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Characterization of surface–solute interactions by dif-
fusioosmosis

Jesse T. Ault,∗a Sangwoo Shin,b and Howard A. Stonec

The accurate measurement of wall zeta potentials and solute–surface interaction length scales for
electrolyte and non-electrolyte solutes, respectively, is critical to the design of many biomedical
and microfluidic applications. We present a novel microfluidic approach using diffusioosmosis for
measuring either the zeta potentials or the characteristic interaction length scales for surfaces
exposed to, respectively, electrolyte or non-electrolyte solutes. When flows containing different
solute concentrations merge in a junction, local solute concentration gradients can drive diffu-
sioosmotic flow due to electrokinetic, steric, and other interactions between the solute molecules
and solid surfaces. We demonstrate a microfluidic system consisting of a long, narrow pore
connecting two large side channels in which solute concentration gradients drive diffusioosmosis
within the pore, resulting in predictable fluid velocity/pressure and solute profiles. Furthermore,
we present analytical results and a methodology to determine the zeta potential or interaction
length scale for the pore surfaces based on the solute concentrations in the main side channels,
the flow rate in the pore, and the pressure drop across the pore. We apply this method to the
experimental data of Lee et al. 1 to predict the zeta potentials of their system, and we use 3D
numerical simulations to validate the theory and show that end effects caused by the junctions
are negligible for a wide range of parameters. Because the dynamics in the proposed system are
driven by diffusioosmosis, this technique does not suffer from certain disadvantages associated
with the use of sensitive electronics in traditional zeta potential measurement approaches such as
streaming potential, streaming current, or electroosmosis. To the best of our knowledge this is the
first flow-based approach to characterize surface/solute interactions with non-electrolyte solutes.

Introduction
The zeta potential ζ is the electrical potential at the shear plane
of the electric double layer, which represents a key property in a

a Computational Sciences and Engineering Division, Oak Ridge National Laboratory,
Oak Ridge, TN 37831, USA
b Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI
96822, USA
c Department of Mechanical and Aerospace Engineering, Princeton University, Prince-
ton, NJ 08544, USA
Please address correspondance to aultjt@ornl.gov.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 with the U.S. Department of Energy. The United States Gov-
ernment retains and the publisher, by accepting the article for publication, ac-
knowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for United States Government pur-
poses. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan). Research sponsored by the
Laboratory Directed Research and Development Program of Oak Ridge National Lab-
oratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

number of electrokinetics applications such as microfluidic fluid
handling and manipulation, biomolecule separation, colloid sta-
bility, etc.2,3 Two topics of recent interest in the family of elec-
trokinetic phenomena are diffusiophoresis and diffusioosmosis,
which refer, respectively, to the motion of particles and fluids
driven by chemical gradients. As with electrophoresis and elec-
troosmosis, the zeta potential dictates the magnitude of the flow
of an electrolytic solution within the Debye layer in the presence
of an external field gradient. For the case of diffusiophoresis and
diffusioosmosis, the source of these motions are chemical solute
gradients.4,5 Recent reports suggest that diffusiophoresis and dif-
fusioosmosis can be useful tools for a variety of applications in-
cluding biomolecule separation6–8, water purification9–11, par-
ticle delivery in confined spaces12–14, surface coating15–17, zeta
potentiometry18, fabric cleaning19, and many others.

While the majority of studies and applications of diffusiophore-
sis and diffusioosmosis typically involve the use of electrolyte so-
lutes, non-electrolyte solute gradients can also drive these effects.
Whereas surface/solute interactions with electrolyte solutes are
usually characterized by the zeta potential, surface/solute inter-
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actions with non-electrolyte solutes are typically characterized by
the characteristic length scale of the solute–surface interaction
and the Gibbs adsorption length, which is proportional to the ex-
cess amount of solute per unit area that accumulates near the
surface due to the interaction potential φ .20–22 The adsorption
length is a measure of the strength of the adsorption, and it is
positive for the case of adsorption and negative for repulsion.22

Since the functionality and efficacy of many applications rely
on the accurate knowledge of particle/surface zeta potentials or
interaction length scales (depending on the nature of the solute),
accurate techniques for measuring these properties are critical for
the design of such applications. For the case of electrolyte so-
lutes, the zeta potential of colloidal particles can be measured via
the commercially available electrophoretic light scattering tech-
nique or via a recent diffusiophoretic microfluidic technique18,
whereas measuring the zeta potential of solid surfaces typically
relies on a number of sophisticated in-house methods includ-
ing the electroosmosis, streaming potential, streaming current,
and ZetaSpin methods.23–26 These methods have demonstrated
simplicity and reliability, but their reliance on precise electrical
measurements and the need for high-end ammeters/voltmeters
have decreased their accessibility and introduced several poten-
tial limitations that will be discussed below.2 Furthermore, for
the case of non-electrolyte solutes, none of these techniques can
be adapted to measure the characteristic length scales of solute–
surface interactions, since those methods all rely on the charge of
the solute ions. A detailed review of these four common measure-
ment techniques and some of their potential limitations is given
in Appendix A.

While all of the previously mentioned measurement techniques
have been used with success, no technique is without potential
limitations and challenges. Typically the use of sensitive elec-
tronics is required, special care is needed to avoid and correct
for issues including electrode polarizability and surface conduc-
tivity, chemical reactions with the electrodes can become critical
at certain pH values, and, finally, all of the methods are limited to
the use of electrolyte solutes. None of the proposed methods can
be adapted to measure the characteristic interaction length scales
for non-electrolyte solutes, which could be considered the analog
of the zeta potential in electrolyte solutes. In this paper, we pro-
pose a new method that does not rely on sensitive voltage/current
measurements and can be used to measure both the zeta poten-
tials of surfaces in electrolyte solutes and non-electrostatic inter-
actions between surfaces and non-electrolyte solutes. The pro-
posed method relies on diffusioosmotic flow in a long, narrow
channel driven by electrolyte or non-electrolyte solute concentra-
tion gradients.

The physical origin of these diffusioosmotic flows was first rec-
ognized by Derjaguin and coworkers who predicted the relative
speed between the fluid flow and a solid flat plate due to solute
gradients, which they experimentally confirmed.27,28 They also
recognized that these flows can cause a predictable disturbance to
the fluid dynamics in small capillaries.28 Derjaguin et al. derived
formulas to predict this “capillary-osmotic” flow, validated these
results experimentally, and suggested that such methods could
potentially be used to analyze the structure of adsorption layers at

solid-solution interfaces.29 Additional studies of diffusioosmotic-
driven flows in capillaries have led to models for the osmotic flow
in leaky porous membranes and analytical results for the reflec-
tion coefficients in such flows for the case of purely steric solute–
surface interactions.30,31 These coefficients characterize the de-
gree to which solute molecules are rejected from a leaky mem-
brane.

In the following sections, we propose a technique using diffu-
sioosmosis for measuring the zeta potential of surfaces in elec-
trolyte solutes or the solute–surface interaction length scales of
surfaces in non-electrolyte solutes. We show that flow rate and
pressure drop measurements in an H-shaped microfluidics system
can be used to calculate the zeta potential or interaction length
scales needed to characterize the surface–solution interactions.
We use 3D numerical simulations to validate the theoretical re-
sults, and we apply this method to the experimental flow rate
results of Lee et al. 1 to show a practical demonstration of this
technique.

Theory
In this section, we present analytical solutions for the fluid ve-
locity and pressure profiles inside a narrow pore of length L that
connects two main flow channels containing different solute con-
centrations as shown in Figure 1. The equations governing the
coupled fluid/solute dynamics include the Navier-Stokes and con-
tinuity equations, as well as an advection–diffusion equation for
the solute dynamics. Analytical solutions can be achieved via the
lubrication approximation for the case of long, narrow pores. The
unique feature that differentiates such a system from a traditional
pressure-driven Poiseuille flow calculation is the addition of ap-
proximate wall slip boundary conditions on the pore walls due
to diffusioosmosis driven by local solute concentration gradients.
These slip boundary conditions result in predictable deviations of
the velocity/pressure profiles within the pore from the Poiseuille
flow case with no-slip boundaries. Using the theoretical solutions
for the fluid/solute dynamics that we develop in this section, we
will show that the zeta potential or interaction length scales of the
surface–solution interactions can be directly related to the flow
rate and the pressure drop across the pore.

