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ABSTRACT. We show that the Hopf elements, the Kervaire classes, and the &-
family in the stable homotopy groups of spheres are detected by the Hurewicz
map from the sphere spectrum to the Ca-fixed points of the Real bordism
spectrum. A subset of these families is detected by the Ca-fixed points of Real
Johnson-Wilson theory ER(n), depending on n. In the proof, we establish an
isomorphism between the slice spectral sequence and the Ca-equivariant May
spectral sequence of BPg.
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1. INTRODUCTION

1.1. Motivation and main results. In 2009, Hill, Hopkins, and Ravenel re-
solved a longstanding open problem in algebraic topology. In their seminal paper
[HHR16a], they showed that the Kervaire invariant elements 6; do not exist for
Jj > 7 (see also [Milll, HHR10, HHR11] for surveys on the result). The crux of
their proof relies on a detecting spectrum €2, which detects the Kervaire invariant
elements.

Theorem 1.1 (Hill-Hopkins-Ravenel Detection Theorem). If 6; € moj+1_5S is an
element of Kervaire invariant 1, and j > 2, then the Hurewicz image of 0; under
the map w,S — ) is nonzero.

The detecting spectrum 2 is constructed as the Cg-fixed point of a genuine
Cs-equivariant spectrum g, which is an equivariant localization of MU(Cs)) .=
Ng: MUg. Here, MUy is the Real cobordism spectrum of Landweber, Fujii, and

Araki [Lan68, Fuj76, Ara79] and Ngzs(—) is the Hill-Hopkins—Ravenel norm func-

tor. To analyze the equivariant homotopy groups of (2o, Hill, Hopkins, and Ravenel

generalized the Cy-equivariant filtration of Hu-Kriz ([HKO01]) and Dugger ([Dug05])

to a G-equivariant Postnikov filtration for all finite groups G. They called this the

slice filtration. Given any G-equivariant spectrum X, the slice filtration produces
1
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the slice tower {P* X}, whose associated slice spectral sequence is strongly conver-
gent and converges to the RO(G)-graded homotopy groups 7T§X . Using the slice
spectral sequence, Hill, Hopkins, and Ravenel proved that

7T2j+1,29 = 7T20_7‘8+1_2Q@ =0
for all j > 7, hence deducing the nonexistence of the corresponding Kervaire invari-
ant elements.

We are interested in proving more detection theorems for the fixed points of the
equivariant theories MU(C2m)) .= Ngj" MUy and their localizations. Our motiva-
tion is as follows: classically, m, MU is a polynomial ring, hence torsion free, and the
map 7S — 7w, MU detects no nontrivial elements in the stable homotopy groups of
spheres. Equivariantly, however, computations of Hu—Kriz [HK01], Dugger [Dug05],
Kitchloo-Wilson [KW07], and Hill-Hopkins—Ravenel [HHR16a, HHR16b] show that
there are many torsion classes in the equivariant homotopy groups of the theories
above. Since the Kervaire invariant elements are detected by the fixed point of
a localization of MU(()) there should be other classes in the stable homotopy
groups of spheres that are also detected by such theories. We prove this is indeed
the case.

Theorem 1.2 (Theorem 6.11, Detection Theorems for MUg and BPg). The Hopf
elements, the Kervaire classes, and the R-family (see Definition 1.4) are detected
by the Hurewicz maps m.S — mMUHg2 and TS — W*BP]SQ.

Once we obtain the detection theorem for m, M URQ 2 we use the Hill-Hopkins—
Ravenel norm functor to show that these elements are also detected by the Ca.-fixed
point of MU(C2m));

Corollary 1.3 (Corollary 6.13, Detection Theorem for MU, For any finite
group G containing Cs, the G-fized point of MU detects the Hopf elements, the
Kervaire classes, and the k-family.

We pause here to discuss some implications of Theorem 1.2, as well as what we
mean by the “K-family”. It is well known that the Hopf elements are represented
by the elements

h; € Ext'® (Fs,F,)
on the Es-page of the classical Adams spectral sequence at the prime 2. By Adams’s
solution of the Hopf invariant one problem [Ada60], only hg, h1, he, and hg survive
to the Eo-page. By Browder’s work [Bro69], the Kervaire classes 0; € maj+1_5S, if
they exist, are represented by the elements

h2 € Bxt%? " (Fa, Fy)

on the Es-page. For j < 5, h? survives. The case 04 € m30S is due to Barratt,
Mahowald, and Tangora [MT67, BMT70], and the case 05 € 7S is due to Barratt,
Jones, and Mahowald [BJM84]. The fate of hZ is unknown. Hill, Hopkins, and
Ravenel [HHR16a] showed that the h?, for 7 > 7, cannot survive to the E,,-page.
Given this information, Theorem 1.2 and Corollary 1.3 assert that the elements 7,
v,o0,and §;, for 1 < j <5, are detected by 7GMUUE) | The last unknown Kervaire
class, 6, will also be detected, should it survive the Adams spectral sequence.
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To introduce the k-family, we appeal to Lin’s complete classification of the groups
Extfé’t(IFQ,Fg) [Lin08]. In his classification, Lin showed that there is a family
{gr | kE > 1} of indecomposable elements with

721@«}»2 +2k+3

gk € EXti‘ (Fg, IF2)

The first element of this family, g1, is in bidegree (4,24). It survives the Adams
spectral sequence to become K € m0S. It is for this reason that we name this
family the k-family. The element g, also survives to become the element ko € 744S.
Theorem 1.2 and Corollary 1.3 assert that they are both detected by 7&MU()),
Recent computations of Isaksen—Wang—Xu [IWX] show that g3 supports a nontrivial
ds-differential and therefore k3 does not exist in mgsS. For k > 4, the fate of gy is
unknown (g4 is in stem 188). Nevertheless, they will be detected by 7&MUU(S)),
should they survive the Adams spectral sequence.

Definition 1.4. The R-family consists of the homotopy classes detected by the
surviving gx-family.

To prove Theorem 1.2, first observe that 2-locally, MUy splits as a wedge of sus-
pensions of BPg. Therefore we only need to prove the claim for BPg. To establish
the link between the famlies {h;}, {h?}, and {gr} and the equivariant homotopy
groups of BPg, we use the Co-equivariant Adams spectral sequence developed by
Greenlees [Gre85, Gre88, Gre90] and Hu—Kriz [HK01]. More precisely, we analyze
the following maps of Adams spectral sequences

classical Adams spectral sequence of S —— (.S)%

! |

Cs-equivariant Adams spectral sequence of S =—= (77328)9

J N

Cs-equivariant Adams spectral sequence of BPr —— (7722BP]R)2

and prove the following.

Theorem 1.5 (Algebraic Detection Theorem). The images of the elements {h; |i >
1}, {h2|j > 1}, and {g |k > 1} on the Ey-page of the classical Adams spectral
sequence of S are nonzero on the Fo-page of the Ca-equivariant Adams spectral
sequence of BPg.

It turns out that for degree reasons, the Co-equivariant Adams spectral sequence
of BPr degenerates after the Es-page. From this, Theorem 1.2 easily follows from
Theorem 1.5 because if any of h;, h?, or g survives to the E,.-page of the classical
Adams spectral sequence to represent an element in the stable homotopy groups of
spheres, it must be detected by 71'1(;:2 BPg.

The proof of Theorem 1.5 requires us to analyze the algebraic maps
Exta, (Fa,Fy) — Extam (H&*, H&*) — Extprp (H&*, H&*)
They are maps on the Es-pages of the Adams spectral sequences above. Here,

A, = (HF3 A HF5), is the classical dual Steenrod algebra; AJ := (HFy A HF3) 5
is the genuine Cs-equivariant dual Steenrod algebra; A7 is a quotient of A%. Hu
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and Kriz [HKO01] studied A%} and completely computed the Hopf algebroid structure
of (HFy * AZ). We borrow extensively their formulas. More precisely, we use their
formulas to describe the maps

(HF27A*) — (H&*JA;T'L) — (H&*aAz)

of Hopf-algebroids. Then, by filtering these Hopf algebroids compatibly, we produce
maps of May spectral sequences:

Modified May spectral sequence of S =——= Ext 4, (F2,F2)

! |

Cy-equivariant May spectral sequence of S == Extay (HFy o HE2 *)

| |

Csy-equivariant May spectral sequence of BPy —— Extprp (HF, * HIFy *).

To analyze these maps, we appeal again to Hu and Kriz’s formulas. We compute
the maps on the Fs-page of the May spectral sequences above, as well as all the
differentials in the Cs-equivariant May spectral sequence of BPg.

The readers should be warned that the May spectral sequence at the top of
the diagram above is not the classical May spectral sequence. The classical May
spectral sequence is constructed from an increasing filtration of the dual Steen-
rod algebra A,. However, in constructing the equivariant May spectral sequence,
we filtered A} and AY by decreasing filtrations. To rectify this mismatch of fil-
trations, we need to change the filtration of A, to a decreasing filtration as well.
This is necessary to ensure the compatibility of filtrations with respect to the map
Ao = AL — AL — or we won’t have a map of spectral sequences. Nevertheless,
despite this change of filtration, we are able to compute this modified May spectral
sequence. This computation, together with our knowledge of the Cs-equivariant
May spectral sequence of BPg, finishes the proof of Theorem 1.5.

While proving Theorem 1.5, we also prove a connection between the equivariant
May spectral sequence of BFPg and the slice spectral sequence of BPg.

Theorem 1.6 (Theorem 4.9). The integer-graded Cs-equivariant May spectral se-
quence of B Py is isomorphic to the associated-graded slice spectral sequence of BPg.

By the “associated-graded slice spectral sequence”, we mean that whenever we
see a Z-class on the Fs-page, we replace it by a tower of Z/2-classes. Theorem 1.6
can be intuitively explained as follows: since the Adams spectral sequence for BPg
collapses for degree reasons, the equivariant May spectral sequence of BPg con-
verges to an associated-graded of (mx BPg)5. On the other hand, the slice spectral
sequence

EyY =72 PimY BPy = 75 BPy
also computes the equivariant homotopy groups of BPg. Moreover, works of [HK01]
and [HHR11] essentially show that the Cy-slice differentials are produced from equi-
variant cohomology operations. Given this, one should naturally suspect the iso-
morphism in Theorem 1.6. As we will discuss shortly, Theorem 1.6 is crucial in
tackling detection theorems for Real Johnson-Wilson theories.
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Can

The homotopy groups of the fixed point spectra (MU(C2") can be assem-

bled into the commutative diagram

T (MU (C2m)))Con

i
i

TS — s 7 (MUUC))Cs

|

T (MU((C4)))C4

|

Ty (MUR)CQ.

