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Abstract

We study the effects of asymmetry in electrolyte valence (i.e. non z : z electrolytes)
on mean field theory of the electrical double layer. Specifically, we study the effect
of valence asymmetry on finite ion-size effects, the dielectric decrement and ion-ion
correlations. For a model configuration of an electrolyte near a charged surface in
equilibrium, we present comprehensive analytical and numerical results for the poten-
tial distribution, electrode charge density, capacitance, and dimensionless salt uptake.
We emphasize that the asymmetry in electrolyte valence significantly influences the
diffuse-charge relations and prior results reported in the literature are readily extended
to non z : z electrolytes. We develop scaling relations and invoke physical arguments
to examine the importance of asymmetry in electrolyte valence on the aforementioned
effects. We conclude by providing implications of our findings on diffuse-charge dy-

namics and other electrokinetic phenomena.
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Introduction

Diffuse charge refers to the distribution of ions in an electrolyte solution adjacent to a charged
solid surface. The charge profile is critical to a variety of applications; in colloid science and
microfluidic applications, diffuse charge is important in electrophoresis, electroosmosis, !
and diffusiophoresis,®” while in energy storage devices, the charged layers form the basis of
electrochemical capacitors,®? and more recently semi-solid flow capacitors.!® The properties
of diffuse charge are typically determined by the widely used Gouy-Chapman (GC) theory,
which describes the dependence of surface charge density ¢ and capacitance ¢ on the poten-

tial drop vp across the diffuse-charged region. ! 16

The classical GC results are based on a mean-field approximation and provide analytical
expressions for ¢(¢p) and c(¢p). Due to their relatively simple nature, GC results continue
to be widely used, even though it is well recognized that they suffer from several limita-
tions. 1”23 To improve the predictions of the GC results, several modifications have been
suggested in the literature while retaining the mean-field framework of the classical GC re-
sults. In this article, we focus on three such modifications for valence asymmetric (or non
z : z) electrolytes: finite ion-size effects, dielectric decrement and ion-ion correlations, and

we indicate below earlier work in each area.

We first discuss finite ion-size effects, also commonly known as steric effects. The clas-
sical GC results are obtained by solving the Poisson-Boltzmann equations where ions are
treated as point charges. Therefore, the classical GC results predict an unphysical outcome
that ion concentration can increase indefinitely with increase in |¢)p|. This limitation was
recognized already 90 years ago by Stern,!” Bikerman'® and Freise,!® and these authors ac-
counted for the finite-ion size effects by assuming a simple hard-sphere model with a finite
diameter of ions. A vast literature is available in this area and we only discuss a few reports

in detail. For a more in-depth review of the literature on finite-ion size effects, including



more sophisticated models for spherical ions, we refer the readers to references 20, 21, 24-26.
For example, Borukhov et al.?” derived an expression for the concentration of ions with a
finite ion size for a valence symmetric (or z : z), as well as valence asymmetric, or non z : z
electrolyte near a charged substrate. Kilic et al.2"?® and Kornyshev?® derived the modified
Poisson-Boltzmann equations, and provided explicit expressions for ¢(vp) and c(¢p) for z : z
electrolytes while assuming that the cation and anion diameters are equal. In these articles,
the authors also discussed the implications of including steric effects on the dynamics of
diffuse charge. More recently, Han et al.? derived the results for ¢(vp) and c(¢p) for z : z
electrolytes but allowed the cation and anion diameters to be unequal, thus extending the

1.2128 and Kornyshev.?? We emphasize that equality of cation and anion

results of Kilic et a
valence is a common assumption. In this article, we relax this assumption and we further
extend the above mentioned results to non z : z electrolytes. We show that asymmetry in

cation and anion valence significantly influences the behavior of ¢(¢p) and c(¢p).

Second, we focus on the effect of the dielectric decrement, which refers to the decrease in
the dielectric constant due to a reduction in the orientational polarizability of the hydrated
ions with increase in electrolyte concentration. A decrease in the dielectric constant lowers
the ability to store charge in the double layer. The dielectric decrement is a well-known

18,22,26,30-34 Here, we focus on the recent

effect and has been recognized in several reports.
results of Nakayama and Andelman,3? which describe the interplay between finite ion-size
effects (with equal cation and anion diameters) and the dielectric decrement for z : z elec-
trolytes. In particular, we derive general results for the dielectric decrement for non z : z

electrolytes while also allowing for unequal cation and anion diameters. We then focus on

the effect of valence asymmetry and show that it strongly impacts the double layer properties.

The ion-ion correlation effect, also known as the overscreening effect, relates to the interac-

tion between nearby ions. This effect can be accounted for in the mean-field framework by



defining a screening length and including an additional fourth-order term in the modified
Poisson-Boltzmann equations, as recently derived by Bazant, Storey and Kornyshev,?2335
who discussed the competition between steric effects and ion-ion correlations. The authors
showed that ion-ion correlations give rise to oscillations in charge density profiles, especially
for large screening lengths.?*3> We note that the article by Bazant and Storey3® considers
1:1 and 1: 2 electrolytes with equal cation and anion diameters. In this article, we extend

these results for non z : z electrolytes with different cation and anion diameters, and inves-

tigate the effect of electrolyte valence on ion-ion correlations.

Before proceeeding further, we acknowledge that we are certainly not the first to investi-
gate non z : z electrolytes. The effect of electrolyte valence has been investigated for the

1136742 ¢ 0. Gouy,'! Levine and Jones®" and Gra-

classical Poisson-Boltzmann equations,
hame®® analyzed the scenarios of z_/z, =2 or z_/z, = 1/2. On the other hand, Lyklema™®
and Levie?® described ¢(¢p) for a general combination of z, and z_, though the results are
presented in an awkward dimensional form. However, the equilibrium relationships for non
z : z electrolytes in the modified Poisson-Boltzmann description are not readily available.
Therefore the aim of this article is to investigate the impacts of asymmetry in electrolyte

valence on the modified Poisson-Boltzmann equations. We find that inclusion of asymmetry

in electrolyte valence is critical as it affects all of the effects mentioned above.

We present some physical arguments to broadly highlight the importance of asymmetry
in electrolyte valence. Since the magnitude of valence dictates the force experienced by the
ions, when cations and anions are of different valence, the magnitude of forces experienced by
the cations and anions are unequal, which creates an asymmetry in double layer properties,
or q(¢¥p) # q(—¢p) and c(vp) # c(—p). This apparent breaking of symmetry can have
significant implications. For instance, several experimental data sets published in the super-

capacitor literature utilize valence asymmetric electrolytes such as Nay;SO4 and CaCly. 4344



However, the modeling approaches in this area are still typically restricted to z : z elec-
trolytes,* and thus studies have not been conducted to exploit valence asymmetry as a way
to tune the energy and power density of supercapacitors. Similarly, valence asymmetry can

46 a process where toxic ions migrate move from

be important for capacitive deionization,?®
the bulk to the double layer. Here, capacitance would influence the quantity of toxic ions
depleted as well as the time required for the depletion.® Since ¢(1p) # ¢(—p) for valence

asymmetric ions, the direction of the potential drop will impact the efficacy of the process.

We also emphasize that our analysis is general since we consider a combination of valence
asymmetry with other effects, i.e. finite ion sizes, dielectric decrement and ion-ion correla-
tions. To highlight the relative importance of simultaneous effects, we now present a physical
argument for the scenario where the combined effects of valence asymmetry and finite ion
sizes are relevant. Let us assume that in an electrolyte, anions have a higher valence than the
cations. At the same time, the anions have a significantly smaller ion size than the cation.
When such an electrolytes comes in contact with a positively charged surface, the anions
migrate towards the charged surface and cations move away from the surface. The higher
valence of the anions leads to a rapid increase in the anion concentration with increase in
1¥p until there is no longer space to accommodate more anions. Therefore, a higher valence
implies that the double layer saturates with anions at a smaller value of 1)p. In contrast, the
smaller anion size implies that each ion occupies a smaller volume, and thus saturation of
double with anions occurs at a larger values of ¢)p. Therefore, valence asymmetry can either
compete or cooperate with other additional effects, and thus provides flexibility in design of

processes where the additional effects are significant.

In this article, we study the influence of asymmetry in electrolyte valence on finite ion-size
effects (with unequal cation and anion diameters), dielectric decrement and ion-ion corre-

lations. For each of these effects, we first derive the diffuse-charge relations for a general



valence electrolyte and provide analytical and numerical results for the potential distribu-
tion, ¢(¢p), c(¢p) and dimensionless salt uptake «(¢p). Under appropriate assumptions, we
recover previously reported results for ¢(¢/p) and c(¢p), thus highlighting the generality of
the proposed relations. Since ¢(¢'p) has multiple local extrema, we provide scaling relations
to better explain the dependence of the extrema on different parameters. Lastly, we discuss
the implications of our results on diffuse-charge dynamics and dimensionless parameters that
govern the electrokinetic phenomena. We conclude by providing limitations of the models

and directions for future research.

