
ASYMPTOTICS OF CHEBYSHEV POLYNOMIALS, II:
DCT SUBSETS OF R

JACOB S. CHRISTIANSEN, BARRY SIMON,
PETER YUDITSKII, and MAXIM ZINCHENKO

Abstract
We prove Szegő–Widom asymptotics for the Chebyshev polynomials of a compact
subset of R which is regular for potential theory and obeys the Parreau–Widom and
DCT conditions.

1. Introduction
Let e � C be a compact subset with logarithmic capacity C.e/ > 0. Define

kf ke D sup
x2e

ˇ̌
f .x/

ˇ̌
: (1.1)

The Chebyshev polynomial, Tn.z/, is the monic polynomial with

tn � kTnke D inf
®kP ke

ˇ̌
degP D n;P monic

¯
: (1.2)

It is a consequence of the theory of best approximation that Tn.z/ exists and is unique
(see, e.g., [16, Chapter 2.5]).

When e � R, the alternation theorem (a result of Borel [4] and Markov [17] using
ideas that go back to Chebyshev; see [6] for a statement and proof or [5, Chapter 3.4])
implies that Tn is unique and that

en � T �1
n

�
Œ�tn; tn�

� D ®
z 2 C

ˇ̌ �tn � Tn.z/ � tn
¯

(1.3)

is a subset of R. Clearly, by definition of tn,

e � en: (1.4)

Recall that the Green’s function,Ge.z/, is the unique function on C which is pos-
itive and harmonic on C n e, upper semicontinuous on C, so that Ge.z/ D log.jzj/ C
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O.1/ near z D 1 and so that Ge.x/ D 0 for quasi-every x 2 e. A set, e, is called
regular (for potential theory) if Ge.x/ D 0 for all x 2 e (which implies that Ge is
continuous on C). We will assume that e is regular. One has that near infinity

Ge.z/ D log
�jzj� � log�C.e/

� CO
�
1=jzj�: (1.5)

Moreover, if d�e is the potential theoretic equilibrium measure for e, then

Ge.z/ D � log�C.e/
� C

Z
log

�jz � xj�d�e.x/: (1.6)

For more on potential theory, see [20] or [24, Section 3.6].
It is not hard to see ([6, Theorem 2.2]) that the Green’s function, Gn, for en is

Gn.z/ D 1

n
log

�ˇ̌̌Tn.z/

tn
C i

s
1 �

�Tn.z/

tn

�2 ˇ̌̌�
; (1.7)

which implies that

tn D 2
�
C.en/

�n
: (1.8)

In particular, since C.e/ � C.en/, we get Schiefermayr’s bound (see [21])

tn � 2
�
C.e/

�n
: (1.9)

In [6], we introduced the term Totik–Widom bound (after [27], [29]) if for some
constant D, one has that

tn � D
�
C.e/

�n
: (1.10)

A compact set e � C is said to obey a Parreau–Widom (PW) condition (after
[19], [30]) if and only if

P W.e/ �
X

zj 2C

Ge.zj / < 1; (1.11)

where C is the set of points, zj , where rGe.zj / D 0. For regular subsets of R, all
these critical points are real and there is exactly one such point in each bounded open
component, Kj , of R n e and Ge.zj / Dmaxx2Kj

Ge.x/.
In [6], we proved that if e � R is a regular PW set, then one has an explicit

Totik–Widom bound

tn � 2 exp
�
P W.e/

��
C.e/

�n
: (1.12)

Our methods there say nothing about the complex case. In this regard, we mention
the recent interesting paper of Andrievskii [2], who has proven Totik–Widom bounds
for a class of sets that, for example, includes the Koch snowflake (see also [3]).
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One of our results in this paper (see Theorem 1.4 and Section 2) will be a kind
of weak converse—that is, under an additional condition on e which should hold
generically, if e � C is compact, regular, and obeys a Totik–Widom bound, then e is
a PW set.

For a general positive capacity, regular, compact set e � C, we define � to be its
complement in the Riemann sphere, that is,

� D �
C[ ¹1º� n e; (1.13)

which we suppose is connected (this always holds if e � R). We let e� be its universal
cover and � W e� ! � the covering map. It is a consequence of the uniformization
theorem (see [23, Section 8.7]) that e� is conformally equivalent to the disk, D, a
fact we will use. We denote by x W D ! � the unique covering map normalized by
x.0/ D 1 and near z D 0, x.z/ D Dz�1 CO.1/ with D > 0.

There is an important multivalued analytic function, Be.z/, on � determined byˇ̌
Be.z/

ˇ̌ D e�Ge.z/ (1.14)

and, near1,

Be.z/ D C.e/z�1 CO.z�2/: (1.15)

One way of constructing it is to use the fact that�Ge has a harmonic conjugate locally
so that locally on C n e, it is the real part of an analytic function whose exponential
is Be.z/. It follows that Be can be continued along any curve in e�, and so by the
monodromy theorem (see [23, Section 11.2]), Be.z/ has an analytic continuation toe� which defines a multivalued analytic function on �.

By analyticity, (1.14) holds for all branches of Be.z/. In particular, going around
a closed curve, � , can only change Be by a phase factor which implies there is a
character, �e, of the fundamental group, �1.�/, so that going around � changes Be

by �e.Œ��/. One can show (see [6, Theorem 2.7]) that

�e.�/ D exp
�
�2�i

Z
e

N.�;x/d�e.x/
�
; (1.16)

where N.�;x/ is the winding number for the curve � about x. Thus Be is a character-
automorphic function.

An alternate construction is to consider elementary Blaschke factors b.z;w/ (D
. Nw=jwj/Œ.w � z/=.1 � Nwz/� if w ¤ 0) for z;w 2 D. Then, lifted to D,

Be.z/ D
Y

¹wj jx.wj /D1º
b.z;wj /: (1.17)

We will call Be the canonical Blaschke product for e and �e, the canonical character.
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Similarly, we can define, for each w 2 �, Be.z;w/ either by using (1.17) with
¹wj j x.wj / D 1º replaced by ¹wj j x.wj / D wº or by using the Green’s function
Ge.z;w/ with pole at w and demanding that jBe.z;w/j D exp.�Ge.z;w// and fixing
the phase by demanding that Be.1;w/ > 0.

