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Abstract Nonlocal phonological patterns such as vowel harmony and long-distance
consonant assimilation and dissimilation motivate representations that include only
the interacting segments—projections. We present an implemented computational
learner that induces projections based on phonotactic properties of a language that are
observable without nonlocal representations. The learner builds on the base grammar
induced by the MaxEnt Phonotactic Learner (Hayes and Wilson 2008). Our model
searches this baseline grammar for constraints that suggest nonlocal interactions, cap-
italizing on the observations that (a) nonlocal interactions can be seen in trigrams if
the language has simple syllable structure, and (b) nonlocally interacting segments
define a natural class. We show that this model finds nonlocal restrictions on laryngeal
consonants in corpora of Quechua and Aymara, and vowel co-occurrence restrictions
in Shona.

Keywords Phonology · Phonotactics · Computational modeling · Inductive
learning · Learnability · Consonant harmony · Consonant dissimilation · Vowel
harmony · Nonlocal phonology · Corpus phonology · Quechua · Aymara · Shona

1 Introduction

Nonlocal phonological interactions such as vowel harmony and consonant dissimila-
tion are a long-standing challenge for phonological theory. A key observation about
such patterns is that the interacting segments define a natural class, and this is re-
flected in formal analyses either through feature geometric structures that constrain
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phonological patterns (Mester 1986; McCarthy 1988) or fixed scales of constraints
that reflect natural class structure (Hansson 2001; Rose and Walker 2004). We present
an inductive model that incorporates this insight about the role of natural class struc-
ture in nonlocal representations without assuming a predefined feature geometry or
constraint set. Our learner attends to certain properties of a language that are ob-
servable without nonlocal representations, and searches for nonlocal constraints on
projections defined by the natural class structure of the language. We demonstrate the
success of our learner with three case studies, including co-occurrence restrictions on
stops in Quechua (exemplified in (1)), the similar restrictions in Aymara, and vowel
co-occurrence restrictions in Shona verbs (see (2)).

(1) Consonant co-occurrence restrictions in Quechua, in brief
a. initial ejectives and aspirates allowed: k’utuj ‘to cut’ khanij ‘to bite’
b. medial ejectives and aspirates allowed: rit’i ‘snow’ juthu ‘partridge’
c. no stop-ejective combinations: *kut’u *k’ut’u *khut’u
d. no stop-aspirate combinations: *kuthu *k’uthu *khuthu

(2) Vowel co-occurrence restrictions in Shona verbs, in brief
a. [e e] but not [e i]: -per-er-a *-per-ir-a ‘end in’
b. [i i] but not [i e]: -ip-ir-a *-ip-er-a ‘be evil for’
c. [a i] but not [a e]: -pofomadz-ir-a *. . .adz-er-a ‘blind for’
d. [e u] allowed: -svetuk-ir-a *svetok-ir-a ‘jump in’
e. [o u] not allowed: -pofomadz-ir-a *pofu. . . ‘blind for’

Our inductive learner builds on the Maximum Entropy (MaxEnt) Phonotactic Learner
of Hayes and Wilson (2008). This learner works from positive learning evidence, in
the form of the phonological words of the language, and searches through the space
of possible n-gram constraints on natural classes to identify constraints that penalize
underattested or unattested structures. While the Hayes and Wilson model is success-
ful at finding phonologically meaningful local generalizations, this kind of learning
is computationally intensive and does not scale up to searching through an exhaus-
tive space of nonlocal interactions. Hayes and Wilson demonstrate that their learner
can find nonlocal generalizations when supplied with projections by the analyst, but
these generalizations cannot be captured without projections, and their model does
not learn the projections on its own. We augment their model with a procedure that
identifies nonlocal interactions and encodes them in projection-based constraints.

Our model is based on a key empirical insight about the local phonology of lan-
guages with nonlocal phonological interactions: while nonlocal restrictions hold at
arbitrary distances, they may also be observable within a trigram. In many languages
with nonlocal phonology, the interacting classes are frequently separated by only a
single segment: in languages with consonant dissimilation and assimilation, the inter-
acting consonants are often separated by just one vowel, CVC, and in languages with
vowel harmony, there is often just one consonant between the assimilating vowels,
VCV. Interactions across a single segment can be captured via trigram constraints
in the baseline grammar—the grammar with no projections—and used as a clue that
there is a more general nonlocal interaction in the language. Our model identifies rel-
evant trigram constraints in the baseline grammar and builds natural-class based pro-
jections from them. By working with a statistical learner and a simple, natural-class
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based projection induction procedure, our model conducts a targeted and efficient
search for nonlocal interactions and is less likely to confuse accidental and system-
atic gaps. We begin by presenting our learner in detail (Sect. 2) and then demonstrate
how it works with three case studies (Sects. 3–5).

2 An inductive projection learner

The baseline algorithm for our learner is the Hayes and Wilson MaxEnt Phonotac-
tic Learner, described in Sect. 2.1. This inductive learner is based on the principle of
Maximum Entropy (Della Pietra et al. 1997; Goldwater and Johnson 2003; Hayes and
Wilson 2008; Zuraw and Hayes 2017). The learner induces a grammar from learn-
ing data by searching through a space of possible constraints and evaluating these
constraints for their usefulness in accounting for patterns in the learning data. The
model selects a set of constraints and assigns these constraints weights, resulting in
a grammar that assigns scores to novel forms. To this learner, we add a procedure
for inducing projections on which nonlocal phonological interactions can be learned.
Our model has two components, described in Sects. 2.2–2.3. First, the model evalu-
ates the baseline grammar produced by the Hayes and Wilson MaxEnt Phonotactic
Learner for evidence that a projection may be needed. Second, the model creates pro-
jections based on the output of the baseline grammar and builds a final grammar by
searching these projections for useful constraints.

2.1 An overview of the MaxEnt Phonotactic Learner

The Hayes and Wilson MaxEnt Phonotactic Learner (Hayes and Wilson 2008) uses
positive evidence (and implicit negative evidence) to induce phonotactic constraints
against sequences that are unattested or underattested in a language. The learner is
given a list of attested words and the features that describe the segments of the lan-
guage.1 The learner begins by constructing a list of natural classes and an exhaustive
list of all possible n-gram constraints built from those natural classes. The learner
then constructs its own list of hypothetical forms by combining the language’s seg-
ments randomly, and uses an iterative scaling algorithm (Della Pietra et al. 1997) to
identify unattested or underattested n-grams in the learning data. The learner induces
n-gram constraints against the relevant sequences and uses the principle of Maximum
Entropy to weight the constraints, maximizing the probability of the observed phono-
tactic distribution in the language. The output of the learner is a list of constraints and
their weights, which can be used to assign probabilities and harmony scores to previ-
ously unseen data such as nonce words.

Constraint generation. The learner takes the phonological feature set defined by
the analyst, identifies all the unique natural classes in it (using the shortest featural

1An anonymous reviewer asks how crucial it is to assume that the segmental inventory is given in advance.
This is an interesting question, since traditional phonological reasoning about analyzing segmental inven-
tories does usually depend on phonotactics: for example, the analysis of English [Ù] as an affricate and [ts]
as a cluster relies on distributional information. We do not attempt to solve this complex problem here,
though see Sect. 5 for some related discussion.
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description of the class), and generates a space of all possible n-gram constraints (up
to a certain n) composed of those natural classes. Phonological constraints can be
paradigmatic (unigram) or syntagmatic (bigram, trigram, etc.). For example, Russian
does not include a velar nasal at all, motivating a paradigmatic unigram constraint
*[+dorsal, +nasal], whereas in English, velar nasals are prohibited in word-initial po-
sition, captured by the bigram *#[+dorsal,+nasal]. Accounting for the full range of
phonological patterns requires constraints that span at least three positions—trigrams
(see Goldsmith and Riggle 2012, inter alia). Trigrams are needed to capture phono-
logical patterns such as intervocalic voicing (*VC

˚
V), or restrictions at word edges

(e.g., *#[+dorsal, +nasal] in English). As Hayes and Wilson explain (2008:392), the
number of possible natural class-based constraints grows exponentially with the size
of the n-gram window, so it is in practice difficult to search even through a space
of relatively short constraints when the natural classes exceed a certain number. The
problem of distinguishing between systematic and accidental gaps also increases with
the length of constraints, as discussed further in Wilson and Gallagher (2018).

In order for a constraint to be added to the grammar, it must meet or exceed the se-
lection criterion (O/E or gain, discussed below). Since there are many constraints that
may meet the criterion, Hayes and Wilson (2008) add several heuristics, inspired by
phonological reasoning. These heuristics include a preference for shorter constraints,
and a preference for constraints that mention larger natural classes over smaller ones.

Constraint selection criterion. The original version of the learner distributed in
2008 uses the Observed/Expected (O/E) statistic to identify the most promising con-
straints (Trubetzkoy 1939:264–266). The O/E statistic calculates the likelihood of
a sequence of X and Y given the independent probabilities of X and Y, allowing a
distinction between phonologically meaningful underattestation and accidental gaps
due to overall rarity of X or Y. The O/E statistic has been used extensively as a de-
scriptive tool in work on probabilistic phonological constraints (Frisch et al. 2004;
Gallagher and Coon 2008; Coetzee and Pater 2008), where the O/E calculation is
position specific, with the relevant positions being defined by the analyst based on
relevant phonological properties. The O/E metric in the 2008 learner, however, is not
position specific, and Wilson and Obdeyn (2009) demonstrate that it is vulnerable
to overestimating prohibitions when either X or Y is positionally restricted. This is
an issue in our case studies: Quechua and Shona restrict some of the non-locally
interacting segments sequentially and/or positionally, and the value of a nonlocal co-
occurrence constraint needs to be assessed independently of these other restrictions.
We therefore use an alternative heuristic for selecting constraints from the list of all
possible n-grams, the gain criterion2 (Della Pietra et al. 1997; Wilson and Gallagher

2Della Pietra et al. (1997:4) characterize gain as “the improvement [a constraint] brings to the model when
it has weight [w]”: GainCon(w,C) = D(p̃||Con) − D(p̃||ConwC), where C is the constraint with the
weight w, D is the Kullback-Leibler divergence, p̃ is the probability distribution of the data, and Con is the
current constraint grammar.

Della Pietra et al. explain the reason for this method of calculating gain intuitively as follows: “We
approximate the improvement due to adding a single candidate [constraint], measured by the reduction
in Kullback-Leibler divergence, by adjusting only the weight of the [constraint] and keeping all of the
other parameters of the [grammar] fixed. In general this is only an estimate, since it may well be that
adding a [constraint] will require significant adjustments to all of the parameters in the new model. From
a computational perspective, approximating the improvement in this way can enable the simultaneous
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2018). The gain of a constraint is a function of the log likelihood of the model were
the constraint to be added to the grammar without changing the weights of any of
the constraints already in the grammar. Gain is set at a specific threshold; the higher
the gain, the more statistical support is required for a constraint to be added to the
grammar.

2.2 Exploring the baseline grammar for placeholder trigrams

The Hayes and Wilson MaxEnt Phonotactic Learner augments its list of natural
classes by a [word boundary] feature, to track phonological effects at word edges.
Word edges are [+word boundary] (+wb), and [-word boundary] refers to all of the
consonants and vowels in the language. We refer to [-word boundary] (henceforth
[-wb] or simply [ ]) as a placeholder class. Since the placeholder class is the largest
natural class in any language, the learner’s bias towards large natural classes will
make it likely to refer to the placeholder whenever the generalization is consistent
with the data. For example, take a strict CV language in which [k] and [q] never occur
across an intervening vowel. A linguist might state this generalization as *[k]V[q],
but the Hayes and Wilson MaxEnt Phonotactic Learner would induce the more gen-
eral constraint *[k][ ][q], since neither vowels nor consonants occur in the medial
position.

The intuition behind our projection induction procedure is that trigram constraints
with the placeholder class as the medial gram are a cue to the learner that the classes
on either side interact nonlocally. A constraint *X[-wb]Y tells the learner that X
and Y interact phonologically, and that the identity of the segment between them is
irrelevant—this is precisely the characteristic of a nonlocal phonological interaction.
We take the presence of such constraints in the baseline grammar to indicate the
need to explore nonlocal co-occurrence restrictions between X and Y by looking for
generalizations that hold on projections defined by natural classes that include both
X and Y.