Governing equations and boundary conditions

The fluid and solute dynamics within the system are governed by
the coupled incompressible Navier-Stokes and continuity equa-
tions, as well as an advection–diffusion equation for the solute
concentration. With the fluid velocity, pressure, density, and vis-
cosity given respectively by uuu = (u,v,w), p, ρ, and µ, the solute
concentration given by c, and the solute diffusivity given by Ds,
the dimensional forms of the governing equations (assuming con-
stant properties) are given by

ρ

(
∂uuu∗

∂ t∗
+uuu∗ ·∇∗uuu∗

)
=−∇

∗p∗+µ∇
∗2uuu∗, (1a)

∇
∗ ·uuu∗ = 0, (1b)

∂c∗

∂ t∗
+uuu∗ ·∇∗c∗ = Ds∇

∗2c∗, (1c)
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Fig. 1 Flow geometry and problem setup (not shown to scale). We consider the flow in a narrow pore of dimensions 2h1 ×2h2 ×L that connects two
larger square channels of side length `. Channel 1 carries a nondimensional solute concentration of c = 1 at a mean speed of Ūmain,1, and channel 2
carries a nondimensional solute concentration of c= β at a mean speed of Ūmain,2. Dynamics within the pore are established by the combined influences
of fluid advection and diffusioosmosis. Slip boundary conditions at the pore walls drive recirculating secondary flows through diffusioosmosis, which
cause deviations from Poiseuille flow in the pressure and velocity within the pore. The pressure drop across the pore and the mean flow velocity can
be directly related to the diffusioosmotic mobility of the pore walls, making possible the use of such a system to characterize the surface–solution
interactions through either the zeta potential or characteristic interaction length scales. (a) Full perspective view of the system setup. (b) Zoomed-in
view of the boxed, red region denoting the entrance to the pore and the coordinate system. Solid arrows denote the direction of the flow.

where ∗’s denote dimensional variables. For this analysis, we
will consider the steady-state form of Eqs. (1). With steady
inlet/outlet conditions, the solute concentration gradient within
the pore will develop over a timescale of L2/Ds, where the
flow is quasi-steady relative to the solute because we consider
low-Reynolds-number flows and for typical solutes in water we
have Ds � ν . For the purposes of characterizing the surface–
solution interactions, we are only interested in the steady-state
fluid/solute dynamics in the pore and not the initial transient pe-
riod as the solute concentration gradient develops. Steady-state
is achieved when t∗ � L2/Ds, at which point the time derivatives
may be safely neglected from Eqs. (1).

Beginning with the dimensional governing equations given by
Eqs. (1), we nondimensionalize the axial velocity component u∗

by the average axial fluid speed in the pore Ū and the secondary
velocity components v∗ and w∗ by Ūh1/L and Ūh2/L, respectively,
to preserve the form of the continuity equation (see Figure 1).
We further nondimensionalize x∗ by the pore length L, y∗ by the
characteristic length in the y-direction h1, z∗ by the characteristic
length in the z-direction h2, c∗ by the uniform solute concentra-
tion at the pore inlet c∗(x = 0), and p by the viscous pressure
scale µŪL/h2

1. With these scalings, the governing equations can
be written as

Reε1

(
u

∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

)
= ε

2
1

∂ 2u
∂x2 +

∂ 2u
∂y2 +

h2
1

h2
2

∂ 2u
∂ z2 − ∂ p

∂x
, (2a)

Reε1

(
u

∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z

)
= ε

2
1

∂ 2v
∂x2 +

∂ 2v
∂y2 +

h2
1

h2
2

∂ 2v
∂ z2 − 1

ε2
1

∂ p
∂y

,

(2b)

Reε1

(
u

∂w
∂x

+ v
∂w
∂y

+w
∂w
∂ z

)
= ε

2
1

∂ 2w
∂x2 +

∂ 2w
∂y2 +

h2
1

h2
2

∂ 2w
∂ z2 − 1

ε2
2

∂ p
∂ z

,

(2c)

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0, (2d)

Peε
2
1

(
u

∂c
∂x

+ v
∂c
∂y

+w
∂c
∂ z

)
= ε

2
1

∂ 2c
∂x2 +

∂ 2c
∂y2 +

h2
1

h2
2

∂ 2c
∂ z2 , (2e)

where εi = hi/L, the pore Reynolds number is defined as Re =

ρŪh1/µ, and the solute Peclet number is defined as Pe = LŪ/Ds.
As boundary conditions, we fix the solute concentration at the in-
let and outlet of the pore to be c = 1 at x = 0 and c = β at x = 1,
respectively (Fig. 1). Thus, we assume that the end effects where
the pore merges with the main side channels are negligible and
the solute concentrations at the inlet and outlet of the pore are
approximately uniform and equal to the concentrations carried
in the corresponding adjacent side channels. Additionally, we as-
sume that the solute does not penetrate the walls of the pore, i.e.
∂c/∂y = 0 at y =±1 and ∂c/∂ z = 0 at z =±1. The fluid flow also
obeys a no-penetration condition at the pore walls, i.e. v = 0 at
y =±1 and w = 0 at z =±1.

Finally, diffusioosmosis drives a slip velocity boundary condi-
tion at the outer edge of the double layer due to the solute con-
centration gradient within the pore. In the limit of infinitesimal
Debye layer thickness, λd , relative to the channel height, this can
be treated effectively as a slip velocity boundary condition at the
pore walls. In the next section, we will show that the steady-state
solute concentration is independent of y and z to leading order in
a narrow pore, which allows the dimensionless wall slip velocity
uw to be written approximately as21,32

uw(x) =−Γw(x)
LŪ

dlnc
dx

, (3)

where Γw(x) is the diffusioosmotic mobility of the pore surfaces,
which is a function of both the solute and surface properties and
will generally vary with x as the solute concentration changes.
Then, in the thin Debye layer approximation, the wall slip bound-
ary conditions are given by u = uw(x) at y =±1 and z =±1, v = 0
at z = ±1, and w = 0 at y = ±1. Note that the Debye layer
thickness varies as c∗−1/2 and can be estimated as λd ≈ 30 nm
with c∗ = 0.1 mM, λd ≈ 10 nm with c∗ = 1 mM, λd ≈ 3 nm with
c∗ = 10 mM, and λd ≈ 1 nm with c∗ = 100 mM. Estimates of the
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Debye layer thickness should be carefully considered when select-
ing both the size of the system to use and the range of solutes that
will be present in the system, because the analysis here relies on
the assumption that λd/h1 � 1.

Lubrication approximation

In this section, we consider the limit of a long, narrow pore
(ε1 � 1 and ε2 � 1) and apply the lubrication approximation to
simplify the governing equations to a tractable form. Effectively,
this procedure reduces to a lubrication calculation of a pipe flow
with slip, with the distinguishing feature that the slip boundary
condition can be explicitly specified as a function of the dissolved
solute concentration, the dynamics of which are also coupled
to the fluid dynamics through the advection–diffusion equation
given by Eq. (2e).

