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ABSTRACT 

Near-infrared fluorescence (NIRF) imaging has gained much attention as a clinical method for enhancing visualization 
of cancers, perfusion and biological structures in surgical applications where a fluorescent dye is monitored by an 
imaging system. In order to address the emerging need for standardization of this innovative technology, it is necessary 
to develop and validate test methods suitable for objective, quantitative assessment of device performance. Towards this 
goal, we develop target-based test methods and investigate best practices for key NIRF imaging system performance 
characteristics including spatial resolution, depth of field and sensitivity.  Characterization of fluorescence properties 
was performed by generating excitation-emission matrix properties of indocyanine green and quantum dots in biological 
solutions and matrix materials.  A turbid, fluorophore-doped target was used, along with a resolution target for assessing 
image sharpness.  Multi-well plates filled with either liquid or solid targets were generated to explore best practices for 
evaluating detection sensitivity.  Overall, our results demonstrate the utility of objective, quantitative, target-based 
testing approaches as well as the need to consider a wide range of factors in establishing standardized approaches for 
NIRF imaging system performance. 

Keywords:, Epoxy resin phantom, Polyurethane phantom, Quantum dot, Indocyanine Green, Image quality 
characteristics. 

 

1. INTRODUCTION 
In the past decade, there have been major advances in fluorescence based imaging techniques for medical diagnostics, 
including exogenous near-infrared (NIR) fluorophores which enhance the information collected by these devices. NIR 
excitation and emission wavelengths (690 -1000 nm) represent a region where endogenous tissue fluorescence tends to 
be low and light penetration is relatively high, due to lower absorption of water, melanin, oxy and de-oxy hemoglobin1-2. 
En-face, or surface NIR fluorescence imaging with digital cameras has been implemented for a wide range of 
applications, such as metastatic imaging3, lymph node identification4,5,6, intraoperative tumor delineation and vascular 
mapping7. While the development of NIR imaging exhibits tremendous potential for clinical improvements, there 
remains a lack of standardized test methods for objective, quantitative characterization of device performance.  

Well-validated tissue-simulating phantoms can facilitate a wide variety of performance evaluation tasks throughout the 
device life cycle, including early system development, device optimization and inter-comparisons, clinical trial 
standardization, regulatory clearance, manufacturing quality control, re-calibration, clinical constancy testing, and 
clinician training, among others.  Currently, there are numerous international consensus documents that describe 
standardized phantom-based test methods for established medical imaging modalities such as MRI, CT and PET8-10, 
however, no equivalent documents exist for optical imaging modalities such as NIR fluorescence.  Thus, there is a need 
to identify an optimal set of performance tests that are objective, quantitative, and scientifically rigorous, yet minimally 
burdensome for users. In this context, we have developed phantom-based test methods to characterize various image 
quality characteristics of an NIRF imaging system using indocyanine green (ICG) and Quantum dots (Qdots). 
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2. METHODS 
2.1 Near-infrared fluorescence imaging system 

The present study investigates the various performance characteristics of custom built NIR fluorescence imaging 
system which uses an external source (Fig. 2). The source is light-emitting diode (M780L3, Thorlabs, Inc., Newton, 
NJ) with a 780 nm center wavelength, 30 nm bandwidth. The irradiance at the sample surface was 2 mW/cm2. An 
800 nm short-pass filter (84-729, Edmund Optics, Barrington, NJ) was used to reduce the potential of detecting light 
from the diode. A convex lens and diffuser were used to achieve uniform illumination. A long-pass emission filter 
with a cut-off wavelength of 825 nm (86-078, Edmund Optics, Barrington, NJ) was secured to the camera. A rack 
and pinion setup was used to move the camera vertically to perform depth of field measurements 

 
 

Figure 1. The experimental setup of near infrared imaging system 
2.2 Wide-Field Phantom 

A homogenous fluorescence phantom was necessary to evaluate the uniformity of illumination and the spatial resolution 
of the system. The matrix materials for the solid uniform phantom were ICG, ethanol, titanium oxide (TiO2) and epoxy 
resin with hardener. Initially, 15 ml of resin is sonicated with 0.012 g/ml of titanium oxide for 60 minutes. Then, 0.025 
mg/ml ICG was added to the mixture and it was further sonicated for 30 minutes. The obtained mixture (resin, titanium 
oxide and ICG) were then combined with 15 ml of hardener. The final mixture was stirred for 30 minutes to achieve a 
homogenous distribution of scattering particles. Then, the mixture was poured into 3”x 6”x 1 1/6” molds (Environmental 
Technology Inc. Fields Landing, CA) and kept in a low-pressure vacuum to remove bubbles. The phantom was allowed 
to cure for 24 hours before measurements were taken. 

