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File systems may become corrupted for many reasons despite various protection techniques. Therefore, most

file systems comewith a checker to recover the file system to a consistent state. However, existing checkers are

commonly assumed to be able to complete the repair without interruption, which may not be true in practice.

In this work, we demonstrate via fault injection experiments that checkers of widely used file systems (EXT4,

XFS, BtrFS, and F2FS) may leave the file system in an uncorrectable state if the repair procedure is interrupted

unexpectedly. To address the problem, we first fix the ordering issue in the undo logging of e2fsck and then
build a general logging library (i.e., rfsck-lib) for strengthening checkers. To demonstrate the practicality,

we integrate rfsck-lib with existing checkers and create two new checkers: rfsck-ext, a robust checker
for Ext-family file systems, and rfsck-xfs, a robust checker for XFS file systems, both of which require only

tens of lines of modification to the original versions. Both rfsck-ext and rfsck-xfs are resilient to faults

in our experiments. Also, both checkers incur reasonable performance overhead (i.e., up to 12%) compared to

the original unreliable versions. Moreover, rfsck-ext outperforms the patched e2fsck by up to nine times

while achieving the same level of robustness.
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1 INTRODUCTION

Achieving data integrity is critical for computer systems ranging from a single desktop to large-
scale distributed storage clusters [23]. In order to make sense of the ever-increasing amount of data
stored, it is common to use local (e.g., Ext4 [5], XFS [76], F2FS [55]) and multi-node file systems
(e.g., HDFS [72], Ceph [80], Lustre [10]) to organize the data on top of storage devices. Although
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file systems are designed to maintain data integrity [40, 42, 51, 66, 78, 81], situations arise when the
file system metadata needs to be checked for integrity. Such situations may be caused by power
outages, server crashes, latent sector errors, software bugs, and the like [21, 22, 35, 57, 60].
File system checkers, such as e2fsck for Ext-family file systems [4], serve as the last line of

defense to recover a corrupted file system back to a healthy state [60]. They contain intimate
knowledge of file system metadata structures and are commonly assumed to be able to complete
the repair without interruption.
Unfortunately, the same issues that lead to file system inconsistencies (e.g., power outages or

crashes) can also occur during file system repair. One real-world example happened at the High
Performance Computing Center in Texas [19]. In this accident, multiple Lustre file systems suffered
severe data loss after power outages: The first outage triggered the Lustre checker (lfsck [7])
after the cluster was restarted, while another outage interrupted lfsck and led to downtime and
data loss. Because Lustre is built on top of a variant of Ext4 (ldiskfs [10]), and lfsck relies on
e2fsck to fix local inconsistencies on each node, the checking and repairing is complicated (e.g.,
requiring several days [19]). As of today, it is still unclear which step of lfsck/e2fsck caused the
uncorrectable corruptions. With the trend toward increasing storage capacity and scaling to more
and more nodes, checking and repairing file systems will likely become more time-consuming
and thus more vulnerable to faults. Such accidents and observation motivate us to remove the
assumption that file system checkers can always finish normally without interruption.
Previous research has demonstrated that file system checkers themselves are error-prone [31,

48]. File system-specific approaches have also been developed that use higher level languages to
elegantly describe file system repair tasks [48]. In addition, efforts have also been made to speed
up the repair procedure, which leads to a smaller window of potential data loss due to an interrup-
tion [60]. Although these efforts improve file system checkers, they do not address the fundamental
issue of improving the resilience of checkers in the face of unexpected interruptions.
In this work, we first demonstrate that the checkers of widely used file systems (i.e., e2fsck [4],

xfs_repair [16], btrfs-fsck, and f2fs-fsck) may leave the file system in an uncorrectable
state if the repair procedure is unexpectedly interrupted. We collect corrupted file system images
from file system developers and additionally generate test images to trigger the repair procedure.
Moreover, we develop rfsck-test, an automatic fault injection tool, to systematically inject faults
during the repair, and thus manifest the vulnerabilities. In addition, we have also analyzed the root
cause of the uncorrectable corruptions caused by interrupting e2fsck using log information from
the fault injection tool.
To address the problem exposed in our study, we analyze the undo logging feature of e2fsck

in depth and identify an ordering issue which jeopardizes its effectiveness. We fix the issue and
create a patched version called e2fsck-patch which is truly resilient to faults.
However, we find that e2fsck-patch is inherently suboptimal as it requires extensive sync op-

erations. To address the limitation and to improve the checkers of other file systems, we design and
implement rfsck-lib, a general logging library with a simple interface. Based on the similarities
among checkers, rfsck-lib decouples logging from repairing and provides an interface to log the
repairing writes in fine granularity.
To demonstrate the practicality, we integrate rfsck-lib with existing checkers and create two

new checkers: rfsck-ext, a robust checker for Ext-family file systems, which adds 50 lines of
code (LoC) to e2fsck; and rfsck-xfs, a robust checker for XFS file system, which adds 15 LoC
to xfs_repair.1 Both rfsck-ext and rfsck-xfs are resilient to faults in our experiments. Also,
both checkers incur reasonable performance overhead (i.e., up to 12%) compared to the original

1The prototypes of rfsck-test, e2fsck-patch, rfsck-lib, rfsck-ext, and rfsck-xfs are publicly available [12].
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unreliable versions. Moreover, rfsck-ext outperforms e2fsck-patch by up to nine times while
achieving the same level of fault resilience.
This article is an extension of our previous work, Gatla et al. 2018 [43]. In this article, we extend

our study to include two additional file system checkers: btrfs-fsck for BtrFS and f2fs-fsck
for F2FS file systems. We have added two new methods to generate test images. The first method
is flexible in terms of corrupting large area, while the second method is precise for corrupting the
metadata regions of the file system. In addition, we have provided a detailed analysis of the root
causes for the uncorrectable corruptions using the log information from the fault injection tool. To
better understand the functionality of btrfs-fsck and f2fs-fsck, we provide some background
information and workflow of these checkers. Other minor changes include a detailed functionality
of e2fsck and xfs_repair such as the repairs done by the subpasses, and the like.
The rest of the article is organized as follows. First, we introduce the background of the four

file system checkers (Section 2). Next, we describe rfsck-test, study the resilience of the check-
ers, and provide an analysis of the corruptions (Section 3). We analyze the ordering issue of the
undo logging of e2fsck in Section 4. Then, we introduce rfsck-lib and integrate it with exist-
ing checkers (Section 5). We evaluate rfsck-ext and rfsck-xfs in Section 6 and discuss several
issues in Section 7. Finally, we discuss related work (Section 8) and conclude (Section 9).

2 BACKGROUND

Most file systems employ checkers to check and repair inconsistencies. The checkers are usually
file system-specific, and they examine different consistency rules depending on themetadata struc-
tures. We use a few representative checkers as concrete examples to illustrate the complexity as
well as the potential vulnerabilities of checkers in this section.

2.1 Workflow of e2fsck

e2fsck is the checker of the widely used Ext-family file systems. It first replays the journal (in case
of Ext3 and Ext4) and then restarts itself. Next, e2fsck runs the following five passes in order:

Pass-1: Scan the file system and check inodes. In this pass e2fsck iterates over all inodes
and checks each inode one by one (e.g., validating the mode, size, and block count). Meanwhile, it
stores the scanned information in a set of bitmaps, including inodes in use (inode_used_map),
inodes with bad fields (inode_bad_map), inodes in bad blocks (inode_bb_map), blocks in use
(block_found_map), and blocks claimed by two inodes (block_dup_map) to generate a list of du-
plicate blocks and their owners, check the integrity of extent trees, and more.
In addition, e2fsck performs four subpasses: Pass 1B scans the data blocks of all inodes again

and generates a list of duplicate blocks and their owners; Pass 1C traverses the file system tree
to determine the parent directories of the inodes reported in Pass 1B; Pass 1D is a reconciliation
pass, that is, for each inode with duplicate blocks, e2fsck prompts the user to choose whether to
clone or delete the file; for each inode with duplicate blocks, Pass 1D prompts the user for further
actions (e.g., whether to clone or delete the file); Pass 1E further checks the integrity of the extent
trees.