We assume ε1 < ε2, and so ε2 � 1 guarantees ε1 � 1. To pro-
ceed, we perform a perturbation expansion with the small param-
eter ε2 = h2/L (we assume 0 ≤ h1/h2 ≤ 1 for simplicity without
loss of generality) for the limit of small pore Reynolds numbers
Re � 1:

u(x,y,z) = u0(x,y,z)+ ε
2
2 u1(x,y,z)+ ε

4
2 u2(x,y,z)+ . . . (4a)

v(x,y,z) = v0(x,y,z)+ ε
2
2 v1(x,y,z)+ ε

4
2 v2(x,y,z)+ . . . (4b)

w(x,y,z) = w0(x,y,z)+ ε
2
2 w1(x,y,z)+ ε

4
2 w2(x,y,z)+ . . . (4c)

p(x,y,z) = p0(x,y,z)+ ε
2
2 p1(x,y,z)+ ε

4
2 p2(x,y,z)+ . . . (4d)

c(x,y,z) = c0(x,y,z)+ ε
2
2 c1(x,y,z)+ ε

4
2 c2(x,y,z)+ . . . (4e)

Substituting Eqs. (4) into the governing Eqs. (2) and making the
additional assumption that Peε2

1 � 1 gives to leading order

∂ 2u0

∂y2 +
h2

1
h2

2

∂ 2u0

∂ z2 − dp0

dx
= 0, (5a)

∂ p0

∂y
=

∂ p0

∂ z
= 0, (5b)

∂u0

∂x
+

∂v0

∂y
+

∂w0

∂ z
= 0, (5c)

∂ 2c0

∂y2 +
h2

1
h2

2

∂ 2c0

∂ z2 = 0. (5d)

Integrating Eq. (5d) and applying the no-flux boundary con-
ditions at the pore walls gives that c0 = c0(x). With this result,
Eq. (2e) becomes to the next leading order

Peu0
dc0

dx
=

d2c0

dx2 +
∂ 2c1

∂ z2 +
h2

2
h2

1

∂ 2c1

∂y2 . (6)

Integrating over the pore cross section A, which is independent of
x, and using the fact that at leading order

1
A

∫∫
A

u0dA = 1,
∫∫
A

∂ 2c1

∂y2 dA = 0, and
∫∫
A

∂ 2c1

∂ z2 dA = 0, (7)

then Eq. (6) simplifies to

Pe
dc0

dx
=

d2c0

dx2 . (8)

Thus, the leading-order solute concentration satisfying the
boundary conditions c0(0) = 1 and c0(1) = β is given by

c0(x) =
β −1

ePe −1

(
ePex −1

)
+1, (9)

and the leading-order wall slip velocity, Eq. (3), is given by

uw(x) =−Γw(x)
LŪ

Pe(β −1)ePex

ePe +(β −1)ePex −β
. (10)

With additional information describing how the diffusioosmotic
mobility varies with the solute concentration (and thus with the
axial position x through Eq. (9)), this result for uw(x) can be used
to solve Eq. (5a) for the axial fluid velocity and pressure within
the pore.

Series solution

To solve Eq. (5a) for u0(x,y,z) and p0(x) subject to the boundary
conditions previously described with uw(x) given by Eq. (10), we
first write the axial velocity component as

u0(x,y,z) =
dp0

dx

(
uh(y,z)+

1
2

(
y2 −1

))
+uw(x). (11)

This representation satisfies Eq. (5a) when uh(y,z) satisfies the
homogeneous equation

∂ 2uh

∂y2 +
h2

1
h2

2

∂ 2uh

∂ z2 = 0, (12)

subject to the boundary conditions uh = 0 at y = ±1 and uh =
1
2
(
1− y2) at z = ±1. Eq. (12) has a well-known series solution

that can be found in classical references (see for example chap-
ter 3 of White and Corfield 33):

uh(y,z) =
∞

∑
n=1

(−1)
n−1

2
16

n3π3 cos
(nπ

2
y
) cosh

(
nπ

2
h2
h1

z
)

cosh
(

nπ

2
h2
h1

) , for n odd.

(13)
To solve for the fluid pressure, consider the conservation of mass
statement given by Eq. (7a). Using Eq. (11), we find

dp0

dx
=

uw(x)−1
1
3 −C∗ , (14)

where C∗ is a well-known geometrical shape factor that depends
on the pore aspect ratio h1/h2 and is given by

C∗ =
1
A

∫∫
A

uhdA =
∞

∑
n=1

64
n5π5

h1

h2
tanh

(
nπ

2
h2

h1

)
, for n odd. (15)

Finally, if the diffusioosmotic mobility is known as a function of
the solute concentration, then Γw(x) is known, and the axial ve-
locity profile in the pore is fully specified by Eq. (11). The pres-
sure drop across the pore can then be determined by integrat-
ing Eq. (14). In the following sections, we apply this methodol-
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ogy to four cases: (1) electrolyte solutes with constant zeta po-
tential, (2) electrolyte solutes with variable zeta potential, (3)
non-electrolyte solutes with generic interactions, and (4) non-
electrolyte solutes with purely steric interactions.

Electrolyte solutes with constant zeta potential

First, consider the case of constant zeta potential, where ζ is ap-
proximately uniform over the range of concentrations present in
the system. This assumption will typically require that the ratio of
solute concentrations in the system is not too large (i.e. β is close
to one) and/or the absolute solute concentrations in the system
are small. In this case, Γw can be assumed independent of x, and
Eq. (14) can be directly integrated using Eq. (10) to give

p0(x) = pc +
x+ Γw

LŪ ln
[
ePe + ePex (β −1)−β

]
C∗− 1

3
, (16)

where pc is a constant. Since we are dealing with incompressible
flow, we have freedom in where we evaluate this constant. To
facilitate comparison between pressure profiles, we choose p = 0
at x = 1, which gives

pc =
3

1−3C∗

(
1+

Γw

LŪ
ln
[(

ePe −1
)

β

])
. (17)

Finally, the pressure drop across the pore ∆p= p(1)− p(0) is given
by

∆p =
3

3C∗−1

(
1+

Γw

LŪ
lnβ

)
, (18)

where the second term in parentheses is the correction due to
diffusioosmosis.

Thus, the pressure drop across the pore is uniquely specified by
the solute concentration ratio β , the channel aspect ratio h1/h2

(through C∗), and the dimensionless diffusioosmotic mobility of
the pore walls Γw

LŪ . For a typical system, h1/h2, L, and β will
be known parameters, and Ū and ∆p can be experimentally mea-
sured. This situation could be modified, for example, if a sensitive
pressure pump were used to maintain a fixed ∆p along the pore,
in which case only Ū would need to be measured. In any case,
Eq. (18) can then be used to directly calculate the diffusioosmotic
mobility of the pore walls. Finally, if corrections due to finite De-
bye layer effects can be neglected, ζ can be found by solving

Γw =
ε

µ

(
kBT
Ze

)2 [(D+−D−
D++D−

)
Zeζ

kBT
+4ln cosh

(
Zeζ

4kBT

)]
, (19)

where ε is the permittivity of the medium, µ is the dynamic vis-
cosity of the medium, kB is the Boltzmann constant, T is the tem-
perature, Z is the valence of the Z–Z solute, e is the elementary
charge, and D+ and D− are the diffusivities of cations and anions,
respectively13.

Electrolyte solutes with variable zeta potential

While the case of constant ζ is convenient in that it results in
the analytical relation given by Eq. (18), the assumptions of β

close to one and/or small solute concentrations are probably not
realistic for the purposes of zeta potentiometry in some systems.

Although the assumption of constant ζ is frequently found in the
literature and is theoretically justifiable for the case of low so-
lute concentrations32,34, in our system, β close to one will result
in weak diffusioosmosis, requiring flow rate and pressure drop
measurements with impractical sensitivity. Furthermore, at elec-
trolyte concentrations low enough for ζ to be treated as constant,
finite Debye layer effects would almost certainly invalidate the
approximate wall slip boundary condition assumed in our model.
Thus, in this section we consider the use of this system when ζ is
variable.