Problem setup

We consider an electrolyte in equilibrium with a charged surface (Fig. 1). Due to electro-
static attraction, oppositely-charged ions (also referred as counter ions) migrate towards the
charged surface, and compete with thermal or entropic effects to create a region of diffuse

charge. The typical thickness of the region of excess charge, or double layer, is given by the

| eoeskpgT
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where g is the electrical permittivity of vacuum, e, is the dielectric constant of the solution

Debye length /\D15,16,38,47

without the electrolyte, kg is the Boltzmann constant, 7" is temperature, z; is the valence of
the i*" ion type, cg; is the bulk concentration of the i ion type, and e is the charge on an
electron. The sum is over all ionic species present in the solution. The region close to the
electrode where ions are adsorbed at the surface is known as the Stern layer (Fig. 1). The

(molecular) thickness of the Stern layer is denoted Ag.

To be specific, we consider an electrolyte with one cation type and one anion type. The
cation and anion valences are denoted z, and z_ respectively. Since the electrolyte in bulk

is neutral, the ion concentrations in bulk are ¢, = z_cp and c_ = z,¢y. For instance, K,50,
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Figure 1: An electrolyte with cation valence z, and anion valence z_ is near a charged
surface. The Stern layer thickness is denoted \g and the Debye length is denoted Ap. The
potential at the electrode is taken as { = vy, the potential at the boundary between the
Stern layer and diffuse layer is v = ¥p, and the potential in bulk is zero.

is denoted by z, = 1, 2. = 2, ¢, = 2¢y, and ¢_ = ¢y. Therefore, for a z, : z_ electrolyte,

according to Equation (1), Ap is given as

kT
Ap = LS 2)
2,2 (2. +2z,)ec

Finite 1on-size effects

In this section, we consider finite ion-size effects and specifically focus on the effect of valence
asymmetry on double layer properties. For simplicity, we assume that the relative permit-
tivity ¢ is independent of ¢, , or €(c.) = ;. However, we discuss the effect of a change in
dielectric constant €(c, ) separately in the next section. Similarly, we also exclude the ion-ion

correlations in this section but discuss their effect in the subsequent section.



Derivation
Potential distribution and charge accumulated

To include the finite ion-size effects, we assume a hard-sphere model where ions are spherical
and are described with an effective diameter. Depending on the interaction between differ-
ent ion types, the effective diameter may or may not be the same as the ion diameter. We
refer the readers to references 20, 21, 28 for a more detailed discussion on effective diameters
and the length scale of interactions. Here, we denote the effective diameter of a cation is

a,. Typically, a, = O(10~" — 10) nm, and thus the concentration of cations cannot exceed

+

= 0(10** —10%%) m~3.2! We also allow for asymmetry in the effective diameter of anions

+Qw| =

and cations, and define the effective diameter of an anion as a_. Therefore, the concentration

. 1
of anions cannot exceed -3
a

The free energy of the system per unit volume F' is defined as
F=U-TS§, (3)

where U is the internal energy per unit volume, S is the entropy per unit volume, and

F(w,Ci)- U is defined 3820721732

d 2
%’ + 2z, ecph — z_ec_1), (4)

€0€s
2

U —

where 1 (z) is the potential at a location x relative to a reference potential at x — oo,
or ¥(o0o) = 0. The first term in Equation (4) represents the energy stored in the electric
field and the remaining two terms account for the potential energy of the ions. To evaluate
S, we use Boltzmann’s formula to evaluate entropy of mixing S = kplnw, where w is the
number of microstates. To estimate w, we first estimate the number of ways to arrange the

larger ions and then multiply with the number of ways to arrange the smaller ions. Here,



for convenience, we assume that a, > a_. We estimate entropy as

S ) 1-a’c, X
—%—c ln(a c )+a—3+ln(1—a+c+)+
3 3 3 3 3 (5)
a’c. (1—-a’c, —a’c_) l—a’c, —a’c_
¢ In — + + T In + T )
l—ajc, a’® l—ajc,

An equivalent expression of entropy for a_ > a, can be estimated by switching the positive
and negative subscripts. With F'(c, ) given by Equations (3) - (5), we evaluate the chemical

potentials p, as

OF atc, a’ 1—a’c, —ac_
p, =—==zep+kgT |In| ——— | ——=In + — , (6a)
T Oe, * l—adc, a’ l—adc,
OF a’c_
= = — krT'1 - . 6b
He oc_ eyt ks n(l—aiq—aic_) (6b)
c
We define dimensionless concentrations as n, = ——, n_ = ,
Z_Cp Z,.C
electric potential as ¥ = ]:—¢T. At equilibrium, the chemical potential is constant for all x,
B

iy () = py (00), and we obtain

exp(—2.¥)
(7 B (72)
exp(z_ W) f(¥)
A T(7) B (70)
9(¥) = f() + z_alc (exp(—2, ) — f(¥)) + 2,0’ co f(¥) (exp(z_¥) — 1), (7c)
fw) = (1 paCalon el - l)) “ @

Physically, g(¥) accounts for the reduction in concentration due to finite ion sizes and f ()
accounts for the change in concentration due to the contrast in ion sizes (note f(V) = 1
for a_ = a,). For a, — 0 in Equation (7), we recover the Boltzmann distribution. For

a, =a_ and z, = z_, we recover the standard result in reference 21, 27, 28. Furthermore,



for a, # a_ and z, = z_, we recover the known result in reference.? To solve for ¢y and 1,

we couple Equation (7) with Gauss’s law,

d*y

E0Es _dIQ

=e(z_c.—z.c,). (8)

d
which is to be solved with boundary conditions ¢y = ©(0) — Ag d_@b and 1 (c0) = 0,
x =0

where ¢(0) = vp is the potential drop across the diffuse layer (Fig. 1). We note that the

boundary condition at the electrode assumes a thin Stern layer.? We non-dimensionalize

A
with U = k(;_l/}T’ X = %, and Ag = ﬁ to obtain
d*V  n_—n
X2~ 2 —l—z+’ )
+ —
with two boundary conditions
dv
Uog=Vp —Asg — 10
0 D S IX . (10a)
U(o0) = 0. (10b)

Equations (7) and (9) are governed by four dimensionless parameters: z,, z_, ai o, and

a®/a®. To solve for ¥ and n,, we assume z_, z_, a®co, a* /a®, Ag and ¥, (the potential
measured on the solid boundary) are specified. Typically, a®cy = O(107"° — 107"). For
a more detailed discussion on the physical interpretation of ai ¢o and the range of possible

values of ai co, we refer the reader to reference 21. We multiply both sides of Equation (9)

av
by — and integrate once (using (10b)) to find

dX
dv 2
— = —sgn(¥ Ing(W¥), 11
dX gn( )\/z+z(z++z)aico 9(¥) (11)
where sgn(W) is the sign function. For aico — 0,a,/a_ =1, and 2z, = 2. = 2z, Equa-
dv
tion (11) becomes %= —2sinh %, and another integration yields the well-known relation

v v
tanh ZT = tanh % exp(—X),'" where U is related to ¥y through the boundary condition

10



in Equation (10a). For a, # 0, a, /a_ # 1 and z, # z_, we numerically integrate Equation
(11) with the Stern layer boundary condition (10a) to obtain ¥(X), and the results are
discussed later.

dip

Next, we evaluate the surface charge density on the electrode as ¢ = —eoesd—
x

ilarly, we can also calculate the capacitance c, 7.e. the charged stored in the electrode

. Sim-

x=0

It is convenient to non-dimensionalize () =

d
and C = d—\;?o . Thus, from

per unit total potential drop, or ¢ =

dipo |

A dv
q andC:(DD,suchthatQ:——
2.2 (2, +2_)eApcy £0€s X |y,

Equation (11), we find the dimensionless surface charge density

Q :sgn(\vD)J e () (12)

Capacitance

d
To calculate C = ’ , we write the Stern layer boundary condition in Equation (10a) as

A
. . . . . A dQ
Vg = Up+AgQ. Differentiating this relation with respect to ¥p, we get =1+Ag——.
dVp dVp
dQ d¥p
Th =|———
us C 10, AT, , Or
aQ \ !
Cl'=|-=— A 13
‘(d‘I’D) + S ( )
so that
B 2(z, +2z_)Ing(¥p) 1
C'= * + As. 14
\/ z, 2z adc In_(¥p) —ny(¥p)| 5 (14)

Equations (13 - 14) demonstrate the well-known result that we can characterize the system as
an electrical circuit with a capacitor representing the Stern layer and a capacitor representing

the diffuse layer in series. For a, — 0, a, /a_ =1, and 2z, = z_ = 2z, Equations (12) and