One can consider character-automorphic functions for general characters, � 2
�1.�/�, the full character group. In this regard the following theorem of Widom [30]
(see also Hasumi [14, Theorem 5.2B]) is important.

THEOREM 1.1 (Widom)
Suppose that e � C is a compact set regular for potential theory. Then e is a PW
set if and only if, for every character, � 2 �1.�/�, there is a nonzero analytic �-
automorphic function on e� which is bounded.

Single-valued analytic functions on e� correspond to multivalued functions on
�, and we will often refer to them as if they are ordinary functions. In essence, when
e � R we view � with the convex hull of e removed as a subset of e�.

For a PW set, e, and any character, �, we let H 1.�;�/ be the set of bounded
analytic �-automorphic functions on e� and denote by k � k1 the corresponding norm.
We useH 2.�;�/ orH� for the set of analytic �-automorphic functions, f , for which
jf j2 has a harmonic majorant in �. Evidently, H 1.�;�/ � H 2.�;�/. One can
show (using the same ideas as in [12, Proposition 4.1]) that H 2.�;�/ is precisely
those �-automorphic functions, f , on � whose lifts to D under x are in H 2.D/.

When e is a PW set, there exist h 2 H 1.�;�/ with h.1/ ¤ 0, for if f 2
H 1.�;�/ with f .z/ D C z�n C O.z�n�1/, C ¤ 0, then h.z/ D znf .z/ is also in
H 1.�;�/ and h.1/ D C .

For any �, the Widom trial functions for � is the set, ¹h 2 H 1.�;�/ j h.1/ D
1º. The Widom minimizer, F�.z/, is a bounded �-character-automorphic function
with F�.1/ D 1 so that

kF�k1 D inf
®khk1

ˇ̌
h 2 H 1.�;�/Ih.1/ D 1

¯
: (1.18)

Knowing that there are Widom trial functions, it follows from Montel’s theorem (see
[23, Section 6.2]) that minimizers exist. In Section 2, we will prove that minimizers
are unique. (This is not a new result, although our proof is simpler than previous
ones.)

We will also consider a dual problem. The dual Widom trial functions are ¹g 2
H 1.�;�/ j kgk1 D 1º. The dual Widom maximizer is that function Q� in the dual
Widom trial functions with

Q�.1/ D sup
®
g.1/

ˇ̌
g 2 H 1.�;�/;kgk1 D 1;g.1/ > 0

¯
: (1.19)
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If g is a dual Widom trial function with g.1/ ¤ 0, then g=g.1/ is a Widom trial
function. Conversely, if h is a Widom trial function, then h=khk1 is a dual Widom
trial function. This shows that for the two problems, either both or neither have unique
solutions and

Q� D F�=kF�k1; F� D Q�=Q�.1/; Q�.1/ D 1=kF�k1: (1.20)

Suppose now that e � C is compact connected and simply connected. Then �

is simply connected and Be is analytic (rather than multivalued analytic) and is, in
fact, the Riemann map of � to D (uniquely specified by Be.1/ D 0 and that near
1, Be.z/ D C z�1 CO.z�2/ with C > 0). In 1919, assuming that @� is an analytic
Jordan curve, Faber [10] proved that in this case

Tn.z/Be.z/n

C.e/n
! 1 (1.21)

uniformly on �.
In 1969, Widom [29] considered e � C, which is a finite union of C 2C Jordan

curves and arcs. He noted that (1.21) could not hold when there was more than one
arc or curve since, in that case, Be.z/n is now a character-automorphic function with
character �n

e . If Fn � F�n
e
, Widom suggested what we call the Widom surmise, that

Tn.z/Be.z/n

C.e/n
� Fn.z/ ! 0 (1.22)

uniformly on compact subsets of e�. He proved this when e consisted only of (closed)
Jordan curves, and, in [6], we proved it for e, a finite gap set in R.

A bounded function, f , on Z is called almost periodic (in the Bochner sense)
if the family ¹f .� � m/ºm2Z has a compact closure with respect to the topology of
uniform convergence. For a discussion of almost periodic functions, we refer to [7,
Chapter I.6] or [25, Section 6.6].

We say that Tn has strong Szegő–Widom asymptotics if
(a) (1.22) holds uniformly on compact subsets of e�;
(b) n 7! kFnk1 is an almost periodic function;
(c) n 7! Fn.z/ is an almost periodic function uniformly on compact subsets of e�.
We note that the above results of Widom [29] and [6] prove (b) and (c) also.

A final element we need before stating our main theorem is the notion of the
Direct Cauchy Theorem (DCT) property. There are many equivalent definitions of
DCT (see Hasumi [14] or Volberg and Yuditskii [28]). Rather than stating a formal
definition, we first of all quote a theorem that could be used as one definition of DCT.
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THEOREM 1.2 (see Hayashi [15], Hasumi [14])
A PW set e � C obeys a DCT if and only if the function � 7! Q�.1/ of the dual
Widom maximizer problem is a continuous function on �1.�/�.

We will also quote as needed some other results that rely on the DCT condition.
We note that any homogeneous subset of R (in the sense of Carleson [26]) obeys DCT
(see [26]). On the other hand, Hasumi [14] found rather simple explicit examples
(with thin components) of subsets of R which obey PW but not DCT. Volberg and
Yuditskii [28] have even found examples, all of whose reflectionless measures are
absolutely continuous. In this regard, see also [31].

We can now state the main result of this paper.