Kirby and Hasselbrink Jr. suggest that ζ is proportional to the
logarithm of the solute concentration for the case of symmetric
electrolytes with a valence of one for a wide range of solute con-
centrations.34 Specifically, if the cations do not show specific ad-
sorption, the zeta potential is given approximately by

ζ =−a1 lnc∗, (20)

where a1 is a constant of proportionality, and c∗ is expressed
in M.34 For more details on when the form of Eq. (20) can be
expected to hold, see Kirby and Hasselbrink Jr. 34 Modified re-
lationships analogous to Eq. (20) can also be found for other
situations when the electrolyte is not 1–1.34

For the case of variable zeta potential, there is no longer a
single ζ value present in the system, since the solute concen-
tration varies throughout the pore. However, with the assump-
tions described above, the interface can still be described by a
single free parameter, the constant of proportionality a1, which
describes how the zeta potential varies with solute concentration.
The determination of a1 can be achieved as follows. First, Γw can
be written explicitly as a function of x by substituting Eq. (9)
into Eq. (20) and substituting Eq. (20) into Eq. (19), where
the only unknown is a1. Next, Eq. (10) can be rewritten with
the now-variable Γw(x) to give a new analytical form for the wall
slip velocity as an explicit function of x. With uw(x) given as a
more-complicated expression that includes a dependence on a1,
the pressure gradient along the pore once again satisfies Eq. (14),
although analytical integration becomes intractable due to the
complicated functional dependence of uw on x. However, numer-
ical integration remains viable, and a shooting procedure in the
unknown variable a1 can be used until the numerically integrated
pressure drop across the pore matches the measured experimen-
tal values.

Non-electrolyte solutes with generic interactions

Next, we consider the case of non-electrolyte solutes with un-
known interaction potentials. The diffusioosmotic flow over a flat
surface due to non-electrolyte gradients is given by21,22,28

uw =−L∗ ΓkB T
µLŪ

dlnc
dx

=−L∗ K kB T c∗(0)
µLŪ

dc
dx

, (21)

where

Γ =

∞∫
0

[c∗(y∗)− c∗∞]dy∗ (22)
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is the Gibbs surface excess of solute, K = Γ/c∗, c∗(y) represents
the variation of the solute concentration inside the diffuse layer,
c∗∞ represents the solute concentration sufficiently far from the
surface, c∗(0) is the reference solute concentration at x = 0, and

L∗ =

∞∫
0

y∗ [exp(−E/kBT )−1]dy∗

∞∫
0
[exp(−E/kBT )−1]dy∗

(23)

is a characteristic length scale for the solute–surface interaction
on the order of 10 to 100 Å, where E(y) is the energy of a so-
lute molecule a distance y from the surface, which typically is not
known.21 Following the notation of Eq. (3), the diffusioosmotic
mobility for this case is given by

Γw(x) =
kBT

µ
L∗(x)Γ(x), (24)

where the Gibbs surface excess of solute can be measured ex-
perimentally with material balances, but Anderson and Prieve
suggest that L∗ cannot be directly measured.21 However, using
our method, this interaction length scale can at least be approxi-
mated. If L∗ is not too sensitive to the solute concentration, c∗, a
relatively small ratio of solute concentrations can be selected (e.g.
β = 0.1 or 10) and an effective L∗

eff can be assumed constant over
that range. The dependence of L∗

eff can then be investigated by
varying the absolute reference solute concentration and using a
numerical shooting procedure as described in the previous section
to calculate L∗

eff.

Non-electrolyte solutes with purely steric interactions

For certain types of non-electrolyte solute/surface interactions,
additional theoretical progress can be made. For example, in this
section we consider the case of purely steric exclusion interac-
tions. Staffeld and Quinn showed that for steric interactions the
Gibbs surface excess of solute is given by Γ(x) = −rI c∗(x), and
L∗ = rI

2 , where rI is the interaction radius of the solute/surface
interaction, i.e. the distance of closest approach of the solute to
the surface.22 Then for this case we have

uw(x) =
kBT c∗(0)

µLŪ
ePexPe(β −1)(

ePe −1
) r2

I
2
, (25)

and integrating Eq. (14) gives

p0(x) = pc +
3

1−3C∗

(
kBT c∗(0)

2µLŪ
ePex(β −1)(

ePe −1
) r2

I − x

)
, (26)

where

pc =
3

1−3C∗

(
1− kBT c∗(0)

2µLŪ
ePe(β −1)

ePe −1
r2
I

)
. (27)

Finally, the pressure drop across the pore is given by

∆p =
3

1−3C∗

(
kBT c∗(0)

2µLŪ
(β −1)r2

I −1
)
. (28)

Thus, as with the case of electrolyte solutes with constant zeta po-
tential, here we find a simple analytical result relating the pres-

sure drop and flow velocity in the pore with the representative
parameter that characterizes the surface/solute interaction, in
this case the interaction radius rI for non-electrolyte solutes with
purely steric interactions.

Summary

Thus, for the cases of electrolyte solutes with constant ζ and
non-electrolyte solutes with purely steric interactions, our method
provides simple analytical results given by Eq. (18) and Eq. (28)
that can be used to estimate the zeta potential or interaction ra-
dius, respectively, through pressure drop and flow rate measure-
ments. For the remaining cases of electrolyte solutes with vari-
able ζ and non-electrolyte solutes with other interaction poten-
tials, our method provides a numerical shooting method that can
be used to measure the proportionality constant a1 in Eq. (20)
or the effective characteristic interaction length scale L∗

eff, respec-
tively, once again based on pressure drop and flow rate measure-
ments in the pore. Note that this numerical procedure described
for variable ζ is generally more practical because the assump-
tions needed to neglect variations in ζ , e.g. β ≈ 1 and/or c∗ � 1
result in weak diffusioosmosis and/or finite Debye layer effects
which invalidate the approximation of the diffusioosmosis as a
wall slip boundary condition. In the next section, we use three-
dimensional numerical simulations to validate the theoretical re-
sults presented above for the example case of electrolyte solutes
with constant zeta potential, and we show that the end effects
due to the pore/side-channel junctions are negligible for many
practical system parameters of interest.

Numerical simulations
In this section we use 3D numerical simulations of the govern-
ing equations given by Eq. (2), which include the steady, incom-
pressible Navier-Stokes and continuity equations, as well as the
advection–diffusion equation governing the solute concentration
dynamics, to verify the theory presented in the previous section.
We will use the case of electrolyte solutes with constant ζ for
ease of comparison with the analytical result given by Eq. (18).
In deriving our theory, we assumed that the solute concentrations
at the pore inlet and outlet are uniform across the cross-section
and equal to the solute concentration in the corresponding main
channel, i.e. c = 1 at x = 0 and c = β at x = 1. However, this
assumption requires verification, because end effects due to ad-
vection and diffusion in the main channel flows certainly affect
the solute concentrations near the pore inlet and outlet. For ex-
ample, according to Eq. (10), the diffusioosmotic outflow veloc-
ity at x = 1 is proportional to β−1 for β � 1. Thus, decreasing
β leads to a stronger outflow of the relatively higher solute con-
centration flow in the pore into the main channel. This increases
the effective value of β (for 0 < β < 1) at the pore outlet from
that expected by our theory, and thus the measured outflow ve-
locity will be less than expected, and the corresponding measured
pressure drop will likewise be affected. Thus, in order for such a
system to be useful in practice, we must first determine under
what conditions these end effects will be negligible.

In order to validate the theory presented in the previous section
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Fig. 2 Comparison of the axial velocity profiles u for the three-
dimensional numerical simulations and the theoretical predictions given
by Eq. (11) for a variety of channel aspect ratios h1/h2. Results are
taken at x = 0.99 for β = 0.01, Pe = 1, ε2 = 5× 10−4, Γw/LŪ = 0.375, and
Re = 8.89× 10−7, 4.44× 10−7, 2.22× 10−7, and 8.89× 10−8 from top to
bottom. With β < 1 and Γw/LŪ > 0, the maximum diffusioosmotic effects
occur in the vicinity of the pore outlet. Here, we see that at x = 0.99 the
wall slip velocity is nearly 25 times larger than the mean pore speed Ū .
This strong outflow necessitates a reversal of flow along the pore center-
line to conserve mass flux along the pore. As can be seen, numerical
results agree well with the theoretical predictions, suggesting that even
at x = 0.99 the end effects at the pore outlet are negligible.

and to quantify the impact of end effects, numerical simulations
were performed using the open-source computational fluid dy-
namics toolbox OpenFOAM.35 Details of the numerical methods
used and of the simulation mesh design are given in Appendix B.
To validate the theory presented in the previous section, we first
compare numerical results for the axial velocity near the pore out-
let with the theoretical predictions given by Eq. (11) for a variety
of channel aspect ratios h1

h2
with β = 0.01, Pe = 1, and Γw

LŪ = 0.375,
which are experimentally plausible7. Results are presented in
Figure 2 at x = 0.99, where the wall slip velocity is found to be ap-
proximately 25 times greater than the average axial flow velocity.
This outflow in turn drives an inflow along the pore centerline to
conserve mass. Despite these relatively large velocities near the
pore outlet, end effects are apparently negligible, even at x= 0.99.
Centerline pressures along the pore for these cases are compared
with the theoretical predictions of Eq. (16) in Figure 3. As men-
tioned, pc was chosen such that p = 0 at x = 1 for the theoretical
prediction. As can be seen in the figure inset, deviations from the
theoretical predictions do occur in the very near vicinity of the
pore outlet due to the end effects. However, we will show in the
next paragraph that when comparing total pressure drops along
the pore between the numerical simulation data and the theoret-
ical predictions, these end effects do not cause significant errors
for many practical choices of system parameters.