11



(14) take the form

2 v
() = —sinh : =5 (15a)
z
1 2¥p
C™" =sech + Ag, (15b)
which are the classical GC relations."? For a, — 0 and a, /a_ = 1 but different ion

valences, Equations (12) and (14) become

ngn(\IlD)$ 22 (z exp(zf\IlD)—i-zfexp(—er\I/D) _1>’ (16a)

Z +z
1 z, +2_ z exp(2_VUp) + z_exp(—2z,¥p) “1) + Ag, (16b)
lexp(z_V¥p) —exp(—2z,¥p)| \ 2z, 2_ z, +2_

which are consistent with the results reported in reference 38. However, the results analogous
to Equation (16) reported in 38 are presented in an awkward dimensional form. Taking the
limit of z, = 2. = 2z in Equation (16), it is easy to recover the GC relations in Equation

(15). Lastly, for z, = 2. = z and a, = a_ = a, Equations (12) and (14) are evaluated as

1 _ 2
Q= sgn(\PD)\/WgCO In (1 + 4za3cy sinh? 2D), (17a)
v
1 1 + 4za®cy sinh? ZTD 1 AU
C "= In( 1+ 4za® h2Z—= | +A 17b
| sinh 2 W p| zadcy " < +4za’cosin 2 ) o (17)

which agree with the relations presented in references 21, 28. We summarize the validity of
aforementioned diffuse charge relations for Q(¥p) and C(¥p) in Table 1. To the best of our
knowledge, Equations (12) and (14) are the most general charge and capacitance relations

reported in literature accounting for ion valence and finite ion size.

12



Table 1: Summary of Q(Vp) and C(¥p) relations that account for ion valence and finite ion

size. For simplicity, we assume Ag = 0.

Conditions

Diffuse charge relations

References

2 g
Q:fsinhz D
z

2, =2 =2
a, —0

v
C= coshZQD

11, 12

z, F 2

2 % Z, 2
Co |exp(z_¥p) — exp(—2z, Vp)|

(2. +2)|Q)|

a, — 0

C?sgme)J 2 <%ﬁmp@_wn)+z_mm(—;gmﬂ

)

38, 40

sinh zW
2, =z2_=2z C= | |

v
z <1 + 4za3cy sinh? 22D> Q|

1 zv
=sgn(¥p)y/ —5—5—In 1+ 4za3cysinh® “—=
Q = sgn( D)\/z5a3co n < + 4zadcy sin 5

)

20, 21, 28

N _exp(—z\If) N :exp(z\Il)f(\Il)
* g(w) 9(¥)

3
a

za® ¢ (exp (2¥) — 1)) E_l

F¥) = <1 * 1 — za3 ¢
g(¥) = f(¥) + za3 co (exp(—2¥) — f(¥)) +
za® co f() (exp(2¥) — 1)

1

(W) — ny (W)
c= 2:1Q)

29

_exp(—2z, V)

. L _ e V)]
* g(w) T

g(V)

z+a§co (exp (zJI/) — 1) ) ad

s}
+w

fO)=(1+

1-— z7a100
g(¥) = f(¥) + z_a® o (exp(—2, ¥) — f(¥)) +
z a® o f(V) (exp(z_¥) — 1)
2
Q= sen(¥p) 2,2 (z, +2z_)a3 co
c - [n=(¥p) = n+(¥p)|
(z, +2)1Q

this work
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Salt uptake

Both @) and C are measures of the net charge inside the double layer. However, the formation
of a double layer also depletes salt from the bulk. As noted in references 3, 46, the amount of
salt uptake directly dictates the dynamics of the double layer formation process, as explained
later. We define the length scale of the bulk as L and estimate a dimensionless measure of

the excess salt uptake as

S 1s)

When a < 1, the solution to double layer charging for an electrolyte between two parallel
plates can be reliably approximated as an electrical circuit.® However, if a = O(1), this ap-
proximation is no longer reliable. Therefore, estimation of « is important for time-dependent

problems. To estimate «, we utilize Equations (7) and (11) to obtain

3
o= Ap a4, Co%y /\PD z_(ng = 1)+ 2 (n- — 1>d\If , (19)
L\ 2z, +2) |Jo In g(¥)
where ny, n_ and g(¥) are evaluated from Equation (7). In the limit a, — 0, a, /a_ =1,
4\ v
and z, = z = z, we recover the well-documented result® of o = TDsinh2 Z4D. We

numerically integrate Equation (19) to evaluate the dependence of o on different parameters

and the results are discussed later.

Potential Distribution ¥ (X)

We now discuss the numerical solution to Equation (11) with the Stern layer boundary condi-

tion (10a). We first report the effect of changes in a® ¢y on W(X) with Uy =5,2, =1,z =3,

+

a,/a_=1and Ag = 0; see Fig. 2(a). Physically, for a larger value of a? o, i.e. larger steric
dw
effects, |@] is smaller. Since Q) = — X , a larger ai ¢o implies a more gradual decrease
X=0

in ¥ with X.

14
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Figure 2: Effect of asymmetry in electrolyte valence on finite ion-size effects for W(X), as
given by the numerical solution of Equation (11) with boundary condition (10a) for ¥y = 5.
(a) Different a® ¢o with 2z, =1, 2. =3, a, /a_ = 1 and Ag = 0. (b) Different 2z, and z_ with
a’co =102, a,/a_=1and Ag = 0. (c) Different a® /a® with z, =1, 2. = 3, a’cy = 0.2,
and Ag = 0. (d) Different Ag with 2, =1, 2. =3, a’¢y = 0.2, and @? /a® = 1.

The effect of change in 2, and z_ on ¥(X) with ¥, = 5, a’co = 0.2, a,/a_ = 1 and
As = 0 is provided in Fig. 2(b). The trend shows that the fastest decay in ¥ occurs for

z, = z_ = 1 whereas the decay is slowest for z, = 2,z = 1. Physically, for ai co = 0.2,

+

the ion concentration is high even in the bulk and thus finite ion-size effects are important.

We assume that for ¥ ~ 5, ¢ = 1/a*, z,¢,(0) < z_c_(0), and it can be estimated that

dv 2V
Fie ~ —\/ )@ Co; see Equation (9). This approximation explains the trend we

observe in Fig. 2(b). Similarly, for z, =1,z = 3, aico = 0.2 and Ag = 0, we find that a

v
smaller a_ increases the magnitude of x| and thus the change in ¥ is more rapid for a

smaller a_, as observed in Fig. 2(c).

15



The effect of Ag on W(X) enters through the boundary condition (10a). We present the
results of changes in Ag on ¥(X) with ¥y =5, a’coy =02, 2, =1,2. =3 and a,/a_ =1
in Fig. 2(d). A thicker Stern layer, or a larger Ag, implies a larger potential drop across the
Stern layer. Therefore, we see that ¥ = W(0) decreases for an increase in Ag. Further, a
smaller U indicates a lower |@Q] (see below), and thus for a larger Ag, the rate of decay of

VU is smaller.

Charge accumulated

We present the dependence of accumulated charge () on different parameters according to

Equation (12). Fig. 3(a) shows the dependence of Q with ¥p, for different values of @’ ¢

3

with z, =1,2. =3anda, /a_ =1. Alarger az

co implies that steric effects are stronger, and
thus @) is smaller. Increasing W increases the concentration of ions and thus () increases.
For a large W p, steric effects start to become more important and the increase in () is smaller

since the rate of change in ion concentration is lower.

Next, we consider valence asymmetry for aico = 0.2 and a,/a_ = 1. Since finite ion-
size effects are significant here, for Up > 0, we assume ¢_(0) ~ 1/a® and z, ¢, (0) < z_c_(0)

to obtain

dv 2Up
= — —= R . 20
@ dX|,_, \/z+(z+ + 2z )ad ¢ (20)

We find good agreement between computed values from Equation (12) and approximate
values from Equation (20), especially for large |Wp| since concentration approximations are
more accurate for large |Up|. @ is highest for 2, = 2. =1 followed by z, =1,z = 3 and
z, = 2,2_ =1 (see Fig. 3(b)). Similarly, for a®co = 0.2, z, = 1 and z_ = 3, a smaller a_
leads to a larger ), as predicted by Equation (20). This observation is corroborated in Fig.

3(c). Lastly, Ag does not influence the variation of @) versus V. However, for the same

16
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Figure 3: Effect of asymmetry in electrolyte valence on finite ion-size effects for Q(Vp), as
given by the Equations (12) and (20). The solid lines represent results from Equation (12)
and the dotted lines denote results from (20). (a) Different a® ¢y with 2, =1, z_ = 3 and
a,/a_ = 1. (b) Different 2, and z_ with a®cy = 0.2 and a,/a_ = 1. (c) Different a® /a®
with z, =1, 2. =3 and a’ ¢y = 0.2.

value of Wy, values of U will be smaller for a larger Ag (Equation (10a), see Fig. 2(d)).