2.3 Multi-Well phantoms 

The Multi-well phantom were widely used to study the sensitivity/linearity and signal-to-noise ratio of the imaging 
system. The epoxy resin well phantom was prepared by following a 1:1 (resin: hardener) ratio by weight (Easy Cast, 
Environmental Technology, Inc, Fields Landing, CA). Prior to the experiment, the reduced scattering coefficient of the 
phantom was calibrated with 10 cm-1 to replicate the tissue scattering environment. The matrix materials used for the 
epoxy resin phantom were ICG (fluorophore), titanium dioxide (TiO2), resin, and hardener. The ICG concentration was 
varied from 0.006 µg/ml to 40 µg/ml (13 concentration well phantom). The phantoms were prepared in the following 
way: the resin with titanium oxide was calibrated with a reduced scattering coefficient of 10 cm-1. The resin: hardener 
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(1:1) mixture was prepared and ICG solution of 20µg/ml was added to each sample, with the stock concentration ranging 
from 0 to 40 µg/ml. Then, the mixture was stirred for ten minutes and kept at low pressure to remove any air bubbles in 
the phantom. After that, the mixture was poured into a black 96-well plate (Thermo Fisher Scientific, USA) and allowed 
to cure for 24 hours.  

The polyurethane phantom was prepared using two-part polyurethane system in a ratio of 100/88 by volume (WC-781 
A/B, BJB Enterprises Incorporated, Tustin, CA). Prior to the phantom measurements, the reduced scattering coefficient 
was fixed at 10 cm-1 to replicate the tissue environment. The QD800 (Qdot® 800 ITK™ organic quantum dots 
(Q21771MP), Grand Island, NY 14072) phantoms were prepared with stock concentrations of 1 nM, 2 nM, 4 nM, 10 
nM, 20 nM, and 30 nM. Initially, the polyurethane Part B with 0.598 mg/ml of titanium oxide was mixed with the 
quantum dot phantom and stirred well. Then, each stock mixture was comprised of 1.88 ml of the phantom mixture (1 ml 
polyurethane Part A: 0.88 ml polyurethane Part B) was added. Then, the mixture was stirred for 30 minutes and kept at 
low pressure to remove bubbles from the phantom.  Finally, the mixture was poured into the black well plate and 
allowed to cure for 48 hours.  

2.4 Image sharpness testing 

A modified version of the standard bar chart approach for evaluating image spatial resolution was used.  Specifically, a 
negative, chrome on glass USAF 1951 target (Thorlabs Inc., NJ) was placed on top of the wide-field ICG phantom. The 
785 nm LED light source was then used to illuminate the target. The contrast transfer function (CTF) was calculated 
using the formula: 

ࡵ࡯                                                       = 	 ሺ࢞ࢇ࢓ࡵ	࢔࢏࢓ࡵିሻሺ࢞ࢇ࢓ࡵା࢔࢏࢓ࡵ	ሻ				                                                                                        [1] 

The CTF was then measured over a wide range of spatial frequencies, and the Rayleigh criterion was used to determine 
the spatial resolution in horizontal and vertical directions.  Measurements were performed at the best focus distance at 
the center and then, the camera is moved vertically for depth of field measurements [11].    

2.5 Sensitivity testing 

In most cases, sensitivity of the imaging system is evaluated using multi-well phantom approach using NIR emitting 
fluorophores1,2. The mean fluorescence intensity is calculated over a circular area of 50x50 pixels in which the circle is 
centered where the maximum intensity lies. Prior to that, each image is processed with flat-field correction to avoid 
uneven illumination of the sample using the following relation: 
 

૜ࡵ                                          = 	 ቂࡵ૚ࡵ૛ቃ 	࢞	ሺ࢑૚ + ࢑૛ሻ                                                      [2] 
 
Where, I1 = Experimental image; I2 = Reference Image; K1 =Mean fluorescence Intensity; K2 = 0 
 
The signal to noise ratio (SNR) is calculated by measuring the phantom with no concentration as a background (SB), 
mean fluorescence intensity (SI) and standard deviation of the background well (SD). The signal to noise ratio is 
calculated using the following relation (3):  

܀ۼ܁                                       = ۲܁۰܁۷ି܁                                 [3]  
 

3. RESULTS AND DISCUSSSION 
3.1 Phantom Characterization 

The Fig. 2 show excitation and emission spectral profiles for ICG in presence of solid (cured with epoxy resin) phantom 
and liquid (Ethanol) phantom. ICG in ethanol shows four peaks (680 nm, 715 nm, 730 nm and 770 nm) whereas in solid 
ICG (epoxy resin phantom) excitation spectra indicate weaker emission in the 700-775 nm range and fewer peaks. 
Fluorescence emission spectra (Fig. 2b) show characteristic ICG peaks12, however, the liquid form exhibits a peak at 820 
nm while the solid phantom shows a peak at 800 nm with the spectral shift of ~20 nm. The absolute fluorescence 
intensity of the liquid phantom exhibits two-fold increase in intensity than that of solid phantom (Fig. 2a). On the other 
hand, the fluorescence emission spectra of liquid phantom exhibit insignificant variation between liquid and solid 
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