We compare the numerically computed pressure drops along
the pore with the theoretical predictions given by Eq. (18) for
a variety of dimensionless solute concentration ratios β and wall
diffusioosmotic mobilities Γw

LŪ in Figure 4. Results were computed

Fig. 3 Pore pressure profiles for a variety of channel aspect ratios h1/h2
with Pe = 1, Γw/LŪ = 0.375, β = 0.01, ε2 = 5×10−4, and Re = 8.89×10−8,
2.22× 10−7, 4.44× 10−7, and 8.89× 10−7. Solid lines correspond to the
theoretical predictions given by Eq. (16), and symbols correspond to
the results of the 3D numerical simulations. For visualization purposes,
numerical results were shifted such that pnum = ptheory at x= 0. As can be
seen, the maximum pressure drop ∆p = p(x = 1)− p(x = 0) is achieved
with a square channel h1/h2 = 1, which is intuitive since increasing h2
for a fixed h1 effectively increases the hydraulic diameter of the channel,
reducing the necessary pressure gradient to drive the flow. The figure
inset shows the pressure profiles near the pore outlet, where end effects
begin to cause relatively small deviations from the theoretical predictions.

Fig. 4 Pressure drop across the pore ∆p = p(x = 1)− p(x = 0) as a
function of the wall diffusioosmotic mobility Γw/LŪ for a variety of nondi-
mensional solute concentration ratios β with h1/h2 = 1, Pe = LŪ/Ds = 1,
ε1 = ε2 = 5×10−4, and Re= 8.89×10−7. Solid lines are theoretical predic-
tions of Eq. (18), and symbols are results of 3D simulations. For modest
solute concentration ratios, the simulations agree well with the theoret-
ical predictions. However, for β = 0.001 we start to observe deviations
from the theoretical results as the end effects apparently are significant.
The wall slip boundary condition at the pore junction uw(x = 1) ∝ β−1 for
β � 1. Thus, decreasing β increases the outflow velocity, which carries
the higher solute concentration fluid out into the main channel, effectively
increasing the solute concentration at the pore outlet. This increases the
effective β value, decreasing the pressure gradient along the pore.

Journal Name, [year], [vol.],1–14 | 7



for a solute Peclet number Pe = 1 with a pore aspect ratio h1/h2 =

1. The range of Γw
LŪ shown in the figure roughly corresponds to a

physically realistic range of system parameters. As can be seen,
for a wide range of solute concentration ratios and wall surface
charges, Eq. (18) accurately predicts the dimensionless pressure
drop ∆p along the pore. These results suggest that the type of
flow systems described here and shown graphically in Figure 1
may be designed such that end effects can be minimized, and the
measured pressure drop across the pore can provide an accurate
measure of the diffusioosmotic mobility of the pore walls, and
thus a measure of the surface’s zeta potential.

Comparison with previous data
In this section, we apply the methods presented above to the ex-
perimental results of Lee et al. 1, and we propose several modifi-
cations to their experimental design that will facilitate the use
of such a system for the purposes of zeta potentiometry. Lee
et al. provided experimental evidence of convective fluid motion
in a solute gradient due to diffusioosmosis, and they presented
a theoretical analysis of this transport phenomenon.1 They fabri-
cated H-shaped channels similar to the geometry in Figure 1 with
L = 150 µm, 2h1 = 163 nm, and 2h2 = 5 µm using conventional
nanofabrication techniques with Si chips. As described above,
they applied different electrolyte solute concentrations to each
end of the pore in order to induce diffusioosmosis. They took
special care to eliminate any pressure-driven flow inside the pore
in order to isolate the diffusioosmotic effects. They were able
to measure the flow rate in the pore with a sensitivity of about
50 fl/min, and by varying the applied solute concentrations they
observed both positive and negative flow rates in the pore.

Lee et al. plotted the results for their measured flow rates ver-
sus the logarithm of the concentration ratio between the pore
inlet and outlet in their Figure 2.1 They also presented in their
Equation (3) a linear relationship between the flow rate and the
concentration ratio, albeit without a rigorous derivation. This re-
sult is equivalent to a special case of our Eq. (18) for the case
∆p = 0. Note that, while this special case is valuable for the pur-
poses of isolating the diffusioosmotic effects, which was the goal
of Lee et al., several special considerations are needed to adapt
their system for the purposes of zeta potentiometry as described
here. For example, in order to minimize spurious residual convec-
tion, Lee et al. apparently insulated their system by unplugging all
tubings and sealing the ports prior to their experiments.1 That is,
they apparently set Ūmain,1 = Ūmain,2 = 0 and allowed the system
to settle before performing their measurements. While this has
the desired effect of eliminating spurious pressure-driven flow in
the pore, the flow in the main side channels serves the useful pur-
pose of maintaining the solute boundary conditions at the ends of
the pore, and as we have shown, end effects must be considered.
Thus, we do not recommend attempting to set ∆p = 0 for the pur-
poses of zeta potentiometry. Rather, we suggest that steady flow
in the main channels be maintained throughout the experiment
and the pressure drop across the pore be directly measured in
order to mitigate end effects.

Using three different solutes: KI, NaI, and LiI, Lee et al. mea-
sured flow rates in the range of ±500 fl/min with solute concen-

Fig. 5 Calculated zeta potential values based on the experimental flow
rate versus solute concentration ratio measurements presented in Fig-
ure 2 of Lee et al. 1 based on the assumption of uniform zeta potential
and with ∆p = 0. Error bars are based on the sensitivity of their flow
rate measurements of ±50 fl/min. Results under-predict the magnitude
of the zeta potential relative to their electroosmotically measured value of
ζ = −85± 2 mV, where the error increases with the ambipolar diffusivity
of the solute.

tration ratios ranging from about β = 0.1–10 and typical veloc-
ities on the order of 1–10 µm/s.1 Using the experimental flow
rate measurements presented in their Figure 2, we first estimate
the corresponding zeta potential predictions for each of their data
points based on the initial assumption of constant ζ (which is an
assumption they also made). These values are presented in Fig-
ure 5, where the error bars correspond to the uncertainty in their
flow rate measurements of ±50 fl/min. These values were com-
puted by first applying Eq. (18) to calculate the diffusioosmotic
mobilities, and then solving Eq. (19) for the corresponding zeta
potential assuming a temperature of T = 20◦C. Lee et al. also
used a standard electroosmotic measurement technique at a so-
lute concentration of 10 mM to measure the surface charge of
their channels, which they estimated as ζ =−85±2 mV.1

Note that the zeta potential predictions based on the diffu-
sioosmotic theory predictions shown in Figure 5 under-predict
the magnitude of the zeta potential relative to their electroos-
motic measurement, and furthermore, the results show some vari-
ability between the different solutes. There are several potential
explanations for these behaviors. First, the electroosmotic mea-
surement reported by Lee et al. 1 is taken at a fixed solute con-
centration of 10 mM, whereas in the diffusioosmosis experiments
the solute concentration varies by about one order of magnitude
throughout the channel. Thus, variability of the zeta potential
throughout the system may be a factor, which we will investigate
shortly. Second, the diffusioosmosis theory makes the assump-
tion of infinitesimal Debye layer thickness relative to the channel
size. However, with Debye lengths up to 10 nm at the solute con-
centrations used in their system, finite Debye layer effects may
play a role in their 163 nm thick channels with values of λd/h1
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Fig. 6 Sample experimental design for zeta potential measurement. By
extending the pore through the main side channels, pressure ports can
be added to measure the pressure drop across the pore. Validation sim-
ulations suggest that the pressures experienced within the access holes
for pressure measurement are approximately equal to the pressures at
the corresponding end of the pore for typical system parameters.

up to approximately 1/8. Furthermore, steric effects due to the
different-sized ions may play a role in the variability seen across
solutes, although this effect should be negligible at the concen-
trations seen in their experiments.