Capacitance

Capacitance C is a measure of the amount of charge stored per unit total potential drop,
dQ
A,
Fig. 4(a) plots the variation of C with U, for different values of af’rco with z, =1,2_ = 3,

i.e. . We discuss the dependence of C on different parameters based on Equation (14).

a,/a_ =1and Ag = 0 as constants. Depending on the value of ai co, capacitance exhibits

different behaviour.

For dilute ion concentrations in the bulk, i.e. a®cy < O(1072), C (¥p) displays a camel
shape with one local minimum and two local maxima. Physically, this occurs because for
small values of |Wp|, counter ion concentration increases with increase in |¥p|. For large
values of |Up|, the counter ion concentration saturates around Vp = Wp 1., beyond which
the capacitance decreases. Fig. 4(a) shows that the curves are asymmetric when the cation
and anion valences are not equal, or C(=W¥p) # C(V¥p) for 2, # z_. We note that the

location of the minimum ¥p = ¥p i, # 0 for 2z, = 1 and z_ = 3, unlike valence symmetric
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electrolytes. Similarly, the location of two maxima are not equal and opposite for unequal

cation and anion valences.

For large bulk ion concentrations, i.e. a®cy 2 O(107!), C (¥p) curves show a bell shape
with no local minimum and one local maximum. Since the ion concentration is high even
in bulk, the local minimum disappears and only one local maximum remains. We find that
since cation and anion valences are unequal, U p ,.x # 0. Though the camel shape and bell
shape curves have been reported previously,?’ here we emphasize that the shapes and the
VU pmax and Wp i, are significantly influenced by z, and z_. In the subsequent subsection,
we use a scaling analysis to detail a more quantitative estimate of extrema and their depen-

dence on z, and z_.

Next, we present the results for ai co =02, a,/a =1and Ag = 0 but with different
cation and anion valences in Fig. 4(b). We find that the position of a local maximum in
the bell shape capacitance is also dictated by the valence and ¥p i, > 0 when z_ > 2z, and
Upmin < 0 when 2z, > 2 . We note that an approximation for C is possible by assuming
¢, (0) = 1/a*,z_c_(0) < z,¢,(0) for ¥p < 0 and c¢_(0) = 1/a®,2,¢,(0) < z_c_(0) for

Up > 0. We can estimate C by differentiating Equation (20) to obtain

Cw~ (2|¥plz_(z + z+)aic0)_l/2 for U < 0, (21a)
C~ (2|¥plz, (2 + z+)a?:co)_1/2 for Wp > 0. (21b)
Equation (21) is more accurate for large a® ¢y and |V p| since the assumptions for ion concen-
trations are more readily satisfied. Therefore, Equation (21) predicts a decrease in C with
an increase in |¥p| and does not predict the extrema near W = 0. However, it correctly
captures the trends and relative position of C reported in Fig. 4(b) for |¥p| 2 O(1) for

different combinations of z, and z_.
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Figure 4: Effect of asymmetry in electrolyte valence on finite ion-size effects for C(¥p),
as given by the Equations (14) and (21). The solid lines represent results from Equation
(14) and the dotted lines denote results from (21). (a) Different a’ ¢y with z, =1, z_ = 3,
a,/a_=1and Ag = 0. (b) Different 2, and z_ with a®cy = 0.2, a, /a_ =1 and Ag = 0. (c)
Different a® /a® with z, =1, 2. =3, a®co = 0.2, and Ag = 0. (d) Different Ag with z, =1,
z.=3,a%c =02, and a® /a® = 1.

We note that Equation (21) suggests that C also depends on ai Ja3.

Typical results are
presented in Fig. 4(c) with a®cy = 0.2, 2, = 1, 2. = 3 and Ag = 0 for different a® /a®.
Equation (21) explains the collapse of curves for ¥ < 0 and the increase in C for higher

a® /a® for ¥p > 0.

Lastly, we discuss the effect of Ag. For different values of Ag, Fig. 4(d) presents the variation
of C with ¥y for different with aico =02z, =1,z =3 and a+/a7 = 1. We find that C
decreases with an increase in Ag, and becomes almost independent of W, for larger values

of Ag. This change in behavior occurs since the Stern layer capacitor and the diffuse layer
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Figure 5: Effect of asymmetry in electrolyte valence on finite ion-size effects for a(¥p), as
given by the Equation (19). (a) Different a’co with 2, = 1, 2. = 3 and a_/a_ = 1. (b)
Different 2z, and z_ with a® ¢y = 0.2 and a, /a_ = 1. (c) Different @ /a® with 2, =1, 2 =3
and a®co = 0.2.

capacitor are in series; an increase in Ag results in the effective capacitance to be dictated

by the Stern layer capacitance.

Salt uptake

In this section, we describe the variation of the dimensionless salt uptake a(¥p) as given by
Equation (19). As noted previously, a dictates the dynamics of double layer charging. Fig.
5(a) shows the dependence of « for different a?co with z, =1, 2. =3 and @’ /a_? = 1. As
expected, an increase in ai co decreases salt uptake since the ion concentration saturates due

to finite ion-size effects.

In Fig. 5(b), we present the dependence of valence on salt uptake for af’r co = 3 and
a,/a_=1. We find that aAp/L is largest for z, =1,z =1 followed by z, =2,z =1 and
2z, = 1,z_ = 3. This trend occurs since for ¥p > 0, anion concentration saturates inside the
double layer. This saturation occurs for smaller values of Wp for z, = 1,2_ = 3 and thus
lower salt is depleted from the bulk when compared to 2, = 2,2. = 1land 2, = 2. = 1.
Further, though these two cases might achieve anion concentration saturation at similar val-

ues of Wp, a larger number of anions in the bulk for z, = 2,2 =1 leads to a lower level of
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salt depletion. Fig. 5(c) summarizes the effect of ai/af for aico =02,2, =1land z_ = 3.
We find that salt depletion is maximum for smaller values of a_ since the saturation concen-
tration of anions is larger, and thus more salt can be depleted. A quantitative prediction of
a(¥p), similar to Equations (20) and (21) for @ and C, is challenging since we need to find
an approximate description for di/dx for all x (and not just at = 0 as in Equations (20)

and (21)); see Equation (18).

Scaling analysis

A unique feature of the derived diffuse-charge relations is the presence of extrema in the
dependence of C with ¥ and their dependence on the values of z, and z_. We now present
physical arguments to predict the location of local extrema. Local maxima occur when the
ion concentration inside the diffuse layer is on the order of 1/ ai. For ¥ > 0, negative ions
will be attracted and the condition for a local maximum implies ¢. = O(1/a®). On the
other hand, for ¥p < 0, the condition for a local maximum becomes ¢, = O(1/a®). Thus,

assuming the cy follow the Boltzmann distribution, we estimate

z_coexp(—2,¥pmax) = O(1/a’) for ¥p <0, (22a)
z,coexp(z_ Upmax) = O(1/a®) for Up >0, (22b)
or
Upmax =0 (z;l ln(zfaico)) for Up <0, (23a)
Upmax =—0O (zjl ln(z+a?jco)) for Up > 0. (23Db)

Equation (23) demonstrates that Wp .y is strongly influenced by z, and z_. We observe
a good quantitative agreement between the predictions of Equation (23) and the computed

values (obtained from Equation (14)), as illustrated in Fig. 6(a,b). The scaling relations
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Figure 6: Scaling analysis of finite ion-size effects. Comparison of computed Vp j,ax With
Equation (23) for (a) ¥p < 0 and (b) ¥p > 0. (¢) Comparison of computed ¥p ,;, with
Equation (24). The red points are cases with the camel shape, i.e. two local maxima and
one local minima, and the blue points are cases with the bell shape, i.e. one local maximum.
For computations, 1076 < aico <02,1< ai/a?j <8, 1<z <3 and1<z <3.

accurately capture the behavior, especially for the camel-shape capacitance curves, i.e. with
two local maxima and one local minima. However, the scaling relation is not as accurate
for the bell shape capacitance curves, i.e. only one local maximum and no local minimum,
since the assumption that concentration follows a Boltzmann distribution is less accurate.
Nevertheless, Equation (23) correctly captures the dependence of Wp yax on 2, 2, ai Co,

and a, /a_.

We now present a physical argument to predict Wp ,,;, which is only observed in the camel-
shape capacitance curves. We know that the magnitude of charge per unit volume carried by
the cations and anions is proportional to z, ¢, and z_c_ respectively. For instance, in bulk,
by definition, z, ¢, = z_c_, and the charges balance. However, the magnitude of the rate of
change in charge with ¥ of cations and anions is proportional to zi ¢, and z?¢_ (assuming

the Boltzmann distribution, see Equation (7)). We argue that Up i, can be estimated when

ZQC

;—+ = O(1). Assuming the Boltzmann distribution, this condition yields
2%c

om0 (ML), o

z, +2_
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Therefore, physically, Vp ,in is the potential at which the rate of change of both positive
and negative charges with Wp are equal. Due to symmetry, this occurs at ¥p = 0 for
z. = z_ = 1. We show that predictions of Equation (24) are in good agreement with

+ —

computed results (obtained from Equation (14)) in Fig. 6(c).