As we move up the tower, more and more elements in the stable homotopy
groups of spheres are detected by 7, (MU((CW)))CQ". For instance, in [HHR16Db],
Hill, Hopkins, and Ravenel completely computed the Mackey functor homotopy
groups of KJg, the Cy-analogue of Atiyah’s KR-theory [Ati66]. The spectrum Ky
is the periodization (localization) of a quotient of MU(C4) and the Cy-action on
the underlying spectrum of K|y) is compatible with the Cy-action on Ej (the height
two Morava E-theory spectrum), where Cy C Ga4 C So. Here, Sy is the second
Morava stabilizer group, and Ga4 is the maximal finite subgroup, which is of order
24. Using this, Hill, Hopkins, and Ravenel deduced that n € mS, v € 73S, € € 7gS,
k € T14S, and & € mooS are detected by ¢4 Ky Of these elements, € and x are not
detected by 7¢2 M Ug. It is a current project to generalize the techniques developed
in this paper to prove detection theorems for the G-fixed points of MU for
|G| > 2.

The Doomsday Conjecture claims that for any s, there are only finitely many
surviving permanent cycles in Extiii (Fo,F5). This was proven false by Mahowald
in 1977. In particular, Maholwald exhibited a family of infinitely many surviving
permanent cycles on the 2-line of the classical Adams spectral sequence. In 1995,
Minami modified the Doomsday conjecture.

Conjecture 1.7 (New Doomsday Conjecture). For any Sq°-family

{2,9¢°(x),...,(S¢")"(x),...}
in Exty, (Fa,Fy), only finitely many elements survive to the Eo-page of the classical
Adams spectral sequence.

Here, Sq°(—) is the Steenrod action defined on the Adams Es-page (see [BMMSS6]).
In particular, the families {h;[i > 1}, {h7|j > 1}, and {gi |k > 1} are all Sq°-
families on the 1-line, 2-line, and 4-line of the classical Adams spectral sequence,
respectively. We are interested in the fate of the &-family {g |k > 1} in 7& MU ()
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as we increase the order of G. As G grows bigger, it’s possible that g will all sup-
port differentials in the slice spectral sequence of 7&MUUE) for k large enough,
hence not surviving the classical Adams spectral sequence.

In [HHR16a], Hill, Hopkins, and Ravenel also used an algebraic detection the-
orem to prove that the Kervaire classes are detected by 7¢8Qg. They remarked
that their algebraic detection theorem can be modified to prove that the Can-fixed
points of MU(C2m)) for n > 3, detect the Kervaire classes. It’s worth pointing out
the differences between our algebraic detection theorem and their algebraic detec-
tion theorem. To prove their detection theorem, Hill, Hopkins, and Ravenel used
the map of spectral sequences

Adams—Novikov spectral sequence TS

! |

Can-homotopy fixed point spectral sequence == T, (MU ((C2")))

Con

Their algebraic detection theorem [HHR16a, Theorem 11.2] shows that if z €
41
Ext?\’fl]]jMU(MU*, MU,) is any element mapping to hf on the Fs-page of the clas-

sical Adams spectral sequence, then the image of  in H?(Con, 7, MU(C27)) is
not zero. Once this is proved, their detection theorem follows easily.

They further remarked that their algebraic detection theorem does not hold when
G is Cy or Cy (see [HHR16a, Remark 11.14]). For these groups, there is a jump of

filtration. In particular, for n = 1, the element x € Ext?\f;]:FJWU(MU*, MU,) maps
to 0 on the Fs-page of the Cs-homotopy fixed point spectral sequence of MUg.
However, because of Theorem 1.6, we deduce that there must be a nontrivial ex-
tension so that z actually corresponds to an element of filtration 2/+t! — 2 in the
Cs-homotopy fixed point spectral sequence. For our algebraic detection theorem,
this jump of filtration does not occur because we used maps of Adams spectral
sequences.

As an application of Theorem 1.2, we study Hurewicz images of Real Johnson—
Wilson theories. The Real Johnson—Wilson theories ER(n) were first constructed
and studied by Hu and Kriz [HKO01]. They constructed ER(n) from BPg by mim-
icking the classical construction of E(n). More precisely, there is an isomorphism

Zlvy,vs,...| = o BP = 782 BPg = Z[0y,7s, . . ],

*p2
where v; € 771-6;22 BPg are lifts of the classical generators v; € mo; BP. Quotienting
out the v; generators for all i > n+ 1 and inverting 9,, produces the Real Johnson—
Wilson theory ER(n). It is a Cy-equivariant spectrum whose underlying spectrum
is E(n), with an Cs-action induced from the complex conjugation action of BPg.
Many people have also studied ER(n) after Hu and Kriz. Kitchloo and Wilson
[KW07] proved that the fixed points ER(n) := ER(n)®? fits into the fiber sequence

YW ER(n) — ER(n) — E(n),

where A(n) = 22Tt —27%2 4 1. When n = 1, ER(1) is Atiyah’s Real K-theory
KR, with ER(1) = KR®? = KO. In this case, Kitchloo and Wilson’s fibration
recovers the classical fibration

YKO % KO — KU.
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When n = 2, using the Bockstein spectral sequence associated to the fibration,
Kitchloo and Wilson subsequently computed the cohomology groups ER(2)*(RP"™)
and ER(2)*(RP™ ARP™). From their computation, they deduced new nonimmer-
sion results for even dimensional real projective spaces [KW08a, KW08b]. Most
recently, Kitchloo, Lorman, and Wilson have used this Bockstein spectral sequence
to further compute the ER(n) cohomology of other spaces as well [Lorl5, KLW16a,
KLW16b).

In [HM17], Hill and Meier studied the spectra TM F;(3) and T'm f1(3) of topo-
logical modular forms at level three. They proved that the spectrum ¢mfi(3),
considered as an Cy-equivariant spectrum, is a form of BPg(2), and tmf;(3)[as ']
is a form of EFR(2). Using this identification, they computed the Cs-equivariant
Picard groups and the Cy-equivariant Anderson dual of T'm f1(3).

We are interested in the Hurewicz images of 7, ER(n)¢?. To do so, we study the
map of slice spectral sequences

SliceSS(BPg) — SliceSS(ER(n)).

Theorem 1.5 and Theorem 1.6 identify the classes in the slice spectral sequence of
BPg that detect the families {h;}, {h3}, and {gi}. Analyzing the images of these
classes in the slice spectral sequence of EFR(n) produces the detection theorem for
ER(n).

Theorem 1.8 (Detection Theorem for ER(n)).

(1) Forl <i,j <mn, if the element h; € Ext}é{fz (Fy,Fa) orh3 € Emtifﬁl(FQ,IFg)
survives to the Es-page of the Adams spectral sequence, then its image un-
der the Hurewicz map .S — 7, ER(n)“? is nonzero.

(2) For 1 < k < n—1, if the element g, € Extjfk+2+2k+3(F2,]F‘2) survives
to the Eo-page of the Adams spectral sequence, then its image under the
Hurewicz map ,S — m, ER(n)%? is nonzero.

Theorem 1.8 is extremely useful for computing ER(n)*(RP™). In [LSWX17],
we use the fact that the Hopf elements are detected by €2 ER(n) to deduce the
compatibility of the slice differentials of FR(n) and the attaching maps of RP™.
As a result, we are able to compute ER(2)*(RP™) by a double filtration spectral
sequence, solving all the 2-extensions and some 1 and r-extensions.

Hahn and the second author have shown that the Lubin-Tate theories F,,
equipped with the Goerss—Hopkins—Miller Cs-action ([Rez98, GHO04]), is Real ori-
ented. In other words, there is a Co-equivariant map MUgr — E,,. The proof for
Theorem 1.8 can be modified to prove Hurewicz images for the homotopy fixed point
spectra E"¢. In [HS17], the authors show that the Hurewicz images of ER(n)*?
and E"°2 are the same. It follows that Theorem 1.8 holds for 7, E"“2 as well.

1.2. Summary of the contents. In Section 2, we provide the necessary back-
ground for the Cy-equivariant dual Steenrod algebras — (HF2 , , AY) and (Hy , AY)
— and their Cy-equivariant Adams spectral sequences. In Section 3, we compute
the slice spectral sequence and the homotopy fixed point spectral sequence of B Pg.
In Section 4, we construct the equivariant May spectral sequence of BPg and prove
Theorem 1.6. In Section 5, we modify the filtration of the classical dual Steenrod al-
gebra A, to obtain a compatible filtration with respect to the map A, — A} — AY
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of Steenrod algebras. We then analyze the resulting maps of May spectral se-
quences. Lastly, in Section 6, we combine results from the previous sections and
prove Theorem 1.2, Corollary 1.3, Theorem 1.5, and Theorem 1.8.
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2016 Talbot workshop, Eva Belmont, Inbar Klang, and Dylan Wilson, for inviting
them to the workshop. This project would not have come into being without the
mentorship of Mike Hill and Doug Ravenel during the workshop. We would like
to thank Vitaly Lorman for helpful conversations and a fruitful exchange of ideas.
We are also grateful to Hood Chatham for his spectral sequence package, which
produced all of our diagrams. Thanks are also due to Mark Behrens, Jeremy Hahn,
Achim Krause, Peter May, Haynes Miller, Eric Peterson, Doug Ravenel, David
B Rush, and Mingcong Zeng for helpful conversations. Finally, we would like to
heartily thank Mike Hill and Mike Hopkins for sharing numerous insights with us
during various stages of the project and many helpful conversations. The fourth
author was partially supported by the National Science Foundation under Grant
No. DMS-1810638.

2. THE EQUIVARIANT DUAL STEENROD ALGEBRA AND ADAMS SPECTRAL
SEQUENCE

In this section, we provide the necessary background for the Cs-equivariant dual
Steenrod algebra and the Cs-equivariant Adams spectral sequence. These have
been extensively studied by Hu-Kriz [HKO01] and Greenlees [Gre85, Gre88, Gre90].
Of the many ways to define the Cs-equivariant dual Steenrod algebra, two of them
are of interest to us. The first one is the Borel equivariant dual Steenrod
algebra

‘Ci = F(E02+7HF2 A HFQ)*.
This has been studied by Greenlees. The second one is the genuine equivariant
dual Steenrod algebra. It is defined by using the genuine Eilenberg-Mac Lane
spectrum HIFy:
%= (HFy AN HF) %

2.1. AY and A}. To compute AJ, Hu and Kriz first computed the RO(Cy)-
graded homotopy groups A%. This computation can be further used to deduce
the RO(C3)-graded homotopy groups AZ. We give a brief summary of Hu and
Kriz’s computation of AY and AY, focusing on the parts that we will need again
for the later sections. For more details of their computation, see Section 6 of [HK01].