Pass-2: Check directory structure. Based on the bitmap information, e2fsck iterates through
all directory inodes and checks a set of rules for each directory. For example, the first directory
entry should be “.”, the length of each entry (rec_len) should be within a range, and the inode
number in the directory entry should refer to an in-use inode. In some cases, If Pass 2 is unable to
add checksum to the directory leaf nodes (due to space requirements), then these directories are
rebuilt in Pass 3A. To reduce the disk seek time, the directory entries are processed in the sorted
order of block numbers.

ACM Transactions on Storage, Vol. 14, No. 4, Article 35. Publication date: December 2018.
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Pass-3: Check directory connectivity. In this pass e2fsck ensures the connectivity of all di-
rectory inodes. e2fsck first checks if a root directory is available; if not, a new root directory
is created and is marked “done.” Then it traverses the directory tree until it reaches a directory
marked as“done.” If no such directory is reached, then the current directory inode is marked as
disconnected, and e2fsck offers to reconnect it to the “lost+found” folder. During the traversal, if
e2fsck sees a directory twice (i.e., there is a loop) then it offers to reconnect this directory to the
“lost+found” folder.
In addition, Pass 3 has a subpass called “Pass 3A,” which performs directory optimization (such

as indexing directory inodes and removing duplicate entries) by rebuilding the tree directories.

Pass-4: Check reference counts. e2fsck iterates over all inodes to validate the inode link counts.
Also, it checks the connectivity of the extended attribute blocks and reconnects them if necessary.

Pass-5: Recalculate checksums and flush updates. Finally, e2fsck checks the repaired in-
memory data structures against on-disk data structures and flushes necessary updates to the disk.
to ensure consistency. Also, if the in-memory data structures are mapped dirty due to the fixes in
the previous passes, the corresponding checksums are recalculated before flushing.

2.2 Workflow of xfs_repair

xfs_repair is the checker of the popular XFS file system.2 Similar to e2fsck, xfs_repair fixes
inconsistencies in seven passes (or phases), including:

Pass-1: Superblock verification. In this phase, xfs_repair performs superblock consistency
checks such as file system geometry, total free blocks and free inode count, and any contradiction
against information stored on secondary superblocks. xfs_repair uses the information in primary
superblock to locate the secondary superblocks. If this information is corrupt, then xfs_repair
scans the filesystem to locate the secondary superblocks.

Phase 2: Replay log, validate free and inode maps, and validate root inode. In this phase,
xfs_repair initially checks whether the filesystem has an internal or external log. If a log, exists
then the updates from the log are applied to the filesystem. Next, the checker validates entries in
free map and inode allocation maps. The checker also verifies whether the root inode exists. If it
exists, then the checker verifies whether the blocks mapped to the root inode are in use or not. If
the root inode does not exist, then xfs_repair allocates the default inode for the root directory.

Phase 3: Process Inodes in each allocation group. Inconsistencies related to inodes such as
bad magic number, blocks claimed by inodes, and the like are checked and fixed in this phase.
xfs_repair uses multiple threads in this phase to process inodes in each allocation group. If any
orphan inodes are found, then xfs_repair stores the information in memory and later links these
inodes to the lost+found folder in Phase 6.

Phase 4: Check for duplicate block allocations. In this phase inconsistency related to duplicate
blocks and extent allocations is checked. This is done by performing a 2-pass check per inode. In
the first pass, xfs_repair checks if an inode conflicts with known duplicate extents. In the second
pass the block bitmaps are set for all the blocks claimed by the inode.

Phase 5: Rebuild allocation group data structure and superblock. Based on the information
available until this phase, xfs_repair rebuilds the allocation group header information and b-tree

2There is another utility called xfs_check [16] which checks consistency without repairing; we do not evaluate it in this

work as it is impossible for the read-only utility to introduce additional corruption.
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structure. At the end of this phase, the new superblock information, such as free block and inode
count, are set in memory.

Phase 6: Check inode connectivity. In this phase xfs_repair checks for directory inode con-
nectivity by traversing the incore inode tree structure for each allocation group. This is done by
following the pointer information in “.” and “..” entries in each directory inode. If any directory is
disconnected, then it is linked to the lost+found folder.

Phase 7: Verify and correct link counts. In this pass, the link count of each directory inode
is verified and corrected if necessary. Since xfs_repair uses multiple threads to fix inconsisten-
cies, it stores all the updates in an in-memory cache and flushes all the updates at the end of the
program.
Unlike e2fsck which is single-threaded, xfs_repair employs multi-threading in passes 2, 3, 6,

and 7 to improve performance. Nevertheless, we can see that both checkers are complicated and
may be vulnerable to faults. For example, later passes may depend on previous passes, and there is
no atomicity guarantee for related updates. We describe our method for systematically exposing
these vulnerabilities in Section 3.

2.3 Other File System Checkers

Apart from e2fsck and xfs_repair, we have also studied two other file system checkers:
btrfs-fsck for BtrFS and f2fs-fsck for F2FS file systems.
The btrfs-check is the checker tool for BtrFS, but it does not completely repair the BtrFS

file system. Most Linux practitioners suggest users run other tools, such as btrfs-scrub and
btrfs-rescue, for recovery. btrfs-scrub can only be used to verify the checksums of all data and
metadata blocks. If the tool finds a corrupted block, it can repair it only if a correct copy is available.
btrfs-rescue is similar to btrfs-scrub, but it has three modes of operation: super-recover,
which recovers corrupted superblock fromgood copies; chunk-recover, which recovers the chunk
tree by scanning the entire desk; and zero-log, which clears filesystem log tree. We can observe
that each tool fixes a specific type of corruption; therefore, in this work, we run all these tools in
one script and consider it as btrfs-fsck.
The f2fs-fsck runs similarly to other checkers: It first scans the file system and then checks

the metadata structures, such as journal blocks, Node Address Table (NAT) entries, hard links to
files, and more. If the checker is unable to fix the file system, then it creates a lost+found folder
in the current working directory and moves the files to this folder.

2.4 The Logging Support of Checkers

Some file system developers have envisioned the potential need of reverting changes done to the
file system. For example, the “undo io manager” has been added to the utilities of Ext-family file
systems since 2007 [4, 17]. It can save the content of the location being overwritten to an undo log
before committing the overwrite.
However, due to degraded performance as well as log format issues [3, 18], the undo feature

has not been integrated into e2fsck until recently. Starting from v1.42.12, e2fsck includes a “-z”
option to allow the user to specify the path of the log file and enable logging [4]. When enabled,
e2fsck maintains an undo log during the checking and repairing and writes an undo block to
the log before updating any block of the image. If e2fsck fails unexpectedly, the undo log can be
replayed via e2undo [4] to revert the undesired changes.

Given the undo logging, one might expect that an interrupted e2fsckwill not cause any issues.
As we will see in the next section, however, this is not true.