Segmental trigram constraints with a placeholder segment often capture a piece
of a nonlocal interaction, but the whole interaction cannot be captured without
a projection. In Quechua, for example, the restriction on stops followed by ejec-
tives is partially accounted for by the trigram constraint *[-continuant, -sonorant]
[-wb][+constricted glottis] (henceforth [cg]) on the baseline projection, which pe-
nalizes unattested forms like *[kap’i], with one segment intervening between the
stop and the ejective. But stops also cannot be followed by ejectives when more
segments intervene, as in *[kasp’i] or *[kamip’a]. To account for the full pattern,
a projection with only oral stops is needed. Similarly, in Shona, interactions between
vowels are partially captured on the baseline projection with a trigram constraint
*[-high, -back][-wb][-high, -low, +back]. This constraint bans certain vowels sepa-
rated by a single consonant, e.g., *[epo], but interactions between vowels that are
separated by more than one consonant require a projection that includes only vowels,
e.g., *[empo].

evaluation of thousands of candidate [constraints], and makes the algorithm practical.” (We modified the
language slightly to translate it into constraint/grammar terms.) We might add that defined in this way,
gain can be calculated for each constraint even when the grammar contains no constraints yet, whereas for
O/E, there needs to be an arbitrarily set threshold.
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The success of this induction strategy depends on the syllable structure of the
language and on the positional distribution of segments. The learner will notice co-
occurrence restrictions on consonants when they are frequently separated by just one
vowel, CVC, and vowel restrictions are easiest to notice when the vowels are usually
separated by just one consonant, VCV. As we will show in our case studies, this is
true of Quechua, Aymara and Shona—even though all languages tolerate deviations
from strict CV alternation, the CVC and VCV configurations are frequent enough in
the learning data that trigram constraints with a placeholder class are reliably included
in the baseline grammar. The observation that predictable syllable structure makes
non-local relations easier to detect suggests a plausible learning-based explanation
for McCarthy’s (1989) hypothesis that templaticism leads to planar segregation of
consonants and vowels. C-to-C and V-to-V interactions will be most noticeable to the
learner in languages with the simplest or most predictable syllable structure, since the
learner can see these interactions in segmental trigrams.

On the other hand, languages with complex syllable structure may not show the
segments from classes X and Y in trigram configurations sufficiently often for the
learner to notice a co-occurrence restriction. In a language with more complex syl-
lable structure—such as Russian—any dependencies between noncontiguous vowels
or consonants would be much harder for the learner to detect. Even in such languages,
CVC trigrams are more common than CCC and so on, but relatively frequent VCV
and CVC trigrams alone is no guarantee that all nonlocal interactions will be observ-
able in trigrams.3 For example, in a language where [l] and [r] dissimilate, it is not
sufficient that there be many CVC strings; rather, there must be sufficiently many
liquid-V-liquid strings for the learner to notice the rhotic/liquid combinatorics in par-
ticular (as opposed to accounting for the underattestation of liquid-V-liquid strings
through bigram constraints). We return to this aspect of the learning data throughout
the paper.

2.3 Creating non-baseline projections

After identifying placeholder trigram constraints on the baseline projection, the
learner constructs a nonlocal projection (e.g., a projection including only oral stops,
or only vowels) for each constraint and builds a final grammar by searching through
the baseline projection and all nonlocal projections for constraints.

Bigrams and trigrams only. While the learner searches for unigram constraints on
the baseline projection, we do not allow it to posit such constraints on other projec-
tions. At the baseline level, a unigram constraint can indeed be a reasonable way to
capture the phonotactics of a language—e.g., [Z] is relatively rare in English, so its
distribution may be well captured with a unigram constraint. On higher projections,
however, unigram constraints are nonsensical. Non-baseline projections are postu-
lated to capture interactions between non-adjacent segments, so we restrict the search
space on these projections to bigram and trigram constraints.

3We did the counts for a transcribed Russian dictionary of 103,000 words. Looking at consonants in
trigram and tetragram configurations, CVC accounted for 337,415 or 63% of all the combinations; CCC:
18,516 (3.4%), CCVC: 76,574 (14%), CVCC: 93,637 (18%), CVVC: 7,946 (1%). For vowel-to-vowel
n-grams, the counts are VCV: 117,214 (64%), VCCV: 61,344 (33%), VCVV: 2,074 (1%), VVCV: 2512
(1%). We give comparable numbers for other languages, where relevant, in their respective sections.



Inducing nonlocal constraints from baseline phonotactics

Which classes define a projection. When the learner identifies a placeholder tri-
gram *X[-wb]Y, it constructs a projection from the smallest natural class that con-
tains all the segments in both X and Y. Very often, this is either X or Y itself: e.g.,
*[-sonorant, -continuant][-wb][+cg] will give rise to a [-sonorant, -continuant] pro-
jection, since ejectives are a subset of plosives. If neither class is a superset of the
other, then the smallest class that is a superset of X and Y will be searched.

A projection based on the smallest natural class that includes both X and Y rep-
resents the maximally general hypothesis that all intervening segments that do not
belong to the class are irrelevant. This will be the correct hypothesis provided (i) the
baseline grammar includes the most general placeholder trigram constraint that ac-
counts for the restriction, and (ii) the interaction does not involve segments outside of
the class, i.e., no special class Z is transparent or opaque to the interaction between
X and Y. We elaborate on both of these points in Sect. 5.5 and Sect. 6.3 below.

Which features are visible on the projection. Our learner considers the full space
of features on all projections. Any non-zero feature in the natural class defined by the
projection is visible—this includes features with ± values and privative features that
have + values only. We see this choice as representing the null hypothesis. Following
Hayes and Wilson (2008), [±wb] is always projected as well; this is necessary to
encode positional and ordering generalizations (e.g., in Shona, [o] and [e] are never
the last vowels in a verb stem, so *[-high, -low][+wb] is a sensible bigram on the
vowel projection).

2.4 Why not search exhaustively?

The Hayes and Wilson MaxEnt Phonotactic Learner’s ability to find placeholder
constraints opens up a logical possibility: suppose that, instead of constructing a
projection for a superset natural class containing X and Y from constraints against
[X][ ][Y] trigrams, we instead allow the learner to consider trigram constraints that
ignore an arbitrarily long string of interveners between X and Y: [X][ ]*[Y], trigrams
with zero to any number of placeholders. This would allow the learner to capture
nonlocal interactions at arbitrary distances without including nonlocal projections.
We argue in this section that this alternative is not viable for real language data.

Algorithms are evaluated by how they scale up with the size of the problem, so
we must consider the combinatorics of n-gram searches. In our learner, all words
are decomposed at most into local trigrams. On the baseline, these are strings
of three adjacent segments or of the natural classes to which they belong (e.g.,
[patu] contains {p,a,t}, {a,t,u}, but {p,a,t} also expands to the trigrams [+cons]
[-cons][+cons], [-voice,-cont][+low,+back][-voice,-cont], and so on). Since nonlocal
projections are defined by natural class membership, the number of projection-based
trigrams is always smaller than the number of segments in the word; thus, the [+syl-
labic] projection representation for [patu] includes only a bigram [a u], which ex-
pands to [-high,+low,+back,-round][+high,-low,+back,+round], or [+low][-low], or
[-round][+round], and so on. The number of natural class n-grams, as opposed to seg-
mental n-grams, depends on the segmental inventory of the language and the features
assumed. Even without considering the relationship between the number of segments
and the number of natural classes they belong to, however, it is easy to demonstrate
that the number of nonlocal segmental n-grams dwarfs the number of local ones.
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The number of segmental n-grams in a word is a linear function of the length of
the word, as shown in (3). In the formula below, l is the number of segments in the
word, and n is the length of the n-gram window. (We sidestep the fact that edges of
words must be treated as trigrams as well, as in #pr, pa#, since the two extra n-grams
do not make much of a difference for this comparison.)

(3) The number of local segmental n-grams in a word
Nngrams = l − n + 1

On the other hand, the number of nonlocal ordered substrings (length n) of a word
(length l) is calculated as a product of factorials:

(4) The number of nonlocal segmental n-grams in a word
Nngrams = l!/n!/(l − n)!

Example (5) illustrates the number of local and nonlocal segmental trigrams con-
tained in words of lengths from 3 to 5. The number of trigrams that include the edge-
most segments is one for local calculation, but it grows fast with the length of the
word for nonlocal calculations:

(5) Local and nonlocal trigrams in words of 3, 4, and 5 segments

Local trigrams N (local) Nonlocal trigrams N (nonlocal)

pat pat 1 pat 1
patu pat, atu 2 pat, atu, pau, ptu 4
patuk pat, atu, tuk 3 pat, atu, tuk, pau, pak,

puk, ptu, ptk, atk, auk
10

The problem is exacerbated when we look at trigrams of natural classes rather
than segments. The number of natural classes each segment belongs to varies with the
segment—so the number of natural class trigrams is a product of the natural classes
each segment belongs to, i.e., for [pat], n is not 3 but rather Cp×Ca×Ct , where Cp

is the number of natural classes C containing [p]. Languages vary in the number of
natural classes—it depends on the number of segmental contrasts (and analytically,
on the feature system assumed); languages also vary in the length of words, and the
complexity of segmental phonotactics. The nature of the learning data can affect the
success of various phonological learning algorithms dramatically (Stanton 2016 and
others). To examine the combinatorics of natural class trigrams, we must look at some
real language corpora.

We counted local and nonlocal trigrams in six natural languages: Aymara,
Quechua, Shona, Hungarian, Mongolian, and Russian. The first three languages are
our case studies; Hungarian and Mongolian both have vowel harmony (Siptár and
Törkenczy 2000; Svantesson et al. 2005); Russian is included as an example of a
language with a large number of natural classes.4 The number of natural classes was
computed by the Hayes and Wilson MaxEnt Phonotactic Learner. We calculated the

4Padgett (1991) does report a gradient co-occurrence restriction in 500 Russian roots; see also Kochetov
and Radisic (2009).
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Table 1 Summary statistics over six natural language corpora

Number of nat. classes Mean wd length (in segments) Wds in corpus

Aymara 89 4.54 1,960

Quechua 203 9.37 10,843

Shona 236 9.57 300,443

Hungarian 394 8.31 71,136

Mongolian 275 6.85 48,942

Russian 406 9.27 86,836

Table 2 Natural class-based trigrams per word in six languages, calculated over local and nonlocal sub-
strings. The mean, minimum and maximum number of local and nonlocal trigrams per word are shown

Local trigrams/wd Nonlocal trigrams/wd

Mean Min Max Mean Min Max

Aymara 4,222 660 13,928 13,440 891 144,018

Quechua 128,377 5,508 402,254 2,316,929 5,508 24,357,380

Shona 78,213 1,728 338,124 1,364,777 1,728 23,056,995

Hungarian 198,457 10,773 731,202 2,878,029 10,773 48,498,150

Mongolian 171,744 14,950 630,437 1,597,763 14,950 35,699,484

Russian 984,428 34,596 3,402,677 18,378,498 34,596 283,814,090

number of natural class trigrams for each language based on real word corpora (in-
cluded in the supplementary materials, along with the features we used); the relevant
quantitative properties of these corpora are summarized in Table 1. For example, in
Quechua, there are 203 natural classes. As shown in Table 2, an average word in our
Quechua corpus contains 128,377 local natural class trigrams: thus, [patu] contains
two local segmental trigrams {p,a,t}, {a,t,u}. These expand to multiple natural class
trigrams: {p,a,t} can be rewritten as [-cont][+son][+cor], [-voice][+syll][-cont], etc.
If trigrams are nonlocal (that is, [patu] = {p,a,t}, {a,t,u}, {p,t,u}, {p,a,u}), then an
average word has 2,316,929 natural class-based trigrams.

The difference for Quechua is about 18 times more trigrams to consider per word,
on average. An 18-fold difference might not seem like much, but as shown in Fig. 1,
the differences quickly add up as words get longer. Since words get quite large in ag-
glutinative and highly inflecting languages, this is a serious concern. Note the scale
of the plot: the y-axis runs to 45,000,000 trigrams per word. For a corpus such as
Aymara roots, the difference between local and nonlocal trigram calculations is neg-
ligible. For word corpora of languages with complex segmental inventories, such as
those of Hungarian, Mongolian, or Russian, the numbers diverge dramatically.

Devising a computationally efficient search through nonlocal trigrams composed
of natural class matrices will require a sophisticated implementation that to the best
of our knowledge is currently lacking. Even in our method, some languages push
the computational learner to its limits (see Sect. 6.2, as well as Hayes and Wil-
son 2008:392). Our proposal implements a targeted search for nonlocal interactions,
based on properties of a language that are observable from a local n-gram model.
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Fig. 1 Average (mean) number of natural class-based trigrams per word, as a function of word length
(in segments) in six natural language corpora. Gray areas show standard deviation of the mean. Solid
lines show numbers reckoned over segmentally local strings; dashed lines—nonadjacent linearly ordered
segments

In addition to avoiding the considerable computational challenge of an exhaustive
search, our method zeroes in on classes that are known (from the baseline gram-
mar) to interact nonlocally, and thus also limits the likelihood that the grammar will
stumble onto accidental gaps. We now turn to illustrating our model with three case
studies.