To start, we need the coefficient rings of the Cs-equivariant Eilenberg-Mac Lane
spectra H® := F(ECy,,HF5) and H™ := HFy. The following are some distin-
guished elements in their RO(C3)-graded homotopy groups.

Definition 2.1. The element

ay € ng,SO
is the element corresponding to the inclusion S <+ S° (the one point compactifica-
tion of the inclusion {0} C ¢) under the suspension isomorphism 72 80 22 75257,
Under the Hurewicz maps WSQS — Hy and 7'('328 — HY', the images of a, are
nonzero. By an abuse of notation, we will denote the images by a, as well.
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FIGURE 1. The coefficient rings of HFy o (left) and

F(ECy,,HF3)piqo  (right). The map HF, = —
F(ECy,,HF3)p1q0 induces an isomorphism in the range
p = 0.

Definition 2.2. The element
Uy € ﬂfoH&
is the element corresponding to the generator of H{?(S7;Fy) = 772 (S7 A HFy). Tt
can also be regarded as an element in 72 F(ECy,, HF) via the map
HFy — F(ECy,,HFy) ~ F(ECy, , HF,).

Hu and Kiriz first computed Hg. They then used it to analyze the cofiber of the
map
HFy — F(ECsy, HFy) ~ F(ECs ., HF5)

and subsequently computed the coefficient ring HIFy x
Proposition 2.3 (Hu-Kriz).
(1) The coefficient ring Hy = F(ECs, HF9)y is the polynomial algebra
F(ECo,, HF2)pi o = Faluk, a,].
(2) The coefficient ring Hy' := HF3 , is

0
HF, —Fz[ug,aa]@FZ{ ' j}, i,j>0,

2 2htq0
b4 ul ab

where 0 is an element in 152 o HFy. The element 0 is infinitely u, and
aq-divisible. It is also u, and a,-torsion. The product of any two elements

x,yEFQ{ 64}1'50.

b aql
UL Qo

In particular, the map H}Y\ , — H,,,, is an isomorphism in the range a > 0.

Figure 1 shows HFy  and F(ECy,,HF2)ptqo-

Remark 2.4. In [HKO01], Hu and Kriz denoted u, by ¢~! and a, by a.
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Remark 2.5. The element 0 € H}' can be defined as follows: consider the Tate
diagram

ECy, NHFy ————————— HF, ECy A HFy

I | !

ECy, A F(ECy,, HFy) — F(ECy,, HFy) — ECa, A F(EC,, HFy).

Taking 7r§2 (=) produces the following diagram on homotopy groups

H HY Y,
! o
H} HS, HY.

The coefficient rings of HY and H i can be computed to be

ka = FQ[“§7G$]
Hi = Folul,a;l].

Now, consider the boundary map 9 defined by using the long exact sequences of
homotopy groups for the top and bottom rows of the Tate diagram:

0:Hy - Hj_| — HY_|.
The element 6 is the image of u;'a;' € Hj under the boundary map 9.

With these coefficient groups in hand, we are now ready to compute the equivari-
ant dual Steenrod algebras. When computing A, we need to work in the category
M of bigraded Z[a,]-modules that are complete with respect to the topology associ-
ated with the principal ideal (a,). The morphisms in this category are continuous
homomorphisms. It turns out that even though AY is not flat over Hy as [Fo-
modules, completion by (a,) ensures that AY is flat over Hg in the category ..
Thus, we can regard (Hg, AY) as a .#-Hopf algebroid.

Theorem 2.6 (Hu Kriz). The .#-Hopf algebroid (Hg, A¥) can be described by
the following structure formulas:
(1) A = HG[G: i > 12, dimG = 21 — 1;
(2) $(G) = > Gl @¢, with G =1;
0<j<i o
(3) nr(ug') = (u;')* GaZ ~;
i>0
(4) nr(as) = ao.
The formula for A in Theorem 2.6 is obtained from the RO(C3)-graded homo-
topy fixed point spectral sequence
HS(CQ; Wt(HFg A HFQ) ® sgn®r) — 7Tt,s+(g,1)TF(ECQ+,HF2 A HIFQ),
where sgn is the sign representation. The (; generators in AY are images of the (;

generators in the classical dual Steenrod algebra A, = Fo[(; |7 > 1] under the map

H]F2 /\H]FQ — F(ECQ+,H]F2 /\H]FQ)
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Although Theorem 2.6 provides formulas describing (Hg, AY) as a .#-Hopf alge-
broid, it is not very helpful for computing the Hopf algebroid structure of (H}', A}).
To further compute A%, Hu and Kriz constructed explicit equivariant generators §;
and 7; in both A} and AY. These generators are compatible in the sense that un-
der the map A} — AY, 7, = 7; and & — &;. By computing the relations between
the &;’s and 7;’s, Hu and Kriz obtained an alternative description of the .#Z-Hopf
algebroid structure of (Hg, AY). Afterwards, they observed that the exact same
relations hold in A} as well. This observation ultimately led them to conclude the
Hopf algebroid structure of (HFy x AZR).

We now introduce the &; and 7; generators. We structure our exposition to focus
on describing the map
A — AY.
Understanding this map will be of great importance to us later on.

Definition 2.7. For X an Cs-equivariant spectrum, let

HEX = F(EChy, HFy A X)y,
HPX = (HFyAX)g.

Classically, if a spectrum F is complex oriented, then one can easily compute
E,BP as follows: choose a complex orientation b € E?(CP>). Associated to b is a
coproduct formula B

Pb) =Y e,
i>0
where F' is formal sum induced by the complex orientation of E. From this coprod-
uct formula, one is led to conclude that

E.BP = E,[¢&]i>1], & =2(2" —1).
This argument works Cs-equivariantly as well. The genuine Eilenberg—Mac Lane

spectrum HIFj is Real oriented via the Thom map BFPr — HFj. Applying the argu-
ment above produces equivariant polynomial generators for Hy' BPr and Hy' B Pg.

Proposition 2.8 (Hu—Kriz). There exist generators &; of dimensions |&;] = (2¢ —
1)p2 in both Hy BPr and Hy BPg, such that

HYBPy = H[&|i>1],
HYBPy = H[&]i>1).

Furthermore, the two sets of &; generators are compatible in the sense that the map
HFy ANBPr — F(ECy,,HFy N BPr) = F(ECy,, HFy N BPR)
induces the map
HYBPr — HZ B
sending & — &;.
Definition 2.9. The orientation map f : BFPr — HF; induces the commutative

diagram

HFy ABPy — 2 HF, A HF,

| |

F(ECy,,HFy A BPg) —— F(ECs,, HFy A HF,),
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which, after taking equivariant homotopy groups 7r§2( —), becomes

H}BPy —— A}

l |

HEBPr —— A%
The image of the §; generators in Proposition 2.8 produces generators §; € A% and
A%
Consider the commutative diagram

HFy A HFy = HFy“? A HF®> ———— (HFy A HF)®?

\ J{

F(ECy,, HFy A HF5)C"

F(ECy, , HFy A HF5)C=.
Taking 7, (—) produces the diagram

A, —— AT

N

ACC
* *

Here, A" and AS¢ are the integer graded parts of A} and A%, respectively. The
following theorem provides formulas relating the &; generators and images of the (;
generators under the maps A, — A7 — AS°.

Theorem 2.10 (Relations between &; and (;).

0<j<i
(2) The & generators are related to the images of the (; generators (which, by
an abuse of notation, will also be denoted by ¢;) by the recursion formulas

S =1
aZ& = G nnlue) +Giag + &, i1 (2.1)
Proof. We prove the relations in A%. Once we have proven that they hold in A},
they will automatically hold in AY as well. The proof is essentially the same as the
proof of Theorem 6.18 in [HKO01]. Let b € HF5”?(BS7) be the Real orientation and

r € HFy'(BZ/24) be the generator of HFy* (BZ/2,). The coproduct formulas for
b and r are, by definition,

wb) = YV es
i>0

vir) = Y e

i>0
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Part (1) is obtained by computing ¥ (1 (b)) in two ways through the commutative
diagram

HE,*(BSL) ———— HFy*(BSL) A A}

Jd} lid/\w

HF,*(BSL) A A7 22 HF,* (BSL) A AT A AT

and comparing the coefficients of b2

Do) @& =) = D> b @P(&).

i>0 i>0
For part (2), the map BZ/2, — BS% induces the map

HFy*(BS}) — HFy*(BZ/2)
on equivariant cohomologies. This is a map
HEy 1] HEs, [[r],

where |b] = —pa, |r| = —1. We would like to express the image of b in terms of r.

The only terms on the right hand side that are of degree —p, are r?u, and ra,.
Hu and Kriz show that b maps to the sum of these two terms:

b r2u, + rag.
The commutative diagram

HF,*(BSY) ——— HE*(BZ/2,)

L L

HF,*(BSL) A A7 2 HR, % (BZ/2,) A AT,

obtained by the naturality of the coproduct, implies that
3 (Pugtrag)? ©€ = ¥(b) = P(rPustras) = nrlus) Y1 @G ta, Y 1 @
i>0 i>0 i>0

Comparing coefficients of 72" on both sides produces the recursion formulas, as
desired. (]

We will now define the 7; generators and compute their relations to the images of
the classical ¢; generators. Consider the Co-equivariant map BS' — BS! classifying
the squaring of Real line bundles. This produces the fiber sequence

BrZ/2 — BS' 1 BS', (2.2)

where the fiber BrZ/2 is RP™, but with a nontrivial Cy-action (the fixed point of
BgrZ/2 under the Cy action is RP™ [RP™). The Real orientation b € HZ"*(BS*)
restricts to a class v/ € HZ*(BrZ/2). Under the map HZ — HTF, this gives a
class V' € HFy"*(BrZ/2):

b e HZ”(CP™) — ¥ € HZ"*(BrZ/2)

| |

b € HF,"* (CP™) — V' € HFy"*(BgZ/2).
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The composition
HZ*(BS') - HZ*(BS') — HZ* (BrZ/2)

sends b — 20’ = 0. This implies that b’ is in the image of the Bockstein 3, induced
by HZ > HZ — HFy:

.-+ — HFy(BrZ/2) 5 HZ’*(BpZ/2) 2 HZP*(BRZ/2) — - - .
Let ¢ € HF,7(BrZ/2) be a class such that Sc=1V'.

Proposition 2.11 (HuKriz). HF*(BrZ/2) is a free HFy* -module with basis
{1,b,02,...,c,ch,cb?,...}.