ACM Transactions on Storage, Vol. 14, No. 4, Article 35. Publication date: December 2018.
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3 ARE THE EXISTING CHECKERS RESILIENT TO FAULTS?

In this section, we first describe ourmethod for analyzing the fault resilience of file system checkers
(Sections 3.1–3.3), then present our findings on e2fsck (Section 3.4) and xfs_repair (Section 3.5),
and finally provide an analysis on why corruption persists (Section 3.8).

3.1 Generating Corrupted Test Images

File system checkers are designed to repair corrupted file systems, so the first step of testing check-
ers is to generate a set of corrupted file system images to trigger the target checker. We call this
set of images test images. To generate test images, we use the following four methods:

Method 1: Some file system developers may provide test images to perform regression testing of
their checkers, which usually cover the most representative corruption scenarios as envisioned
by the developers [4]. We collect such default test images to trigger the target checker if they are
available.

Method 2: In this approach, we create test images ourselves using the debug tools provided by the
file system developers (e.g., debugfs [4] and xfs_db [16]). These tools allow “trashing” of specific
metadata structures with random bits, which may cover corruption scenarios beyond the default
test images.

Method 3: In this method, we generate the test images by corrupting a large area at a given offset.
This method is feasible when we do not have knowledge of the layout of the file system. For
example, the layout of btrfs [1] and f2fs [55] file systems is not well documented, and there are
no debug tools available to modify the metadata. In such cases, corrupting a big chunk of data at
a random offset may corrupt some metadata components.

Method 4: This method is an extension of the third. In this method, we identify the offsets of
the metadata structures and corrupt them. To achieve this, we used the mkfs tool [11] of each file
system and the recorder feature in our testing framework. We first run the mkfs tool of the tar-
get file system on a raw test image and record the I/Os written using the recorder in the testing
framework. The recorder maintains a log file which shows the offset and size of each write com-
mand. Since mkfs tool writes only the metadata components to the test image, these offsets can
be effectively used to corrupt the test images. The testing framework is discussed in detail in the
following sections.
In all these cases, the test images are generated as regular files instead of real physical disks,

which makes the testing more efficient.

3.2 Interrupting Checkers

Generating corrupted test images solves only one part of the problem. Another challenge in eval-
uating fault resilience is determining how to interrupt checkers in a systematic and controllable
way. To this end, we emulate the effect of faults using software.
To make the emulation precise and reasonable, we follow the “clean power fault” model [86],

which assumes that there is a minimal atomic unit of write operations (e.g., 512B or 4KB). Under
this model, the size of data written to the on-disk file system is always an integer multiple of the
minimal atomic block. A fault can occur at any point during the repair procedure of the checker;
once a fault happens, all atomic blocks committed before the fault are durable without corruption,
and all blocks after the fault have no effect on the media.
Apparently, this is an idealized model under power outages or system crashes. More severe

damage (e.g., reordering or corruption of committed blocks) may happen in practice [67, 79, 83, 87,
88]. However, such a clear model can serve as a conservative lower bound of the failure impact.
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Fig. 1. (a) Testing the fault resilience of a file system checker (fsck) without logging support. There
are ten steps: (1) make a copy of the test image which contains a corrupted file system; (2) run fsck on the
test image copy; (3) store the image generated in step 2 as the reference image; (4) record the I/O commands
generated during the fsck; (5) make another copy of the test image; (6) replay partial commands to emulate
the effect of an interrupted fsck; (7) store the image generated in step 6 as the interrupted image; (8) run fsck
on the interrupted image; (9) store the image generated in step 8 as the repaired image; (10) compare the
repaired image with the reference image to identify mismatches. (b) Testing fsck with logging support.

The workflow is similar except that rfsck-test interrupts the I/O commands sent to both the test image and
the log, and the log is replayed between steps 7 and 8.

In other words, file system checkers must be able to handle this fault model gracefully before
addressing more aggressive fault models.
Based on the fault model, we build a fault injection tool called rfsck-test using a customized

driver [9], which has two modes of operation:

Basic mode: This is used for testing a checker without logging support. In this mode, the tar-
get checker writes to the test image and generates I/O commands through the customized driver.
rfsck-test records the I/O commands generated during the execution of the checker in a com-
mand history file and replays a prefix of the command history (i.e., partial commands) to a copy
of the initial test image, which effectively generates the effect of an interrupted checker on the
test image. For each command history, we exhaustively replay all possible prefixes and thus gen-
erate a set of interrupted images which correspond to injecting faults at different points during
the execution of the checker.

Advanced mode: This is used for testing a checker with logging support. In this mode, the target
checker writes to the test image as well as its log file. rfsck-test records the commands sent
to both the image and the log in the command history. During the replay, rfsck-test selects a
prefix of the command history and replays the partial commands either to a copy of the initial test
image or to a copy of the initial log, depending on the original destination of the commands. In
this way, rfsck-test generates the effect of an interrupted checker on both the test image and the
log. Moreover, rfsck-test replays the log to the test image, which is necessary for the logging to
take effect.

3.3 Summary of Testing Framework

Putting it all together, we summarize our framework for testing the fault resilience of checkers
with and without logging support as follows:

Testing checkers without logging support: As shown in Figure 1(a), there are ten steps:
(1) we make a copy of the test image which contains a corrupted file system; (2) the target checker
(i.e., fsck) is executed to check and repair the original corruption on the copy of the test im-
age; (3) after fsck finishes normally in the previous step, the resulting image is stored as the

ACM Transactions on Storage, Vol. 14, No. 4, Article 35. Publication date: December 2018.
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reference image3; (4) during the checking and repairing of fsck, the fault injection tool rfsck-test
operates in the basic mode, which records the I/O commands generated by fsck in a command
history file; (5) we make another copy of the original test image; (6) rfsck-test replays partial
commands recorded in Step 4 to the new copy of the test image, which emulates the effect of an
interrupted fsck; (7) the image generated in Step 6 is stored as the interrupted image; (8) fsck is
executed again on the interrupted image to fix any repairable issues; (9) the image generated in
Step 8 is stored as the repaired image; (10) finally, we compare the file system on the repaired image
with that on the reference image to identify any mismatches.
The comparison in Step 10 is first performed via the diff command. If a mismatch is reported,

we further verify it manually. Note that in Step 8 we have run fsck without interruption, so a
mismatch implies that there is some corruption which cannot be recovered by fsck.

Testing checkerswith logging support:Theworkflow of testing a checkerwith logging support
is similar. As shown in Figure 1(b), rfsck-test operates in the advanced mode, which records the
I/O commands sent to both the test image and the log and emulates the effect of interruption on
both places. Also, between Steps 7 and 8, the (interrupted) log is replayed to the test image to make
the logging take effect. The other steps are the same.

3.4 Case Study I: e2fsck

In this section, we apply the testing framework to study e2fsck. As discussed in Section 2.4,
e2fsck has recently added undo logging support. For clarity, we name the original version without
undo logging as e2fsck and the version with undo logging e2fsck-undo.
To trigger the checker, we collect 175 Ext4 test images from e2fsprogs v1.43.1 [4] as inputs.