3 Quechua

To illustrate the basic insight and procedure of our learner, we begin with the case
study of categorical laryngeal phonotactics in South Bolivian Quechua (henceforth
just “Quechua”). We show that the baseline grammar for Quechua includes trigram
constraints that capture pieces of the co-occurrence restrictions in the language, and
that the projection induced from these constraints results in a grammar that distin-
guishes legal from illegal nonce forms via concise, highly-weighted constraints on
the nonlocal projection.

3.1 Laryngeal restrictions in Quechua

Quechua contrasts three series of stops: plain (voiceless unaspirated) [p t Ù k q],
ejective [p’ t’ Ù’ k’ q’] and aspirate [ph th Ùh kh qh]. Affricates pattern with stops both
in terms of laryngeal contrasts and in phonotactic distribution. Stops are subject to
numerous distributional restrictions:

(6) Restrictions on stops in Quechua
a. Roots contain ejectives, aspirates, and plain stops; suffixes can only have plain
stops (e.g., *-Nk’u, �-Nku).
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Table 3 Quechua laryngeal restrictions

Attested combinations Impossible combinations

(a) Ù’uspi ‘fly’ (c) rit’i ‘snow’ (e) *kup’i (g) *k’up’i (i) *khup’i

(b) khuÙi ‘pig’ (d) Limphu ‘clean’ (f) *kuphi (h) *k’uphi (j) *khuphi

b. Stops are only permitted in onset position; codas must be fricative or sonorant
consonants (*map.ta, �man.ta, �mas.k’a).
c. Ejectives and aspirates can only occur non-initially if preceded by fricatives or
sonorant consonants.5

The combinatorial restrictions on ejectives and aspirates are our focus, and we illus-
trate them in more detail in Table 3. As shown in the table, ejectives and aspirates
may occur initially in a root, or in medial position in roots where the initial conso-
nant is not a stop (a fricative or sonorant). Ejectives and aspirates may not occur in
medial position in roots that have a plain, ejective or aspirate stop initially.

Quechua speakers’ sensitivity to these restrictions has been demonstrated in a
variety of behavioral experiments (Gallagher 2015, 2016), which find effects in
production, perception and nonce word acceptability judgments for all unattested
stop combinations. The restrictions on stops in Quechua can be grouped under
just two generalizations about sequences of nonadjacent natural classes: *[-cont, -
son]. . .[+constricted glottis] and *[-cont, -son]. . .[-cont, +spread glottis] (note that
aspirates must be picked out as [-continuant, +sg] to distinguish them from [h], which
is also [+sg]). While the restrictions are typically described as being restrictions on
roots, the absence of ejectives and aspirates from affixes in the language means that
the restrictions hold categorically at the word level as well.

In addition to the restrictions on combinations of stops, Quechua consonants show
other distributional gaps that we do not explore in great detail here. First, aspirates
are absent from roots with initial [h], though Gallagher (2015) shows that the psy-
chological reality of this restriction for Quechua speakers is questionable. Second,
uvulars [q q’ qh] and velars [k k’ kh] do not co-occur within roots, though they may
co-occur across morpheme boundaries within a word; this restriction is explored in
Wilson and Gallagher (2018).

3.2 Methods: The training and testing data

We trained our model on a corpus of 10,848 phonological words compiled from
31 issues of the Bolivian Quechua newspaper Conosur Ñawpaqman, published by
CENDA and available at http://www.cenda.org/periodico-conosur (accessed Novem-
ber 2016).6 The word corpus was manually checked to remove Spanish and cor-
rected for misspellings. The orthographic corpus was then phonetically transcribed.

5Aspirates may also appear in vowel-initial words, though ejectives are absent from such forms. See Gal-
lagher (2015) for discussion.
6Our corpus is available on GitHub at https://github.com/gouskova/inductive_projection_learner. While
the newspaper is primarily a Quechua language periodical, it includes numerous articles in Spanish, as
well as Spanish phrases and Spanish roots embedded in Quechua text. The majority of Spanish forms

http://www.cenda.org/periodico-conosur
https://github.com/gouskova/inductive_projection_learner


M. Gouskova, G. Gallagher

The phonetic transcription represented nasal place assimilation (of coda nasals to fol-
lowing obstruents), as well as vowel lowering by a uvular consonant and retraction
of coda consonants preceding a uvular. Laryngeal distinctions in Quechua are rep-
resented with two privative features, [+constricted glottis] ([+cg]) for ejectives and
[+spread glottis] ([+sg]) for aspirates.

To test the grammars that the model learns, we created a large set of phonotac-
tically legal and illegal nonce forms. The nonce forms were all disyllabic (C)VCV,
(C)VCCV—the canonical root shapes in the language. While the testing sets were
large, they were not exhaustive, and were designed to test specifically whether the
models capture the distribution of stops in the language. The testing words were all
(C)V(C)CV forms that (i) included at least one stop, (ii) respected nasal assimilation
and uvular retraction and, (iii) only included CC clusters that were attested in the
training corpus. Forms with a single stop are all classified as ‘legal,’ as are forms
with an initial stop and a medial plain stop; forms with an initial stop (plain, ejective
or aspirate) and a medial ejective are classified as ‘illegal-ejective,’ and those with
an initial plain stop and medial aspirate are classified as ‘illegal-aspirate.’ The test-
ing set included 24,352 forms (18,502 legal, 3,645 illegal-ejective and 2,205 illegal-
aspirate).

3.3 The baseline grammar

We first look at the output of the baseline grammar—the grammar with no
projections—to see whether it includes placeholder trigram constraints that cap-
ture part of the nonlocal phonotactics of the language. If the laryngeal restrictions
can be detected as an underattested trigram in this model, we expect the baseline
grammar to include the constraints *[-sonorant, -continuant][ ][+cg] and *[-sonorant,
-continuant][ ][-continuant, +sg]. These constraints penalize illegal forms such as
*[p’ak’a], but they are not violated by forms where the illegal combination of conso-
nants is separated by more than a single segment, e.g., *[p’ask’a].

Which constraints make it into the baseline grammar depends on the minimum
gain threshold supplied by the analyst and the amount of training data. Generally,
the lower the gain, the more likely it is that a given constraint will be learned, but
smaller data sets also require lower gain than larger data sets.7 The gain that most
accurately represents the threshold that human learners use is an empirical question,
to be tested by assessing the psychological reality of the generalizations captured by
grammars with different gain levels. In our simulations, the baseline learner finds the

were removed from the word corpus, including Spanish words that were inflected with Quechua morphol-
ogy. The only exception to this are those words, mostly place names, that are consistent with the native
phonotactics of Quechua.
7Another parameter is whether the model is asked to look for violable or inviolable constraints. In either
condition, whether a constraint is included in the grammar depends on its gain, but an inviolable constraint
simulation only considers constraints whose observed violations are zero. To keep the amount of informa-
tion digestible, we only consider inviolable constraint models of Quechua and Aymara, since the laryngeal
phonotactics are categorical. The results reported here are replicable with similar settings for violable con-
straint models as well. For all models reported throughout this paper, we ran the model with a large enough
constraint set that the model returned fewer constraints than it was asked for. This means that constraint
set size was not an analyst-manipulated parameter that affected the fit of the model.
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Fig. 2 Quechua: Harmony scores for nonce words, baseline grammar

laryngeal placeholder trigram constraints at both high and low gain. With gain set at
25, there are more than 200 constraints in the grammar, while only 20 constraints are
included in a model with gain set at 200. Importantly, models at all gains include the
target placeholder trigram constraints. We report models with 150 gain, representing
a fairly conservative estimate of the constraints that a human Quechua learner may
have in their grammar. The fit of a baseline model to the testing words is shown in
Fig. 2, which is a violin plot—a vertical density plot with dots showing the means.
When considering CVCV, VCV, and VCCV forms (grouped together as “other” in
the plot), the model distinguishes legal from illegal laryngeal combinations. Legal
nonce words have harmony clustering around zero, whereas illegal ones have more
violations—notably, violations of the trigram constraints—and therefore lower har-
mony. No distinctions are made between illegal and legal CVCCV forms, however,
because the interacting consonants are separated by more than a single segment. All
of those forms have high harmony scores (low constraint violations), regardless of
actual phonotactic legality.

In this and following simulations, we evaluate both differences in the mean scores
assigned to testing forms in a particular category, as well as separation between legal
and illegal categories. We take a mostly holistic, qualitative approach to evaluating
the grammars for two reasons. First, because we don’t have a full set of behavioral
results showing how speakers treat each of the forms in our large testing sets, we lack
a detailed set of data that our grammars could be evaluated against. Second, since
the grammars are learned directly from the statistical properties of the input data and
contain many constraints, they often include several constraints that a linguist would
be unlikely to posit. Such constraints account for the “tails” seen in this and other
figures, where small numbers of forms in a given category are given particularly bad
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Table 4 Quechua: Frequency
of plain, ejective and aspirate
stops in initial and non-initial
position. Percentages are out of
all consonants, e.g., 34% of
initial consonants are plain stops

Plain Ejective Aspirate

initial 34% 8% 8%

non-initial 47% 2% 1%

Table 5 Quechua:
Onset-V-onset trigrams as
percentage of all onset. . .onset
pairs (sequences in 10,848
words were counted)

Onset. . .onset n-grams N of sequences Proportion

CVCV 19,237 67%

CVCCV 9,310 33%

scores. For example, the baseline grammar for Quechua assigns a large penalty to
the form [ñerqha], which we classify as legal because it doesn’t violate any known
phonotactic constraints. The model, however, includes the constraints *[+sonorant,
-anterior][+RTR, -back] (penalizing sequences of [ñ L j][e]) and *[-back][-syllabic,
+continuant][+sg] (penalizing sequences of [e i][s S x r l L j w][ph th Ùh kh qh]), which
penalize [ñerqha]. It is a matter for future empirical testing to determine whether con-
straints of this type, and the ‘tails’ that ensue, are examples of the model overfitting,
or whether they represent true grammatical constraints (for some relevant work on in-
ductive learning of phonotactics in English, see Hayes and White 2013). In designing
our testing sets, we attempted to minimize the interference of orthogonal phonotac-
tic restrictions, but our ability to do this was limited by available descriptions of the
phonotactics of the languages in question.

The baseline model reliably finds the placeholder trigrams because of two prop-
erties of Quechua. First, all three laryngeal categories of stops appear with sufficient
frequency in both initial and medial position within the word, as shown in Table 4.
The absence of certain combinations stands out; it cannot be reduced to a local bigram
constraint. This is in contrast to many languages with ejectives and aspirates, where
these sounds are either restricted to absolute word initial position or are very rare
outside of initial position (MacEachern 1997; Beckman 1998). In such a language,
the absence of sequences such as [pak’. . .] can be captured by a bigram constraint
on non-initial ejectives or aspirates (e.g., *[-wb][+cg]), and consequently there is no
need in the model for longer trigram constraints. Indeed, such languages are reason-
ably described as not having nonlocal combinatorial phonotactics at all. While the
proportions in Table 4 show that aspirates are generally less frequent than ejectives,
and that both ejectives and aspirates are much less frequent than plain stops outside
of initial position, they do still have a non-trivial frequency in non-initial position.

Second, the positions where the restricted segments occur in Quechua—onsets—
are frequently separated by only a single vowel, as shown in Table 5. Under these con-
ditions, the absence of stop-[ ]-ejective and stop-[ ]-aspirate combinations requires a
trigram constraint. If Quechua were such that all or almost all syllables had coda con-
sonants, stop-[ ]-ejective and stop-[ ]-aspirate combinations would still be unattested,
but their absence would be attributable to a local bigram constraint against ejectives
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and aspirates in coda position (since C2 in a C1VC2 configuration would always or
often be a coda consonant).8

In sum, the distribution of natural classes and the frequency of syllable structures
in Quechua allows nonlocal restrictions on combinations of stops to be reflected in a
baseline grammar as placeholder trigram constraints.