THEOREM 1.3
Let e � R be a compact set which is regular for potential theory and that obeys the
PW and DCT conditions. Then its Chebyshev polynomials have strong Szegő–Widom
asymptotics. Moreover,

lim
n!1

tn

C.e/nkFnk1
D 2: (1.23)

Remarks
1. Given the limit (1.22), the 2 in (1.23) may seem surprising. Widom noted the

2 in the easy special case e D Œ�1; 1� and proved (1.23) for general finite gap
subsets of R. This fact was used in our proof of (1.22) for the finite gap case
in [6]. Here we will prove (1.22) first and then prove (1.23).

2. Our proof is based, in part, on a variant of the strategy employed in [6], and we
believe it is simpler, even in the finite gap case (especially if you include the
need there for some results of Widom that we do not need to prove a priori).

For our other main results, we need a new definition. We say a set e � R has a
canonical generator if ¹�n

e º1
nD�1 is dense in the character group �1.�/�. This holds

if and only if for each decomposition e D e1 [ � � � [ e` into closed disjoint sets and
rational numbers ¹qj º`�1

j D1, we have that

`�1X
j D1

qj �e.ej / ¤ 0: (1.24)

Remarks
1. The class of regular PW sets e � R can be parameterized by comb domains of

the form
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… D ¹x C iy j 0 < x < 1;y > 0º � [
k

¹!k C iy j 0 < y � hkº (1.25)

with !k 2 .0; 1/, !k ¤ !j for k ¤ j and hk > 0,
P

k hk < 1. Specifically, if
e is scaled to the interval Œ0; 1�, then

�.z/ D � logBe.z/

�i
(1.26)

is a conformal mapping ofCC onto such a domain (see [9] for more details). In
that parameterization, the property of a canonical generator is generic. For one
can show that !k D �e.¹x 2 e j x � akº/ and the collection of comb domains
with rationally independent !k’s clearly form a dense Gı set.

2. It seems likely that the condition of a canonical generator holds in various
other generic senses as well. For example, given a nowhere dense, infinite
gap set, we can pick a positive integer labeling of the gaps and, for any 	 2Q1

1 Œ1=2; 2�, consider the set obtained by scaling the j th gap by 	j . We sus-
pect that the set of 	’s for which this set has a canonical generator is a dense
Gı . In the finite gap case, that this is true follows from results of Totik [27].

THEOREM 1.4
Let e � C be a compact set regular for potential theory with a canonical generator. If
e has a Totik–Widom bound, then e is a PW set.

Remarks
1. While we need to assume canonical generator, this result suggests that Totik–

Widom fails if the set is not PW.
2. We emphasize that this result holds for e � C and not just e � R.

THEOREM 1.5
Let e � C be a compact set regular for potential theory with a canonical generator.
Suppose that e is a PW set and that n 7! kFnk1 is a bounded almost periodic function
on Z. Then e is a DCT set.

Remarks
1. Again, we emphasize that this holds for all e � C, not just e � R.
2. So, one small part of Szegő–Widom asymptotics, namely, asymptotic almost

periodicity of kTnke=C.e/n and the limit result (1.23), implies that e is a DCT
set (at least if e has a canonical generator).

We will note results from [6] as needed and mention now some that are needed
to give an overview of the contents of the paper. Let Bn � Ben

. Then [6, Section 2]
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proved that

2Tn.z/

tn
D Bn.z/n C Bn.z/�n: (1.27)

Thus, instead of looking at

Ln.z/ � Tn.z/Be.z/n

C.e/n
; (1.28)

we will look at

Mn.z/ D Be.z/n=Bn.z/n; (1.29)

which obeys ˇ̌
Mn.z/

ˇ̌ D exp
��nhn.z/

�
; hn.z/ � Ge.z/ � Gn.z/: (1.30)

By (1.27),

Ln.z/ D �
1 C Bn.z/2n

�
Hn.z/; Hn.z/ D C.en/n

C.e/n

Be.z/n

Bn.z/n
D Mn.z/

Mn.1/
: (1.31)

The first equation in (1.31) explains the 2 in (1.23). By a simple argument,

sup
n;z2K

ˇ̌
Bn.z/

ˇ̌
< 1 for any compact set K � e� (1.32)

so that Bn.z/2n goes to zero, but for supz2� j1 C Bn.z/2nj, we get 2 since there are
points x 2 en with Bn.x C i0/ D 1.

By the first equation in (1.31) and (1.32), (1.22) is equivalent to

Hn.z/ � Fn.z/ ! 0: (1.33)

By the second equation in (1.31), it seems likely that it suffices to control limits of
Mn, and that is what we will do. By the maximum principle for harmonic functions
and (1.30), jMn.z/j � 1. We will prove that limn!1kMnk1 D 1 and that limit points
of Mn with nj ! 1 so that �

nj
e ! �0 for some �0 2 �1.�/� are dual Widom max-

imizers, which will let us prove (1.33).
Here is an overview of the rest of this paper. In Section 2, following ideas of

Fisher [11], we prove uniqueness of solutions of the Widom minimization problem
(this is not a new result, only a new proof; see the discussion there) and prove The-
orem 1.4. In Section 3, we discuss continuity of F� in � and prove Theorem 1.5.
In Section 4, we prove that limit points of the Mn are Blaschke products of suitable
B.z;xj /, and in Section 5 we prove that these products are dual Widom maximizers.
This result has been obtained by Volberg and Yuditskii [28], but we found an alternate
proof using ideas of Eichinger and Yuditskii [8]. Finally, in Section 6, we put things
together and prove Theorem 1.3.
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2. Uniqueness of the dual Widom maximizer
In this section, we provide a proof of uniqueness of solutions of the dual Widom
maximizer problem and so uniqueness of solutions of the Widom minimizer prob-
lem. If e obeys a PW condition, then H 1.�;�/ is nonempty (by Theorem 1.1)
and so contains h with h.1/ > 0. By Montel’s theorem (see [23, Section 6.2]),
¹h 2 H 1.�;�/ j khk1 � 1;h.1/ � 0º is compact in the topology of uniform con-
vergence on compact subsets of e�. Thus, there exists a maximizer. We need to prove
that this is unique.