The sizes of these images range from 8MB to 128MB, and the file system block size is 1KB. To
emulate faults on storage systems with different atomic units, we inject faults at two granularities:
512B and 4KB. In other words, we interrupt e2fsck/ e2fsck-undo after every 512B or 4KB of an
I/O transfer command. Since the file system block is 1KB, we do not break file system blocks when
injecting faults at the 4KB granularity.
First, we study e2fsck using the method in Figure 1(a). As described in Section 3.3, for each

fault injected (i.e., each interruption), we run e2fsck again and generate one repaired image. Be-
cause the repair procedure usually requires updating multiple file system blocks, it can often be
interrupted at multiple points depending on the fault injection granularity. Therefore, we usually
generate multiple repaired images from one test image.
For example, to fix the test image “f_dup” (block claimed by two inodes), e2fsck needs to update

16KB in total. At the fault injection granularity of 512B, we generate 32 interrupted images (and
consequently 32 repaired images). The last fault is injected after all 16KB blocks, which leads to
a repaired image equivalent to the reference image without interruption. Similarly, at the 4KB
granularity, we generate 4 repaired images.
For every test image, we generate a number of repaired images and compare each of them with

the corresponding reference image. If the comparison reports a mismatch, it implies that the re-
paired image contains uncorrectable corruption. We count the number of repaired images report-
ing such corruption. Moreover, if at least one repaired image contains uncorrectable corruption,
we mark the test image as reporting corruption, too.
Table 1 summarizes the counts of images in testing e2fsck at the two fault injection granular-

ities. The total number of repaired images generated from the 175 Ext4 test images is shown in
the third column. We can see that at the 512B granularity there are more repaired images (25,062)

3It is possible that a checker may not be able to fully repair a corrupted file system even without interruption [31, 48]. So

we simply use the result of an uninterrupted repair as a criterion in this work.
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Table 1. Counts of Images in Testing e2fsck at Two Fault Injection Granularities. This
Table Shows the Number of Repaired Images (3rd Column) Generated from the 175 Ext4 Test
Images when Injecting Faults at 512B/4KB Granularities; the Last Two Columns Show the

Number of Test Images and Repaired Images Reporting Corruption, Respectively

Fault injection # of Ext4 # of repaired # of images reporting corruption
granularity test images images generated test images repaired images

512 B 175 25,062 34 240
4 KB 175 3,192 17 37

Table 2. Classification of Corruption. This Table
Shows the Number of Test Images and Repaired Images

Reporting Different Corruptions at Two Fault
Injection Granularities

Corruption test images repaired images
Type 512 B 4 KB 512 B 4 KB

cannot mount 20 1 41 3
data corruption 9 5 107 10
misplacement 9 11 82 23

others 1 1 10 1

Table 3. Comparison of e2fsck and e2fsck-undo.

This Table Compares the Number of Test Images
Reporting Corruption Under e2fsck and e2fsck-undo

Fault injection # of images reporting corruption
granularity e2fsck e2fsck-undo

512 B 34 34
4 KB 17 15

because the repairing procedure is interrupted more frequently, while at the 4KB granularity only
3,192 repaired images are generated. Also, more test images report corruption at the 512B granu-
larity (34 > 17). This is because the repair commands are broken into smaller pieces, and thus it is
more challenging to maintain consistency when interrupted.
Table 2 further classifies the corruption into four types and shows the number of test images and

repaired images reporting each type. Among the four types, data corruption (i.e., a file’s content
is corrupted) and misplacement (i.e., a file is either in the“lost+found” folder or completely miss-
ing) are the common ones. The most severe corruption is cannot mount (i.e., the whole file system
volume becomes unmountable). Such corruption has been observed at both fault injection granu-
larities. In other words, interrupting e2fsckmay lead to an unmountable image, even when a fault
cannot break the superblock because the 4KB fault granularity is larger than the 1KB superblock.
Next, to see if undo logging can avoid corruption, we use the method in Figure 1(b) to study

e2fsck-undo. We focus on the test images which report corruption when testing e2fsck (i.e., the
34 and 17 test images in Table 1).
Table 3 compares the number of test images reporting corruption under e2fsck and

e2fsck-undo. Surprisingly, we observe a similar amount of corruption. For example, all 34 images
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Table 4. Counts of Images in Testing xfs_repair at Two Fault Injection Granularities.

This Table Shows the Number of Repaired Images (3rd Column) Generated from the XFS Test
Images when Injecting Faults at 512B/4KB Granularities; the Last Two Columns Show the

Number of Test Images and Repaired Images Reporting Corruption, Respectively

Fault injection # of XFS # of repaired # of images reporting corruption
granularity test images images generated test images repaired images

512 B 3 1,127 2 443
4 KB 17 1,409 12 737

Table 5. Counts of Images in Testing btrfs-fsck. This Table Shows the Number of
Repaired Images (3rd Column) Generated from the BtrFS Test Images when Injecting Faults

at 4KB Granularity; the Last Two Columns Show the Number of Test
Images and Repaired Images Reporting Corruption, Respectively

Fault injection # of BtrFS # of repaired # of images reporting corruption
granularity test images images generated test images repaired images

4 KB 11 234 11 157

which report corruption when testing e2fsck at the 512B granularity still report corruption under
e2fsck-undo. We defer the analysis of the root cause to Section 4.

3.5 Case Study II: xfs_repair

We have also applied the testing framework to study xfs_repair. Since xfs_repair does not
support logging, only the method in Figure 1(a) is used.
To generate test images, we create 20 clean XFS images first. Each image is 100MB, and the

file system block size is 1KB (same as the Ext4 test images). We use the blocktrash command of
xfs_db [16] to flip 2 random bits on the metadata area of each image. In this way, we generate 20
corrupted XFS test images in total.
Table 4 summarizes the total number of repaired images generated from the XFS test images at

two fault injection granularities. We use 3 test images to inject faults at the 512B granularity and
17 images for the 4KB granularity. Similar to the Ext4 case, the smaller granularity (i.e., 512B) leads
to more repaired images (i.e., 3 test images lead to 1,127 repaired images). The table also shows
the number of test images and repaired images reporting corruption. We can see that there are
uncorrectable corruptions under both granularities, as in the Ext4 case.

3.6 Case Study III: btrfs-fsck

In addition to xfs_repair, we also applied the testing framework to study btrfs-fsck and
f2fs-fsck. In these experiments, we first create clean images of size 128MB for both file sys-
tems and fill them using fs_mark tool [6]. We then corrupt these test images using Methods 3 and
4, as discussed in Section 3.1.While running the framework, we save all the interrupted images and
rerun btrfs-fsck to generate the repaired images. Finally, we compare the data on the repaired
image with the data in the clean reference image.
Table 5 summarizes the experiment results of BtrFS test images for 4KB fault injection granu-

larity. The repaired images in this case were mountable, and all the user data was consistent. But
running the btrfs-check reports inconsistency in file system’s metadata, and this inconsistency
cannot be fixed by any other tools and is therefore permanent.
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Table 6. Counts of Images in Testing f2fs-fsck. This Table Shows the Number of Repaired
Images (3rd Column) Generated from the F2FS Test Images when Injecting Faults at 4KB

Granularity; the Last Two Columns Show the Number of Test
Images and Repaired Images Reporting Corruption, Respectively

Fault injection # of F2FS # of repaired # of images reporting corruption
granularity test images images generated test images repaired images

4 KB 22 125 3 10

3.7 Case Study IV: f2fs-fsck

The f2fs-fsck prompts the user to provide an input to perform repairs on the test image, and there
are no command line options available to automate this process. Therefore, we have modified the
testing framework to manually run the checker and record the I/Os in the background. We then
replay the I/Os, save each interrupted image, and then rerun the checker to generate the repaired
images.
In our tests we observed that, in most cases ,f2fs-fsck is unable to fix the image but it moves

all the files to the lost+found folder (Section 2.3). The repaired image remains in the corrupted
state and cannot be fixed by the checker. But, in some cases, we observe that although the checker
prompts the user to move the files to the lost+found folder, no such folder is created and the
repaired image remains corrupt. We report such images as corrupted. Table 6 shows the fault
injection test results on F2FS images. Among the 22 test images, we have corrupted 12 test images
using the fourth method. The remaining 10 images were corrupted using the third method, and 3
among these 10 test images have reported corruption.