3.4 Inducing projections and learning a final grammar

The baseline grammar includes the placeholder trigram constraints *[-sonorant,
-continuant][ ][+cg] and *[-sonorant -continuant][ ][+sg, -continuant], which moti-
vate a search through the [-sonorant, -continuant] projection. Given the feature spec-
ifications for Quechua, [-sonorant, -continuant] (the class of all oral stops) is the
smallest natural class which includes both natural classes mentioned in the place-
holder trigram; [+cg] segments and [+sg, -continuant] segments are subsets of the
[-sonorant, -continuant] class. When the [-sonorant, -continuant] projection is in-
cluded along with the baseline segmental projection, the model learns a final gram-
mar that includes two general constraints that capture the full range of unattested stop
combinations in the language: *[-wb][+cg] and *[-wb][+sg]. These constraints state
that, when looking only at oral stops, ejectives and aspirates are always first in the
word; that is, ejectives and aspirates are the leftmost stop in the word. This is the
correct generalization:

(7) Projection-based representations for legal and illegal Quechua nonce words
[-cont, -son] p p’ p’ t ph t’ t kh

baseline (all segs) p a m a m a p’ a p’ a t a *ph a n t’ a *t a s kha

These constraints are found and given high weights (weights of 15–16; compare the
lower weights of some constraints in the Shona grammar in Sect. 5 below) in gram-
mars with the full range of gains tested, and the resulting grammars show a separation
between the scores assigned to legal and illegal nonce forms in the large testing set.
To illustrate, we show the distribution of scores assigned to testing forms in a model
with 150 gain in Fig. 3. Unlike the baseline grammar shown in Fig. 2, the final gram-
mar with the [-continuant, -sonorant] projection distinguishes legal from illegal forms
for both CVCCV nonce words and VC(C)V and CVCV (“other”) nonce words; legal
nonce words have few if any violations, and therefore harmony close to 0.

Models with higher gain tend to include fewer constraints on underattested struc-
tures that phonologists would consider to be likely accidental gaps, as higher gain
means that more statistical support is needed for a constraint to be added to the gram-
mar. As can be seen in the figure, however, the Quechua model with high gain still
includes constraints that penalize forms that we marked as legal—for example, a con-
straint against front vowel-continuant-aspirate sequences, like [Liskhu]. The ‘tails’
for each category in the figure are due to forms that violate trigram constraints of
this sort. As discussed above, whether these specific trigram constraints represent
real phonotactic restrictions in the language or are examples of the model overfitting

8A baseline grammar run on a modified Quechua training set where codas were added to all syllables
confirmed that this is true; the grammar includes a highly weighted constraint against stop-consonant
bigrams, but no trigram constraints on stop-[ ]-ejective or stop-[ ]-aspirate sequences.
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Fig. 3 Quechua: Harmony scores for nonce words, simulation with projection induction

and learning constraints on accidental gaps is an empirical question that we do not
attempt to answer here.

3.5 Summary

The Quechua case study illustrates that nonlocal restrictions can be detected by ex-
amining local trigrams. This empirical observation offers a simple way to narrow
down the search space of possible nonlocal interactions. Our learner examines the
baseline grammar for placeholder trigram constraints of the form X[ ]Y and induces
a nonlocal projection from these constraints based on the smallest natural class that
includes both X and Y. In the next section, we demonstrate that the procedure can be
generalized to the laryngeal restrictions in Aymara, before turning to the somewhat
different case of Shona vowel harmony in Sect. 5.

4 Aymara

The Bolivian variety of Aymara is similar to Quechua both in the structure of roots
and the laryngeal restrictions, though there are interesting differences (MacEachern
1997; Hardman 2001). The languages are not genetically related, though they are
in contact with one another. As in Quechua, Aymara roots are primarily disyllabic
(C)V(C)CV, with ejectives and aspirates occurring in onset position. Here we show
that the baseline model for Aymara reliably includes multiple placeholder trigrams
on unattested onset combinations, which motivate two nonlocal projections on which
the full extent of the nonlocal restrictions can be captured.
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Table 6 Aymara laryngeal restrictions, with schematic comparison to Quechua

Combination Example Aymara Quechua

initial ejective k’awna ‘egg’ � �
initial aspirate Ùhiwi ‘to sing’ � �
fric/son-ejective heq’e ‘to smell’ � �
fric/son-aspirate laqha ‘darkness’ � �
identical aspirates khuskha ‘together’ � *

identical ejectives t’ant’a ‘bread’ � *

aspirate-ejective phiÙ’u ‘triangular’ � *

ejective-aspirate k’uthi ‘thumb’ � *

aspirate-aspirate phiÙha ‘fire’ � *

plain-ejective *piÙ’u — * *

ejective-ejective *p’iÙ’u — * *

plain-aspirate *piÙha — * *

4.1 Laryngeal restrictions in Aymara

Like Quechua, Aymara contrasts three series of stops, plain (voiceless unaspirated)
[p t Ù k q], ejective [p’ t’ Ù’ k’ q’] and aspirate [ph th Ùh kh qh]. The stops are sub-
ject to several combinatorial restrictions, summarized in Table 6. The phonotactics of
Aymara are more permissive than in Quechua. As in Quechua, ejectives and aspirates
may not follow plain stops in the root, and heterorganic ejectives may not co-occur
in pairs. Unlike in Quechua, pairs of aspirates are permitted (heterorganic or iden-
tical), as are ejective-aspirate combinations and combinations of identical ejectives.
Examples are from De Lucca (1987).

The three restricted combinations in Aymara require three separate constraints
*[+plain]. . .[+cg], *[+plain]. . .[+sg], and *[+cg]. . .[+cg]. Here, we assume a feature
system with three privative features designating each of the three laryngeal classes.
An alternative would be to use just two binary laryngeal features, with plain stops
being picked out as [-cg, -sg]. The heuristics of Hayes and Wilson’s learner make
the model less likely to learn constraints on classes that require more features to pick
out (recall Sect. 2.1), and so we opt for the privative feature option in order to put
the three laryngeal classes on even footing with respect to the particularities of the
baseline learner.9

4.2 Methods: The training and testing data

We tested our model on 1984 Aymara roots, extracted from De Lucca (1987). We
used a root corpus instead of a word corpus because suffixes in Aymara may in-
clude ejectives and aspirates, introducing exceptions to the restrictions at the word

9Indeed, a model where binary [sg] and [cg] are used does not include any constraints on plain stops. This
could be interpreted as a failing of the heuristic in the Hayes and Wilson model, or it could be taken as
evidence that privative features are a better hypothesis in this particular case.



M. Gouskova, G. Gallagher

level.10 Our transcription represented vowel retraction of a uvular (which is repre-
sented in the Aymara orthography) and nasal place assimilation (which is not). To
test the grammar that our model learns, we created a large set of phonotactically le-
gal and illegal nonce forms, as for Quechua. The nonce forms were all disyllabic
(C)VCV, (C)VCCV strings that contained at least one stop, included only consonant
clusters attested in the training data and respected nasal assimilation and uvular re-
traction. Forms were classified as ‘legal’ or ‘illegal’ based on their status in Table 6.
The testing set included 23,548 forms (23,548 legal, 1,389 plain-ejective, 1,108 plain-
aspirate, 903 ejective-ejective).

As mentioned above, the laryngeal classes were represented with three privative
features, [plain], [cg] and [sg]. The legality of identical pairs of ejectives in the
language—what we will call the identity exemption—poses a representational chal-
lenge, both for Hayes and Wilson’s learner and for other phonological models. The
identity exemption can be captured for ejectives by treating them as a single segment
(autosegmental spreading, e.g., MacEachern 1997; McCarthy 1989) or as standing
in a correspondence relationship similar to reduplicated strings (Gafos 1999; Zuraw
2002; Rose and Walker 2004). Within inductive constraint models, the identity ex-
emption to phonotactic restrictions has been accounted for by representing one of
two identical consonants as a copy, using a placeholder segment X in the transcrip-
tion (Colavin et al. 2010; Gallagher 2014). Under this method, a form like [t’ant’a]
’bread’ is transcribed as [t’anXa], where ‘X’ is a segment bearing a single feature
[+copy], as opposed to the full set of features that designate [t’]. This representational
choice, which we adopt, allows the model to find a constraint against non-identical
ejectives, but it is orthogonal to the investigation of whether projections can be iden-
tified based on trigram constraints. Since the Hayes and Wilson learner has not yet
been augmented with the capacity to represent algebraic constraints that explicitly
reference matching or mismatching (though see Berent et al. 2012 for a proposal)11,
the presence of identical ejective pairs obscures the restriction on heterorganic pairs;
a model without the ‘X’ transcription of identical ejectives learns no constraints on
heterorganic ejective pairs, regardless of what projections are included. The simula-
tions in this section show that when given the representational capacity to distinguish
identical from non-identical ejective pairs (an essential property of any successful
learner), this restriction is noticeable as a placeholder trigram in the baseline gram-
mar, and motivates a nonlocal projection on which the phonotactic restriction can be
stated.

10This means that the phonotactic learning here happens over a sublexicon of roots; see Sect. 6.5 for more
discussion.
11The use of a placeholder segment ‘X’ is of course not the ideal solution to this problem, as it obscures
any other phonological generalizations that may hold of segments that are in an identity relation, like local
restrictions on clusters of consonant-vowel interactions. A superior model would expand the search space
of constraint to include algebraic notation. While Berent et al. (2012) present one potential method for
constructing constraints of this type, no implementation of the model in that paper is available, nor has
it been shown to be a general solution to phonological distinctions between identical and non-identical
segments.
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Fig. 4 Aymara: Harmony scores for nonce words, baseline grammar

4.3 Descriptive statistics and the baseline grammar

We first checked whether the baseline model finds the target placeholder trigram
constraints that capture part of the nonlocal laryngeal phonotactics of the language:
*[+plain][ ][+cg], *[+plain][ ][+sg, -continuant], and *[+cg][ ][+cg]. These con-
straints penalize illegal forms where the co-occurring consonants are separated by
a single vowel like *[p’ak’a], but they do not extend to unattested consonant pairs
separated by more material, e.g., *[p’ask’a]. The constraints are indeed found in the
baseline grammar, when gain is set to 25 or below (a grammar of about 80 con-
straints). The model finds these constraints at a lower gain than in Quechua both
because of the smaller size of the training set, and because each target constraint
scopes over a smaller number of segments than the Quechua constraints. The fit of
the baseline grammar to the test data is shown in Fig. 4. This violin plot divides the
harmony scores of CVCCV nonce words (left) and CVCV, VCV, VCCV nonce words
(right, “other”). As in Quechua, the model makes the right distinctions between legal
and illegal CVCV forms, since illegal CVCV forms violate the trigram constraints. It
also correctly assigns higher scores to VCCV and VCV forms, some of which have
just one laryngeal in onset position (e.g., [awk’a]). But the baseline model fails to dis-
tinguish legal nonce words from CVCCV words that violate laryngeal co-occurrence
restrictions, assigning most of those forms relatively high scores.

Just as in Quechua, the placeholder trigram constraints are found in Aymara be-
cause laryngeal stops are frequent in both initial and non-initial positions, shown in
Table 7. Likewise, onsets in Aymara are usually separated by just a single vowel,
shown in Table 8. These properties of the language motivate placeholder trigram
constraints against the underattested trigrams.
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Table 7 Aymara: Frequency of
plain, ejective and aspirate stops
in initial and non-initial
position. Percentages are out of
all consonants, e.g., 21% of
initial consonants are plain stops

Plain Ejective Aspirate

initial 21% 21% 17%

non-initial 24% 7% 6%

Table 8 Aymara:
Onset-V-onset trigrams as
percentage of all onset. . . onset
pairs (sequences in 1984 roots
were counted)

Onset. . .onset ngrams N of sequences Proportion

CVCV 1316 66%

CVCCV 671 34%

Fig. 5 Aymara: Harmony scores for nonce words, grammar with induced projections

4.4 Inducing projections and learning a final grammar

The three placeholder trigram constraints in the baseline grammar motivate two non-
local projections, based on the natural class structure of the language. For the con-
straints *[+plain][ ][+cg] and *[+plain][ ][+sg, -continuant], the smallest natural class
projection is [-continuant, -sonorant], the oral stop projection. For *[+cg][ ][+cg],
the smallest projection is [+cg]. When given these two projections, the model learns
a final grammar that includes constraints against all the unattested sequences. The
[-continuant, -sonorant] projection includes *[+plain][+cg] and *[+plain][+sg] and
the [+cg] projection includes *[-wb][-wb], a constraint on any two segments on the
projection of ejectives. The distribution of scores assigned to the test words is plotted
in Fig. 5. In the final model with two nonlocal projections, legal and illegal combina-
tions of laryngeal stops are distinguished in all word shapes, (C)VCV and (C)VCCV.
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Even though the grammar has a relatively low gain, the final grammar does assign
worse scores to illegal forms than to the vast majority of legal forms. As can be seen
in Fig. 5, similar to Quechua, there are a small number of forms that were tagged
as legal but are penalized by the grammar. This is due to the grammar including
some trigram constraints against structures that are unattested in the data, but may
or may not be accidental gaps. For example, the Aymara grammar includes a trigram
constraint against #dental-mid vowel sequences, and a constraint against dental-mid
vowel-labial sequences, both found in [nemq’e], one of the lowest rated legal nonce
forms.