Physical significance

We now discuss the physical significance and implications of valence asymmetry of finite
ion-size effects. For this discussion, we briefly restore dimensions for charge ¢(¢p) and

capacitance c(¢p). By converting Equations (20) and (21) to dimensional form, we obtain

1/2

g~ — (25065z+a13]¢[)|) for ¢p < 0, (25a)
q~ (250552_aj3]w,3\)1/2 for vop > 0, (25b)
C R~ (0.55055z+a;3|wD\’1)1/2 for ¢p < 0, (25¢)

1/2

c~ (0.5e0e52_a""|Yp|~") " for ¢¥p > 0. (25d)

Equation (25) clearly shows that ¢(¢'p) = ¢(—%p) and ¢(¢p) = ¢(—¢p) only when 2 a* =

z_a~*. Physically speaking, z, / ai and z_/a® are, respectively, a measure of the maximum
positive charge density and negative charge density that can be stored inside the double

3 = 2z a3 implies that the double layer formation is

layers. Therefore, the condition z,a’
symmetric only when the magnitude of maximum charge densities accumulated inside the
double layer are the same irrespective of the sign of the potential drop. Moreover, the in-

3 combine the relative importance of ion valence and finite

dividual factors z, af” and z_a”
ion size, and suggest that a higher valence and a lower ionic diameter increases the amount
of charge stored and the capacitance. This result is consistent with physical intuition since
increasing the valence increases the magnitude of force that attracts the ion towards the

charged surface and a smaller ion size allows for a larger number of ions per unit volume to

accumulate in the double layer. Moreover, the square root dependence highlights a quanti-
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tative feature that is important for practical applications. As an example, we consider the
case of CaCly, which is a possible electrolyte candidate for supercapacitors,** among many

applications. For this salt, z, = 2, 2. =1, a, = 0.11 nm and a_ = 0.17 nm. Here, the

1/2
z.a® /
z a3

across the charged surface, when the surface is negatively charged, the double layer will

factor = 2.71, which informs us that for the same magnitude potential drop
accumulate almost thrice as much net charge. This breaking of symmetry is significant and
is important for supercapacitor applications where the amount of charge stored dictates the
energy density. We note that the asymmetry in the double layer properties that arise (or
are reduced) due to asymmetry in ion valence is the novel aspect of this work and creates

opportunities for future research.

Dielectric decrement effect

In this section, we relax the assumption of a constant dielectric constant, i.e. ¢ = gpe,. As
previously discussed, changes in the dielectric constant with ion concentration can reduce
the ability to store charge inside a double layer, and thus this effect can have a major impact
on diffuse layer properties. Here, we assume that the decrease in the dielectric constant is

linear with ion concentrations, or

e(cy) =es—y,c, —7_C_, (26)

where 7, are constants. Though Equation (26) is not obtained from a theoretical derivation,
experiments have shown that this dependence works reasonably well for ion concentration

-3

up to a few molars.?*3%48 Typical values of v, range from v, = O(107%" — 107%6) m™3 (see

authors 32).
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Derivation

To derive charge and capacitance relationships for a variable dielectric constant, Equations
(3 - 5) remain identical except €, is replaced by e(c.), as given by Equation (26). Due
to the dependence of the dielectric constant on c,, the chemical potentials 1, also have a

dependence on ¢, or

2

oF gg Oe |dy alc, a’ 1—ade, —d®c_
=2 - % kpT | | —r ) = % + 2
e de, 2 0c, |dz T aedt kp n(l—aig a? . 1—af’rc+ ,(27a)
oF gg Oe |dy 2 ade.
S i . kpT1 (27b
H- Oc_ 2 Oc_ |dx zep+kpTln lfaich —a’c_ (27b)

Though it is possible to find an explicit relationship for concentration by equating
2

in Equation (27) make the expression inconvenient.

X

p+ () = ps(00), the presence of

Therefore, we exploit the relationships built in references 32-34 for osmotic pressure 7 (z),

1.€.

—zec,p+z ecv+TS+c p, +c p_. (28)

Using Equation (5), (26) and (27) in Equation (28) yields

€0 dy |
m(x) = —3 (53 —2v,c, — 27707) o
(29)
1 3 3 1 1 3
—kgT a—gln(l—a+c+—a_cf)+ pr 1n(1—a+c+) )
— + —_

Furthermore, utilizing the equilibrium requirements 7(z) = mw(0c0) and p, (z) = p, (c0), we
du |2
obtain three equations to relate ¢, (x), ¥ (z), and ‘d_w . Thus, using these three equations
x

at x = 0, we can evaluate c, (¢p) and

d

d_wl (¥p), and by extension evaluate ¢(vp) and
x

c(vp). To simplify our calculations, we assume that steric effects and Stern layer effects are

negligible. However, as clear from the above derivation, no such restriction is necessary and

the results can also be evaluated for the general scenario. We note that since we have used
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osmotic pressure to generate an additional relationship, we have not utilized Gauss’s law

with variable dielectric constant.

We first evaluate 7(z) = m(c0) and p (x) = p.(0c0) in the absence of steric effects, i.e.

in the limit ai co — 0 and a, Ja_ = 1. Consistent with the earlier discussion, we define
dimensionless variables as n, = C ,n_ = C;, X = i, and ¥ = ﬂ, and obtain
Z_Co 2, Co AD kT
A |2 2e5(z_(n, = 1)+ 2z, (n_—1)) (30a)
il R a
dX (2, + 2 )z, 2 (65 — 27, c02.n, —2y_coz,n_)’
z (n, —1)+z(n_—1)
W +1 =0 30b
T+ (55 — 2y, coz.n, — 27 coz,.n_ +2.¥+In(n,) ’ (30b)
-1 -1
Y_Co ( Z_ (n+ ) + Zy (nf ) ) . Z_\Ij + ln(n_) = 0. (300)
€s — 27, Coz_n, — 27 _coz . n_

Equation (30) is governed by the dimensionless parameters z,, v, co,7, /7. and 5. We solve
Equation (30) numerically for specified values of W(0) = ¥p, 2, v, co, 7, /7. and €5 = 80

dv
(typical of water), and obtain the functions n, (¥p) and ‘ﬁ‘ (Up).

av
Once we have obtained ‘d_X‘ (Up), it is straightforward to obtain W(X) through numer-

€ — — dV¥
ical integration. Next, we evaluate Q = | V4 My — Y- Co% 1) — . Moreover,
Es dX |y,
: : dQ o
since we assume Ag = 0, then ¥y = ¥p (see Equation (10a)), and C = pT L which is
D

evaluated through numerical differentiation. We also numerically calculate the dimensionless

)‘_D ¥p 27(n+ B 1) + z+(n7 - 1)

0 dV¥

. (2, + Zf)ﬁ

30) has been derived in the limit a, — 0 and a, = a_, the results are readily extended to
+ +

dV|. We note that though Equation

salt uptake as a =

the general case. Also, we find that in the limit v, ¢o — 0 and ~, /y_ = 1 (the absence of

the dielectric decrement), Equation (30) gives results consistent with Equation (16).
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Figure 7: Effect of asymmetry in electrolyte valence on dielectric decrement for W(X), as
given by the solution of Equation (30) for ¥ = 5. (a) Effect of v, ¢o with 2z, =1, 2. =3
and v, /v_ = 1. (b) Effect of z, and z_ with 7, ¢y = 3 and 7, /v = 1. (c) Effect of v, /v_
with v, ¢co = 3 with 2, =1 and 2_ = 3. £, = 80 is assumed for all calculations.