Recall that the Ahlfors problem for a compact set e � C is to look for bounded
analytic functions, f , on � D .C [ ¹1º/ n e with supz2� jf .z/j � 1 and f .1/ D
0 that maximize f 0.1/ (defined by f .z/ D f .1/ C f 0.1/z�1 C O.z�2/ near
z D 1). This maximum is called the analytic capacity (because if analytic is replaced
by harmonic, then the maximum is the potential theoretic capacity). There is an enor-
mous literature on the Ahlfors problem, in particular, two sets of lecture notes, [13]
and [18], and a textbook presentation in [23, Section 8.8].

This is clearly analogous to the dual Widom maximizer problem, so proofs of
uniqueness for the Ahlfors problem should have analogs for our problem. In his orig-
inal paper, Ahlfors [1] considered an n-connected domain � (i.e., e � C has n con-
nected components) and proved that any maximizer, g, has limiting values for almost
every point in @� (maybe only one sided if e has a one-dimensional component) with
jg.w/j D 1 for w 2 @�. This can be used to prove uniqueness. In [29], Widom proved
uniqueness for the dual maximizer by proving that any maximizer had absolute value
one on @�. The same idea occurs for general Parreau–Widom sets in [28] by Volberg
and Yuditskii, who had the first proof of the result in this section.

A simple, elegant approach to uniqueness of the Ahlfors problem is due to Fisher
[11]. We will modify his approach to accommodate change of character and the fact
that the vanishing at1 is different.

THEOREM 2.1
Let e � C be a PW set regular for potential theory. Then, for any character � 2
�1.�/�, the dual Widom maximizer (and so also the Widom minimizer) exists and is
unique.

Remarks
1. As noted above this has already been proved by Volberg and Yuditskii [28],

but starting from first principles, our proof is simpler.
2. Uniqueness implies that the maximizer in the dual problem is an extreme point

in H 1.�;�/1, the closed unit ball in H 1.�;�/. For if Q� D 1
2
.q1 C q2/
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with qj 2 H 1.�;�/1, then by the maximum property, qj .1/ D Q�.1/. So
the qj are also maximizers, and hence equal toQ�.

Proof
Without loss, we can suppose � 6� 1 since if � � 1, then the unique dual maximizer is
f � 1. In particular, since � 6� 1, we have that f .1/ < 1 by the maximum principle.
Let f1 and f2 be two maximizers, and define

f D 1

2
.f1 C f2/; k D 1

2
.f1 � f2/: (2.1)

Pick q 2 H 1.�;�/ with q.1/ ¤ 0 and kqk1 D 1 which exists by the PW condition
and Theorem 1.1.

Since kfj k1 D 1, we have that kf ˙ kk1 D 1, so

jf j2 C jkj2 D 1

2

�jf C kj2 C jf � kj2� � 1: (2.2)

Define

g D qk2=2; (2.3)

so g 2 H 1.�;�/. By (2.2),

jgj � 1 � jf j2
2

D �
1 � jf j��1 C jf j

2

�
� 1 � jf j;

so

jgj C jf j � 1: (2.4)

Since f1.1/ D f2.1/ is the maximum value, g.1/ D 0, and so if g 6� 0, then,
near1, we can write

g.z/ D
1X

kD`

akz�k ; a` ¤ 0 (2.5)

for some ` � 1.
We will consider as a trial function

h�.z/ D f .z/ C 
 Na`z`g.z/; (2.6)

where 
 will be picked below. Since f .1/ 2 .0; 1/, we can pick 
0 > 0 so that

f .1/ C 
0ja`j2 < 1: (2.7)
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Therefore, we can find R > 0 so that

jzj > R ) ˇ̌
f .z/

ˇ̌ C 
0ja`jˇ̌z`g.z/
ˇ̌
< 1: (2.8)

Pick 
1 > 0 so that


1 < 
0; 
1ja`jR` < 1: (2.9)

We claim that kh�1
k � 1, for by (2.8), if jzj > R, then jh�1

.z/j � 1, and, if jzj � R,
then by (2.9) ˇ̌

h�1
.z/

ˇ̌ � ˇ̌
f .z/

ˇ̌ C 
1ja`jR`
ˇ̌
g.z/

ˇ̌
<

ˇ̌
f .z/

ˇ̌ C ˇ̌
g.z/

ˇ̌ � 1

by (2.4). Thus h�1
is a trial function for the dual Widom problem.

On the other hand,

h�1
.1/ D f .1/ C 
1ja`j2 > f .1/; (2.10)

violating maximality. We conclude that g � 0, so k � 0, and f1 D f2.

Proof of Theorem 1.4
Suppose we have a Totik–Widom bound

tn � D
�
C.e/

�n
: (2.11)

Given �1 2 �1.�/�, pick nj ! 1 so that �
nj
e , the character of B

nj
e , converges to

�1 (which we can do by the assumption of canonical generator). Let

fj .z/ D Tnj
.z/Be.z/nj

C.e/nj
: (2.12)

By the maximum principle,

kfj k1 � sup
z!e

ˇ̌
fj .z/

ˇ̌ � tnj
C.e/�nj � D;

and so by Montel’s theorem, we can find jk ! 1, so that fjk
converges to f1 uni-

formly on compacts. Since Tnj
is monic and Be.z/ D C.e/=z C O.z�2/, we have

fj .1/ D 1 and, therefore, f1 is nonzero. Clearly, f1 2 H 1.�;�1/. By Theo-
rem 1.1, e obeys a PW condition.