4.5 Summary

The Aymara case study builds on that of Quechua in two ways. First, it demonstrates
that even constraints on smaller natural classes can be induced by attending to unat-
tested trigrams in a baseline grammar; this is not specific to the broader restrictions in
Quechua. Second, it presents a case where more than one nonlocal projection is moti-
vated and kept in the grammar. In Aymara, the three restricted combinations could all
be captured on one projection, [-continuant, -sonorant]. In our model, however, each
placeholder trigram triggers a search through the smallest natural class projection mo-
tivated by that constraint. In Aymara, this means that both the [+cg] and [-continuant,
-sonorant] projections are included in the final grammar and that the restriction on
co-occurring ejectives is accounted for on a different projection than the restrictions
on plain-ejective and plain-aspirate combinations. This is a good result, because a
language may have multiple nonlocal restrictions that require different projections,
even if the projections partially or fully overlap in what segments they contain.

5 Shona

Having shown how our projection induction procedure works from the baseline
phonotactics of two languages with categorical laryngeal restrictions, we now turn
to a somewhat different case: vowel co-occurrence restrictions in Shona. Shona
shows both categorical and non-categorical restrictions on vowel height combina-
tions, pieces of which are observable in the baseline phonotactics of the language.
The baseline grammar for Shona reliably includes several placeholder trigrams refer-
encing vowel height features, and these constraints motivate multiple nonlocal pro-
jections.

Shona provided the motivation for Hayes and Wilson’s (2008) original argument
that inductive phonotactic learning over n-grams requires nonlocal projections. Hayes
and Wilson note that their baseline grammar for Shona finds placeholder trigram con-
straints that capture some of the restrictions on vowels, but in order to get the entire
pattern, they give the [+syllabic] projection to the learner directly. In this section,
we demonstrate that attending to these trigrams can be used to motivate projections,
without the analyst supplying them to the learner. As we will show, the nature of
the restrictions in Shona makes it hard for this particular learning model to arrive
at a clean separation between harmonic and disharmonic forms. We discuss some
remedies for this in Sect. 6.5 after showing what our learner induces without any
modifications to the procedure.
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5.1 Vowel height restrictions in Shona

Shona contrasts five vowels (see (8)), which are subject to phonotactic restrictions
within verbal stems (Fortune 1980; Beckman 1997; Hayes and Wilson 2008; Mudz-
ingwa 2010). According to Beckman (1997), the generalization is that [a] has an
unrestricted distribution, but the mid vowels [e, o] can only occur in non-initial sylla-
bles if preceded by other mid vowels; furthermore, [e] cannot be followed by [i] but
can be followed by [u], but [o] is generally followed by [o] rather than [u]. As we
shall see, there are some exceptions to these generalizations.

(8) Vowel inventory of Shona, with features

high low back

a – + +
e – – –
i + – –
o – – +
u + – +

Since these restrictions are not categorical, we assessed the attestation of each vowel
pair by computing the Observed/Expected ratio in a list of 4,600 verbal stems12 com-
piled on the basis of the ALLEX corpus (Chimhundu 1996).13 Table 9 shows Ob-
served/Expected ratios for each ordered vowel pair. The Observed numbers track how
often each vowel occurs as the first vs. second vowel in a two-syllable sequence, and
the Expected numbers are calculated as the product of these positional probabilities
divided by the total number of vowel pairs. If vowels are combining at random, the
O/E ratio should be around 1; thus, the sequence [a. . .i] is slightly overattested. Look-
ing along the diagonal (highlighted in gray), there is a clear preference for identical
vowel sequences: each vowel is far more likely to be followed by the same vowel than
by any other vowel, with O/E exceeding 1 for all identical vowel pairs. Importantly
for a statistical learner, some combinations (boldfaced) are completely unattested or
close to unattested: [a o], [a e], [e o], [e i], [u o], [u e], [i e], [i o], [o i], [o u]. Other
combinations are underattested, with O/E below 0.8: [e a], [e u], [i a], [i u], [o a],
[u a].

Given a vocalic projection, a phonotactic learner should be able to account for the
restrictions with several bigram constraints: *O - HIGHV, *HIGH - MIDV, *E - O, *E

- I, *A - MIDV. Note, however, that the statistical patterns are not as straightforward
as simple height harmony: [e] and [o] do not pattern symmetrically, and neither do [i]
and [u].

12Morphologically, most of these stems appear to be imperatives, which are roots followed by some verbal
projection suffixes (causatives, applicatives, etc.) and the [-a] suffix. Since all the citation forms of verbs
end in [-a], this throws off the calculations for sequences that end in [a], so we removed that suffix for
the purposes of O/E calculations. The suffix is present in the learning data for the simulations we report,
however, since it is a categorical fact about Shona phonotactics that all words end in vowels.
13We opted to use a different corpus from Hayes and Wilson (2008), who used an incomplete scanned
version (Hannan 1974) that goes up to “m”. Our corpus is slightly smaller but contains the full range of
initial consonants, which matters for phonotactic learning. We verified that the distribution of vowel-vowel
pairs is comparable in the two corpora.
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Table 9 O/E ratios for vowels
in Shona verb stems a e i o u

a 1.88 0.062 1.251 0.0 0.884

e 0.559 4.77 0.009 0.0 0.751

i 0.638 0.019 2.539 0.030 0.622

o 0.295 1.538 0.092 8.135 0.025

u 0.551 0.006 0.817 0.0 2.185

Table 10 Vowel patterns in Shona verbs (Fortune 1980; Downing and Kadenge 2015)

a. Verbs: Harmony in causative -is/-es, applicative -ir/-er, and extensive -ik/-ek

-per-er-a ‘end in’ -ip-ir-a ‘be evil for’

-pofomadz-ir-a ‘blind for’ -svetuk-ir-a ‘jump in’

-om-es-a ‘be dry’ -�bvum-is-a ‘make agree’

-taris-ik-a ‘easy to look at’ -vereNg-ek-a ‘be numerable’

b. Verbs: Harmony in the “un” suffix with rounded vowels

-�pfek-enur- ‘undress’ -roj-onor- ‘unwitch’

Ùat-anur- ‘divorce’ -suNg-unur- ‘untie’

-piNg-inur- ‘unlatch’

c. Verbs: Prefixes and final vowels do not participate in harmony

rim-is-ir-a ‘make plow for!’ teNg-es-er-a ‘make sell for!’

mu-rim-is-ir-e ‘make him/her plough for!’ mu-teNg-es-er-e ‘make him/her sell for!’

Though we are primarily interested in vowel co-occurrence restrictions as static
phonotactics, restrictions on vowel height combinations are further supported by al-
ternations. Shona verbal suffixes -er/-ir, -es/-is, -ek/-ik, and -ew/-iw alternate to match
the height of preceding non-low vowels; the low vowel [a] conditions the appearance
of [i] (see Table 10a). Fortune (1980:21) discusses two suffixes with [u/o], which fol-
low slightly different patterns. One of the round vowel suffixes is shown in Table 10b:
its first vowel copies the stem vowel completely, and its second vowel alternates be-
tween [u/o]. Unlike these suffixes, verbal prefixes neither undergo nor trigger har-
mony (see Table 10c), and the final vowel suffixes [-e] and [-o] are also outside of the
harmony system.14 The failure of prefixes and final vowels to harmonize is not due
to being external to the phonological word, since unlike clitics, they count toward the
disyllabic word minimum (Myers 1987; Downing and Kadenge 2015).

14Suffixes harmonize with verbal roots, but Fortune mentions a minor pattern whereby root vowels al-
ternate to match the final -a or -e: [ndi-ger-e] ‘I am seated’ vs. [ku-gar-a], [ndi-ñerer-e] ‘I am silent’ vs.
[ku-ñarar-a]. He lists five roots that follow this pattern; all alternate between [a] and [e] (Fortune 1980:20).
We leave the phonological analysis of this for future work; for our present purposes, the important ob-
servation is that even the minor alternations are consistent with the phonotactic characterization of vowel
harmony that affixes display.
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Table 11 Shona verbs: Constraints induced in the baseline run, the sequences they penalize and the pro-
jections they motivate

Constraint Wt Sequences penalized Projection

disharm. harm.

1. [-high, -back][ ][-high, -low, +back] 13.709 eCo [-high, -low]

2. [+high][ ][-high, -low] 5.462 iCe, iCo, uCe, uCo [-low]

3. [+low][ ][-high, -low] 4.218 aCo, aCe [-high]

4. [-high, -low][ ][+high] 1.838 eCi, oCu, oCi eCu [-low]

5.2 Methods: The training and testing data

The training data for our Shona simulations was the list of 4,600 verbal stems de-
scribed above. To test the induced grammars, we generated a list of 10,000 pseu-
dowords. The pseudowords were trisyllabic, started with a CV syllable, and ended in
[a], like the verbs in our learning data. The middle syllable started with a singleton
C (e.g., [ m

¨
opera], orthog. mh o p e r a) or a CC that was robustly attested in the

verb learning data (e.g., [d
¨
endowa], orthog. dh e n d o w a).15 Each of the possible

sequences of the five vowels [a e i o u] appeared in the first two syllables around 420
times. We classified the pseudowords into two categories: “disharmonic” and “har-
monic.” Disharmonic forms contain pairs of vowels that have near-zero attestation in
the verb corpus and are described as disharmonic in phonological analyses of Shona
(e.g., Beckman 1997).

5.3 The baseline grammar

The baseline grammar consistently includes several placeholder trigram constraints
that penalize combinations of vowels across a single intervening segment. As for
Quechua and Aymara, we focus on a model with relatively high gain and a small
constraint size for illustrative purposes, as this represents a conservative hypothesis
about what human learners have learned about their language. Table 11 lists the rel-
evant placeholder trigrams found in a model with 170 gain (under 40 constraints)
along with the vowel combinations these constraints penalize, and the smallest natu-
ral class based projection motivated by the constraint. These constraints penalize all
of the disharmonic sequences, and also penalize one harmonic sequence, [e]-[u]. This
combination is penalized because it contains a generally underattested natural class
combination of a mid vowel followed by a high vowel.

While all the disharmonic sequences are penalized, the weight of constraints pe-
nalizing them varies greatly. The categorical constraint on eCo sequences has a high
weight, since it is unviolated in the language. The other constraints all have relatively
lower weights, because these constraints are not categorical and scope over sequences
with varying degrees of attestation. Figure 6 shows the distribution of scores assigned
by the baseline grammar to our testing set. Disharmonic vowel combinations that are

15The list of clusters we included: [gw, mw, bw, hw, kw, sw, nd, Ng, mb, nz, nÃ].
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Fig. 6 Shona: Harmony scores assigned to nonce word test data by the baseline grammar, grouped by
consonant strings separating the vowels

separated by a single consonant are given a somewhat worse score than harmonic se-
quences, but no distinctions are made among vowel combinations that are separated
by more than one consonant, since such structures do not fall under the scope of a
trigram constraint.

Even in forms that contain just a singleton consonant, the scores assigned to
disharmonic and harmonic forms overlap, reflecting the relatively low weights of
constraints on vowel combinations (cf. the high constraint weights and good separa-
tion between legal and illegal forms in the Quechua and Aymara simulations). While
the model for Shona includes the target placeholder trigrams, it also includes many
other constraints on various, gradient phonotactic restrictions. The model here reflects
the statistical support for the gradient restrictions on vowels, which the figure shows
are not strong enough to create good separation between categories. This weak ef-
fect could be an accurate reflection of Shona speakers’ judgments, or it could be that
Shona speakers show somewhat stronger effects than are warranted by the statistical
computation carried out by the model. The true strength of the vowel restrictions vs.
other phonotactic generalizations is an empirical question that would require behav-
ioral testing with Shona speakers. Regardless of the weight of constraints, the base-
line model shows that dependencies between non-adjacent vowels are observable as
placeholder trigrams, our main empirical point in this paper. The syllable structure of
Shona allows these trigrams to be found because vowels are separated by just a single
consonant a substantial proportion of the time, though longer strings of consonants
are also possible between vowels. In Table 12, we show the numbers for how often
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Table 12 Shona:
Vowel-to-vowel n-gram counts
for the corpus of 4,688 verb
stems

V. . .V n-grams Count Proportion

VV 396 5%

VCV 6,333 79%

VCCV 1,232 15%

VCCCV 12 0.15%

Table 13 Shona verbs: Constraints induced on induced projections, and the sequences they penalize

Constraint Sequences penalized

projection weight disharm. harm.