3.8 Analysis of Uncorrectable Corruption

In this section, we provide an analysis of why these four corruptions are uncorrectable while
running e2fsck. The fault injection tool rfsck-test stores a log that contains the offset and size
of each write that is recorded. As mentioned in Section 3.3, we generate one interruption for every
partial replay of predetermined number of updates. If the repaired image is corrupted, then we
would know what metadata structures were updated and what structures were not updated (or
partially updated). For each of the four corruptions, the analysis is as follows:

Cannot Mount: This corruption occurs when the updates to superblock are interrupted. Most of
the EXT4 test images in our experiments contain only one group descriptor, and there is no sec-
ondary copy of the superblock available. Therefore, another run of the checker cannot verify if the
primary superblock is corrupt (or inconsistent), and hence the checker cannot fix this corruption.

Data corruption: This corruption is predominantly observed in test images that have inodes with
duplicate block allocations. In our experiments, we observed that e2fsck updates the inode and
block bitmaps first and then the inode table. If the checker was interrupted in such a way that the
inode and block bitmaps are updated while the inode table is still not updated, then this corruption
stays uncorrectable.

Missing files: In Section 2.1, we mentioned that e2fsck moves any orphaned inodes to the
lost+found folder. An interruption to this procedure can cause some files to reside in the original
directory and others in lost+found. In some scenarios, we have also seen that some files were not
present on the file system. By analyzing the updates to the image, we observed a contiguous up-
date to metadata structures such as group descriptor, inode and block bitmaps, and the inode table.
Any interruption to this contiguous update results in this type of uncorrectable corruption. The
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Fig. 2. Workflow of the undo logging in e2fsck-undo. The writes to the log (Lines 9–12) and the writes
to the file system image (Line 14) are asynchronous, and there is no ordering guarantee between the writes.

initial corruption scenarios that report this corruption include bad or no root directory, orphaned
indirect inodes, and the like.

Others: In this case, we observed corruption in uncorrectable inodes. The procedure in which
these corruptions appear is smilar to the data corruption scenario (i.e., the inode and block bitmaps
are updated but the inode table is still not updated due to the interruption of the checker).

4 WHY DOES THE EXISTING UNDO LOGGING NOT WORK?

The study in Section 3 shows that even the checkers of some of the most popular file systems are
not resilient to faults. This is consistent with other studies on the catastrophic failures of real-
world systems [47, 50], which find that the recovery procedures themselves are often imperfect
and that sometimes “the cure is worse than the disease” [50].
One way to handle the faults and provide crash consistency isWrite-Ahead Logging (WAL) [64],

which has been widely used in databases [14] and journaling file systems [78] for transactional
recovery. While it is perhaps not surprising that file system checkers without crash consistency
support (e.g., e2fsck and xfs_repair) may introduce additional corruptions upon interruption,
it is counterintuitive that e2fsck-undo, which has undo logging support, still cannot prevent cas-
cading damage.
To understand the root cause, we analyzed the source code of e2fsck-undo as well as the run-

time traces (e.g., system calls and I/O commands) and found that there is no ordering guarantee
between the writes to the undo log and the writes to the image being fixed, which essentially
invalidates the WAL mechanism.
To better illustrate the issue, Figure 2 shows a simplified workflow of undo logging in

e2fsck-undo. At the beginning of checking (Lines 2–4), the undo log file is opened without the
O_SYNC flag. To fix an inconsistency, e2fsck-undo first gets the original content of the block be-
ing repaired (not shown) and then writes it as an undo block to the log asynchronously (Lines 9–
12). After the write to the log, it updates the file system image asynchronously (Line 14). The

ACM Transactions on Storage, Vol. 14, No. 4, Article 35. Publication date: December 2018.



Towards Robust File System Checkers 35:13

same pattern (i.e., locate the block that needs to be repaired, copy the old content to the log, and
update the file system image) is repeated to fix every inconsistency. At the end, e2fsck-undo
flushes all buffered writes of the image to the persistent storage (Line 20) and closes the undo log
(Line 22).
While the extensive asynchronous writes (Lines 6–17) are good for performance, they are prob-

lematic from the WAL’s perspective. All asynchronous writes are buffered in memory. Since the
dirty pages may be flushed by kernel threads due to memory pressure or timer expiry, or by the
internal flushing routine of the host file system, there is no strict ordering guarantee among
the buffered writes. In other words, for every single fix, the writes to the log and the writes
to the file system image may reach the persistent storage in an arbitrary order. Consequently,
when e2fsck-undo is interrupted, the file system image may have been modified without the ap-
propriate undo blocks recorded. Because the WAL mechanism works only if a log block reaches
persistent storage before the updated data block it describes, the lack of ordering guarantee be-
tween the writes to the log and the writes to the image invalidates the WAL mechanism. As a
result, the existing undo logging does not work as expected.

5 ROBUST FILE SYSTEM CHECKERS

In this section, we describe our method to address the problem exposed in Sections 3 and 4.
First, we fix the ordering issue of e2fsck-undo by enforcing necessary sync operations. For

clarity, we name the version with our patch e2fsck-patch.
Next, we observe that although e2fsck-patchmay provide the desired robustness, it inherently

requires extensive synchronized I/O, which may hurt performance severely. To address this limi-
tation, and to provide a generic solution to the checkers of other file systems, we design and imple-
ment rfsck-lib, a general logging library with a simple interface. Different from e2fsck-patch
which interleaves the writes to the log (i.e., log writes) and the writes to the image being repaired
(i.e., repair writes), rfsck-lib makes use of the similarities among checkers to decouple logging
from the repairing of the file system and provides fine-grained control of logging.
To demonstrate its practicality, we use rfsck-lib to strengthen existing checkers and create

two new checkers: rfsck-ext, a robust checker for Ext-series file systems, and rfsck-xfs, a robust
checker for XFS file systems, both of which require only a few lines of modification to the original
versions.

5.1 Goals

While there are many desired objectives, rfsck-lib is designed to meet the following three key
goals:

Robustness: Unlike existing checkers that may introduce uncorrectable corruptions when inter-
rupted, we expect checkers integrated with rfsck-lib to be resilient to faults. We believe such
robustness should be of prime concern for file system practitioners in addition to the heavily stud-
ied performance issue [60].

Performance: Guaranteeing robustness may come at the cost of performance because it almost
inevitably requires additional operations. However, the performance overhead should be reduced
to minimum, which is particularly important for production environments.

Compatibility:We expect rfsck-lib to be compatible to existing file systems and checkers. For
example, no change to the existing on-disk layouts or repair rules is needed. While such compati-
bility may sacrifice some flexibility and optimization opportunities, it directly enables improving
the robustness of many widely used systems in practice.

ACM Transactions on Storage, Vol. 14, No. 4, Article 35. Publication date: December 2018.



35:14 O. R. Gatla et al.

Fig. 3. Comparison of different logging schemes. This figure compares different logging schemes using
a sequence of blocks written to the file system image (i.e., “fs img”) and the log: (a) e2fsck-undo is the logging
scheme of e2fsck, which does not have the necessary ordering guarantee between the writes to the log and
thewrites to the file system image; (b) e2fsck-patch guarantees the correct ordering between each undo block
(e.g., “undo blk1”) and the corresponding repair block (e.g., “repair blk1”) by enforcing a sync operation (i.e.,
the red line) after each write of an undo block; (c) rfsck-lib uses redo logging to eliminate the frequent sync
required in e2fsck-patch and only syncs after a safe transaction which includes a set of blocks constituting
a consistent update.

