyte concentrations upto a few molars,48 it is possible to

extend our results to the scenario of non-linear decrement, and the future efforts should be

directed in this direction.32 Our treatment of many body interactions in ion-ion correlations

is limited to the derivative of the potential and more sophisticated models could be consid-

ered in subsequent research.51 Furthermore, a direct comparison between mean-field theory

and sophisticated models such as density functional theory, Monte-Carlo simulations and

molecular dynamics simulations,49,52,53 will help test the validity of the mean-field results,

and should be considered by researchers in the field. Lastly, we do not consider important

effects such as specific forces54 and hydration forces,55,56 which have been a topic of recent

interest, and should also be included in future studies.
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