1. *[-back][+back] -high,-low 12.804 e-o

2. *[+low][-low] -high 3.279 a-e, a-o

3. *[+high][-high] -low 1.681 i-o, u-o, i-e, u-e

4. *[-high][+high,-back] -low 1.674 e-i, o-i e-a-i, o-a-i

5. *#[-back][+back] -low 1.408 #i-o, #e-o, #e-o #e-u

6. *#[+back]# -high,-low 1.277 a-o, i-o, u-o, o-u o-e, o-a

7. *#[+syll,+back][-back] -low 1.043 #o-i, #u-e #o-e, #u-i, #o-a-i

vowels are separated by no consonants (VV), one unambiguous singleton consonant
(VCV), two consonants (VCCV), or three consonants (VCCCV). We should note that
the treatment of consonants in Shona is controversial; there are consonants with sec-
ondary articulation, and some phonologists analyze sequences as prenasalized stops,
labialized stops, and so on (see, e.g., Mudzingwa 2010). If Shona is analyzed as hav-
ing no consonant clusters, then 100% of vowels appear either in V. . .V bigrams or in
VCV trigrams, and then nonlocal projections would not even be necessary for analyz-
ing vowel co-occurrence. We assume that at least some of the consonant sequences
are indeed clusters (see Maddieson 1990; Hayes and Wilson 2008; Stanton 2017a:ch.
2.4.3 for related discussion).16

5.4 Inducing projections and learning a final grammar

The four placeholder trigram constraints in the baseline grammar motivate three non-
local projections that each pick out subsets of the vowels17 in the language: [-high] ([a
e o]), [-low] ([e i o u]) and [-high, -low] ([e o]). The final grammar includes all three
projections and learns constraints on each one, summarized in Table 13. All dishar-

16The exhaustive list of clusters that occur in the Shona corpus: [ţw, kw, âw, rw, mv, Sw, zw, nw, tw, Nw,
jw, mw, dzw, sw, hw, pw, Zw, áw, gw, ìw, nâw, mb, nâ, Ng, nz, nÐ, ñN, nj, âr, mbw, nhw, jN, Ngw, nzw,
nzv]. Many of these could be analyzed as labialized singletons or prenasalized stops or fricatives. The
attractiveness of this move is somewhat tempered by the computational cost of increasing the number of
natural classes. We do not know of a phonological analysis that would allow treating sequences such as
[nj] or [âr] as singletons.
17Technically, [-low] includes [e i o u j w], since we specified the glides in the feature set as [-syll]
segments with vocalic features. When the feature set was rigged to exclude glides from vowel natural
classes, the results did not change.
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Fig. 7 Shona: Harmony scores assigned to nonce words by the final grammar after constraint induction

monic vowel combinations are penalized by some constraint, though the weight of the
violated constraint varies, and some of these constraints also penalize some harmonic
vowel pairs. Constraint 4 and the status of vocalic trigrams are discussed further in
Sect. 5.5.

The fit of the final grammar to the testing words is shown in Fig. 6. Unlike the
baseline grammar shown in Fig. 7, the grammar with nonlocal projections distin-
guishes vowel combinations across both a singleton consonant and longer consonant
clusters.

As seen for the baseline grammar, the distinction between categories is smaller for
Shona than for Quechua or Aymara, where there is little overlap between grammati-
cal and ungrammatical testing words. This is an expected result, since the restrictions
in Quechua and Aymara are categorical, while the restrictions in Shona are not. The
weights of constraints on vowel combinations in Shona reflect the statistical support
for each constraint in the training data. The constraint penalizing [e. . .o] combina-
tions has a very high weight (12.8), consistent with there being zero violations of
this constraint in the training data. For all of the other constraints, however, the re-
stricted combinations of natural classes scope over combinations with some degree
of attestation in the training data, and thus the weight of the constraints is lower.

Because of the amount of overlap in scores assigned to harmonic and disharmonic
forms in the Shona grammars, we supplement the visualizations with statistical com-
parisons. We fitted two linear models with a dependent variable of MaxEnt harmony
scores: one for the baseline grammar, and another for the grammar with projections
produced by our learner. In both models, the scores of nonce words suffer when
they have disharmonic vowel combinations (baseline model, F = −4.7, t = −56.32,
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Fig. 8 Shona with a manually supplied [+syll] projection

p < 0.000; projection model, F = −3.47, t = −35.16, p < 0.000). But in the base-
line model, there is a significant interaction between having a disharmonic vowel
and having a VCCV cluster (F = 4.71, t = 39.76, p < 0.000). For the projection
model, there is no significant interaction between these terms (F = 0.12, t = 0.83,
p = 0.4).18 Thus, the visuals reflect a statistically detectable difference between the
two phonotactic grammars—the one with projections captures vowel harmony in both
VCV and VCCV contexts, not just the co-occurrence gap in VCV trigrams.

5.5 Multiple projections vs. one [+syllabic] projection

Finally, our induced projection grammar can be compared to one that a linguist would
choose to analyze Shona—a grammar with a vowel projection. We ran a custom sim-
ulation with the [+syllabic] projection and tested it on the same nonce words, and the
results are shown in Fig. 8. The plot shows the same trend for disharmonic words to
have lower scores than harmonic ones, but this simulation does not manage to make
a categorical separation between them. Just like our mosaic projection grammar, this

18The details of this statistical analysis are provided along with the code for the learner on GitHub
(https://github.com/gouskova/inductive_projection_learner). In both the baseline and the final grammar,
VCCV forms receive slightly higher harmony scores than VCV forms. Since the constraints on CC se-
quences are poorly understood, we severely limited the range of clusters in our nonce words. This means
that VCV forms, with their wider range of consonants in medial position, are more likely to violate bigram
constraints on CV and VC sequences. We do not know what the status of these constraints is in Shona
speakers’ grammars, so it is an open question whether the computational learner is overfitting.

https://github.com/gouskova/inductive_projection_learner
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one finds all the constraints against disharmonic forms, but it also finds some con-
straints against harmonic ones (e.g., *#[-high,-low][+low], which penalizes [e-a] and
[o-a], and *#[+high,-back][+high,+back], which penalizes [i-u]).

One area where a grammar with a [+syll] projection would be expected to be more
accurate than a projection grammar is in dealing with opacity. An opaque segment Z
prevents normally restricted segments X and Y on either side of it from agreeing
with respect to a feature; thus, X. . .Y is not allowed, but X. . .Z. . .Y is. If the seg-
ment Z is not present on the projection that includes X and Y only, then constraints
on the X-Y projection will incorrectly rule out X-Z-Y. Our inductive learner in fact
met with this problem when it induced Constraint 4 on the [-low] projection, which
excludes the vowel [a]. This vowel is described as opaque with respect to height
harmony (Beckman 1997; Hayes and Wilson 2008), but as it turns out, the statisti-
cal support for its opacity is rather weak (see Table 14). The disharmonic sequences
[e. . .i], [o. . .i] and [o. . .u] are indeed underattested compared to height-agreeing se-
quences (recall Table 9), but so are trigrams of these vowels separated by [a]—there
are only 51 examples of such vowel trigrams. O/E values for trigrams are generally
lower than for bigrams, since the joint probability of finding a sequence of three
vowels is lower than that of two. The formula for positional O/E trigram frequency
is: N(abc)

N(a)∗N(b)∗N(c)/Ntrigrams
, where N(a) is the frequency of a as the first segment in

a trigram, N(b) is the frequency of b as the second segment in a trigram, and so on.
Ntrigrams is the total number of trigrams on the relevant projection—in the list of
Shona verbs, there are 5360 trigrams. As shown in Table 14, the raw frequencies of
trigrams that supply the evidence for the opacity of [a] are low compared to frequen-
cies of identical vowel trigrams or mixed-height trigrams. Most importantly, the O/E
for opaque trigrams is hard to distinguish from that of some disharmonic trigrams—
for example, [a e a] occurs more often than [o a i], which is supposed to be good, and
has a higher O/E than [o a u] (non-zero, although minuscule). If all the learner has to
go on is the comparatively high O/E of the sequence [e a i], then the evidence for the
goodness of mid-low-high opaque sequences is not strong.19

We conclude that Shona does not supply clear-cut quantitative evidence for a vo-
calic projection: it is possible to approximate the generalizations about vowels on
projections that include only subsets of vowels, as shown by comparing our mosaic
projection grammar to the grammar with a manual [+syllabic] projection. The nature
of the learning data makes it difficult for a statistical learner to match the generaliza-
tions that linguists formulate about this language, regardless of the projections that it
has access to. Opacity may be better noticed in Shona by looking at morphological
alternations, a broader point we return to in Sect. 6.5.

19An anonymous reviewer suggests evaluating the fit of the [+syllabic] phonotactic grammar with that of
our mosaic grammar in a linear model, as we did for the baseline vs. mosaic grammars earlier. Unsur-
prisingly, given the visual impression in the plot, there is a significant effect of vowel harmony status on
harmony scores in a linear model for the [+syllabic] grammar. The question, then, is whether it is possible
to decide which model is better on the basis of such statistical comparisons. The usual methods of model
comparison such as Akaike Information Criterion do distinguish these models, favoring [+syllabic] over
the mosaic model (52,773 vs. 53,140—lower is better)—but this comparison also favors the baseline model
(AIC = 49,724) over both of the models that capture the vowel harmony generalizations that we are after.
The statistical method of evaluating models therefore points away from linguistic intuitions, which could
be a potential problem for us. The only way to find out which model captures the right generalizations is
to test them experimentally on human speakers of Shona.
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Table 14 Positional O/E calculations for trigrams on the vocalic projection in Shona verbs: Weak ev-
idence for opacity of [a] to harmony. The subtable on the right shows the positional frequency of each
vowel in vocalic trigrams

identical N O/E mixed N O/E opaque N O/E

a a a 290 0.0002 u u a 505 0.0004 o a u 0 0.0000

e e e 155 0.0055 o o a 319 0.0015 o a i 11 0.0001

o o o 96 0.0178 e e a 347 0.0008 e a i 40 0.0003

u u u 197 0.0011 u i a 216 0.0002

i i i 121 0.0008 a e a 16 <0.0000

as V1 as V2 as V3

a 1874 1108 3830

e 883 733 232

i 788 1420 687

o 656 459 96

u 1159 1640 515

5.6 Summary

As in Quechua and Aymara, a baseline grammar looking only at the linear string of
segments finds placeholder trigram constraints that penalize all of the restricted vowel
combinations in Shona. The Shona case is different from Quechua and Aymara in
several ways, underscoring the generality of our proposal. Many of the restrictions
in Shona are noncategorical, and accounting for the distribution of Shona vowels re-
quires multiple constraints on smaller classes of segments than in either Quechua or
Aymara. In Shona, the trigram placeholder constraints motivate three distinct projec-
tions on subsets of interacting vowels. A phonologist would be more likely to postu-
late a single projection that includes all the vowels in Shona, but it’s not clear how this
projection could be learned from a baseline grammar without projections. Our model
incorporates a simple hypothesis about nonlocal projections: only the classes that are
referenced by a baseline placeholder trigram constraint are projected. While an anal-
ysis with a single projection may be formally more elegant, our model with multiple
projections still captures the distribution of vowels and distinguishes harmonic and
disharmonic forms in much the same way as a single projection does.

6 General discussion

We’ve shown through three case studies that nonlocal phonological interactions that
hold at arbitrary distances may be observable as underattested trigrams in the linear
string. For languages with this property, we’ve proposed a simple method of using a
placeholder trigram constraint in the baseline grammar to construct a nonlocal projec-
tion that allows the grammar to fully capture the nonlocal interaction. In this section,
we first relate our proposal to previous work and then go on to discuss the place of our
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model in accounting for nonlocal restrictions more generally. We address potential
cases where our model may over- and under-generalize from placeholder trigrams, as
well as discussing opacity and blocking patterns, the interaction between our model
and syllable structure, and the role of morphological alternations.