Proof. Consider the cofiber sequence
BrZ/2: — BS} — Thom(BS", L?).
Taking HFy* (—) produces the Gysin sequence
HFy* (Thom(BS', L?)) 5 HF,*(BS!) — HF* (BrZ/2.).

By the Thom isomorphism theorem, HFo* (Thom(BS', L?)) = HF,* (BS})[x] as
a free HF>*(BS})-module. The generator + € HF»”*(Thom(BS*, L?)) maps to

0 € HF,*(BSY), and it is the image of ¢ € HF2”(BrZ/2+). It follows that as a
H&*—module,

HFy*(BrZ/2,) = HF* (BS})@HF* (BSL)[d] = HFa  {1,0,0%,... ¢, cb, cb?,.. .},
0

Since ¥(z) = 2 ® 1 and ¢ — z, the coproduct formula for ¢ must be of the form

(o) =c@l+y (") o,

>0
where 7; are elements in A%} with dimensions |r;| = (2 — 1)pc, + 1.
Theorem 2.12 (Hu—Kriz).
(1) Y(r)=mel+ Y & 0.

0<j<i
(2) The 7; generators are related to the images of the (; generators by the
recursion formulas

ac70 = Nr(Us)+ Ug,

20

. ) 2i—1 ) >1
as T, = Ti—us,  +CGnr(ug), i> 1.

Proof. The coproduct formula for b is the same as the one for b:
'I)Z}(b”) — Zb/IQi ® fin
i>0

Similar to Theorem 2.10, part (1) can be proved by computing (1 (c)) in two ways:

PR @1+ > ") @& =9pR(0) =colal+ Y b @u(n).

i>0 i>0
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For part (2), similar to the proof of Theorem 2.10, we consider the map on
cohomology
HFy* (BrZ/2) — HF2* (RP™) = HFz, [[r]].

This map is induced by the map RP> < BpZ/2°2 — BgrZ/2. The image of
V' € HF5° (BrZ/2) is the same as the one we found in Theorem 2.10, 7u, + ra,.
To find the image of ¢ € HFy?(BrZ/2), note that the only terms in HFz [[r]] of

degree —o are {ruy,a,}. Hu and Kriz showed that depending our choices, ¢ can
either map to ru, or ru, +a,. Assume that we have chosen ¢ so that ¢ — ru, (the
relationship between 7; and (; is going to be the same regardless of this choice).
There are two ways to compute ¥ (c¢). On one hand,

WO)=col+ I 0 @ = (i) ©1+ Y (Puy +ra,)> @7
i>0 i>0
On the other hand,
Y(c) = Y(rug) = nr(ue)¥(r) = nr(us) ZTQZ ® G-
i>0
Comparing the coefficients of 72" for both expressions produces the recursion for-

mulas, as desired. O

Remark 2.13. The proof above also shows that in the ring H&*(BRZ/@, there
is the relation ¢? = b"u, + ca,, regardless of the choice of c.

Using the formulas in Theorem 2.10 and Theorem 2.12, one can show that in
both A% and A7, the §; and 7; generators are related by the formula
72 = T 100 + Eip1nr(us)  (JHKOL, Proposition 6.37]).
This is the last ingredient needed to compute the Hopf algebroids (Hg, AY) and
(Hy, AY).
Theorem 2.14 (Corollary 6.40 and Theorem 6.41 in [HKO01]).
(1) The . -Hopf algebroid (Hg , A¥) can be described by

C*C = H;[giaTi]/(Tan' = Uy + UR(UU), Tiz = Ti+100 +fi+1"7R(uo))a

with comultiplications

(0) W(&) = > &, 0¢;

0<j<i _
0) p(r)=mol+ Y & 0.
0<j<i
(2) The Hopf algebroid (Hy', A) can be described by
7;«3 = H&*[&Ji]/(maa = Ug + nR(Ua)7Ti2 = Tit100 + &ip1MR(Uo)).

The comultiplications are the same as the ones in (Hg, AY). The right

unit on the elements % € H@* is given by the formula

iale

0 1
7 =0 ; 5 1 > 07 ] > Oa
R <uga] > <(ug + Toa[,—)“‘la%ﬂ) J

where 0 is the boundary map in Remark 2.5.
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There are certain extensions involving the Hopf algebroids (Hg , AY) and (HY', A})
that will produce change of rings theorems. As we will see later, these change of
rings theorems will greatly simplify the computation of the Cs-equivariant May and
Adams spectral sequences of BPg.

Let Py =TF3[¢; |i > 1]. Then with the coproduct formula

YE) = Y 08,

0<j<i
(F3, Py ) is a Fo-Hopf algebra. Similarly, (Fz[a,], Pxlas]) is a Fala.]-Hopf algebra.

Proposition 2.15 (Proposition 6.29 and Theorem 6.41(b) in [HKO01]).
(1) There is an extension of .# -Hopf algebroids
(Falao], Pxlas]) = (Hg, AY) = (Hy, A%,
where
% = Hen)/(7} = Tin1a0),
with structure formulas
(a) T; are primitive;
(b) nR(aU) = Qg
(¢) Mr(uo) = s + To00-
(2) There is an extension of Hopf algebroids
(Folao], Pxlas]) — (H, A¥) — (HE, AY),
where
% = HFy [1]/ (7] = Tiy1a,).
The structure formulas for 7;, a,, and u, are the same as the ones in
(Hg A%
2.2. The equivariant Adams spectral sequence. We now introduce the equi-
variant Adams spectral sequences that are associated to the Hopf algebroids (HF» - AR)
and (Hg, AY), respectively.

Given a Cs-equivariant spectrum X, we can resolve X by HIF5. The resulting res-
olution is the equivariant Adams resolution of X. The spectral sequence associated
to this resolution is the C-equivariant Adams spectral sequence associated
to (HFy x AZY). Hu and Kriz observed that the equivariant Steenrod algebra A%
is a free HFy *—module, hence flat over HIFy x From this, they concluded that the
Es-page of the (HFy x AZ)-Adams spectral sequence can be identified as

Extayp (HFy, , HFy  X) = (732 X)5.

(cf. [HKO1, Corollary 6.47]). Similar to the classical Adams spectral sequence, the
equivariant Adams spectral sequence will converge in nice cases. In particular, it
will converge for X a finite Cs-spectrum, MUg, or BFg.

On the other hand, by work of Greenlees [Gre85, Gre88, Gre90], we can also
form the classical Adams resolution of the underlying spectrum of X, and then
apply the functor F(EC5,, —) to the classical Adams tower. The resulting spectral
sequence associated to this new tower has Es-page

Ext e (H, HE X) = (132 F(ECy,, X))}.
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Again, this equivariant Adams spectral sequence will converge in our cases of in-
terest.

By applying the functor F(ECy,, —) to the equivariant Adams resolution of X
by HF,, we produce a map of towers, hence a map between the two Adams spectral
sequences

Extap (HFy, , HFy  X) —— (13*X)}
Extag (Hg, Hy X) === (13>F(EC2, X))}
On the Es-page, the map
Extap (HFs, , HF2  X) — Extag (Hy, Hy X)

is induced from the map (HF2, , A}) — (Hg, Ay) of Hopf algebroids.
When X = BPg, we can simplify the Fs-pages of both Adams spectral sequences
using Proposition 2.8 and Proposition 2.15:

Extuy (HFy,  HFy BP:) = Extap(HF, HFy,),
Extag (Hy, HEBPr) = Extag (Hg, H).

Here, A™ = HF3 App, HFy and A°® = F(EC5, ,HF3 App, HF9).

3. THE SLICE SPECTRAL SEQUENCE OF BPy

We will now discuss the slice spectral sequence and the homotopy fixed point
spectral sequence of BFg.

3.1. The slice spectral sequence of BFg. For definitions and properties of the
slice filtration, we refer the readers to [HHR16a, Section 4]. We will be interested
in both the integer-graded and the RO(C5)-graded slice spectral sequence of BPg:

s,t

Byt =n%2 PIBPy — 702 BPy
s,V _Cq dim V/ Co
Ey” =myt Piimyv BPr = w2 BPg

The gradings are the Adams grading, with r*®-differentials d,. : E; oy E;+m+(¢_1)

and d, : ES’V — E;H’VJF(T*U, respectively.

To produce the Fs-page of the slice spectral sequence, we compute the slice sec-
tions P/ BPg. Let v; € T(2i—1)p, BP& be the equivariant lifts of the usual generators
V; € Ta(2i_1)BP. Using the method of twisted monoid rings [HHR16a, Section 2.4],
we construct the A,,-map

50[171,172, .. ] — BPFxg.

This map has the property that after taking #¥(—), it becomes an isomorphism.
Using terminologies developed in [HHR16a], this map is a multiplicative refinement
of 7¥BPg. Furthermore, this multiplicative refinement produces the slice sections
of BPg. The following result is a special case of the Slice Theorem ([HHR16a,
Theorem 6.1]) applied to BPg.
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Proposition 3.1. The only nonzero slice sections of BPg are Pi"BPg, where
n > 0. They are

PI"BPg = <\/ S"P2> ANHZ
T
where I is the indering set consisting of all monomials of the form 17?17;217;3 e
with

np2 = (p2)i1 + (3p2)iz + (Tp2)is +--- .

Proposition 3.1 shows that computing the FEs-page of the slice spectral sequence
of BPg can be reduced to computing the coefficient group H Z%.

Definition 3.2 (The classes ay and wy). Let V' be a representation of G with
dimV =d.
(1) ay € WE;VSO is the map corresponding to the inclusion S < SV induced
by {0} C V.
(2) If V is oriented, uy € Wf_vH Z is the class corresponding to the generator
of HY(SY; HZ).

A comprehensive computation for the coefficient ring of H Z? can be found in
[Dug05].

Theorem 3.3 (Theorem 2.8 in [Dug05]). Figure 2 shows the coefficient ring Hzgjqa.
Its product structures are as follows:

(1) In the range p > 0, HZgj_qU is the polynomial algebra Zluzy, as)/(2as).
2

(2) In the range p < 0, the class a = - € H9§+20 is killed by a, and is
infinitely us, divisible; the class 0 € Hf§+3o is killed by use and a, and it
18 infinitely us, divisible and a, divisible.

Proposition 3.1 and Theorem 3.3 enable us to compute the Fs-page of the
RO(Cs)-graded slice spectral sequence of BPg. In particular, the positive part
is the polynomial algebra Z[v;, ua,, a5]/(2a,) with

o = (0,(2" = 1) + (2" = 1)a),
luey] = (0,2 —20),
la,| = (1,1—0).