5.2 e2fsck-patch: Fixing the Ordering Issue in e2fsck-undo

As discussed in Section 4, e2fsck-undo does not guarantee the necessary ordering between log
writes and repair writes. Figure 3(a) illustrates the scenario using a sequence of writes. In this
example, three blocks are written to the file system image (i.e., “fs img”) to repair inconsistencies
(i.e., “repair blk1” to “repair blk3”). Meanwhile, three blocks are written to the undo log (i.e., “undo
blk1” to “undo blk3”) to save the original content of the blocks being overwritten for the purpose
of undoing changes in case the repair fails. Because all blocks are written asynchronously, the
repair blocks may reach persistent storage before the corresponding undo blocks, which essentially
invalidates the undo logging scheme. Although there is a sync operation at the end to the file
system image (i.e., the red solid line), it cannot prevent the previous buffered blocks from reaching
the persistent storage out of the desired order.
A naive way to solve the issue is to use a synchronous write for each block. However, this is

overkill. As long as an undo block (e.g., “undo blk1”) becomes persistent , it is unnecessary for the
corresponding repair block (e.g., “repair blk1”) to be written synchronously. Therefore, we only
enforce synchronized I/O for the undo log file.
Specifically, we add the O_SYNC flag when opening the undo log file, which is equivalent to

adding an fsync call after each write to the log [8]. As shown in Figure 3(b), the simple patch guar-
antees that a repair block is always written after the corresponding undo block becomes persistent.
On the other hand, all repair blocks are still written asynchronously. In this way, e2fsck-patch
fixes e2fsck-undo with minimum modification.

5.3 rfsck-lib: A General Library for Strengthening File System Checkers

While the logging scheme of e2fsck-patch may improve fault resilience, it has two limitations.
First, the log writes and the repair writes are interleaved. Consequently, it requires extensive syn-
chronized I/O to maintain the correct ordering (e.g., three sync operations are required in Fig-
ure 3(b)), which may incur severe performance overhead. Second, as part of e2fsck, the logging
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feature is closely tied to Ext-family file systems, and thus it cannot benefit other file system check-
ers directly. We address these limitations by building a general logging library called rfsck-lib.

Similarities Among File System Checkers: Different file systems usually vary a lot in terms of
on-disk layouts and consistency rules. However, there are similarities among different checkers,
which makes designing a general and efficient solution possible.
First of all, as a user-level utility, file system checkers always repair corrupted images through

a limited number of system calls, which are irrelevant to file systems’ internal structures and
consistency rules. Moreover, based on our survey of popular file system checkers (e.g., e2fsck,
xfs_repair, fsck.f2fs), we find that they always use write system calls (e.g., pwrite and its
variants) instead of other memory-based system calls (e.g., mmap, msync). Therefore, only a few
writes may cause potential cascading corruptions under faults. In other words, by focusing on the
writes, we may improve different checkers.
Second, there is natural locality in checkers. Similar to the cylinder groups of FFS [62], many

modern file systems have a layout consisting of relatively independent areas with an identical
structure (e.g., block groups of Ext4 [5], allocation groups of XFS [76], and cubes of IceFS [58]).
Among others, such common design enables co-locating related files to mitigate file system ag-
ing [37, 74] while isolating unrelated files. From the checker’s perspective, most consistency rules
within each area may be checked locally without referencing other areas. Also, each type of meta-
data usually has its unique structure and consistency rules (e.g., the rec_len of each directory
entry in an Ext4 inode should be within a range). These local consistency rules may be checked
independently without cross-checking other metadata.
Due to locality, checkers usually consist of relatively self-contained components. For example,

e2fsck includes five passes for checking different sets of consistency rules (Section 2.1). Simi-
larly, xfs_repair includes seven passes, and it forks multiple threads to check multiple allocation
groups separately (Section 2.2). Such locality exists even without changing the file system layout
or reordering the checking of consistency rules [60]. Therefore, it is possible to split an existing
checker into several pieces and isolate their impact under faults.
Based on these observations, we describe rfsck-lib’s design in the following subsections.

Basic Redo Logging: A corrupted file system image is repaired by a checker through a set of
repair writes. If the checker finishes without interruption, the set of writes turns the image back to
a consistent state. On the other hand, if the checker is interrupted, only a subset of writes changes
the image, and the resulting state may become uncorrectable. Therefore, the key to preventing
uncorrectable states is to maintain the atomicity of the checker’s writes. To this end, rfsck-lib
redirects the checker’s writes to a log first and then repairs the image based on the log. Essentially,
it implements a redo logging scheme [64].
As shown in Figure 3(c), all repair writes are issued to the redo log first (i.e., “redo blk1” to “redo

blk3”). After the write of the last redo block (i.e., “redo blk3”), a sync operation (i.e., the red solid
line) is issued to make the redo blocks persistent. After the sync operation returns, the image is
repaired (i.e., “repair blk1” to “repair blk3”) based on the redo log. Compared with e2fsck-patch
in Figure 3(b), the log writes and the repair writes are separated, and the required number of sync
operations is reduced from three to one. Such improvement in terms of sync overhead can be more
significant if more blocks on the image need to be repaired.

Fine-Grained Logging with Safe Transactions: While the basic redo logging scheme reduces
the ordering constraint to minimum, there is one limitation: If a fault happens before the final sync
operation finishes, all checking and repairing efforts may be lost. In some complicated cases where
the checker may take hours to finish [60], the waste is undesirable. On the other hand, a checker
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Fig. 4. The log format of rfsck-lib. The log includes a header, a superblock, fixed-sized index blocks, and
variable-sized redo blocks. Each index block includes a fixed number of indexes. Each index can either de-
scribe the beginning/end of a transaction (i.e., “txn begin”/“txn end”), or describe one variable-sized redo
block. “index0” to “index4” describe one safe transaction with three redo blocks (i.e.,“redo blk1” to “redo
blk3”) in this example.

may be split into relatively independent pieces due to locality. Therefore, rfsck-lib extends the
basic redo logging with safe transactions.
A safe transaction is a set of repair writes which will not lead to uncorrectable inconsistencies if

they are written to the file system image atomically. In the simplest case, the whole checker (i.e.,
the complete set of all repair writes) is one safe transaction. At a finer granularity, each pass of the
checker (or the check of each allocation group) may be considered as one safe transaction. While a
later pass may depend on the result of a previous pass, the previous pass is executed without any
dependency on the later passes. Therefore, by guaranteeing the atomicity of each pass as well as
the ordering among pass-based safe transactions, the repair writes may be committed in several
batches without introducing uncorrectable inconsistencies. In the extreme case, the checking and
repairing of each individual consistency rule may be considered as one safe transaction.
Figure 3(c) illustrates the safe transactions. In the simplest case, all three redo blocks (i.e., “redo

blk1” to “redo blk3”) constitute one safe transaction, and only one sync operation (i.e., the red solid
line) is needed, as in the basic redo logging. At a finer granularity, the first two redo blocks (i.e.,
“redo blk1” and “redo blk2”) may constitute one safe transaction (e.g., updating an inode and the
corresponding bitmap), and the third block itself (i.e., “redo blk3”) may be another safe transaction
(e.g., updating another inode). Another sync operation (i.e., the red dash line) is issued between
the two transactions to guarantee the correct ordering. If a crash happens between the two sync
operations, the first safe transaction (i.e., “redo blk1” and “redo blk2”) is still valid. In this case,
instead of recalculating the rules and regenerating the blocks, the checker can directly replay the
valid transaction from the log after restart.
In summary, a checker may be logged as one or more safe transactions. Compared to the basic

redo logging, such fine-grained control avoids losing all recovery efforts before the fault. On the
other hand, maintaining the atomicity as well as the ordering requires additional sync operations.
So there is a tradeoff between transaction granularity and transaction overhead. Since different
systems may have different preferences, rfsck-lib simply provides an interface to define safe
transactions, without restricting the number of transactions.