Potential

We present the variation of W(X) for U = 5 in Fig. 7. First, we discuss the effect of the
change in v, ¢ with 2z, =1, 2. = 3 and 7, /v = 1. The change in ¥(X) is less rapid with
an increase in 7, ¢y as shown in Fig. 7(a). In the dielectric decrement effect, much like the
finite-ion size effect, the concentration of the counter ion saturates beyond some |Wp|. Here,
the saturation occurs because the lowering of the dielectric constant implies that the charge
storage capacity of the solution is reduced, and thus the concentration of the counter ion
saturates. Since it is difficult to parse the dependence of different parameters from Equa-

tion (30a), we present a simplified model to understand the effect of the dielectric decrement.

dc_

dx
tions physically imply that majority of the repelled ions have been depleted and that the

Since ¥p > 0, we assume that z,c, (0) < z_c_(0) and = 0. These assump-

=0

dielectric decrement leads to a saturation of the counter ions at the surface, and thus the
gradient of the counter ion vanishes. These assumptions allow us to simplify Gauss’s law at

=0 as

d2




Next, we invoke the chemical potential equality u_(z) = p_(o0) with a, — 0 in Equation

(26) and (27b) to get

2

€07_ ‘dﬁb

2 |dx

— 2 ethp + kpTln (C (x)) ~ 0. (32)

e

We differentiate Equation (32) with respect to x and utilize Equation (31) to evaluate ¢_(0)

and Ir as
€z x=0

€s

c_(0) =~ > (33a)
e(c_(0)) =~ e4/2, (33b)
2| z_ep — kgTIn _ &
W\~ sen(yp) 27240 (33¢)
dr|,_, ~ TR €07- .
Non-dimensionalizing Equation (33c) we arrive at
1
. Y (R e
Z_ Y_Z,Co
— ~ —sgn(¥ . 34
dX X=0 gn( D> Z+(Z+ +Zf)7760 ( )

We emphasize that Equation (34) is an approximation and assumes that z, ¢, (0) < z_c_(0)

dc
and ‘d— = (. Moreover, the argument inside the square root needs to be positive, or
€ z=0
1 s . .
Up > —1In ), and thus the relation is only applicable for large ¥ . However,
Z_ 2v_z, ¢

there are useful insights to be gained from (34). The equation suggests that increasing _c

leads to a more gradual decay in W, consistent with the numerical observations in Fig. 7(a).

The variation of ¥ with z, and z_ is presented in Fig. 7(b) for v, cy = 3and vy, /y_ = 1. From
dv
Equation (34), we learn that X is largest for z, = 1,z_ =1, followed by 2, =1,2_ =3
X=0
and z, =2,z = 1. This trend is consistent with the results shown in Fig. 7(b). However,

Equation (34) is only valid at X = 0 and the variation in ¥ for other values of X are not
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Figure 8: Effect of asymmetry in electrolyte valence on dielectric decrement for Q(Vp), as
given by the solution of Equations (30) and (35). The solid lines represent results from
Equation (30) and the dotted lines denote results from (35). (a) Effect of 7, ¢y with z, =1,
z_ =3 and v, /v. = 1. (b) Effect of 2z, and z_ with v,cy =3 and 7, /v_ = 1. (c) Effect of
v, /7. with v, co = 3 with 2, =1 and z_ = 1. £, = 80 is assumed for all calculations.

captured in Equation (34). Nonetheless, the results in Fig. 7(b) and Equation (34) clearly
show that W(X) depends on the cation and anion valence. Next, we discuss the effect of
v, /7. with v,co =3, 2z, =1 and z_ = 3. We observe in Fig. 7(c) that an increase in v, /v_

leads to a more rapid decay in ¥ with X, although the difference is relatively minor. This

observation is consistent with the prediction of Equation (34).

Charge accumulated

We now discuss the dependence of the charge accumulated ) on Wp. Since the dielectric
decrement saturates the counter ion concentration, an increase in 7, co reduces @); see Fig.
8(a) where the trends are presented for z, =1, 2. =3 and v, /y_ = 1. By utilizing Equation

(33), we predict

es (W ! 1 °
s ——1In
P 2v_z, ¢ 1 €5
, for Up > —1In . (35)

~ sgn(W
@~ sen(Vp) 22, (2, +z_)v_co z_ 2v_z, ¢

Equation (35) shows that increasing v_ reduces (), consistent with the trends observed in

Fig. 8(a). The dependence of @ on z, and z_ is presented in Fig. 8(b). We find qualitative
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agreement between the computed values from Equation (30) with the predictions of Equation
(35). Fig. 8(c) shows the variation of @ on ~y, /y_ for v,co =3, 2z, = 1 and z_ = 3. The
results suggest a larger () for a smaller v_, qualitatively consistent with the prediction
of Equation (35). The disagreement between the solutions from Equations (30) and (35)
occur since the approximation of z, ¢, (0) < z_c_(0) and c¢_(0) ~ ;Ts is more accurate for

Up = O(10). Nonetheless, Equation (35) provides a convenient analytical expression to infer

the dependence of different parameters on Q).

Capacitance

We now focus on the dependence of capacitance C on ¥p. Fig. 9(a) shows the dependence
of Con v, ¢ for z, =1,z =3 and v, /y- = 1. First, we note that for v, cq = 0, i.e. no
dielectric decrement, C has only one local minimum at Wp = ¥p i, < 0. This response
has been described in detail in the previous section; see Equation (24). We observe that
increase in v, ¢y leads to a decrease in C. In addition, with finite dielectric decrement, we
start observing a maximum in C for Vp = Up ., leading to the camel shape curves. For
very large v, co, we find that ¥p i, disappears and only one of the maxima V¥ p .« remains,
leading to a bell shape curve, similar to the finite-ion size effects (see Fig. 4(a)). However,
increase in 7, ¢y also influences the C at ¥p = 0 unlike the increase in ai ¢o for finite-ion size

effects; see Fig. 4(a).

To understand the capacitance response more quantitatively, we build on our simplified
model for dielectric decrement. Here, we assume that for ¥p > 0, z;.¢, (0) < z_c_(0) and

c_(0) ~ 2578 (see Equation (33)), and thus by extension for ¥ < 0, z_c¢_(0) < 2, ¢, (0)and

o
E
Q

28—8. Based on these assumptions, we previously derived Q(Vp) (see Equation (35))
7+
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Figure 9: Effect of asymmetry in electrolyte valence on dielectric decrement for C(W¥p), as
given by the solution of Equations (30) and (36). The solid lines represent results from
Equation (30) and the dotted lines denote results from (36). (a) Effect of 7, ¢y with z, =1,
z_ =3 and v, /v. = 1. (b) Effect of 2z, and z_ with v,cy =3 and 7, /v_ = 1. (c) Effect of

v, /7. with v, co = 3 with 2, =1 and z_ = 1. £, = 80 is assumed for all calculations.
dC d is th lculated
a = s thus calculated as
n a0, is thu u

1 € 1 c
21 - :
o vl L1 for —Wp > —1
o z_(z, +2_)v,co (| Dl 2, n <27+zc()>> o b z, " (2%200) 7

1 s 1 s
e2C '~ 8z, (2, +2 )7 o (\\IJD|——1n( c )) for \IID>—ln( c )
Z_ 2

2v_z, ¢ 2v_z, ¢

(36)

We investigate the effect of z, and z_ on C for v,cy = 3 and v, /y_ = 1 in Fig. 9(b). We
find that changes in 2z, and z_ creates asymmetry in the capacitance curves. We are able to
qualitatively capture the asymmetry and relative positions for different combinations of 2,
and z_ in Equation (36). However, Equation (36) does not predict a maximum and suggests
that C is a strictly decreasing function with |Wp|. This discrepancy between the computed
results from Equation (30) and approximated results from Equation (36) arise due since the
assumptions of cation and anion concentration are less accurate for |Vp| < O(1). In Fig.
9(c), we describe the dependence of C with W for different v, /v_, v,co = 3, 2z, = 1, and
z_ = 3. We find that decreasing _ increases C for ¥ > 0 whereas keeping ~, constant

collapses curves for ¥ < 0, consistent with the prediction of Equation (36).
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Figure 10: Effect of asymmetry in electrolyte valence on dielectric decrement for o(¥p), as
given by the solution of Equation (30). (a) Effect of v, co with 2z, =1, 2 =3 and~, /y_ = 1.
(b) Effect of z, and z_ with v,co = 3 and v, /y_ = 1. (c) Effect of 7, /v_ with v ¢y = 3,

z, =land z_ = 1. &, = 80 is assumed for all calculations.

Salt uptake

An overview of the effect of dielectric decrement on dimensionless salt uptake is provided in
Fig. 10. First, we focus on the effect of v, ¢o for 2, =1, 2. =3, and v, /y_ = 1. We observe
in Fig. 10(a) that an increase in +y, ¢y decreases aL/Ap. This response is expected since an
increase in dielectric decrement leads to a larger saturation of ion concentration and thus
less salt is absorbed in the diffuse layer. Fig. 10(b) presents the variation of aL/Ap on z,
and z_. Based on our analysis for finite-ion size effects, here also, we expect aL/\p to be
lowest for z, = 1,2z_ = 3 since saturation would occur at the smallest value of V. However,
we find a different trend in Fig. 10(b). Though aL/Ap for z, = 1,z = 3 does become
lowest for large Wp, it is maximum for small V. Furthermore, aL/Ap for z, =2,z =11s
higher than z, = 1,z_ = 1, in contrast to finite-ion size effects. These differences arise due

aw
to trends in T see Equation (30a) and Fig. 7(b).