The Fs>-page of the integer graded slice spectral sequence is the sub-algebra
consisting of all the elements that have integer degrees in t — s. It is concentrated
in the first quadrant with a vanishing line of slope 1.

Proposition 3.4. In the RO(Cy)-grade slice spectral sequence for 7722 BPg, a, and

v; are permanent cycles. The differentials d; (u%iﬁl) are zero for i < 2F*1 — 1, and

ok—1 ok+1_q
do+1-1 (U3, ) = Dia; :

Proof. This is a special case of Hill-Hopkins—Ravenel’s Slice Differential Theorem
([HHR16a, Theorem 9.9]), applied to when G = Cj. O

In Figure 3-5, we draw the first three sets of differentials of the integer-graded
slice spectral sequence. To organize this information in a clean way, we have disas-
sembled the spectral sequence into “stages”, corresponding to the differentials ds,
d7, dys, .... At each stage, the important surviving torsion elements are shown.
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mt 8
S

FiGURE 2. Coefficient ring of H Zgjqo. Multiplication by a, are
drawn with solid lines and multiplication by wus, are drawn with

dashed lines (not all multiplicative structures are drawn).

12

0 4 8 12 16 20 24 28 32 36 40

F1GURE 3. Important ds-differentials and surviving torsion classes
in SliceSS(BPFr).

Many classes with low filtrations (i.e., those on the 0-line) are not drawn because
they are not torsion, and hence won’t be important for the purpose of this paper.

3.2. SliceSS(BFPr) — HFPSS(BPFg). The homotopy fixed point spectral sequence
of BPy is also going to be useful to us. It is a spectral sequence that computes the
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FIGURE 4. Important d7-differentials and surviving torsion classes
in SliceSS(BPg).

Cs-equivariant homotopy groups of F'(ECy, BPr). The integer-graded homotopy
fixed point spectral sequence for B Py is

Ey' = H*(Cy, m'BPg) = 12 F(ECy, , BPg).
Just like the slice spectral sequence, there is also an RO(C5)-graded version of this,
with Es-page
EyY = H*(Cy;mo(S™Y A BPr)) = 752 [F(ECy, BPg).
For a more general discussion of the RO(G)-graded homotopy fixed point spectral
sequence for any equivariant G-spectrum X, see [HM17, Section 2.3]. By [HM17,

Corollary 4.7], the Es-page of the RO(Cs)-graded homotopy fixed point spectral
sequence of B Py is isomorphic to the polynomial algebra

Z['ﬁi’ ug:o’ aﬂ]/(2a0)'
The differentials are given by

k-1 _ k41_
d2k+1_1<ugg ) = ’U].CG,(Q7 L (3.1)
_ok—1 _ ok k—1
dyrsr 1(uzy ) = dorsr_q(uzy -u3, )
ok k—1
= Uzaz d2k+1—1(uga )
—2k okt+l_jg

= ﬁkqu’ Ay
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FIGURE 5. Important d;s-differentials and surviving torsion
classes in SliceSS(B FPg).

They can be obtained by equivariant primary cohomology operations (see [HKO1,
Lemma 3.34]). The readers might have noticed at this point that the differentials
on the positive powers of us, are the same as the differentials in the slice spectral
sequence. Indeed, there is a map SliceSS(BPr) — HFPSS(BFg) that induces an
isomorphism in a certain range.

To explain this map of spectral sequences, we will first construct a map of towers.
Let X be a Cy-spectrum. Let S;gn denote the localizing subcategory generated by
all the slice cells of dimension > n, and an the localizing subcategory generated
by all the spheres of dimension > n. When n > 0, an C S;Sn, and this gives a
natural map of towers

Post®(X) — P*(X)

from the Postnikov tower of X to the slice tower of X. Non-equivariantly, this
map is an isomorphism, because the slice tower is the Postnikov tower when we
forget the Cs-action. It follows that after taking F'(ECs,,—) to both towers, the
horizontal map in the following diagram is an isomorphism:

F(EC,.,,Post® (X)) —— F(ECy,, P*(X))

|

P (X).
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The top-left tower, F(EC5, , Post®(X)), is the tower for constructing the homotopy
fixed point spectral sequence. It follows that the vertical map induces a map of
RO(C5)-graded spectral sequences:

SliceSS(X) — HFPSS(X).

Proposition 3.5. When X = BPg, the map SliceSS(BPgr) — HFPSS(BPg), con-
sidered as a map of integer graded spectral sequences, induces an isomorphism on
the Es-page on or below the line of slope 1.

Proof. The map of sections
P3BPg — F(ECy.,, PiBPg)
is the map X — F(ECs,, X) induced by the collapse EC>, — S°. To prove the
desired isomorphism, it suffices to show that the map
752 (ST AN HZ) — nS? F(ECy,, 5% A HZ)
is an isomorphism for all 2t — s > s, or t > s. This is equivalent to showing that

the map
7 o HL =7 F(ECy, HZ) =72 F(ECy,, HI)

t—s) (t—s)—to t

is an isomorphism for all ¢ > s > 0, which is true by Lemma 3.6. (]

Lemma 3.6. The coefficient ring Wng(ECQJ’_, HZ) is the polynomial algebra

Z[ui s ao]/(205).
The map

702 HZ — 702

pt+qo P+an(ECQ+a HZ) = Tt

p+qu(ECZ+7 HZ)a

is an isomorphism when p > 0, sending usy — Uzy, Ay — Ay, and zero when p < 0.

Proof. This is a standard computation. We refer the readers to [HM17, Corollary
4.7) and [Dug05, Appendix B] for more details than what is written here. The
key observation is that computing 7r§2F (ECy,,HZ) is equivalent to computing
H*(Co; Drez5gn®T), where sgn is the integral sign representation. The elements
Ugy € WQCEQUHZ and a, € ﬁff,HZ, under the map HZ — F(ECy, HZ), become
the elements us, € H°(Cq;s5gn®?) and a, € H'(Cy;sgn). O

Remark 3.7. In [Ull13, Section 1.9], Ullman proves a general isomorphism result
for any G-spectrum X. When G = Cj, his isomorphism range is the region slightly
below the line of slope 1. In our case, however, BPr has pure and isotropic slices
and nonnegative slice sections. When this happens, we can extend his isomorphism
range to be on or below the line of slope 1. Since this line is also the vanishing
line of SliceSS(BPr), the map SliceSS(BFPr) — HFPSS(BPFg) is an inclusion on the
FEs-page.

Remark 3.8. Using Lemma 3.6, one can further show that the map of RO(C5)-
graded spectral sequences

SliceSS(BPp) =—— 1{>BPx

| :

HFPSS(BPy) == 73 F(EC,,, BPg)
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is an inclusion on the Fs-page and an isomorphism in this range. It turns out that in
HFPSS(BPg), everything outside of this isomorphism range dies by the differentials
in (3.1). Asaresult, we obtain an equivalence BPr ~ F(EC5,, BPg). Thisis called
the strong completion theorem (or the homotopy fixed point theorem) of BPg. It
is proved by Hu and Kriz in [HKO01, Theorem 4.1]. As noted in their paper, the
homotopy fixed point theorem holds for MU as well, but not for BPr(n). It
fails for BPg(n) because not everything outside the isomorphism range dies in
HFPSS(BPr(n)). In particular, 7, BPg(n)"“? is not bounded below.

4. THE EQUIVARIANT MAY SPECTRAL SEQUENCE

We will now construct the equivariant May spectral sequence of B Py by filtering
the equivariant dual Steenrod algebra.

4.1. The equivariant May spectral sequence with respect to A% . Recall
from Section 2.2 that for a Csy-spectrum X with good properties, its equivariant
Adams spectral sequence with respect to (HFy * AY) has Es-page

By = Extap (HFy, , HFy  X) = (732 X)5.
To compute the Ext-groups on the E»-page, we filter the Hopf algebroid (HFy x AY)

by powers of the ideal (a,) and set the filtration of the element ffj to be 271 — 1,
We also filter the (HF3, , A¥)-comodule HF; X to make it compatible with the

filtration on (HFz  , AY).
Definition 4.1. The spectral sequence
By = Extgr ayp (groHFy gr, HFy  X) = Extap (HF; , HF3 , X)

is the Cy-equivariant May spectral sequence of X with respect to (H&*’ AQ). Tt is
abbreviated by C’Q—MaySSA;L (X).

We are interested in the case when X = BPg. In this case, the Es-page of the
equivariant Adams spectral sequence simplifies:

Ey = ExtAZx(H@*,H&*BPR) = ExtAzl(H@*,H&*) = (wfﬁBPR)QA.
Here, A = 7'('22 (H& ABP; H&), and there is a quotient map
* =AY,

which quotients out the ;-generators. The filtration on A% induces a filtration on

A7, which is also by powers of (a,). It follows that the equivariant May spectral
sequence for BPg has Fi-page

By = Extg ap (g1, HF g1 HF ) = Extay (HFy, , HF, ).
To compute this F;-page and its differentials, we use Proposition 2.15. Denote the
corresponding class of 7; in the cobar complex Cpy (HF3, ) by w; := [ri].
Proposition 4.2. The E1-page of Cs -MaySSAw (BPgR) is the polynomial ring HF, [w;].
The positive part of the E1-page (the elements in stems p + qo with p > 0) is the
polynomial Ting
Z/20ug, as] [w] .

The filtration of each element is given in Table 1.
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stem Adams filtration May filtration

w; =[] (2" = 1)pc, 1 0
Uy —0 0 1
Uy 1—0 0 0

TABLE 1. Adams and May filtrations of elements.

Proof. Immediate from Proposition 2.15. O

Proposition 4.3. In Cg—MaySSAKL (BPR), the classes w; and a, are permanent

cycles. The class u2" (n > 0) supports a differential of length (2" —1):

2n+1_1

dynsr_1(u2") = wpa?

Proof. Since the 7; generators are primitive and ng(a,) = a,, the classes w; and
a, are permanent cycles. To obtain the differentials on the classes ug", we use the

right unit formula for u,. By Proposition 2.15, the right unit formula for u, is
Nr(Uy) = Uy + ToGe-
This translates to the d;-differential
di(us) = [10]as = woao-

In general, taking the right unit formula to the 2"-th power yields the formula

n n
nr(uy ) = nr(ue)?
_ uin + 7_0271 ain

. on on+1_q
= U, + Tpa,

where for the last equality we have repeatedly used the relations 72 = 7,414, in

A% . This produces the dyn+1_;-differential on u?,n, as desired. O

4.2. The equivariant May spectral sequence with respect to AY. Every-
thing we did in the previous section can be done with respect to (Hg, A§) as well.
Consider the equivariant Adams spectral sequence
c
Ey = ExtA;c(H,i,H;,X) = (7T*2X)§\.