Log Format: To support the redo logging with safe transactions, rfsck-lib uses a special log
format extended from e2fsck-undo. As shown in Figure 4, the log includes a header, a superblock,
fixed-sized index blocks, and variable-sized redo blocks.
The header starts with a magic number to distinguish the log from other files. In addition, it

includes the offsets of the superblock and the first index block, the total number of index blocks, a
flag showing whether the log has been replayed, and a checksum of the header itself.
The superblock is copied from the file system image to be repaired, which is used to match the

log with the image to avoid replaying an irrelevant log to the image.
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Table 7. The Structure of an Index

Field Description

uint32_t cksum checksum of the redo block
uint32_t size size of the redo block
uint64_t fs_lba LBA in the file system image

The index block includes a fixed number of indexes. Each index can describe the beginning
of a transaction (i.e., “txn begin”), the end of a transaction (i.e., “txn end”), or one variable-sized
redo block. Therefore, a group of indexes can describe one safe transaction together. For example,
in Figure 4, five indexes (i.e., “index0” to “index4”) describe one safe transaction with three redo
blocks (i.e.,“redo blk1” to “redo blk3”).
As shown in Table 7, an index has 16 bytes consisting of three fields. To describe one redo block,

the first field (i.e., uint32_t cksum) stores a checksum of the redo block, the second field (i.e.,
uint32_t size) stores its size, and the third field (i.e., uint64_t fs_lba) stores its logical block
address (LBA) in the file system image.
To describe “txn begin” or “txn end,” the first field of the index is repurposed to store a trans-

action ID instead of a checksum, which marks the boundary of indexes belonging to the same
transaction. The second field (size) is set to zero. Since a valid redo block must have a non-zero
size, rfsck-lib can differentiate “txn begin” or “txn end” indexes from those describing redo
blocks even if a transaction ID happens to collide with a checksum. In addition, the “txn begin”
index uses the third field to denote whether the transaction has been replayed or not, and the “txn
end” index uses the third field to store a checksum of all indexes in the transaction.
For each write of the checker, rfsck-lib creates an index in the index block and then appends

the content of the write to the area after the index block as a redo block. Since the writes may have
different sizes, the redo blocks may vary in size as well. However, since all other metadata blocks
(i.e., header, superblock, index blocks) have known fixed sizes, the offset of a redo block in the log
can be identified by accumulating the sizes of all previous blocks. In other words, there is no need
to maintain the offsets of redo blocks in the log.
When an index block becomes full, another index block is allocated after the previous redo

blocks (which are described by the previous index block). In this way, rfsck-lib can support
various numbers of writes and transactions.

Interface: To enable easy integration with existing checkers, rfsck-lib provides a simple inter-
face. As shown in Table 8, there are seven function calls in total. The first function (rfsck_get_sb)
is a wrapper for invoking a file system-specific procedure to get the superblock, which is written
to the second part of the log (Figure 4). Since all checkers need to read the superblock anyway,
rfsck_get_sb can wrap around the existing procedure.
rfsck_open is used to create a log file at a given path at the beginning of the checker procedure.

Internally, rfsck-lib initializes the metadata blocks of the log.
rfsck_txn_begin is used to denote the beginning of a safe transaction, which creates a “txn

begin” index in the log. Similarly, rfsck_txn_end denotes the end of a transaction, which gener-
ates a “txn end” index and syncs all updates to the log. All writes between rfsck_txn_begin and
rfsck_txn_end are replaced with rfsck_write, which creates a redo block and the corresponding
index in the log.
rfsck_replay is used to replay logged transactions to the file system image. In addition, similar

to the e2undo utility [4], the replay functionality is also implemented as an independent utility
called rfsck-redo, which can replay an existing (potentially incomplete) log to a file system image
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Table 8. The Interface of rfsck-lib. rfsck_get_sb
Is a Wrapper Function for Invoking File

System-specific Procedure to Get the Superblock,
While the Others Are File-system Agnostic

Function Description

rfsck_get_sb get the superblock
rfsck_open create a redo log
rfsck_txn_begin begin a safe transaction
rfsck_write write a redo block
rfsck_txn_end end of a safe transaction
rfsck_replay replay the redo log
rfsck_close close the redo log

(e.g., after the checker is interrupted). rfsck-redo first verifies if the log belongs to the image
(based on the superblock). If yes, rfsck-redo further verifies the integrity of the log based on
metadata and then replays valid transactions. Note that the additional verifications are only needed
when the log is replayed by rfsck-redo. The rfsck_replay function can skip these verifications
as it is invoked directly after the logging by the (uninterrupted) checker.
Finally, rfsck_close is used at the end of the checker to release all resources used by rfsck-lib

and exist.

Limitations: The current prototype of rfsck-lib is not thread-safe. Therefore, if a checker is
multi-threaded (e.g., xfs_repair), using rfsck-libmay require additional attention to avoid race
conditions on logging. However, as we will demonstrate in Sections 5.4 and 6, rfsck-lib can still
be applied to strengthen xfs_repair.
In addition, rfsck-lib only provides an interface, which requires manual modification of the

source code. Since the modification is simple, we expect the manual effort to be acceptable. Also,
it is possible to use compiler infrastructures [13, 15] to automate the code instrumentation, which
we leave as future work.

5.4 Integration with Existing Checkers

Strengthening an existing checker using rfsck-lib is straightforward given the simple interface.
To demonstrate its practicality, we first integrate rfsck-lib with e2fsck and create a robust
checker for Ext-family file systems (i.e., rfsck-ext).
There are potential writes to the file system image in each pass of e2fsck (including the first

scanning pass), so we create a safe transaction for each pass. Moreover, within Pass-1 and Pass-2
(Section 2.1), there are a few places where e2fsck explicitly flushes the writes to the image and
restarts scanning from the beginning (via goto statement). In other words, the restarted scanning
(and subsequent passes) requires the previous writes to be visible on the image. In this case, we
insert additional rfsck_txn_end and rfsck_replay before the goto statement to guarantee that
previous writes are visible on the image for rescanning. We add an “-R” option to allow the user
to specify the log path via command line. In total, we add 50 lines of code to e2fsck.
Similarly, we also integrate rfsck-lib with xfs_repair, and create a robust checker for XFS

file system (i.e., rfsck-xfs). As mentioned in Section 2.2, one feature of xfs_repair is multi-
threading: It forks multiple threads to repair multiple allocation groups in parallel. The threads
update in-memory structures concurrently, and the main thread writes all updates to the image
at the end. Although it is possible to encapsulate each repair thread into one safe transaction,
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doing so requires additional concurrency control. To minimize the modification, we simply treat
the whole repair procedure as one transaction. Since all writes are issued by the main thread, there
is no race condition for rfsck-lib. We also add an “-R” command line option. In total, we add 15
lines of code to xfs_repair.