6.1 Previous computational and theoretical work

Ours is not the first attempt to induce nonlocal phonological constraints from learn-
ing data. In contrast to our approach, Heinz (2010), Jardine (2015) and Jardine and
Heinz (2016) characterize nonlocal phonology as an idealized problem of searching
for unattested substrings. Their learners memorize attested precedence relations be-
tween segments and induce constraints against those sequences that they have not
encountered. One of the problems with this approach is that it can reify accidental
gaps to the level of categorical phonotactic constraints, whereas stochastic patterns
with exceptions will stymie it (Wilson and Gallagher 2018).20

These models have also been motivated and evaluated only in the form of theoreti-
cal proofs over idealized data sets, and have not been tested on natural language data.
We suspect that were they to be implemented, they would run into some of the prob-
lems we discussed in Sect. 2.4, since at least some of the algorithms involve searching
for nonlocal n-grams. The approaches in particular will run into problems when seen
in the context of the larger problem of learning phonotactics. A non-idealized learner
is solving multiple problems at the same time: non-local dependencies alongside lo-
cal phonotactics, and word and morpheme segmentation (Adriaans and Kager 2010).
There is acquisition research and learnability arguments that segmentation interacts
with nonlocal dependencies (Kastner and Adriaans 2017; Van Kampen et al. 2008
and the references therein). If word boundaries are not known, then a nonlocal sub-
string learner’s window expands far beyond the 25-segment size maximum of our
corpus-based plots in Fig. 1. We do not see an easy way to combine nonlocal sub-
string computations with segmentation, since even nonlocal bigram calculations will
get out of hand when the strings get very long, and when the bigrams are taken to con-
sist of natural classes (as opposed to segments). On the other hand, an approach such
as ours can be combined with learning segmentation, since it hinges on the properties
of local n-grams only.

Futrell et al. (2015) propose a very different approach—their learner is statisti-
cal and uses features, keeping track of local and non-local n-grams. The approach
to nonlocal phonology searches for co-occurrence constraints by traversing a fea-
ture geometry tree. As long as the search through the tree proceeds directionally, it
becomes a subcase of the Directed Acyclic Graph problem, which has well-known
algorithmic solutions. When the learner is tested on a variety of transcribed dictio-
nary corpora, it finds vowel harmony tendencies in languages like Turkish, but it also

20A similar criticism can be applied to the model of Goldsmith and Riggle (2012). They argue that their
model discovers the projection relevant to Finnish vowel harmony, but it does so over segmental rather
than featural representations—thus, the comparison is between V-to-V vs. V-to-C nonlocal relations. This
assumes that the learner is considering only V and C natural classes, thereby giving the learner a vocalic
projection for free. It also allows the learner to notice accidental nonlocal co-occurrence restrictions that
do not involve segments from the same natural class, which our learner cannot detect.
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identifies harmony patterns in languages that do not have any (this is not a damning
critique since statistical learners are generally guilty of finding patterns that linguists
consider accidental). Their model is tested on held out forms, which are all phono-
tactically legal, not a large set of legal and illegal nonce words, so it is not clear how
well the resulting grammar distinguishes ungrammatical novel forms from licit, held
out forms. We are also skeptical of the assumption that all nonlocal restrictions can
be characterized using a feature geometry; in particular, most structured geometries
cannot gracefully capture patterns that involve features from different branches of the
feature tree. A more flexible approach would allow the learner to identify the relevant
natural classes from language evidence—and we demonstrate that our learner has
this capability.

6.2 Over- and under-generalization of the placeholder trigram approach

We have demonstrated that three different languages with nonlocal restrictions ex-
hibit these restrictions as placeholder trigram constraints in the baseline grammar.
To further support our approach, we should understand the conditions under which
a nonlocal pattern may not be observable as a placeholder trigram on the baseline
grammar—that is, the conditions under which our proposal would undergeneralize.
We should also consider whether our model is likely to uncover nonlocal interac-
tions in languages that are not typically thought to have them—that is, whether our
model overgeneralizes and reifies accidental gaps. A full exploration of both over-
and under-generalization would require a broad empirical survey and detailed math-
ematical investigation of the properties of the Hayes and Wilson model, which we
leave for future work. Here, we summarize our observations from working with the
three languages in our case studies, as well as a few others.

We have in fact identified several cases of undergeneralization, where a nonlo-
cal restriction is not reflected in the baseline grammar as a placeholder trigram con-
straint. The Hayes and Wilson model has several properties that make finding some
placeholder trigrams a challenge. First, the model prefers shorter constraints, so all
grammars, regardless of gain or constraint set size, contain relatively few trigram con-
straints compared to bigram constraints. Second, the model prefers constraints that
use fewer features, so constraints on natural classes that require two or three features
to define may be missed. A third factor, which interacts with the first two, is that the
model does not learn exhaustively. Instead, the baseline grammar assesses whether
adding a constraint to the grammar significantly improves the fit to the training data.
Even some categorical trigram constraints may not have enough statistical support
(that is, the absence of such trigrams may not be sufficiently statistically surprising)
to be included in the grammar.

We observed this problem in Quechua, when looking at just the set of roots (as
opposed to phonological words, as reported in Sect. 3). While the baseline grammar
always includes placeholder trigram constraints that hint at the laryngeal restrictions
in each language, Quechua also has a categorical restriction on uvulars and velars
co-occurring in roots, and this restriction is not consistently reflected in placeholder
trigrams. One possible reason that these constraints are absent is because many unat-
tested combinations of uvulars and velars also fall under the purview of the laryn-
geal restrictions. A hypothetical constraint *[dorsal, +RTR][][dorsal, -RTR] would
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penalize just three combinations that don’t violate the laryngeal restrictions—[qVk],
[qhVk], [q’Vk]—and six forms that also violate a broader restriction on laryngeal
combinations—[qVk’], [qVkh], [qhVk’], [qhVkh], [q’Vk’], [q’Vkh]. The work of
constraints on uvular-velar co-occurrence largely duplicates the work of laryngeal
constraints in the grammar, and since laryngeal constraints hold of larger classes of
sounds, these constraints are preferred. Whether or not the model finds constraints
on uvulars and velars also depends on feature specification. If uvulars and velars are
specified as dorsal, and distinguished by [RTR], then each class requires two features
to pick out and the model is less likely to include constraints on these classes. If in-
stead two privative features are used, [velar] and [uvular], the model is more likely to
use these single-feature classes in constraints.

The importance of picking out a natural class with a single feature was echoed
for the laryngeal restrictions in Aymara (Sect. 4) and some preliminary work on
stridents in Kinyarwanda. For Aymara, the restrictions on plain-ejective and plain-
aspirate combinations are only found if plain stops can be picked out using a single
feature. Our model finds these constraints because it is given the privative feature
[plain]; if, instead, the model is given binary [cg] and [sg] and plain stops must be
picked out with two features as [-cg, -sg], then the model fails to learn anything about
the distribution of plain stops. In Kinyarwanda, retroflex and dental sibilants interact,
but these restrictions are only found by the grammar if the feature set defines these
classes with a single feature, e.g., with the ad hoc features [retroflex strident] and
[dental strident]. If these classes are instead described using three binary features as
[+coronal, +strident, -distributed] and [+coronal, +strident, +distributed], the model
does not include constraints that reference these classes. This finding reflects a quirk
of the Hayes and Wilson model that should likely be reconsidered. Many phonolog-
ical patterns involve natural classes that may require many features to be picked out,
and indeed the same pattern may require a different number of features in different
languages. We further anticipate that the model may have difficulty finding place-
holder trigram constraints that refer to very small natural classes, e.g., interactions
between just two segments like [l] and [r], regardless of how many features are re-
quired to pick out these classes.

While our explorations with the Hayes and Wilson learner have shown that under-
generalization is a serious concern under certain conditions, we have not found any
problematic instances of overgeneralization of baseline trigram constraints. Since the
model is fairly conservative about positing trigram constraints, even models with low
gain and a large constraint set contain relatively few placeholder trigram constraints.
Should a baseline grammar include a placeholder trigram constraint that does not cor-
respond to a robust nonlocal interaction in the language, our model will deal with this
the same way it deals with other accidental gaps: by searching this projection for con-
straints that meet the gain criterion of the model. If a placeholder trigram corresponds
to an accidental gap, as opposed to being a local instantiation of a broader restriction,
the search through a projection will not find many useful constraints, or will only find
constraints that it assigns a low weight. When our model is run on Russian, for ex-
ample, it finds no placeholder trigrams—no matter the gain or constraint number.21

21Russian is one of the languages that causes the Java implementation of the learner to run out of memory
at the constraint enumeration stage, due to the large number of natural classes. We got around this for Rus-
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Since Russian is not known to have any strong nonlocal phonological interactions,
this is to be expected, and we consider it a good outcome.

Perhaps more interesting is the failure of the model to find any placeholder tri-
grams in a corpus of Mongolian, a language with vowel harmony (Walker 2001;
Svantesson et al. 2005). The An Crúbadán corpus of Mongolian (available at
http://crubadan.org/) supplies evidence for vowel harmony—the learner finds mul-
tiple vowel harmony constraints when given the [+syllabic] projection directly. But
it does not find anything like it on its own. The reasons for this require investigation
in future work, but we can speculate. First, Mongolian does have a large number of
segmental contrasts, and its syllable structure is too varied for our learner. Vowels
are separated by two or more consonants almost half the time, so there are far fewer
VCV trigrams than Shona. Second, Mongolian also has many local CV segmental
interactions, and just accounting for those requires so many bigram constraints that
Hayes and Wilson’s heuristics de-prioritize trigrams. But Mongolian also has exten-
sive vowel alternations, so its vowel harmony could be captured in a different way
(see Sect. 6.5).

In sum, we have identified cases where our placeholder trigram method fails, but
no cases where it falls prey to accidental gaps that affect the overall fit of the model.
In future work, we plan to explore more thoroughly the circumstances under which a
nonlocal phenomenon will be observable as a local trigram, as well as other types of
evidence that may be available to a learner in languages where nonlocal interactions
are not learnable as a placeholder trigram (see Sect. 6.5 below for a discussion of the
role of morphological alternations). Overgeneralization is handled in our model in the
same way it is handled in Maximum Entropy models in general—by only learning
constraints (on the baseline projection or a nonlocal projection) that satisfy the gain
criterion.

6.3 Opacity and blocking

A second type of challenge for our model are systems that show opacity or block-
ing. Our learner builds projections defined by the smallest natural class that includes
both natural classes mentioned in the placeholder trigram constraints, a procedure
that is simple, deterministic, and represents the maximally general hypothesis about
the transparency of intervening segments. This smallest projection will be the correct
one, unless the language has opaque or blocking segments. This problem was shown
in Shona, where placeholder trigram constraints motivated projections on subsets of
vowels, but not a [+syllabic] projection containing all vowels. Without such a projec-
tion, the opacity of a low vowel to interactions between high and mid vowels cannot
be captured, because no projection includes both the low vowel and the interacting
high and mid vowels. A similar problem is found in a cursory look at how our model
handles sibilant harmony in Kinyarwanda. Walker et al. (2008) report that dental
sibilants may not be followed by retroflex sibilants in the next syllable ([ïùa:üe] ‘I

sian by redefining the feature set to use several privative oppositions and not transcribing certain important
phonotactic patterns (such as vowel reduction). This reduces the number of natural classes for the learner
to deal with, and with it the ability to make certain phonological generalizations. Even this move did not
help with Hungarian.

http://crubadan.org/


Inducing nonlocal constraints from baseline phonotactics

am old’, *[nsa:üe]). At further distances, harmony is generally optional ([-saka:üe]
∼ [-ùaka:üe] ‘cover the roof with, perf.’), but is impossible just in case a non-sibilant
coronal or palatal intervenes ([sí:ta:üe] ‘make stub, perf.’ *[ùí:ta:üe]. When our model
is trained on a dictionary word list of 2576 forms (Cox et al. 1998), it finds a place-
holder trigram that represents the harmony restriction, penalizing dental sibilant-X-
retroflex sibilant sequences. This trigram constraint motivates a strident projection,
which includes the dental and retroflex sibilants but not the opaque consonants. The
model can thus learn a constraint on a nonlocal projection that enforces harmony at
greater distances, but the resulting grammar will not be sensitive to the identity of
intervening consonants and thus will not capture opacity.

For both Shona and Kinyarwanda, there is some question as to how much sta-
tistical support there is for opacity. In Shona, we showed that even in our large set
of forms there is little statistical support for the underattestation of the trigrams that
could show opacity. In Kinyarwanda, the dictionary word list contains zero forms that
show opacity, and a quick look at the web corpus on An Crúbadán finds fewer than
10 such forms in a list of 50,000. If a clear, statistically supported case of opacity
can be found as a phonotactic system, our model will need to be modified to learn
larger projections just in case they are necessary. We leave development of the model
in this direction for future work, pending identification of a statistically robust case
of opacity.