We can filter the Hopf algebroid (Hg, A%) by powers of the ideal (a,) to obtain a
similar equivariant May spectral sequence.

Definition 4.4. The spectral sequence
By = Extgr, ag (gte Hy, gte Hye X ) = Extage (Hy, Hy X)

is the Ca-equivariant May spectral sequence for X with respect to (Hg, A¥). It is
abbreviated by C’g—MaySSAic (X).

When X = BPg, we can make the same simplifications as we did in Section 4.1.
Let Ay == 7T§2F(ECQ+, HFy App, HF3). The Es-page of the equivariant Adams
spectral sequence and FEj-page of the equivariant May spectral sequence for BPg
are equal to

By = Extage (Hy, Hy) = 752 (BPR))
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and
By = Extgr aq (8reHy, 8re Hy ) = Extag (Hy, Hy)

respectively. As before, denote the corresponding class of 7; in the cobar complex
Cag (Hg) by w; = [r].
* *

Proposition 4.5. The E;-page of Cg-MaySSAic (BPR) is the polynomial ring
Hy [wi] = Z/2[ug , aq][wi),

where the filtration of each element is the same as before (see Proposition 4.2).

Proof. The claim follows directly from [HKO01, Proposition 6.29]. O

Proposition 4.6. In Cg—MaySSA;{C(BPR), the classes w; and a; are permanent
cycles. The classes u2 and uy;?" (n > 0) support differentials of length (2" —1):

2n ontl_q
don+1_1(uz ) = wpas ,
_on _2n+1 2n+1_1
don+1i_1(uz”) = wpu,” a;

Proof. The proof is exactly the same as the proof of Proposition 4.3. The differen-
tials follow from the right unit formulas

nr(us) = Uy + To0ao,
nr(uzt) = (uy +70as)" ' =u, ! + 10u,%a, (modulo higher powers of a,),
and the relation 77 = 7,410, in AY. O

4.3. Cg-MaySSA;C(BP]R) and HFPSS(BPg). The equivariant May spectral se-
quence Co-MaySS Ase (BPg) and the homotopy fixed point spectral sequence HFPSS(B Pg)

have the same Fs-page and differentials under the correspondence w; <> v;. This
is first observed in (7.1) and (7.2) of [HKO1]. The only slight difference is that in
Co-MaySS 4. (BPR), instead of a single Z-class, we have a wo-tower of Z/2-classes.

Our goal in this section is to prove this correspondence.

Theorem 4.7. The Cs-equivariant May spectral sequence for BPr with respect
to (Hg, A) is isomorphic to the associated-graded homotopy fived point spectral
sequence for BPg.

Remark 4.8. By the associated-graded homotopy fixed point spectral sequence,
we mean that whenever we see a Z-class on the Fs-page, we replace it by a tower
of Z/2-classes.

Proof. Consider the following diagram of spectral sequences:

o

algebraic a,-Bockstein ollapse” homotopy a,-Bockstein

Co-MaySS 4o (BPg) ¢------------> HFPSS(BFg).

We will explain each arrow in the diagram one by one:

(1) C2-MaySS A (BPr) = algebraic a,-Bockstein. This is by definition: the equi-
variant May spectral sequence for (Hg, AY) is defined by filtering Ay by powers
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of (as), which is the algebraic a,-Bockstein.

(2) Homotopy a,-Bockstein = HFPSS(BPg). This is proven in [HM17, Lemma
4.8]. We include their proof here because it is nice and short. Start with the cofiber
sequence

S0v 80 — 50 2oy g9,
Taking F'(—, BPg) yields the new sequence
Y "°BPg 2% BPx — BPg V BFxg.

The homotopy a,-Bockstein is the spectral sequence associated to this cofiber se-
quence. The key observation is that in the cofiber sequence

S(no)s —s §° L7y gno

S(no)4+ is the (n—1)-skeleton for the standard equivariant decomposition of ECs
which is used to construct the homotopy fixed point spectral sequence. Taking
F(—, BPg) again, we obtain the following commutative diagram:

n+1

w-(thoppy 22, Bpy F(S((n+1)0),, BPg)
l““ J{id |
S BPy — " BPy F(S(no), BPg).

It follows that the towers for constructing the homotopy a,-Bockstein spectral se-
quence and the HFPSS(BPg) are the same.

(3) Algebraic a,-Bockstein 2 Homotopy a,-Bockstein. Consider the following dia-
gram:

i % i

(H)"2 NS~ BPy —% (H®)"> N BPgx —— (H®)"? A (BPg V BFy)

I I |

HeAS""BPy —2= 5 H°ANBPy —— H° A\ (BPy V BPg)

I | I

Y"9BP o BPg BP: VvV BP;.

The vertical direction is the Adams resolution by H® = F(ECs,, HF3), and the
horizontal direction is filtering by powers of a, (the a,-Bockstein). There are two
ways to compute 77*02 (BPg)% from BPgV BPg: we can either first use the horizontal
filtration, then the vertical filtration, or first use the vertical filtration, and then the
horizontal filtration. This produces the following commutative diagram of spectral
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sequences

algebraic a,-Bockstein

ExtA;c(Hi,H;(BPR V BPR)) ExtA;c(H;,HiBPR)

Adams (collapse) Adams (collapse)

homotopy a,-Bockstein

(7S BPr V BPg)) (2 F(ECoy, BPR))y = (15 BPR)S.
The vertical spectral sequences are from the Adams (vertical) filtrations, and the

horizontal spectral sequences are from the a,-Bockstein (horizontal). The left verti-

cal spectral sequence collapses by degree reasons. In particular, the integer-graded

part is the non-equivariant Adams spectral sequence computing 7, BP, which col-

lapses. The right vertical spectral sequence collapses by degree reasons as well. For

both Adams spectral sequences, [HKO01, Theorem 4.11] and our computation show

there are no hidden a,-extensions. The top spectral sequence is the a,-Bockstein

associated with the cofiber sequences

(HH N AST°BPr 23 (H)" A BPg — (H®)"™" A (BPg V BPg)

for n > 1. When we are computing the Ext groups, it is exactly the same as
filtering (HE, ASY) by powers of a,,. Therefore this spectral sequence is the algebraic
as-Bockstein, or in other words, the Cy-equivariant May spectral sequence with
respect to A% Finally, the bottom arrow is the homotopy a,-Bockstein, which is
the homotopy fixed point spectral sequence by the previous discussion. The collapse
of the two Adams spectral sequences (and no hidden a,-extensions) implies that
the algebraic a,-Bockstein is isomorphic to the associated-graded homotopy a,-
Bockstein, as desired.

O

4.4. C,-MaySS 4, (BPg) and SliceSS(BP). The map (HF;, , AY) — (Hy, AY)
induces maps of the corresponding May and Adams spectral sequences:

Ma; am.
Exter, ap (gr  HFs , , gt HFy ) = Extap (HFy , HFy ) 228 752 (B Pg))

l l I
Extge, nce (1o HS, gro HS ) =y Extpee (HS, HS) =Adamsy 7C2(Bpy)h
gre A Blelly, Blelly X Ay ¥ g e R)2 -
For the purpose of finding Hurewicz images, we restrict our attention to the maps
between integer-graded spectral sequences. They are induced from the map of

integer-graded Hopf algebroids (HFy , AT") — (H{, AS):

Extgr, am (gro HFy, gr, HFy ) == Extam(HFy,, HF, ) 24228 C2(BPy))

! ! J

Ethr.Aic(gronagron) % EXtAic(H:k:?Hf) % WSZ(BPR)Q

The Es-page of Co-MaySS 4 (BPg) is the subring of the polynomial ring H&* [w;]
that contains only integer-graded elements. For degree reasons, monomials of the
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k,—1

form uz *az wilwg? - - wfj with & > 0, { > 0 do not have integer grading. It follows
that the integer graded elements are all contained in the subring

Z[2[uc, agl[w;] C HF3, [w;].

Theorem 4.9. The integer-graded Co-equivariant May spectral sequence of BPg
with respect to (HFy_, AT") is isomorphic to the associated-graded slice spectral se-
quence of BPg.

Proof. Consider the following diagram:

C-MaySS 4 (BPg) 4-==-+ SliceSS(BPk)

| |

Cy-MaySS 4. (BPg) «—— HFPSS(BP).

The above discussion, together with Proposition 4.3 and Proposition 4.6, show
that the left vertical map is an inclusion on the Fs-page and an isomorphism on
or below the line of slope 1. Proposition 3.5 shows that the right vertical map
is also an inclusion on the Esj-page and an isomorphism on or below the line of
slope 1. Given the isomorphism already established in Theorem 4.7, it follows
that Co-MaySS 4, (BFg) is isomorphic to the associated-graded SliceSS(BFg), as
desired. (]

Remark 4.10. The isomorphism in Theorem 4.7 is of RO(C3)-graded spectral
sequences. We have only proven the isomorphism in Theorem 4.9 as integer-graded
spectral sequences. This is enough for the purpose of proving Hurewicz images.

5. MAP OF MAY SPECTRAL SEQUENCES

5.1. Map of dual Steenrod algebras. The maps A, — A} — A} induce maps
of Adams FEs-pages:

Filtering A, A%, and A} compatibly with respect to the map above produces
maps of May spectral sequences

MMaySS(S) — Ca-MaySS(S) — Cy-MaySS(BPg).

Here, MMaySS(S) is the modified May spectral sequence, which will be defined in
section 5.2. These maps of May spectral sequences will later help us prove our
detection theorem for BPS?.

Recall that

A* - IF2[C17C2’"'L
Az - H&* [5“ TJ/(T? = Tit100 + &ir1MR(Us)),
Ay = H@*[ﬂ]/(n2 = Ti4+1G0)-

The following theorem will be used later for

(1) Constructing and computing the map MMaySS(S) — C2-MaySS(BPg) of
May spectral sequences.
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(2) Computing the images of elements in the classical Adams spectral sequence
ASS(S) under the map

ASS(S) — Co-ASS(BPg).
Theorem 5.1. The composite map A, — AL — AL sends the element

J +i=1_9i 9i_ ‘
G Tl a2 =1 (modulo higher powers of a, ).

Proof. By an abuse of notation, we will denote ¢; to be the image of (; € A, in A}
and AZ. The following relations hold in A%} (cf. [HKO1, Theorem 6.18, Theorem
6.41] and Theorem 2.10):

1

ay & = CLanr(ue) + Gag +&uy (5.1)
a;T0 = Uy +Nr(Us).
To prove our claim, we will show using induction on ¢ that
i—1
G micinr(ug)? 71 (mod &, &, .. ).