However, the most significant source of error for the diffusioos-
motic measurements likely arises from the fact that Lee et al. 1 set
∆p = 0 in order to isolate the diffusioosmosis. With no flow in the
main side channels of the system, the solute boundary conditions
at the inlet and outlet of the pore are not strictly maintained. The
effective solute concentration at the end of the pore correspond-
ing to the low solute concentration will be higher than expected,
and the effective solute concentration at the end of the pore cor-
responding to the high solute concentration will be lower than
expected. The net effect of this is that the pore will see a smaller
solute concentration gradient than expected, resulting in weaker
diffusioosmosis and a smaller predicted magnitude for the diffu-
sioosmotic mobility and zeta potential. This behavior is corrob-
orated by the data shown in Figure 5, as the magnitude of the
predicted zeta potentials tends to decrease as the ambipolar dif-
fusivity of the solute increases. The ambipolar diffusivities Ds =

2D+D−/(D++D−) of the given salts are Ds ≈ 2.00× 10−9 m2/s,
Ds ≈ 1.61×10−9 m2/s, and Ds ≈ 1.37×10−9 m2/s for KI, NaI, and
LiI, respectively. The solution to this source of error is to main-
tain a continuous flow rate in the main side channels and directly
measure the pressure drop across the pore. To do so, a simple
modification of the experimental design of Lee et al. 1 is to extend
the pore through the side main channels and provide access ports
for pressure measurements as shown in Figure 6.

Finally, we consider the role of variable zeta potential in this
system. As mentioned above, using standard electroosmotic mea-
surement techniques, Lee et al. estimated the zeta potential of
their channels to be ζ = −85±2 mV at a solute concentration of
10 mM.1 Thus, using Eq. (20), the proportionality constant a1 for
their system can be estimated as a1 =−18.5 mV. Using this value,
the solute concentration, zeta potential, and diffusioosmotic mo-
bility profiles throughout the pore are shown in Figure 7 for the
solute concentrations used by Lee et al. 1, assuming that the solute

concentration boundary conditions at the pore ends were well-
maintained by steady flow in the main side channels. These re-
sults demonstrate that relatively large variations in both the zeta
potential and diffusioosmotic mobility are present in Lee et al.’s
experiments, and the assumption of uniform zeta potential made
by Lee et al. 1 and needed for the application of Eq. (18) is not
likely valid at these combinations of absolute solute concentration
and solute concentration ratios. This variability represents an ad-
ditional source of error in the estimates of zeta potential provided
in Figure 5. These errors due to variable ζ can be simply elimi-
nated by using the numerical procedure outlined in the Electrolyte
solutes with variable zeta potential section. For most practical sys-
tems, the use of Eq. (18) should generally be restricted to the use
of making quick predictions about the effective diffusioosmotic
mobility or zeta potential of the channel walls.

Typical experimental parameters and uncertainty

Finally, in this section we suggest typical experimental parame-
ters that may be used to minimize the various potential sources
of error that may be present in the system. First, we will suggest
the use of a 0.4× 5× 150 µm3 pore. By using a taller channel
(400 nm versus 163 nm as in Lee et al. 1) the approximation of
the diffusioosmosis as a wall slip boundary condition will be bet-
ter satisfied. With Debye lengths less than 10 nm at solute con-
centrations above 1 mM, finite Debye layer effects should be neg-
ligible. In order to select the solute concentrations to use, several
considerations must be evaluated. First, assuming a given sensi-
tivity for the measurement of the flow rate (e.g. 50 fl/min in Lee
et al. 1), a larger ratio of high to low solute concentrations gives a
better sensitivity in the zeta potential measurement as seen in Fig-
ure 5. However, too large of an applied solute concentration ratio
will result in a breakdown of the pore end solute concentration
boundary conditions, as shown in Figure 4. A choice of β = 0.01
or 100 appears to be a reasonable choice. For these values it
will be necessary to apply the method previously described for
variable diffusioosmotic mobility. The form of the zeta potential
given by Eq. (20) is valid for silica below solute concentrations of
100 mM at pH > 6 and below 10 mM at pH > 3.5. Thus, we rec-
ommend the use of solute concentrations of 1 mM and 100 mM
in the two main channels for pH > 6 and 0.1 mM and 10 mM for
6 > pH > 3.5.

All that remains is to estimate the uncertainty in the measure-
ment technique. As an order-of-magnitude estimate, we consider
the result of Eq. (18), which can be solved for Γw as

Γw =
(3C∗−1) h2

1 ∆p∗−3LŪµ

3µ lnβ
, (29)

where ∆p∗ is the dimensional pressure drop across the pore.
Then, considering δ p∗ and δŪ the uncertainties in the pressure
drop and mean velocity measurements, respectively, the uncer-
tainty in the diffusioosmotic mobility coefficient δΓw is approxi-
mately

δΓw =

√(
∂Γw

∂∆p∗
δ p∗

)2
+

(
∂Γw

∂Ū
δŪ
)2

, (30)
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Fig. 7 Predicted solute concentration, zeta potential, and diffusioosmotic mobility coefficient profiles for the experimental solute concentration ratios
from Lee et al. 1 using their electroosmotically measured value of a1 = −18.5 mV. Results demonstrate the wide variation of both ζ and Γw along the
pore, suggesting that the assumptions of constant zeta potential and diffusioosmotic mobility are not valid at the solute concentrations seen in Lee
et al.’s experiments. Thus, in addition to diffuse, transient solute boundary conditions at the pore ends, zeta potential variability represents another
source of error for the predictions of Figure 5, and in general the procedure we outlined in the Electrolyte solutes with variable zeta potential section
should be utilized instead of Eq. (18), except perhaps in the dilute limit.

which simplifies to

δΓw =

√√√√( (3C∗−1) h2
1

3 µ lnβ
δ p∗

)2

+

(
L

lnβ
δŪ
)2

. (31)

Using the same strategy as Lee et al. 1 to measure flow rate, an un-
certainty in the mean flow speed of approximately δŪ = 1 µm/s
can be achieved, and with high-precision pressure sensors, an
uncertainty of δ p∗ = 10 Pa is possible. Then, with the channel
geometry and solute concentration ratios suggested above, the
uncertainty in diffusioosmotic mobility coefficient is on the order
of δΓW ∼ 1× 10−10 m2/s. By varying the flow rates in the side
channels, multiple measurements with different Ū and ∆p∗ can
be performed to improve the accuracy of the final measurement.

Conclusion
We have proposed a novel microfluidic technique for measuring
these properties for solid surfaces using diffusioosmosis. By in-
troducing two fluids with different solute concentrations into two
main channels connected by a long, narrow pore, a steady-state
solute concentration gradient is established within the pore. Due
to solute–surface interactions, this solute concentration gradient
can drive a diffusioosmotic wall slip boundary condition on the
channel walls within the pore, which in turn result in predictable
deviations of the fluid velocity and pressure profiles from the well-
known Poiseuille flow. These deviations allow theoretical rela-
tionships to be developed between the pressure drop across the
pore, the mean flow speed in the pore, and the diffusioosmotic
mobility coefficient of the channel walls.