The effect of v, /v on aL/Ap is summarized in Fig. 7(c) for v,co = 3, 2, = 1 and
z_ = 1. The dimensionless salt uptake L./ Ap increases for decrease in «y_ since for ¥ > 0,
the saturation concentration of anions is larger; see Equation (33). Therefore, a larger

amount of salt can be taken up by the double layer.
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Scaling analysis

We now develop scaling relations to better analyze the effect of the dielectric decrement.
To estimate the location of extrema in C versus Vp and their dependence on the values of

z, and z_, we invoke physical arguments. For ¥ > 0, negative ions will be attracted to
Es
27
). Thus, assuming the

the surface and the condition for a local maximum implies ¢. = O ( > In contrast, for

Es
27,

Up < 0, the condition for a local maximum becomes ¢, = O <

cy+ follow the Boltzmann distribution, we get

z_Cp exp(_ZJr\IID,max) =0 < = ) for Up < Oa

2
- (37)
€s
2, coexp(z_Vpmax) = O <2 ) for Up > 0,
Y-
or
_\I/D,max =0 <Z_:1 In <L>) for \I/D S 0,
22_7,¢o (38)

VUpmax = O (z_lln (L)) for Up > 0.
' - 22,7 ¢

We hypothesize that to predict a local minimum follows the same argument as before; see
Equation (24). We summarize our results from the scaling analysis in Fig. 11. We find that

both Equation (38) and (24) are in good agreement with the computed values.

In this section, we evaluated the influence of electrolyte valence on the dielectric decrement
effect. Though we analyzed the case of a linear dielectric decrement, it is straightforward
to extend this analysis to the case of non-linear dielectric decrement. We refer the readers
to reference 32 for more details. Next, we analyze the effect electrolyte valence of ion-ion

correlations on double layer properties.
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Figure 11: Scaling analysis of dielectric decrement effects. Comparison of computed ¥ p ax
with Equation (38) for (a) ¥p < 0 and (b) ¥p > 0. (¢) Comparison of computed W p yin
with Equation (24). The red points are cases with the camel shape i.e. two local maxima and
one local minima, and the blue points are cases with the bell shape i.e. one local maximum.
For computations, 0.25 < v, ¢ < 3,1 < ’y+/fy_ <4,1<z <3,and1<z <3. e=280is
assumed for all calculations.

Physical significance

We now present physical arguments to explain the significance of electrolyte valence on the
dielectric decrement, which relates to the decrease in dielectric constant due to reduction in
orientational polarizability. Simply put, a decrease in dielectric constant relates to reduction
in the ability of the electrolyte to accumulate charge. The dielectric constant decreases with
increase in ion concentration, and in this article we assume a linear decrement; see Equation
(26). When the electrolyte comes in contact with a charged surface, due to electrostatic
attraction, the concentration of counter ions increases closer to the surface. Consequently,
the dielectric constant, and the ability to store charge, decrease closer to the surface. For a
large potential drop across the double layer, these two effects are comparable and result in
saturation of the counter ions near the surface; see Equation (33). It might appear that this
effect is very similar to finite ion size where the concentration of counter ions also saturates,

and thus equivalent expressions can be derived by replacing the maximum ion concentration
Es

1 €

— with and — with ——. However, upon comparison of Equations (20) and (35),
a3 2v_ a’ 2,

we note two differences, (i) a reduction by a factor of 2, and (ii) an apparent decrease in

U p. The reduction by a factor of 2 occurs because the dielectric constant is reduced by a
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factor of 2 at the surface; see Equation (33). On the other hand, the apparent decrease in
W occurs because when the dielectric decrement is included, the energy stored in electric
field also varies with ion concentration. Therefore, to keep the double layer in equilibrium,
the electric field energy negates the potential energy, leading to a smaller effective potential

drop across the double layer.

The effect of asymmetry in electrolyte valence is non-trivial, as shown in Fig. 8(b) and
Fig. 9(b). We observe that the effect of electric field energy dominates for small potential
drops such that @ for z, = 1,z = 1is lower than @ for z, = 1,z = 3, unlike Fig. 3(b).
Furthermore, inclusion of valence asymmetry leads to asymmetry in capacitance values, see
Fig. 9(b), similar to the case with finite ion size. Therefore, regardless of which effect (the
finite ion size or the dielectric decrement) dominates, the inclusion of valence asymmetry
leads to asymmetry in capacitance values. As noted before, the asymmetry in capacitance
is valuable since capacitance influences the charge storage capacity and time scale of double
layer formation. Therefore, for applications such as capacitive deionization,%6 it will be

crucial to account for valence asymmetry since it significantly impacts the process variables.

In summary, dielectric decrement leads to the counter-ion saturation, the decrease in di-
electric constant at the surface, and the decrease in the effective potential drop across the
double layer due to variation in electric field energy with ion concentration. The effect of
valence is non-trivial, especially for small ¥, when the effect of variation in electric field
energy is dominant. Furthermore, an asymmetry in electrolyte valence results in asymmetric

double layer properties.
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Ton-ion correlations

In this section, we consider the combined effect of ion-ion correlations and the steric effect.

For simplicity, we do not consider the effect of the dielectric decrement and Stern layer in this

section. For ion-ion correlations, we build on the work of Bazant, Storey and Kornyshev, 2335

and we refer the readers to these references for the derivation of the modified Gauss law,

which is given as

d* d?
£0E s (lgd—;f — d_:;ﬁ> =z ec, —z ec_, (39)

where [, is the correlation length that quantifies the effect of ion-ion correlations. Equation
d3y

(39) is to be solved with boundary conditions 1 (0) = ¥p, o3
x

=0, and 1(0c0) = 0. We
=0 I
c c_ .
N, =——,n_ = , L. = == to arrive
2_co Z, o AD

non-dimensionalize Equation (39) with X = —
D

at
9 AW PV n, —n_

L — =t 40
“dX*  dX? oz, 4z (40)

where n_ are given by Equation (7). We numerically integrate Equation (40) to find U (X)
and n, (X). From the numerical integration, we evaluate the dimensionless charge and salt

uptake as

C(n_—n,
_ T gy A1
a- | (+) , (412)
L o0
O‘_:/ <—Z"++Z+” —1) dx. (41D)
AD 0 z, +2_

d
Lastly, we can also numerically evaluate the dimensionless capacitance as C = dTQ
D

also note that analytical solutions of Equation (40) are only possible for |¥p| < 1, and we

. We

refer the readers to reference 35 for more details.
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Figure 12: Effect of asymmetry in electrolyte valence on ion-ion correlations.
Variation of U with X as given by the solution of Equation (40) for ¥ = 5. (a) Effect of
L. with aico =02,a,/a_ =1,z =1and z_ = 3. (b) Effect of 2, and z_ with L, = 1,

a’co=02anda, /a_=1.

Potential

We first the discuss the effect of L. = [.A," on the potential ¥(X). For ai co=02,a, /a =
1,z, = land z_ = 3, we find that for small values of L, i.e L. < 0.5, the variations in ¥(X)
are not significant. However, for larger values of L., we start to see oscillations in W(X), as

previously described by Bazant and coworkers. 2335

Similar to finite-ion size and dielectric decrement effects, the effect of asymmetry in elec-
trolyte valence is significant for ion-ion correlation effects. Fig. 12(b) shows the effect of
change in z, and z_ for L, = 1, aico = 0.2 and a+/a_ = 1. We find that combination

of cation and anion valence also influences the W(X) and the degree of oscillations. The

3

parameters a °

co and a +/ a_ can also be varied. However, these effects have already been
discussed in detail in the previous sections and we expect the qualitative trend to remain

the same even with the inclusion of ion-ion correlations.
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Figure 13: Effect of asymmetry in electrolyte valence on ion-ion correlations for Q(¥p),
as given by the solution of Equations (40) and (41a), plotted here in solid lines. We also
represent the approximate solution as given by Equation (20) for L. = 0 with dotted lines.
(a) Effect of L. with a®cy = 0.2, a, /a_ =1, z, = 1 and z_ = 3. (b) Effect of z, and z_
with L. =1, aico =02anda,/a =1

Charge accumulated

The oscillations in W(X) due to ion-ion correlations impact the charge accumulated inside
the double layer. The effect of L. on @ for aico =02,a,/a =12 =1and z = 3is
provided in Fig. 13(a). We expect that oscillations in W(X) to be larger for larger value of
L.. Therefore, () decreases with increase in the value of L.. However, we emphasize that the
shape of the curves are similar to the scenario without ion-ion correlations and for L. < 0.5,

Equation (20) can be used as a first-order approximation of ), as shown in Fig. 13(a).