For the base case when ¢ = 1, equations (5.1) and (5.2) imply

az& = nr(us) + Gas + uo
- Claa = uo+77R(u0') = QsT0 (mOd §1a§23-")
e ¢ = 7 (mod &, &s,...).

Therefore the base case holds. Now, suppose we have shown that

Cim1 = Ti72nR<uo)2i72_1 (mod &1, &, .. .).

To prove the relation for ¢;, we use relation (5.1) again:

Gas = (G inr(us) (mod &, &, .. )

= (Ti_an(ug)?z_zfl)27)R(ug) (mod &1,&s,...) (induction hypothesis)
T2'27277R(u0)2171_% . (mOd 517 £2a - )
(Tic1a0)nR(ug)*  ~1 (mod &, &, ...

- G = Ti—lUR(Uo)Tilfl (mod &1, - - ),

as desired.
To finish the proof of the theorem, we need to simplify the expression

. ) 27
¢ = (TiflnR(Ua)QH_l)
modulo higher powers of a,. Since u, + ng(us) = 1000,
uy = Nr(us) (modulo higher powers of a,).
After applying the relation 72 = 7,1 1a, j-times, we obtain the equality

27 2iti=1_9i 97 1
ag

2= Tipjo1ul modulo higher powers of a,),

as desired. O
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5.2. Change of filtration. The maps A. — A} — A} induce maps of Ext groups

Ext g, (F2,F2) — Bxtay (HFy, , HF )

T

Extap (HFs, , HF, ).

To analyze these maps, we will construct maps of May spectral sequences:
MMaySS(S) — Cy-MaySS(S) — Co-MaySS(BFg).

We do so by filtering the classical dual Steenrod algebra A, and the equivariant
dual Steenrod algebras A} and A} compatibly with respect to the maps A, —
ATTL ATTL

Recall that in constructing the classical May spectral sequence, the dual Steenrod
algebra A, = F3[(1, (2, . . ] is filtered by powers of its unit coideal, hence producing
an increasing filtration. More specifically, we can define a grading on A, by setting
the degree of h; j := (' to be

|hijl =21 =1

and extend additively to all unique representatives. The increasing filtration asso-
ciated to this grading is

A, C A, C- - CFA CFppi A C - C A,

where at stage p, F},A. consists of all elements of total degrees < p.

However, in constructing the equivariant May spectral sequence Co-MaySS(S)
and Co-MaySS(BPFr), we filtered A% and A7} by powers of (a,) and produced
decreasing filtrations instead. To rectify this mismatch of filtrations, we need to
change the filtration of the classical dual Steenrod algebra A, to make it compatible
with the decreasing filtrations on AY and A In particular, it must be a decreasing
filtration. To do this, notice that by Theorem 5.1, the element h; ; is sent to

hij +— Tigj— 1u21+] ' 2Ja2J 1 (Modulo higher powers of a,). (5.3)

i,
We can define a new grading on A, on by setting the degree of the generators h; ;
to be

|hijjl =27 —1
and extend linearly to all unique representatives. The decreasing filtration associ-
ated to this is
A, :FOA* DFLA* DFQ.A* Do,

where F, A, contains elements whose total degrees are > p. From (5.3), it is
immediate that this filtration is compatible with the decreasing filtration of A}

and AY with respect to the maps A, — A} — A. Therefore, we obtain maps of
May spectral sequences

MMaySS(S) ——— C2-MaySS(S)

T

CQ MaySS(BPJR)
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To compute the Fj-page of our modified May spectral sequence MMaySS(S),
consider the coproduct formula for h; ;:
i—1
U(hij) = 1@hij+hi; @1+ Y hiogjon® b
k=1
1®hij+hij®1+ hic1j41®h1; + hi—gjra®hg; +
—— — | ——— S —
deg=27—-1 deg=27—1 deg=(271t1-1)4+(29—-1) deg=(27+2—-1)+(27—-1)
ot hgric1 ®@hiogg
—_———

deg=(2i+i—1-1)4(29—1)

With the old filtration, |h; ;| = 2i — 1, and everything in the summation sign on the
right is of degree exactly 2i — 2. After changing to our new filtration, everything in
this sum is of degree at least

lhic1j41®@hij] = (277 —1)+ (2 - 1)
> 20 -1
= |higl

Therefore after projecting to the associated-graded A, — gr,A,, the elements h; ;
are primitive. It follows that the E:-page of our modified May spectral sequence is
still the polynomial algebra generated by the h; ;:

By = Extgy, 4, (F2,F2) = Fa[{h; ; }i>1,5>0] = Exta, (Fa, Fa).

The differentials obtained from the coproduct formula for h;; is now of length
20+t 1

d2j+1,1(hi_’j) = hi—l,j+1 (24 hl,j-

(before changing the filtration, it was di(h; ;) = 2;11 hi—k,j+k ® hy ;). Intuitively,
with our new filtration, the differentials are being “stretched out”.

6. DETECTION THEOREM

6.1. Detection Theorems for BPgx and MUg. We will now prove our detection
theorems for the Hopf, Kervaire, and k-family by analyzing the map of spectral
sequences

MMaySS(S) — Co-MaySS 4 (BPR) = SliceSS(BPFg).
Using Theorem 5.1, the following proposition is immediate.

Proposition 6.1. On the Es-page of the map MMaySS(S) — Ca-MaySS(BPg) =
SliceSS(BPg),

_ oom g
hin +— Upa, -,
2 —2 9(2"—1)
hi, +— v,a, ,
4 —4 2n 2 4(2m—1)
oy = Tpqus  ag .

2" —1
o Y

Proposition 6.2. In the slice spectral sequence of BPr, the classes vn,a

9 2(2"—1 _ nt2 4(2"—1 )
v%ag( ), and T u asl ) survive to the FE-page.
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FIGURE 6. A part of the slice spectral sequence for BPg. The
_ n _ n__ _ n+2 n__ .
classes v,a2" 1, 52a2” Y, and o, 02" a5 7Y survive to the

FE5nt1-page, hence to the Fo-page.

Proof. As discussed in Proposition 3.4, all of the differentials in the slice spectral se-
quence for BPg are completely classified by the slice differential theorem ([HHR16a,
Theorem 9.9]). They are

dyor_y (w2 ) = a2 oy, k>1.
The longest possible differentials that could possibly kill the classes mentioned are
differentials of length 27! — 1. The survival of these classes is a straightforward
computation (see Figure 6). O

Theorem 6.3 (Detection of Hopf elements and Kervaire classes). If the element
hy, or h2 in Ext, (Fa,Fy) survives to the E-page of the Adams spectral sequence,
then its image under the Hurewicz map m,S — 7T*BPRCZ 18 nonzero.

Proof. In the modified May spectral sequence, the classes hy, and h?, are perma-
nent cycles. Furthermore, since hy, is of Adams filtration 1 and h?, is of Adams
filtration 2, if they are targets of differentials in the modified May spectral sequence,
then the source of these differentials must be of Adams filtrations 0 and 1, respec-
tively. This is clearly impossible. Therefore they are not targets of differentials and
hence survive to the E..-page of the modified May spectral sequence.
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On the E-page of the modified May spectral sequence, these classes repre-

n n+41
sent the unique elements h,, € Exti{f (Fa,F3) and h2 € Exti{f (F2,F3) in their
respective bidegrees. The theorem now follows from Proposition 6.1 and Propos-
tion 6.2. 0

Theorem 6.4 (Detection of r-family). If the element g, € Ea:t4’f"+2+2"+3 (Fy, )

survives to the FEo-page of the Adams spectral sequence, then its image under the
Hurewicz map m,S — mBP]Rc2 18 nonzero.

Remark 6.5. As mentioned previously, the element g, survives to the element
Rk € m9S. The element gy also survives to an element in 744S. They are both
detected in 7T*BPRC 2. The fate of the g, elements for n > 3 is unknown.

The proof of Theorem 6.4 requires the following facts:

4 2'n.+2

Lemma 6.6. The element g, is the only nonzero element in Ext +2m (Fo,TFy).

Proof. We appeal to the classification theorem of Lin ([Lin08, Theorem 1.3]). For
indecomposable elements in Exti{i (Fq,Fy), binary expansion of ¢ shows that g, is

n+2 n+3
the only indecomposable element in Extii +2 (Fg,Fs). The only possible de-
composable elements in the same bidegree as g,, are hyc,, and hZ  hZ ,. However,
they are both zero due to relations in Ext’;"(F, Fy). O

Lemma 6.7. Let 1 <m <mn, if
deg(hiy gy Ris gy =+ R i) < deg(hig iRy gy -+ har, 1),
then for any k > 1,

deg(hiy jy+kPig joth Py jontk) < deg(hir okl ok - hir o +k)-

Proof. The given condition translates to the inequality

@ —1) < (2 - 1),
which, after rearranging, is
Z 20m < (Z 23';) — (n—m).
Multiplying both sides of the inequality by 2¥ produces the new inequality
Z 20mtk < (Z 2j:l+k) —2%(n —m)
< (Z 2j;+k) — (n—m).
Rearranging this inequality gives
Z(Qjm+k —1)< Z(jSﬁk —1),
as desired. (]

Lemma 6.8. The element h3, is a permanent cycle in the modified May spectral
sequence of the sphere.
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Proof. 1t is clear from the modified May filtration that all the differentials are of
odd length. First, we have
d3(ho1) = hi1hy2,

so d3(h3;) = 0. In fact, ds(h3;) = 0 as well. To show this, notice that h3, is in
tridegree (s,t,m) = (2,12,2), where (s, t) is the degree associated to Exti{i (Fq,Fo)
and m is the modified May filtration. If h3, supports a ds, then the target must be
of tridegree (3,12,7). We will characterize all h;, ;, ki, j, hiyj, of this tridegree. The
equations that need to be satisfied are

(200 — 1)200 4 (22 — 1)272 4 (22 — 1)23 = 12,
@2 —1)+ (22 -1+ (22 -1) = T
Since 7=74+0+0 =3+ 3+ 1, it’s not hard to check that the only possibility

for hi, j, Migjshisjs is hiohaohi3. However, this element cannot be the target of a
differential because it supports a nontrivial d;-differential

dl (h10h20h13) = h%ohll h13-

Therefore ds(h3,) = 0.

By computations in the cobar complex C(A,) (see [Rav03, Lemma 3.2.10(b)]),
we deduce that

d7(h3y) = hiy + hihas.

(Note that the computation in the cobar complex also shows that h32; is a ds-cycle.)
By the Leibneiz rule, this differential implies that dr(h3,) = 0.