6 EVALUATION

In this section, we evaluate rfsck-ext and rfsck-xfs in terms of robustness (Section 6.1) and
performance (Section 6.2). Our experiments were conducted on a machine with an Intel Xeon
3.00GHz CPU, 8GB main memory, and two WD5000AAKS hard disks. The operating system is
Ubuntu 16.04 LTS with kernel v4.4. To evaluate the robustness, we used the test images reporting
corruption under e2fsck-undo (Section 3.4) and xfs_repair (Section 3.5). To evaluate perfor-
mance, we created another set of images with practical sizes and measured the execution time of
e2fsck, e2fsck-undo, e2fsck-patch, rfsck-ext, xfs_repair, and rfsck-xfs. For each checker,
we report the average time of three runs.
In general, we demonstrate that rfsck-ext and rfsck-xfs can survive fault injection experi-

ments. Also, both checkers incur reasonable performance overhead (i.e., up to 12%) compared to
the original unreliable versions. Moreover, rfsck-ext outperforms e2fsck-patch by up to 9 times
while achieving the same level of robustness.

6.1 Robustness

As discussed in Section 3, when injecting faults at the 4KB granularity, 17 Ext4 test images report
corruptions under e2fsck (Table 1) and 12 XFS test images report corruptions under xfs_repair
(Table 4). We use these test images to trigger rfsck-ext and rfsck-xfs, respectively. Since both
checkers have logging support, we use the method in Figure 1(b) to evaluate them.
For rfsck-ext, all 17 test images report no corruptions. Similarly, for rfsck-xfs, all 12 test

images report no corruptions. This result verifies that rfsck-lib can help improve the fault re-
silience of existing checkers.

6.2 Performance

The test images used in Section 3 are created as regular files, and they are small in size (i.e., 8MB
to 128MB). Therefore, they are unsuitable for evaluating the execution time of checkers. So we
create another set of Ext4 and XFS test images with practical sizes (i.e., 100G, 200GB, 500GB) on
real hard disks. We first fill up the entire file system by running fs_mark [6] five times. Each time,
fs_mark fills up 20% of the capacity by creating directories and files of a certain size. The file
size is a random value between 4KB to 1MB, which is relatively small in order to maximize the
number of inodes used. After filling up the entire file system, we inject 2 random bit corruptions
to the metadata using either debugfs [2] (for Ext4) or blocktrash [16] (for XFS). We measure the
execution time of checkers on corrupted images and verify that the repair results of rfsck-ext
and rfsck-xfs are the same as that of the original checkers.
Figure 5(a) compares the execution time of e2fsck, e2fsck-undo, e2fsck-patch, and rfsck-

ext on different images. For each size of image, the bars represent the execution time in seconds (y-
axis). Also, the number above each bar shows the normalized execution time (relative to e2fsck).
We can see that rfsck-ext incurs up to 12% overhead, while e2fsck-patchmay incur more than
8 times the overhead due to extensive sync operations.
Also, we can see that, as the size of file system increases, the overhead of rfsck-ext decreases.

This is because the execution time of rfsck-ext is largely dominated by the scanning in Pass-1
(Section 2.1), which is proportional to the file system size, similar to e2fsck [60].
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Fig. 5. Performance comparison of various checkers. (a) Compares the execution time of e2fsck, e2fsck-
undo, e2fsck-patch, and rfsck-ext. The y-axis shows the execution time in seconds. The x-axis shows file
system sizes. Similarly, (b) compares the execution time of xfs_repair and rfsck-xfs. The number above each
bar indicates the normalized time relative to e2fsck and xfs_repair, respectively.

Similarly, Figure 5(b) compares the execution time of xfs_repair and rfsck-xfs. We can see
that rfsck-xfs incurs up to 0.8% overhead, and the overhead also decreases as the file system size
increases.
Note that our aging method is relatively simple compared to other aging techniques [37, 74].

Also, the 2-randombit corruptionmay not necessarily lead to extensive repair operations by check-
ers. Therefore, the execution time measured here may not reflect the complexity of checking and
repairing real-world file systems (which may take hours [38, 39, 60, 75]). We leave generating more
representative file systems as future work.

7 DISCUSSION

Co-designing file systems and checkers. Recent work has demonstrated the benefits of co-
designing file systems and checkers. For example, by co-designing rext3 and ffsck, ffsck may
be 10 times faster than e2fsck [60]. In contrast, rfsck-lib is designed to be file system agnostic,
which makes it directly applicable to existing systems. We believe checkers may be improved
further in terms of both reliability and performance by co-designing, and we leave it as future
work.

Other reliability techniques. There are other techniques which may mitigate the impact of
an inconsistent file system image or the loss of an entire image (e.g., replication [45]). However,
maintaining the consistency of local file systems and improving checkers is still important for
many reasons. For example, a consistent local file system is the building block of large-scale file
systems, and the local checker may be the foundation of higher level recovery procedures (e.g.,
lfsck [7]). Therefore, our work is orthogonal to these other efforts.

Robustness.We evaluate the robustness of checkers based on fault injection experiments in this
work. The test images we use are limited and may not cover all corruption scenarios or trigger
all code paths of the checkers. There are other techniques (e.g., symbolic execution and formal
verification) which might provide more coverage, and we leave it as future work.

8 RELATEDWORK

Reliability of file system checkers. Gunawi et al. [48] find that the Ext2 checker may create
inconsistent or even insecure repairs; they then propose a more elegant checker (i.e., SQCK) based
on a declarative query language. Carreira et al. [31] propose a tool (i.e., SWIFT) to test checkers
using a mix of symbolic and concrete execution; they tested five popular checkers and found bugs
in all of them. Ma et al. [60] change the structure of Ext3 and co-design the checker, which enables
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faster checking and thus narrows thewindow of vulnerability. Generally, these studies consider the
behavior of checkers during normal executions (i.e., no interruption). Complimentarily, we study
checkers under faults. An early version of our work [44] studies two file system checkers without
improving their robustness, while in this version we provide a practical solution to enhance the
checkers.

Reliability of file systems. Great efforts have been made toward improving the reliability of
file systems [25, 29, 30, 33, 36, 40, 49, 57, 61, 63, 68, 73, 83, 85]. For example, Prabhakaran et al.
[68] analyze the failure policies of four file systems and propose the IRON file system, which
implements a family of novel recovery techniques. Fryer et al. [40] transform global consistency
rules to local consistency invariants and enable fast runtime checking. CrashMonkey [61] provides
a framework to automatically test the crash consistency of file systems. Overall, these research
efforts help understand and improve the reliability of file systems, which may reduce the need
for checkers. However, despite these efforts, checkers remain a necessary component for most file
systems.

Reliability of storage devices. In terms of storage devices, research efforts are also abundant [21,
22, 34, 53, 69, 70]. For example, Bairavasundaram et al. [21, 22] analyze the data corruption and
latent sector errors in production systems containing a total of 1.53 million HDDs. Besides HDDs,
more recent work has been focused on flash memory and Solid State Drives (SSDs) [20, 24, 26–28,
32, 41, 46, 52, 54, 56, 59, 65, 71, 77, 79, 82, 84, 87, 88]. These studies provide valuable insights for
understanding file system corruptions caused by hardware.

9 CONCLUSION

We studied the behavior of various file system checkers under faults. We find that running
the checker after an interrupted repair may not return the file system to a valid state. To address
the issue, we built a general logging library which can help strengthen existing checkers with little
modification. We hope our work will raise the awareness of reliability vulnerabilities in storage
systems, and facilitate building truly fault-resilient systems.
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