3. Continuity of the Widom minimizer
In this section, we study continuity properties (in �) of Q�.z/, F�.z/, and kF�k1.
We will show that there is continuity if and only if the DCT holds. Applying this to
n ! F�n

e
, we will see that DCT implies almost periodicity.
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THEOREM 3.1
Let e � C be a compact, PW, and DCT set that is regular for potential theory. Then
� 7! Q� and � 7! F� are continuous in the topology of uniform convergence on com-
pact subsets of e�. Moreover, � 7! kF�k1 is continuous. Conversely, if � 7! kF�k1
is continuous for e a regular PW set, then e is a DCT set.

Proof
By Theorem 1.2, if e is a DCT set, then Q�.1/ is continuous. If �n ! � for some
sequence so that Q�n

converges to a function g uniformly on compact subsets ofe�, then, by continuity, g.1/ D Q�.1/ and kgk1 � 1. It follows by uniqueness
of the minimizer that g D Q�. By Montel’s theorem, � 7! Q� is continuous. Since
F�.z/ D Q�.z/=Q�.1/ and kF�k1 D 1=Q�.1/, we conclude continuity of F�

and kF�k1.
The converse follows from Theorem 1.2 andQ�.1/ D 1=kF�k1.

THEOREM 3.2
Let e � C be a compact, PW, and DCT set that is regular for potential theory. Then
n 7! F�n

e
.z/ and n 7! Q�n

e
.z/ are almost periodic uniformly for z in compact subsets

of e�. Moreover, n 7! kF�n
e
k1 is a bounded almost periodic function.

Proof
Almost periodicity of a function, f , on Z can be defined in terms of the family fm �
f .� � m/ lying in a compact (with respect to the topology of uniform convergence)
family of functions. Since �1.�/� is compact and both � 7! F�.z/ and � 7! Q�.z/

are continuous, ¹F�º�2�1.�/� and ¹Q�º�2�1.�/� are the required compact families.
Since Q�.1/ is a continuous function, it takes its minimum value which is always
nonzero. Thus Q�.1/ is bounded away from zero and thus kF�k1 D 1=Q�.1/ is
bounded.

We now turn to the proof of Theorem 1.5. The first two of four lemmas require
neither almost periodicity nor canonical generator. We will focus on the dual maxi-
mizer, Q�, given by (1.20).

LEMMA 3.3
Let e be a regular PW set. Then � 7! Q�.1/, the map from �1.�/� to .0; 1�, is upper
semicontinuous; that is,

�j ! � ) lim sup
j !1

Q�j
.1/ � Q�.1/: (3.1)
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Proof
By Montel’s theorem, we can always pick a subsequence so that Q�jn

.1/ !
lim supj !1 Q�j

.1/ and so that Q�jn
has a pointwise limit, g, on the universal

cover which has kgk1 � 1 and for which the convergence is uniform on compact
subsets of the universal cover. Since �jn

! �, g is a trial function for the dual Widom
problem with character �. Since Q� is a maximizer, g.1/ � Q�.1/; that is, (3.1)
holds.

LEMMA 3.4
Let e be a regular PW set. If � 7! Q�.1/ is continuous at � D 1 (i.e., we know that
�j ! 1 ) Q�.1/ ! 1), then � 7! Q�.1/ is continuous on �1.�/�.

Proof
Suppose �j ! c. Then �j =c ! 1. Since QcQ�j =c is a trial function for the �j dual
maximizer problem, we have that

Qc.1/Q�j =c.1/ � Q�j
.1/: (3.2)

By hypothesis,Q�j =c.1/ ! 1, so (3.2) implies that

Qc.1/ � lim inf
j !1 Q�j

.1/: (3.3)

This and (3.1) imply thatQ�j
.1/ ! Qc.1/.

LEMMA 3.5
Let e be a regular PW set. Suppose that n 7! kFnk1 is a bounded almost periodic
function and that �

nj
e ! 1. Then Q

�
nj
e

! 1.

Proof
By hypothesis, there exists a compact additive group K and a bounded continuous
function,B , onK so that Z is a dense subgroup inK andB.n/ D kFnk1. LetA.˛/ D
B.˛/�1 which is also continuous on K, bounded away from 0 (and bounded above
by 1) with

Q�n
e
.1/ D A.n/: (3.4)

By passing to a subsequence, we can suppose that nj ! ˛ 2 K and that Q
�

nj
e

.1/

has a limit q.
Fix ns . By passing to a further subsequence, we can suppose that Q

�
ns�nj
e

has

a limit, g, on the universal cover. Since �
nj
e ! 1, g is a trial function for the �ns

e

problem, so
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Q�
ns
e

.1/ � g.1/ D lim
nj !1 A.ns � nj / D A.ns � ˛/ (3.5)

by the continuity of A. Now take ns ! 1. By definition of q, we have

q D lim
ns!1 Q�

ns
e

.1/ � lim sup
ns!1

A.ns � ˛/ D A.0/ D 1

since ns ! ˛ and A.0/ D 1 by (3.4). Thus q � 1. SinceQ�.1/ 2 .0; 1�, we conclude
that q D 1; that is, 1 is the only limit point ofQ

�
nj
e

.1/, proving the lemma.

LEMMA 3.6
Let e be a regular PW set. Suppose that n ! kFnk1 is a bounded almost periodic
function and that e has a canonical generator. Then � 7! Q�.1/ is continuous at
� D 1; that is,

�j ! 1 ) lim
j !1 Q�j

.1/ D 1: (3.6)

Proof
�1.�/� is a compact, separable group and thus metrizable. Let d be a metric on
�1.�/� yielding the usual topology. Since ¹�m

e º is dense, we can pick integersmj .`/

for each j and ` D 1; 2; : : : so that d.�j ; �
mj .`/
e / � 2�`.

By Lemma 3.3, we can pick `j � j so that

Q
�

mj .`j /

e

.1/ � Q�j
.1/ C 2�j : (3.7)

Let k.j / D mj .`j /. Since d.1; �
k.j /
e / � d.1; �j / C 2�j , we see that �

k.j /
e ! 1, and

so by Lemma 3.5, Q
�

k.j /
e

.1/ ! 1. By (3.7), we conclude that lim infQ�j
.1/ � 1.