The element h3; is in tridegree (s,t,m) = (4,24,4). The target of a differential
d, with source hi; must be of tridegree (5,24,4 + 7). In particular, it must be a
linear combination of elements of the form h;, j, - - - hi, 4, satisfying the equations

5
D@ — 12k =24, (6.1)
k=1

5

@k —1) =4+ (6.2)
k=1

Since d7(h3,) = 0, r must be at least 9. Moreover, subtracting Equation (6.2) from
Equation (6.1) yields the equation
5
D (@t — i 4 1) =20 — 7.
k=1
The left hand side is at least 5 because i > 1. It follows that r < 15. We will now
rule out each possibility in the range 9 < r < 15 case-by-case:

Case 1: r = 9. Equation (6.2) becomes
5

> (@ —1) =13,

k=1
The possibilities are
13 = 74+34+3+0+40
= 74+3+1+1+1
= 3+3+3+3+1.
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The second and third possibilities give nothing. The first possibility gives hiphsohish13,
which supports a nontrivial d; differential

dy(hiohsohishis) = higha1hishis.
Therefore dg(h3;) = 0.

Case 2: r = 11. Equation (6.1) becomes

D (@ —1) =15.

k=1
The possibilities are
15 = 15+04+04+0+0
= 7+7+1+0+0
= 7+3+3+1+1
= 3+3+3+3+3.

The first possibility gives hiyh3yh1a. The second possibility gives h2,ha1h?s and
hnhgoh%?,. The third possibility gives hllhglh%thg. The fourth possibility gives
nothing. Now, we will rule them out one by one.

e For h2,h3,h14, we can first argue using the cobar complex that
dy(h3g) = highia + hi;.
So there is a nontrivial ds-differential
dz(hioh3ohia) = highia(highiz + hiy)
= hiphizhia + highd h
= hiphizhia.

(the element h2,h3;h14 = 0 on the E3-page because dq(hag) = hioh11)-
e The element h%ohglh%g is the target of the d;-differential

d1(hiohsohis) = highathis,

and hence 0 on the E3-page.
e The element hy;h3,h35 supports a nontrivial ds-differential

ds(h11h3ohis) = haihis(highiz + h3y) = hi iy

(the first term in the sum is 0 because hiphi1; = 0 on the Es-page).
e The element h11h21h%2h13 supports a nontrivial d3 differential

d3(h11ho1hishas) = hirhishis ds(hoy) = b3 hishas,
hence does not survive past the Es-page.

Therefore di1(h3;) = 0.

Case 3: r = 13. Equation (6.2) becomes



36 GUCHUAN LI, XIAOLIN DANNY SHI, GUOZHEN WANG, AND ZHOULI XU

The possibilities are

17 = 154+1+14+0+0
= 74+74+3+040
= T+7+1+1+1
7T+3+3+3+1.
The first possibility gives highagh?,h14. The second possibility gives hiphaohi2h?s.
The third and fourth possibilities give nothing. Both elements support nontrivial
d; differentials:
di(hiohaohi his) = hightihia,
di(hiohaohi2hls) = highiihiohis.

Therefore di3(h3;) = 0.

Case 4: r = 15. Equation (6.2) becomes

5
> @ —1)=19.

k=1

The possibilities are

19 = 154+3+14+0+0
= 16+14+1+1+1
= 7T+7+3+14+1
= 74+3+3+34+3.
The first possibility gives h%ohnhlghm. The second possibility gives h‘lll hi4. The

third possibility gives h3;h12h35. The fourth possibility gives hfyh13. They do not
survive because of the following differentials:

di(hiohaohizhia) = highiihizhia,
d3(hi1hsphia) = hiihiads(h3)
= hithia(highiz + b))
= hihu,
ds(hitharhis) = h3 hiahi,
d7(hiyhas) = hihas.
Therefore dy5(h3;) = 0. This concludes the proof of the Lemma. O

Proposition 6.9. For n > 1, the elements h3, survive to the E..-page of the
modified May spectral sequence of the sphere.

Proof. We will first show that for all n > 1, h3,, is not the target of a differential.
By Proposition 6.1 and Proposition 6.2, the image of h3, on the Ey-page under

the map MMaySS(S) — SliceSS(BPg) is Eflﬂugnﬁai(znfl), which survives to the
E-page of the slice spectral sequence. However, if h3, is the target of a differential
d,, then its image must also be the target of a differential d,., with ' < r. This is

a contradiction. Therefore h3,, is not the target of a differential.
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We now show that h3, is also a permanent cycle. By Lemma 6.8, hi, is a
permanent cycle. This means that we can find an element x in the cobar complex
C(A,) of the form

1, o1 1, 91
=8 181816 + S
—_———

deg=4.(21—1)=4  deg>4

such that d(z) = 0. In the expression for z, S is a sum containing elements of the
form

s=hiy gl L R s
with k& > 4 and
deg(¢ 1€3'1€2'1€2) = @' -1+ -+ -1+ (21 1)
< > (@F-1)
k
= deg(s). (6.3)

To show that h3, is a permanent cycle, we apply the Sq%-operation introduced by
Nakamura [Nak72] (n — 1)-times to the element z, obtaining a new element

(Sa”)" @) =& 1€371€37 163" + (Sa®)" ()

deg=4-(27—1) deg>4-(27—1)

in the cobar complex. Everything in (Sq®)"~*(S) is of the form

(Sa®)" M (8) = hiy grm—1 Lo L L Ry .

Lemma 6.7, applied to inequality (6.3), shows that

deg((Sq®)" (€2 (€2 |€3[€2)) = 4+ (2" — 1) < deg((SQ”)" 1 (s)).

By [Nak72, Lemma 3.1], the Sq"-operation preserves the coboundary operator of
the cobar complex C(A,). Therefore

d((8q”)" ! ()) = (Sq")"'d(x) = (Sq")"~*(0) = 0.

It follows that hj3,, is a permanent cycle, as desired. O

Proof of Theorem 6.4. By Proposition 6.9, the elements {h3,|n > 1} survive

to the F,.-page of the modified May spectral sequence, hence they detect some
4’2n+2+2n+3

nonzero elements in Ext 4~ (F2,F3). By Lemma 6.6, these elements must
be {gn |n > 1}. The theorem now follows from Proposition 6.1 and Propostion 6.2.
O

Remark 6.10. By [HKO1, Theorem 4.1], the map 7r*BP]1§2 — 7r>|FBP]£C2 is an
isomorphism. Therefore Theorem 6.3 and Theorem 6.4 hold for the homotopy
fixed point of BPg as well.

Theorem 6.3 and Theorem 6.4 combine to produce our detection theorems for
MU]R and BPR:

Theorem 6.11 (Detection Theorems for MUg and BPFg). The Hopf elements,
the Kervaire classes, and the R-family are detected by the Hurewicz maps m.S —
m.MUS? and .S — €2 BPS?.
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Theorem 6.12. Let E be an E H-spectrum. If the H-fized point spectrum of
FE detects a class © € 7S, then the G-fized point spectrum of (NgE) detects x as
well.

Proof. This follows from the following commutative diagram:

(NGE)S —— (i, NSEY =(EAn---ANE)H —— EH

|

S

The first horizontal map is the map from the G-fixed point to the H-fixed point.
The second horizontal map is obtained by the multiplicative structure on F. Taking
7«(—) to the entire diagram gives the maps

.S = m(NSE)Y — 7. (E®).

Since z maps to a nonzero element in 7, (E) under the composition map, x must
map to a nonzero element in m, (NG E)“ as well. O
Letting £ = MUpg in Theorem 6.12 gives the following:

Corollary 6.13. For any finite group G containing Cs, the G-fized point of MU ()
detects the Hopf elements, the Kervaire classes, and the k-family.

Remark 6.14. Theorem 6.12 produces the detection tower

Ty (MU((CZ"')))Czn

:
i

TS ————— 1, (MU(Cs)))Cs

|

T (MU((C4)))C'4

|

Tl s (MUR)C2.

As we go up the tower, the size of the cyclic group increases, and w*(MU((CW)))C?"

will detect more classes in the homotopy groups of spheres.

6.2. Detection Theorem for ER(n). Recall that the Real Johnson-Wilson the-
ory ER(n) is constructed from BPg by killing v; for ¢ > n+ 1 and inverting v,,. Its
refinement is

50[771, Vg, .. ] ——— BFr

o |

SO[’Ul, e ,’l_)n_l,’l_)i} — ER(TL)
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To prove the detection theorem for ER(n), we analyze the composite map
MMaySS(S) — SliceSS(BPg) — SliceSS(ER(n)).

Lemma 6.15. In the slice spectral sequence for Tr%ER(n), the classes ay, U1, ...,

. . k-
Un_1, U are permanent cycles. For 1 < k < n, the differentials d;(u3, 1) are zero

fori < 281 — 1, and
ok—1 _ gk+1_g
a1y (uze ) = Vpag

The class u2. is a permanent cycle.
20

Proof. This is immediate by comparing to the slice spectral sequence of BPg
(Proposition 3.4). For the class ugz, it is supposed to support a differential to
Dny1a2 L. However, D,41 is 0 in the slice spectral sequence for ER(n). This
implies that u%Z is a don+2_1-cycle. Furthermore, for degree reasons, there are no
classes in the appropriate degrees that can be hit by longer differentials from u%Z

It follows that the class u3, is a permanent cycle. O

Theorem 6.16 (Detection Theorem for ER(n)).

(1) For 1 < k < n, if the element hy or h} in Exta, (Fa,F2) survives to the
E-page of the Adams spectral sequence, then its image under the Hurewicz

map 7.S — T, ER(n)? is nonzero.

(2) For 1 < k < n —1, if the element g, € Exti{anJrQHB(Fg,Fg) survives

to the Eo-page of the Adams spectral sequence, then its image under the
Hurewicz map m,S — mER(n)C2 18 monzero.

Proof. By Proposition 6.1, Theorem 6.3, and Theorem 6.4, it suffices to show that

: _ k_ _ k42 k_
the classes "Dkagk’l (1 <k <mn), v,%a?,@ 2 (1 <k <n), and v u2 as® =Y

(1 <k <n-—1) survive to the E,-page of the slice spectral sequence of ER(n).
This is immediate from Lemma 6.15. t

Remark 6.17. By the homotopy fixed point theorem ([HHR16a, Theorem 10.8]),
the spectrum ER(n) is cofree. This means that 7, ER(n)“? — m,ER(n)"“? is an
isomorphism. Therefore Theorem 6.16 holds for the homotopy fixed point of ER(n)
as well.

Remark 6.18. The detection theorem for ER(n) also holds for v, MUy as it
splits as a wedge of suspensions of ER(n) (with ER(n) itself being one of the
wedge summands).
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