The effect of 2, and z_ on W(X) for L. = 1, a®co = 0.2, a, /a_ = 1 is provided in Fig.
13(b). The trends in @ are qualitatively similar to the results discussed in Fig. 3(b) and

Equation (20). However, since L. = 1, the magnitude of @ is slightly lower; see Fig. 13(a).
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Figure 14: Effect of asymmetry in electrolyte valence on ion-ion correlations for C(¥p),
as given by the solution of Equations (40) and (41a), plotted here in solid lines. We also
represent the approximate solution as given by Equation (21) for L. = 0 with dotted lines.
(a) Effect of L. with a®cy = 0.2, a, /a_ =1, z, = 1 and z_ = 3. (b) Effect of z, and z_
with L. =1, aico =02anda,/a =1

Capacitance

We now discuss the effect of ion-ion correlations on the capacitance C. Since C measures
the amount of charge per unit potential drop, we expect the ion-ion correlations to have a

similar impact on C as it has on (). Fig. 14(a) describes the variation of C for different L.

3

2o = 0.2, C versus Vp

and aico =02,a,/a_ =1,z =1and z = 3. We note that since a
is a bell shaped curve with the maximum at W > 0, similar to Fig. 4(a). Upon increase in
the value of L., the shape of the curve doesn’t change. However, the values of C decrease
with increase in W, because an increase in L. leads to fluctuations in charge density profiles,
which in turn leads to a smaller amount of charge stored. We note that for L. < 0.5, the

change in C(¥p) is not significant and we can use Equation (21) to approximate C(Vp),

especially for large |¥p|, as shown.

As mentioned previously, L. does not significantly influence the shape of C versus Up.
Therefore, the effect of z, and z_ should be similar to the results reported in Fig. 4(b),
which is indeed the case as shown in Fig. 14(b) where C values are calculated for different

z, and z_ with L. =1, ai co=0.2and a, /a_ = 1. As expected, we find that the shape of C
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Figure 15: Effect of asymmetry in electrolyte valence on ion-ion correlations.
Variation of aL/Ap with ¥p as given by numerical integration of solution of Equation (40)
and (41b). (a) Effect of L, with a®>co = 0.2, a, /a_ =1, z_ = 1 and z_ = 3. (b) Effect of 2,
and z_ with L. =1, aico =02anda,/a_ =1.

versus ¥ p remains a bell shape. However, the position of a local maximum shifts due to the
change in z, and z_. For z, =1 and z_ = 1, C versus ¥ is symmetric and has a maximum
at Wp = 0. However, for z, = 2 and z_ = 1, the maximum shifts to ¥p < 0, similar to the

results shown in Fig. 4(b). We also show that we can approximate the capacitance C for

large ¥ using Equation (21).

Salt uptake

Due to the oscillations in potential arising from ion-ion correlations, both charge ) and
capacitance C decrease with increase in the correlation length L. since a larger amount of
repelled ions migrate inside the double layer. Therefore, these oscillations could result in an
increase in the total amount of dimensionless salt uptake, which is in fact what we observe
in Fig. 15(a) where aL/Ap is measured for different L. with a®cy = 0.2, a, /a_ =1, 2z, =1
and z_ = 3. Here, we see the increase in oL/ Ap is relatively insignificant for L, < 0.5.

However, for larger values of L. we find that the increase in aLL/\p is quite significant.

We now discuss the effect of z, and z_ on aL/Ap with L, = 1, aico = 0.2 and a, =
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Figure 16: Scaling analysis of ion-ion correlation effects. Comparison of computed
U p max With Equation (23) for (a) ¥p < 0 and (b) ¥p > 0. (¢) Comparison of computed
U p min With Equation (24). The red points are cases with the came shape i.e. two local
maxima and one local minima, and the blue points are cases with the bell shape i.e. one
local maximum. For computations, 0.02 < aico <02 1< ai/af <4,1< 2z <3,
1<z <3and 0.1 <L, <5.

1/a_ =1, see Fig. 15(b). The trends of z, and z_ with the ion-ion correlations is the same
as without finite-ion size effects; see Fig. 5(b). For instance, when we compare z, =1,z =3
with 2, = 1,2 = 1. Since ¥p > 0, ¥p at which ions saturate is lower for z, = 1,2_ = 3
than z, =1,z =1 and thus, aL/\p is lower for z, =1,z = 3. In other words, the trends

of a(¥p) remain similar even though «L/Ap is higher due to ion-ion correlations.

Scaling analysis

As mentioned above, the effect of ion-ion correlations typically do not significantly influence
the shape of @, C and aL/\p but does affect the magnitude of these properties. Therefore,
we predict that Up max and Wp i, follow Equation (23) and (24). We summarize a com-
parison of predicted values using Equation (23) and (24), and computed values in Fig. 16,
where our predictions are in good agreement with the computations. We note that though
the location of Wp ax and Wp iy is similar to the scenarios without ion-ion correlations, the

magnitude of () and C are different upon inclusion of ion-ion correlations.
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Physical significance

As noted before, the inclusion of ion-ion correlations leads to oscillations in charge density
profiles. Therefore, the values of () and C decrease with increase in correlation length since
the repelled ions are present in the double layer at higher concentration. The effect of z,
and z_ is similar to finite ion size and dielectric decrement, i.e. the asymmetry in valence
leads to asymmetry in double layer properties. As shown in Fig. 14(b), even when ion-
ion correlations are significant, the asymmetry in electrolyte valence breaks the symmetry
of the capacitance, which underscores the need to incorporate the effect for more accurate

predictions.

Summary and Outlook

In this article, we studied the effect of asymmetry in electrolyte valence on finite ion size,
dielectric decrement and ion-ion correlation effects. For finite ion size, we considered the
scenario with different cation and anion diameters. We analytically derived expressions for
surface charge density Q(Vp), capacitance C(¥p) and dimensionless salt a(¥p), and nu-
merically solved for the variation of the potential distribution W(X). These results have
been discussed in Equation (12), (13) and (19). To the best of our knowledge, these are the
most general expressions for diffuse-layer properties with steric effects. Wherever possible,
we derived simplified expression for Q(Vp) and C(¥p), and these results are provided in
Equation (20) and (21). Furthermore, we developed scaling relations for local extrema such
as ¥p max and ¥p nin observed in the behavior of C versus Up, and these results are pre-

sented in Equation (23) and (24).

For the dielectric decrement, we considered the scenario of a linear dielectric decrement. We
derived the fundamental equations that enable us to numerically solve for W(X), Q(¥p),

C(¥p) and a(V¥p) for non z : z electrolytes. These results are presented in Equation (30).
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We also present simplified expressions for Q(Vp) and C(¥p) in Equations (35) and (36).

The scaling relations for dielectric decrement results are presented in Equation (38) and (24).

Lastly, for ion-ion correlations, we numerically solve Equation (40) to obtain ¥U(X), Q(Vp),
C(¥p) and a(¥p). Here, we emphasize that Equations (20) and (21) provide a good start-
ing approximation for small values of the correlation length L.. We also show that scaling
relations for finite-ion size effects, i.e. Equations (23) and (24), are applicable even after the

inclusion of ion-ion correlations.

Our findings are important for mean field double layer theory, diffuse-charge dynamics and
electrokinetics. We show that asymmetry in cation and anion valences play an important
role in diffuse-layer properties and should be included in calculations of Q(¥p), C(¥p), and
a(¥p). Going forward, we expect our results to be also useful in time-dependent prob-
lems. For instance, since z, and z_ influence a(V¥p), asymmetry in electrolyte valence
will also influence the charging-discharging dynamics of the electrolyte between electrodes.
Charging-discharging dynamics, which is relevant for the design of energy storage devices,®?
is especially important at large |¥p| where finite-ion size and dielectric decrement effects
are pronounced, and valence asymmetry effects can be potentially exploited to control these
effects. We also expect that our description of chemical potentials can be directly used to
derive modified Nerst Plank equations in future studies. Moreover, the dimensionless salt
uptake a(¥p) could influence the adsorption quality and time scale for toxic heavy metal

ion separations in capacitive deionization.?*6

We note that though we incorporated several modifications to the classical Poisson-Boltzmann
model for valence asymmetric electrolytes, there are some limitations in our analysis and fu-
ture work should focus on overcoming these limitations. For instance, we considered a simple

hard-sphere model to include the steric effects and future work can focus on extending the
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analysis of asymmetry in electrolyte valence on more accurate approaches to include steric
effects.?549°0 Further, we assume a linear dielectric decrement model. Though the linear
model works reasonably for electrolyte concentrations upto a few molars,*® it is possible to
extend our results to the scenario of non-linear decrement, and the future efforts should be
directed in this direction.?? Our treatment of many body interactions in ion-ion correlations
is limited to the derivative of the potential and more sophisticated models could be consid-
ered in subsequent research.?" Furthermore, a direct comparison between mean-field theory
and sophisticated models such as density functional theory, Monte-Carlo simulations and

49,52,53

molecular dynamics simulations, will help test the validity of the mean-field results,

and should be considered by researchers in the field. Lastly, we do not consider important

55,56

effects such as specific forces® and hydration forces, which have been a topic of recent

interest, and should also be included in future studies.
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