SinceQ�j
.1/ 2 .0; 1�, we conclude that the limit is 1.

Proof of Theorem 1.5
By the hypothesis, Lemma 3.6 applies, so we conclude that � 7! Q�.1/ is con-
tinuous at 1. By Lemma 3.4, � 7! Q�.1/ is continuous on all of �1.�/�, so, by
Theorem 1.2, the set e is DCT.

4. Limit points of Mn are Blaschke products
In this section and the next, we consider the functions Mn.z/ D ŒBe.z/=Bn.z/�n of
(1.29). Since e � en, we have that Gn.z/ � Ge.z/, soˇ̌

Mn.z/
ˇ̌ � 1: (4.1)

Mn.z/ is analytic on the universal cover of .C[ ¹1º/ n en. Since the harmonic mea-
sures of components of en are j=n, Bn.z/n is single-valued analytic on C n en, so
Mn.z/ has character �n � �n

e for curves in e� that avoid en.



CHEBYSHEV POLYNOMIALS, II 339

In this section, we will prove that limit points ofMn (after removing some remov-
able potential singular points) are Blaschke products analytic on e� and, in the next,
that these Blaschke products are dual Widom maximizers. This section will only
require that e � R is regular for potential theory and obeys a PW condition, while
the next will also require the DCT condition.

R n e is a disjoint union of bounded open components (plus two unbounded com-
ponents), K 2 G . We will call these the gaps and G the set of gaps. A gap collection
is a subset G0 � G . A gap set is a gap collection, G0, and for each Kk 2 G0 a point
xk 2 Kk . For any gap K D .ˇ � ˛;ˇ C ˛/, we define

K.�/ D �
ˇ � .1 � 
/˛;ˇ C .1 � 
/˛

�
so that K.�/ � K and jK.�/j D .1 � 
/jKj.

For any gap set, S , we define the associated Blaschke product

BS .z/ D
Y

Kk2G0

Be.z; xk/: (4.2)

Lifted to D, each Be.z; xk/ is a product of elementary Blaschke factors and
thus so is the product in (4.2). It is known (see [23, Theorem 9.9.4]) that such
products either converge to 0 uniformly on compacts or else converge to an ana-
lytic function vanishing only at the individual zeros; in the latter case, the product
has limr"1 jBS .x.rei� //j D 1 for a.e. � (see [24, Theorem 5.3.1]). SinceP

K2G supy2K Ge.1; y/ < 1 by the PW condition, we see that the product in (4.2)
converges to a nonzero value at z D 1. Thus BS .z/ is an analytic function on e�
which vanishes exactly at points w with �.w/ 2 ¹xkºKk2G0

. Moreover, for a.e. point
y 2 e,

lim
�#0

ˇ̌
BS .y C i
/

ˇ̌ D 1: (4.3)

Recall (see [6, paragraph (b) following Theorem 1.1]) that any Chebyshev poly-
nomial, Tn, has at most one zero in any gap K 2 G . Our main result in this section is
the following.

THEOREM 4.1
Let nj ! 1 so that for some gap set, S , we have that if Kk 2 G0, then for large j ,
Tnj

.z/ has a zero z
.k/
j in Kk which converges to xk as j ! 1 and so that for any

K 2 G n G0, and for all 
 > 0, Tnj
.z/ has no zero in K.�/ for all large j . Then, as

j ! 1, Mnj
.z/ ! BS .z/ uniformly on compact subsets of e� n ¹w j �.w/ 2 ¹xkºº.

Remarks
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1. The points w with �.w/ D xk for some k are removable singular points for
BS . In fact, it is easy to see that whileMnj

.xk C i0/ andMnj
.xk � i0/may be

different, both values converge to 0, so, in a certain sense, one has convergence
on all of e�.

2. By Montel’s theorem and (4.1), the functions Mn lie in a compact set in the
Fréchet topology of uniform convergence on compact subsets. We can there-
fore make multiple demands and one might guess that, as in [6], we want to
also demand that �nj

has a limit, as does ŒC.enj
/=C.e/�nj and the Mnj

. It
turns out that the single condition on the limits of zeros will automatically
imply that these other objects converge.

We will prove this result by controlling convergence for z near 1 using the
following.

PROPOSITION 4.2
Let ‡ be a Riemann surface, and let Un be open sets so that for any compact set
K � ‡ , eventually, K � Un. Let fn be analytic functions on Un so that

sup
n
sup

z2Un

ˇ̌
fn.z/

ˇ̌
< 1: (4.4)

Let f1 be analytic on ‡ so that for some z0 2 ‡ and some neighborhood, V , of z0,
we have that

lim
n!1

ˇ̌
fn.z/

ˇ̌ D ˇ̌
f1.z/

ˇ̌
for all z 2 V I (4.5)

fn.z0/ > 0; f1.z0/ > 0I (4.6)

z 2 V ) 8n W fn.z/ ¤ 0 and f1.z/ ¤ 0: (4.7)

Then fn ! f uniformly on compact subsets of ‡ .

Proof
By shrinking V , we can suppose that it is simply connected and that V is compact.
By (4.6) and (4.7), we can define gn.z/ D logfn.z/ uniquely if we demand that

Imgn.z0/ D 0: (4.8)

By (4.5), Regn ! Reg1 on V , and so by the Cauchy–Riemann equations,
r.Imgn/ ! r.Img1/. By (4.8), Imgn ! Img1, so fn ! f1 on V . By Vitali’s
theorem (see [23, Section 6.2]) and (4.4), fn ! f1 uniformly on compacts.

Thus instead ofMn.z/, we can look at
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Mn.z/

ˇ̌ D exp
��nhn.z/

�
; hn.z/ D Ge.z/ � Gn.z/: (4.9)

Let d�n be the potential theoretic equilibrium measure of en (see [24, Sections 3.6–
3.7] for background on potential theory). Then we have the following.