For the cases of electrolyte solutes with constant ζ and non-
electrolyte solutes with purely steric interactions, we derived sim-
ple analytical results that can be used to predict the zeta potential
and interaction radius, respectively, for the two cases based on
pressure drop and flow rate measurements. For the more general

cases with electrolyte solutes with variable ζ and non-electrolyte
solutes with other interaction potentials, we presented a numer-
ical method that can be used to predict the proportionality con-
stant a1 and the effective characteristic interaction length L∗

eff, re-
spectively, for the two cases also based on pressure drop and flow
rate measurements. We used 3D numerical simulations of the
coupled governing equations to validate the theoretical results
for the test case of electrolyte solutes with constant ζ , and we
confirmed that end effects are negligible for a wide range of pa-
rameters. Finally, we illustrated the use of our method by apply-
ing it to the experimental results of Lee et al. 1 and analyzed the
various potential sources of error in the system. Our findings sug-
gest that the surface–solute interactions of both electrolyte and
non-electrolyte solutes with flat, solid surfaces can be character-
ized using diffusioosmosis, and so possibly eliminate the need for
expensive and sophisticated electrical components.

Acknowledgments
We would like to thank Suin Shim for insightful conversations on
the effects of variable zeta potential. HAS thanks the NSF via
grant CBET-1702693. We greatly appreciate the valuable feed-
backs of the anonymous reviewers that helped us to greatly ex-
pand and strengthen this manuscript.

Conflict of interest
The authors declare no conflicts of interest.

Appendix A: Review of other methods
In this section, we review several of the most common methods
for measuring the zeta potential of surfaces, and we discuss po-
tential limitations of the techniques that should be considered
when selecting a measurement approach. Specifically, we discuss
the electroosmosis method, the streaming potential method, the
streaming current method, and the ZetaSpin method.
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Electroosmosis method

The modern theory of electroosmosis was primarily developed by
von Smoluchowski.36 When an external electrical field is applied
parallel to a solid–liquid interface, the field exerts an electrical
body force on the excess counterions in the charged diffuse layer
near the interface. As these ions are pulled by this field, they drag
the liquid with them, resulting in an electroosmotic flow.37 De-
pending on the geometry of the system, the Smoluchowski equa-
tion, which relates the electroosmotic mobility to the interface
zeta potential, can be used to relate the zeta potential, the ap-
plied electric field, and the average flow velocity. Thus, the zeta
potential can be determined simply by measuring the electroos-
motic flow velocity in a system for a given applied field. Typically,
the electroosmotic flow velocity uuueo due to an external applied
electric field EEEext is given by:

uuueo =− εζ

µ
EEEext, (32)

where ε and µ are the permittivity and dynamic viscosity of the
medium, respectively.

While theoretically straightforward, the electroosmotic ap-
proach does suffer from several limitations. First, electroosmo-
sis measurements are often limited to a certain pH and solute
concentration range in order to avoid damaging the electrodes
in the system.25 Furthermore, electroosmotic mobility measure-
ments of ζ also suffer from errors due to Joule heating from the
applied voltage; typical experiments have been reported to suffer
from no less than 5-10 ◦C of heating, with ∼3% error per ◦C.37,38

This heating limits the magnitude of the potential that can be ap-
plied, effectively reducing the electroosmotic flow velocity in the
system. For this reason, some researchers prefer the streaming po-
tential method over electroosmosis because it is sometimes more
convenient to measure small electrical potentials than to measure
small flow rates39,40.

Nonetheless, the electroosmosis technique has been used with
success. For example, Yan et al. demonstrated a novel use of mi-
cro particle image velocimetry to measure the temporal devel-
opment of the electroosmotic flow in microchannels and showed
that this technique can simultaneously determine the zeta poten-
tial of the channel walls and the electrophoretic velocity of tracer
particles.41 Another technique, developed by Corbett et al., uses
phase analysis light scattering to measure the mobility of tracer
particles in the vicinity of a charged test surface in a dip cell ar-
rangement, and a model of the electroosmotic flow near the sur-
face allows the prediction of the surface’s zeta potential.42

Furthermore, Sze et al. used a novel experimental technique
that measured the slope of the current–time relationship in an
electroosmotic flow with transient solute concentration and used
the Smoluchowski equation to perform repeatable zeta potential
measurements of glass and polydimethylsiloxane (PDMS) coated
surfaces.37 The authors claim that, because this approach uses
electroosmotic flow, in contrast to the pressure-driven flows in
streaming potential/current measurements, the electroosmosis
measurements are more representative of the operating condi-
tions of many microfluidic devices that use electroosmotic flows.

There is a physical basis for this claim. When measuring the
zeta potentials of plane ceramic membranes, a comparison be-
tween results from electroosmosis and streaming potential meth-
ods found that electroosmosis gives greater zeta-potential val-
ues.25 These results suggest that the location of the shearing
plane depends on which electrokinetic measurement method is
used, and the choice of measurement method should be informed
by the ultimate system of interest. That is, if the system of inter-
est involves flows induced by external electrical potentials, one
should consider using electroosmosis to measure the zeta poten-
tials of the system, whereas if the system of interest involves flows
induced by applied solute gradients, one should consider the dif-
fusioosmotic method we propose here, since the physical, true
zeta potential may be different in the two flows.25,43

Streaming potential method
Another, and more popular, technique for measuring the zeta
potentials of solid surfaces exposed to electrolyte solutes is the
streaming potential method. The electrical double layer carries
a net charge due to the accumulated counterions near the inter-
face. Thus, when a pressure gradient is applied to drive a flow,
a streaming current results, leading to the build up of a poten-
tial difference, which in turn leads to a back conduction. When
equilibrium is achieved, the back current and streaming current
are equal, and the measured potential difference across the cap-
illary or channel is the streaming potential.40 In such a system,
the zeta potential is given by the Helmholtz-Smoluchowski equa-
tion40,44,45:

ζ =
Es

∆p
µ

εε0

L
A

1
R
, (33)

where Es is the induced streaming potential, ∆p is the applied
pressure difference along the channel, µ is the dynamic viscos-
ity of the liquid, ε is the liquid permittivity, ε0 is the permittiv-
ity in vacuum, R is the electrical resistance across the channel,
L is the length of the channel, and A is the cross-sectional area
of the channel. In Eq. (33), Es/∆p can be determined by di-
rect measurement of the streaming potential for a given applied
pressure difference, and R can be measured using an AC conduc-
tivity bridge.40 The streaming potential method has been used
successfully to measure the zeta potentials of reverse osmosis
membranes40, fused silica slides46, granular porous media sur-
faces26, and many other surfaces. Streaming potential measure-
ments have also been used on commercial nanofiltration and re-
verse osmosis membranes to study the influence of solution chem-
istry on the zeta potential of membrane surfaces.40,47–49

While this method has proven reliable, streaming potential
measurements still have several reported challenges. As with
electroosmosis, streaming potential methods are also often lim-
ited to a certain pH range in order to avoid damaging the elec-
trodes.25,26 Furthermore, large pressures on the order of a few
bars are typical for streaming potential techniques, which can re-
quire careful sealing of the system.42 Another issue that must be
considered in streaming potential measurements is asymmetric
streaming potentials when the flow direction is reversed due to
small differences in the electrode potential.26,46 To overcome this
issue, Ball and Fuerstenau suggest measuring the slope of the po-
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tential versus pressure drop relation as opposed to individual po-
tential/pressure drop values.23 Another complication to stream-
ing potential measurements is the presence of finite surface con-
ductivity, which can represent a non-negligible contribution to the
total electrical conductivity. For example, in one study performing
streaming potential measurements of granular porous media, the
contribution of surface conductance to the total conductivity was
13.5% at an electrolyte concentration of 0.1 M, which increased
to 69.4% at an electrolyte concentration of 10−5 M.26

Streaming potential measurements also rely on the assump-
tions of steady, incompressible, laminar, and fully developed flow,
which may be limiting factors for some systems. For example,
Van Wagenen and Andrade performed a study of streaming po-
tential measurements in the case of developing flow at Reynolds
numbers up to and beyond transition to turbulence and found
that the flow field must be fully developed over at least 90%
of the channel length in order to achieve accurate streaming po-
tential measurements.50 Finally, the streaming potential method
also suffers from the challenge of measuring sometimes highly
sensitive voltage differences. For example, the original form of
the ZetaSpin technique (an adaptation of the streaming poten-
tial method described in more detail below) was limited to so-
lutions with electrolyte concentrations less than 1 mM.51 Above
this concentration, streaming potentials were less than 0.1 mV
and became difficult to distinguish from noise.