PROPOSITION 4.3
One has that

hn.z/ D
Z

S
Kj2G Kj

Ge.x; z/d�n.x/: (4.10)

Remark
In [6], we proved the Totik–Widom bound (1.12) for PW sets, e � R, by using this
when z D 1; that is,

hn.1/ D
Z

S
Kj2G Kj

Ge.x/d�n.x/:

We proved this by thinking of d�n as harmonic measure at1; that is, ifH is harmonic
on .C[ ¹1º/ n en with boundary values H.x/ on en, then

H.1/ D
Z
en

H.x/d�n.x/:

If we wrote the analog of this for general z, then we would get

H.z/ D
Z
en

H.x/d�n.x; z/

varying the harmonic measure. Instead we think of (4.10), with Ge arising as the
Green’s function for solving Poisson’s equation with zero boundary values on e, and
d�n occurs as the Laplacian of Gn.

Proof
Both sides of (4.10) are continuous functions of z 2 C [ ¹1º (by regularity of e and
en), and both sides vanish on e. Off e, they have the same distributional Laplacian,
namely, d�n � .en n e/. Thus the difference is harmonic on .C [ ¹1º/ n e, continu-
ous on C [ ¹1º, vanishing on e, and bounded near 1. The boundedness means the
difference is also harmonic at 1 (see [24, Theorem 3.1.26]) and then the maximum
principle implies that the difference is 0.

The final step in the proof of Theorem 4.1 involves the form as n ! 1 of d�n � K

for K 2 G . Recall that en is a union of n bands which are closures of the connected
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components of T �1
n Œ.�tn; tn/�. On each of these, as x increases, Tn is either strictly

monotone increasing or strictly decreasing from �tn to tn or vice versa. Recall also
that each of the bands has �n measure exactly 1=n (see [6, Theorem 2.3]). In [6], it is
proved that each gap, K , contains all or part of a single band so that

n�n.K/ � 1: (4.11)

If there is x1 2 K which is a limit as j ! 1 of zeros, xnj
of Tnj

, then for j large,
enj

\ K is a complete band of exponentially small width, and so, in that case,

nj �nj
� K ! ıx1 (4.12)

weakly. If for each 
, there is a large J� so if j � J� then Tnj
has no zero in K.�/,

then for all sufficiently large j , �nj
.K.�// D 0. Since Ge vanishes at the edges of

K (and so supx2KnK.�/ Ge.x; z/ ! 0 as 
 # 0 uniformly as z runs through compact
sets), we conclude that

n

Z
K

Ge.x; z/d�n.x/ !
´

Ge.x1; z/ if K 2 G0I
0 if K … G0:

(4.13)

By the PW condition,
P

K2G supy2K Ge.z; y/ < 1 uniformly in z on compacts,
and we can go from pointwise limits in (4.13) to limits on sums. We conclude the
following.

PROPOSITION 4.4
Under the hypotheses of Theorem 4.1, uniformly for z in compact subsets of � n
¹xkºKk2G0

, we have that

n

Z
S

Kk2G Kk

Ge.x; z/d�n.x/ !
X

Kk2G0

Ge.xk ; z/: (4.14)

Proof of Theorem 4.1
By (4.9), (4.10), and (4.14),

lim
nj !1

ˇ̌
Mnj

.z/
ˇ̌ D

Y
Kk2G0

ˇ̌
Be.z; xk/

ˇ̌ D ˇ̌
BS .z/

ˇ̌
: (4.15)

ThatMnj
! BS then follows from Proposition 4.2.

5. Blaschke products are dual Widom maximizers
Given the setup of Theorem 4.1, the function BS .z/ is character-automorphic with
some character ˇ. In this section, we will prove that BS is a dual Widom maximizer
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for character ˇ. One can deduce this from results of Volberg and Yuditskii (see [28,
Lemma 6.4]). Instead, we will follow an approach of Eichinger and Yuditskii [8] (who
study an Ahlfors problem rather than a dual Widom problem) that relies on results of
Sodin and Yuditskii [26].

A basic technique of Sodin and Yuditskii is to consider the space, H˛ , of all
functions on e� which are in H 2.D/ when moved to D and which are character-
automorphic with character ˛ 2 �1.�/�. Moreover,H˛ is a family of functions on e�
which is a reproducing kernel Hilbert space (see [22, Problems 4–11 of Section 3.3])
under the inner product of H 2. In particular, there is a function K˛ 2 H˛ so that for
all f 2 H˛ ,

f .1/ D hK˛; f i: (5.1)

Note that our inner products are linear in the second factor and antilinear in the first,
as in [22].

We will prove the following.

THEOREM 5.1
For any gap set, S , if BS is the associated Blaschke product and ˇ is its character,
then BS is a dual Widom maximizer for ˇ, that is,

kBSk1 D 1; (5.2)

and if f 2 H 1.�;ˇ/ with kf k1 � 1, thenˇ̌
f .1/

ˇ̌ � BS .1/: (5.3)

Equation (5.2) is, of course, true for any (convergent) Blaschke product. We prove
(5.3) by proving two facts:
(1) For any character, � , and f 2 H 1.�;ˇ/ with kf k1 � 1, one has that

ˇ̌
f .1/

ˇ̌2 � K�ˇ .1/

K� .1/
: (5.4)

(2) There exists at least one ˛0 withˇ̌
BS .1/

ˇ̌2 D K˛0ˇ .1/

K˛0.1/
: (5.5)

LEMMA 5.2
Inequality (5.4) holds.
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Proof
Since f 2 H 1.�;ˇ/ and K� 2 H� , we have that fK� 2 H�ˇ . Thusˇ̌

f .1/K� .1/
ˇ̌2 D ˇ̌hK�ˇ ; fK� iˇ̌2

� kfK�k2
2kK�ˇ k2

2 (5.6)

� kK�k2
2kK�ˇ k2

2 (5.7)

D hK� ;K� ihK�ˇ ;K�ˇ i
D K� .1/K�ˇ .1/; (5.8)

which is (5.4) since K� .1/ > 0. In the above, (5.6) is the Schwarz inequality, (5.7)
uses kf k1 � 1, and (5.8) is (5.1).

For step 2, we need a deep result of Sodin and Yuditskii. For each gap K 2 G ,
we define CK to be two copies glued together at the ends; that is, we take two copies
¹.y;C/; .y;�/ j y 2 Kº and for y 2 @K (two points), we set .y;C/ D .y;�/ so CK

is topologically a circle. According to Sodin and Yuditskii [26], there is a map, A, the
Abel map, from

Q
K2G CK to the character group, so that, in particular, the inner part

of KA.y;�/ is BS , where S is the gap set with

G0 D ®
K

ˇ̌
.yK ; �K/ has �K D C and yK 2 K

¯
(i.e., yK … @K) and for K 2 G0, the point in K is yK .

In particular, if S is given and .y; �/ D ¹.yK ; �K/ºK2G is picked so that, for
Kk 2 G0, we have that .yKk

; �Kk
/ D .xk ;C/ (and for K … G0, .yK ; �K/ is arbitrary

in CK ), then the inner factor of KA.y;�/ is divisible by BS ; that is, if ˛1 D A.y; �/,
then K˛1=BS is inH˛0

, where ˛0 D ˛1ˇ�1. If g 2 H˛0
, then because multiplication

by BS is an isometry on H 2, we have that

hK˛0ˇ B�1
S ; gi D hK˛0ˇ ;BSgi

D BS .1/g.1/ (5.9)

D BS .1/hK˛0 ; gi (5.10)

D ˝
BS .1/K˛0 ; g

˛
: (5.11)

Since g is arbitrary inH˛0
and bothK˛0 and K˛0ˇ B�1

S lie inH˛0
, we conclude

that

K˛0ˇ .z/BS .z/�1 D BS .1/K˛0.z/: (5.12)

Evaluating at z D 1, we find the following.



CHEBYSHEV POLYNOMIALS, II 345

LEMMA 5.3
Equation (5.5) holds for ˛0 D ˛1ˇ�1, where ˛1 is the image under the Abel map of
data ¹.yK ; �K/ºK2G which has .yKk

; �Kk
/ D .xk ;C/ if Kk 2 G0.

Proof of Theorem 5.1
By Lemmas 5.2 and 5.3, if g 2 H 1.�;ˇ/ with kgk1 � 1, thenˇ̌

g.1/
ˇ̌2 � K˛0ˇ .1/

K˛0.1/
D ˇ̌

BS .1/
ˇ̌2

: (5.13)

Thus, if g.1/ > 0, we have that

0 < g.1/ � BS .1/; (5.14)

so BS is a dual Widom maximizer.

6. Proof of the main theorem
In this section, we will prove Theorem 1.3.

PROPOSITION 6.1
Under the hypotheses of Theorem 4.1, we have that Lnj

.z/ (given by (1.28)) con-
verges uniformly on compact subsets of e� to the Widom minimizer for the character,
ˇ, of BS .

Remark
TheMn’s only converge away from the ¹xkºKk2G0

because theMn’s are not analytic
on e� and only analytic on those points whose images under x are not in en. But Ln

is analytic on all of e�, so we can hope for convergence at the xk’s, too. Indeed, the
xk’s are limit points of zeros and the Widom minimizers vanish at those points.

Proof
We have thatMnj

.1/ D ŒC.e/=C.enj
/�nj , so by Theorem 4.1,

BS .1/ D lim
j !1

�
C.e/=C.enj

/
�nj : (6.1)

Thus, if Hn is given by (1.31), then

Hnj
.z/ ! BS .z/=BS .1/ (6.2)

for z near1 (in fact on compact subsets of e� n ¹w j �.w/ 2 ¹xkºº).
Since BS is the dual Widom maximizer for ˇ, BS .z/=BS .1/ is Fˇ , the Widom

minimizer for ˇ. By the first equation in (1.31), we get that Lnj
.z/ converges to

Fˇ .z/ for z near1.
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By the Totik–Widom bound, kLnj
k1 are uniformly bounded, and so by Vitali’s

theorem, Lnj
converges to Fˇ uniformly on compact subsets of e�.

PROPOSITION 6.2
Under the hypotheses of Theorem 4.1, we have that

lim
j !1kLnj

k1 D 2kFˇ k1: (6.3)

Proof
Since log jLnj

.z/j is harmonic on� away from those zeros of Tnj
in the gaps where

it goes to �1, its maximum occurs at limit points on e. Since jBe.x/j D 1 for x 2 e,
we conclude that

kLnj
k1 D tnj

C.e/nj
D 2C.enj

/nj

C.e/nj
(6.4)

by (1.8).
By (6.1), we conclude that

lim
j !1kLnj

k1 D 2
�
BS .1/

��1
; (6.5)

and by (1.20), noting thatQˇ D BS ,�
BS .1/

��1 D kFˇ k1; (6.6)

proving (6.3).

Proof of Theorem 1.3
By Theorem 3.2, we have the required almost periodicity of Fn.z/ and kFnk1. By
continuity of kF�k1 and the Totik–Widom bound, the functions on the left of (1.22)
lie in a compact set, so if the limit is not zero, by passing to suitable subsequences,
we can find one whose limit is zero for which the hypotheses of Theorem 4.1 hold.
But then the limit is zero by Proposition 6.1. We conclude that (1.22) holds.

Again, by continuity of kF�k1 and the Totik–Widom bound, the numbers on the
left-hand side of (1.23) are bounded above and away from zero, so if (1.23) fails we
can find a subsequence for which the limit is not 2 and for which the hypotheses of
Theorem 4.1 hold. This violates Proposition 6.2, so we conclude that (1.23) holds.
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