Streaming current method

The streaming current method is closely related to the streaming
potential method, except that the equilibrium streaming current
is measured as a function of the applied driving pressure differ-
ence instead of the streaming potential. That is, with stream-
ing potential measurements, a high-impedance voltmeter is ap-
plied across the channel, whereas with streaming current mea-
surements, a low-impedance ammeter is used. A modified form
of the Helmholtz-Smoluchowski equation can then be used to de-
duce the zeta potential from the streaming current versus pres-
sure drop relationship. As a standalone measurement technique,
the streaming current method has had less popularity than the
streaming potential method, although hybrid methods using both
streaming potential and streaming current measurements have
been developed to provide more accurate results and to simul-
taneously measure additional properties such as the surface con-
ductivity.52,53 For example, subsequent studies of the ZetaSpin
technique (described below) demonstrated the use of streaming
current measurements in conjunction with streaming potential
measurements to experimentally determine a current collection
efficiency for a system that is insensitive to the zeta potential
and solute concentration, which allows the system to be used
to measure zeta potentials at much higher solution conductivi-
ties than with streaming potential measurements alone.54 In ad-
dition, Werner et al. developed a Microslit Electrokinetic Set-up
(MES) and demonstrated the simultaneous measurement of the
zeta potential and surface conductivity of planar surface samples
through a combination of streaming potential and streaming cur-
rent measurements.53 Due to its close similarity to the stream-

ing potential method, the streaming current method suffers from
many of the challenges as described in the previous section.

ZetaSpin method

A more recent technique that solves some of the challenges of tra-
ditional streaming potential/current approaches is the ZetaSpin
method. Sides and Hoggard developed the first iteration of the
ZetaSpin technique, which consists of a disk-shaped test surface
that is spun in the plane normal to its axis in contact with an
electrolyte solute solution.51 The authors showed that voltage
measurements, one near the surface on the axis of rotation and
one far from the disk, can be used to directly predict the zeta
potential of the surface, and that the measured streaming poten-
tial varies with the rotation rate to the 3

2 power.51 This ZetaSpin
technique eliminated the need to carefully seal flow channels in
order to withstand the pressures of traditional streaming poten-
tial/current methods, and it also eliminated the need for correc-
tions due to the presence of another material. The most limiting
constraint for this approach is the limitation to electrolyte con-
centrations less than 1 mM. Sides and Hoggard found that above
this level the streaming potentials were much less than 1 mV and
could not be measured reliably.51

Hoggard et al. improved on the ZetaSpin technique and ex-
tended the technique to measure ζ at higher solute concentra-
tions by incorporating streaming current measurements into the
system.54 By varying the geometry of the outer electrode, they
measured the current collection efficiencies for each variant and
found that they are insensitive to both the zeta potential and elec-
trolyte concentration in solution.54 Once the current collection
efficiency is known for a given system, the true streaming current
can be estimated from the measured current, and the zeta po-
tential can then be predicted. A revised theory for the ZetaSpin
method was later introduced that better accounted for the radi-
ally outward flow of mobile charge near the surface and improved
the accuracy of ζ predictions.55 This technique has been used
successfully to measure the zeta potentials of many general-use
materials including paints, plastics, minerals, and glass.56 An-
other significant advantage for the ZetaSpin technique is that the
surface conductivity is negligible for all practical electrolyte con-
centrations, which means that correction factors are not needed
as in traditional streaming potential/current methods.57

While the ZetaSpin technique has demonstrated success and
reliability, some features of this technique may present limita-
tions for certain types of measurements. The technique is sen-
sitive to the position of the near-surface electrode, especially
to its distance from the surface. With the basic streaming po-
tential approach, measurements are limited to less than 1 mM
electrolyte concentrations. With the hybrid streaming poten-
tial/current method, this limitation is eliminated, but current col-
lection efficiencies are typically small, on the order of 1-3%, and
the measured currents are on the order of 10 nA. This approach
also requires calibration experiments depending on the chosen
outer electrodes, since collection efficiencies are sensitive to the
size and shape of the electrodes. Finally, it is unclear whether
electrode polarization introduces a source of uncertainty in this
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system since the flow cannot be reversed to detect asymmet-
ric measurements as in the traditional streaming potential ap-
proach. Nonetheless, the ZetaSpin technique remains an attrac-
tive, general-purpose method for measuring the zeta potentials of
surfaces exposed to electrolyte solutions.

Appendix B: Numerical Simulations
As mentioned, numerical simulations were performed using the
OpenFOAM35 computational fluid dynamics toolbox. A custom,
in-house solver based on the simpleFoam and scalarTransport-
Foam solvers of OpenFOAM was designed to simultaneously solve
for the coupled steady-state fluid/solute dynamics under the in-
fluence of diffusioosmosis. The solver operates by iteratively solv-
ing for the quasi-steady fluid velocity and pressure using the sim-
pleFoam solver and then updating the solute concentration pro-
file using the transient scalarTransportFoam solver. This separa-
tion of time scales is made possible by the low Reynolds number
flow assumption and by the large separation in the time scales
of viscous and solute diffusion (i.e. ν � Ds). The solver is run
until the solute concentration profile no longer evolves with time,
at which point both the solute and fluid dynamics have reached
their steady-state profiles. The solver is second-order accurate in
space. Each simulation used approximately 3×105 grid cells and
converged in about 5 minutes running on 64 processors.

Simulation meshes were designed using OpenFOAM’s built-in
blockMesh and refineMesh utilities with local refinements near
the inlet and outlet of the pore to efficiently resolve the junctions
with the main channel flows. A subset of the simulation domain
demonstrates this strategy of local refinement at the junctions in
Figure 8. The axial distribution of grid cells within the pore are
refined towards the outlet, so that the finest mesh occurs in the
vicinity of the pore’s outlet, which is the most critical region to
resolve since diffusioosmosis is strongest there. For this reason,
the dynamics near the pore inlet are relatively unimportant. In
fact, performing simulations without the side channel adjacent
to the pore inlet (channel 1 in Figure 1) and simply fixing the
inlet conditions at the pore entrance results in identical numer-
ical results when compared with simulations of the full system
with both side channels. Furthermore, with this strategy the av-
erage flow speed in the pore Ū can be set directly as an input
parameter to the simulation, whereas with both side channels in-
cluded, Ūmain,1 and Ūmain,2 are set as input parameters, and Ū
must be measured. Therefore, most simulations were performed
without the side channel 1 (which we confirmed had a negligible
impact on results) in order to more conveniently perform simula-
tions over a range of desired Γw/LŪ and Pe values.

At solid boundaries, the no-penetration boundary condition
was enforced for the velocity component normal to the walls, and
the diffusioosmotic wall slip velocity boundary condition given by
Eq. (3) was enforced for the velocity components tangent to the
wall. The pressure gradient normal to the walls was fixed to be
zero. At the outlet(s) of the system, the velocity was given a zero
normal gradient boundary condition, which assumes the flow is
fully developed and the pressure was fixed at a uniform value of
zero. Finally, at the inlet(s) the pressure was given a zero nor-
mal gradient boundary condition, and Ūmain,1 and Ūmain,2 (or Ū

Fig. 8 Sample subset of the numerical simulation domain showing the
local refinement strategy used to merge the outlet of the pore with the
relatively much larger main channel. Only grid cells in the vicinity of the
junction are visualized to demonstrate these local refinements. Mesh
visualizations include (a) perspective view of the junction, (b) close-up
perspective view of the junction, and (c) bottom-up view of the junction.
As can be seen, five levels of progressive refinement were used to match
the pore to the side main channel. Solid arrows denote the direction of
the flow. Mesh resolutions shown have been coarsened purposefully by
a factor of two in all directions for visualization purposes.

and Ūmain,2 depending on whether channel 1 was included in the
simulation) were fixed at uniform values.
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