6.4 Predictions for syllable structure and distance effects

Our model’s main distinguishing trait is that it is driven by language-specific charac-
teristics that are observable from baseline phonotactics, without projections. A sim-
ple trigram-based learner identifies constraints that govern segmental co-occurrence
across an irrelevant constituent—which is the definitional property of a nonlocal
phonological interaction. Our learner detects the presence of such placeholder trigram
constraints in the baseline grammar and isolates natural classes involved in the inter-
action, searching projections in a systematic way for constraints that are motivated in
the language. This procedure is inspired by old insights from phonological research:
that segments interact with each other nonlocally when they are part of a natural
class (McCarthy 1986; Rose and Walker 2004 and others), and that nonlocal inter-
actions are easier to notice in languages where consonant and vowel arrangements
are templatic (McCarthy 1989) than in languages where syllable structure is more
complicated and unpredictable. In our view, the connection between these properties
receives a learning-theoretic explanation and opens up a line of future research.22 By

22An anonymous reviewer asks why nonlocal interactions aren’t more frequent in Polynesian languages,
which have very simple syllable structure. First, several languages of the region have been noted for their
nonlocal consonant interactions (see Blust 2012 for a review of OCP effects in these languages, as well
as Coetzee and Pater 2008; Zuraw and Lu 2009). While we do predict that nonlocal interactions should
be learnable via our method in Polynesian languages, there may be other reasons, including chance, why
a language does or does not exhibit a particular type of pattern. For example, in a language with a small
segmental inventory and simple syllable structure, nonlocal phonological dependencies introduce addi-
tional limitations on possible words, resulting in a relatively small set of unique words, unless words are
extremely long. Morphological reduplication may make phonotactic nonlocal dependencies difficult to
detect, since patterns may be ambiguous between a phonotactic and a morphological analysis.
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attuning only to interactions that are observable in a local trigram, and constructing
the smallest natural class based projection from such a trigram, our model avoids the
computational cost of an exhaustive search and also reduces the likelihood of finding
accidental gaps.

Our proposal may also contribute to the explanation for a well-known feature of
nonlocal restrictions: distance effects (Cohn 1992; McCarthy 1994; Suzuki 1998;
Berkley 2000; Hansson 2001; Rose and Walker 2004; Frisch et al. 2004; Albright and
Hayes 2006; Hayes et al. 2009; Kimper 2011; Berkson 2013; Bennett 2015; Stanton
2017b). In distance effects, the nonlocal restrictions hold more strongly across one
intervening segment, and weakly or not at all when the segments are separated by
more material. Our approach offers a different characterization of these effects: the
restricted sequence is penalized by a baseline placeholder trigram, but the learner
has either failed to find evidence for the relevant projection or finds the evidence
inconsistently. If this is on the right track, then we may have a learnability explanation
for distance effects.

6.5 Learning nonlocal projections from alternations

One factor that we did not address but is likely crucial to learning some of the more
complicated nonlocal interactions is that they are morphologically restricted: they are
either evinced in affixal alternations or hold as static morpheme structure constraints
over roots (see Rose and Walker 2004 for in-depth discussion). Indeed, the patterns
must be one or the other to be observable as phonotactic constraints. In Quechua,
laryngeal co-occurrence constraints hold over morphologically complex words with-
out alternations. There are thus two types of morpheme structure constraints in the
language: (i) no ejectives/aspirates in affixes, and (ii) the various co-occurrence con-
straints on the stop projection in roots. The simulation we reported in Sect. 3 used
morphologically complex words as learning data, but the evidence for nonlocal re-
strictions is much more concentrated if the learner is given a list of roots instead.
In Aymara—a language that is minimally different from Quechua—the constraints
hold only of roots and are violated in words with affixes, which do have ejectives
and aspirates. In order to learn the generalizations about Aymara roots, the learner
presumably separates roots into their own group, a sublexicon, for phonotactic learn-
ing (Gouskova and Becker 2013; Becker and Gouskova 2016; Gouskova et al. 2015;
Allen and Becker 2015).

Our simulation for Shona (as well as Hayes and Wilson’s 2008 simulation) implic-
itly assumed that phonotactics are learned over sublexicons: our training data were
citation forms of verbal stems, the only place where vowel co-occurrence restrictions
hold. The nouns of Shona do not respect these phonotactics, and other morphologi-
cal forms of verbs violate them as well (Fortune 1980). When we trained the learner
on the entire ALLEX word corpus (Chimhundu et al. 1996), the baseline grammar
did not include any placeholder trigram constraints, so the learner did not induce any
projections. When given a vocalic projection directly, the learner found trivial con-
straints (e.g., *##, “words should have a vowel”) and low-weighted constraints on rare
trigrams (e.g., *[+high,+back][-high, -back][+high,+back], with a weight of 0.65). It
did not make any distinctions among harmonic and disharmonic nonce words in the
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test set, either (Welch’s Two Sample t-test, VCV harmonic vs. VCV disharmonic
t (4300) = 0.77, p = 0.4, VCCV harmonic vs. VCCV disharmonic, t (4300) = −1.7,
p = 0.08).

We hypothesize that in cases where alternations enforce the restrictions, these al-
ternations are also key to identifying the right projections. Alternations help in three
ways.

First, alternations make the restriction highly salient. They present the learner with
a clear problem to solve: what is responsible for the systematic mismatch between
the different forms corresponding to the same meaning? Both linguists and human
learners attend to alternations, so they offer a shortcut to the difficult problem of
noticing the presence of nonlocal interactions when the language does not otherwise
cue them in its local phonotactics.

Second, when learning phonotactics over sublexicons, the learner has access to
concentrated evidence where certain sequences will be overattested and others will
be underattested or unattested. This was the case in our Shona verb stem train-
ing set, and is a general characteristic of sublexicons (cf. the so-called “islands
of reliability”—near-inviolable generalizations about morphophonologically defined
classes, Albright 2002; Albright and Hayes 2003; Becker et al. 2011; Gouskova et al.
2015; Becker and Gouskova 2016).

Third, the disparities between the allomorphs can be a guide to the relevant projec-
tion. For example, in Shona, the applicative alternates between -ir/-er, and the “un-”
morpheme alternates between -onor/-unur/-enur/-anur/-inur. If the alternation can-
not be attributed to segmentally local conditioning, a projection could be formed by
collecting the non-matching segments [o, u, e, a, i] and finding a natural class that
includes all of them—here, [+syllabic]. In order to work for nonlocally conditioned
alternations with opacity, the procedure would have to be more elaborate; we leave
this for future investigation.

The entire learning trajectory could then start with segmentally local baseline
learning over phonological words only, as for Quechua. Once the learner becomes
morphologically aware, learning would proceed to an automatically created sublexi-
con for roots; this would be necessary for languages like Aymara. Finally, local and
nonlocal alternations would be sorted out, and if local conditioning does not explain
alternations, projections would be tested. The learner does not know a priori whether
the alternations are nonlocally conditioned or even phonologically conditioned (the
pattern could be lexically conditioned suppletion, after all), so this kind of learning
should be harder and will happen at a later stage.

7 Conclusion

We presented an inductive learning model that capitalizes on the observation that
nonlocal phonological interactions are segmentally almost local at least some of the
time—that is, they can be observed by keeping track of segmental trigrams whose
medial segment is phonologically a placeholder, *X[ ]Y. We demonstrated that the
full extent of nonlocal interactions can be captured by positing a representational
projection for the smallest natural class that includes X and Y, which incorporates
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the most general hypothesis that all but the interacting segments are irrelevant to
the restriction. Our learner identified the correct generalizations about laryngeal co-
occurrence constraints on consonants in Quechua and Aymara, and it also found the
vowel co-occurrence restrictions in Shona (though the weight of the constraints did
not allow for a good separation of harmonic and disharmonic nonce forms).

While we do not think that this is the final word on learning nonlocal phonological
interactions, this kind of learning offers a plausible starting point in a framework
that does not assume that the learner has access to universally available projections.
Instead, the learner attends to the properties of the language, and is moved to posit
projections only when encountering certain kinds of evidence. We see this proposal as
a promising avenue for tackling the considerable search space of nonlocal interactions
in a structured way.

Acknowledgements For helpful feedback, we would like to thank Arto Anttila and the anonymous
reviewers of NLLT, as well as Maddie Gilbert, Juliet Stanton, Ildi Emese Szabó, Sora Heng Yin, Jon
Rawski, audiences at OCP 2018 in London, UMass Amherst, Stony Brook, and the Phonology Winter
School in Israel. Finally, we would like to thank Daniel Ridings for making the ALLEX corpus wordlist
available to us, and Colin Wilson for sharing the code for the gain-based MaxEnt Phonotactic Learner, as
well as detailed feedback on related work. This research was supported in part by NSF BCS-1724753 to
the authors.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Adriaans, Frans, and René Kager. 2010. Adding generalization to statistical learning: The induction of
phonotactics from continuous speech. Journal of Memory and Language 62: 311–331.

Albright, Adam. 2002. The identification of bases in morphological paradigms. PhD diss., University of
California, Los Angeles.

Albright, Adam, and Bruce Hayes. 2003. Rules vs. analogy in English past tenses: A computa-
tional/experimental study. Cognition 90 (2): 119–161.

Albright, Adam, and Bruce Hayes. 2006. Modeling productivity with the Gradual Learning Algorithm:
The problem of accidentally exceptionless generalizations. In Gradience in grammar: Generative
perspectives, eds. Gisbert Fanselow, Caroline Fery, Matthias Schlesewsky, and Ralf Vogel, 185–204.
Oxford: Oxford University Press.

Allen, Blake, and Michael Becker. 2015. Learning alternations from surface forms with sublexical phonol-
ogy. Ms., UBC and Stony Brook. http://ling.auf.net/lingbuzz/002503.

Becker, Michael, and Maria Gouskova. 2016. Source-oriented generalizations as grammar inference in
Russian vowel deletion. Linguistic Inquiry 47 (3): 391–425.

Becker, Michael, Nihan Ketrez, and Andrew Nevins. 2011. The surfeit of the stimulus: Analytic biases
filter lexical statistics in Turkish devoicing neutralization. Language 87 (1): 84–125.

Beckman, Jill. 1997. Positional faithfulness, positional neutralization, and Shona vowel harmony. Phonol-
ogy 14 (1): 1–46.

Beckman, Jill. 1998. Positional faithfulness. New York: Routledge.
Bennett, William G. 2015. Assimilation, dissimilation, and surface correspondence in Sundanese. Natural

Language & Linguistic Theory 33 (2): 371–415.
Berent, Iris, Colin Wilson, Gary Marcus, and Doug Bemis. 2012. On the role of variables in phonology:

Remarks on Hayes and Wilson (2008). Linguistic Inquiry 43 (1): 97–119.
Berkley, Deborah. 2000. Gradient OCP effects. PhD diss., Northwestern University.
Berkson, Kelly Harper. 2013. Optionality and locality: Evidence from Navajo sibilant harmony. Labora-

tory Phonology 4 (2): 287–337.

http://ling.auf.net/lingbuzz/002503


Inducing nonlocal constraints from baseline phonotactics

Blust, Robert. 2012. One mark per word? Some patterns of dissimilation in Austronesian and Australian
languages. Phonology 29 (3): 355–381.

Chimhundu, Herbert. 1996. Duramazwi reChiShona. Harare: College Press Publishing Ltd.
Chimhundu, Herbert, Oddrun Grønvik, Christian Emil Smith Ore, and Daniel Ridings. 1996. The African

Languages Lexicon project (ALLEX). Available at http://www.edd.uio.no/allex. Accessed 12 Febru-
ary 2019.

Coetzee, Andries W., and Joe Pater. 2008. Weighted constraints and gradient restrictions on place co-
occurrence in Muna and Arabic. Natural Language and Linguistic Theory 26 (2): 289–337.

Cohn, Abigail. 1992. The consequences of dissimilation in Sundanese. Phonology 9: 199–220.
Colavin, Rebecca S, Roger Levy, and Sharon Rose. 2010. Modeling OCP-Place in Amharic with the

Maximum Entropy phonotactic learner. In Chicago Linguistics Society (CLS) 46, Vol. 2, 27–41.
Chicago: Chicago Linguistic Society.

Cox, Betty Ellen, Myra Adamson, and Muriel Teusink. 1998. Kinyarwanda-English dictionary. Falls
Church: The APICS Educational and Research Foundation.

De Lucca, Manuel. 1987. Diccionario Práctico Aymara-Español, Español-Aymara. La Paz: Editorial Los
Amigos del Libro.

Della Pietra, Stephen, Vincent Della Pietra, and John Lafferty. 1997. Inducing features of random fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (4): 380–393.

Downing, Laura J, and Maxwell Kadenge. 2015. Prosodic stems in Zezuru Shona. Southern African Lin-
guistics and Applied Language Studies 33 (3): 291–305.

Fortune, George. 1980. Shona grammatical constructions, 2nd edn., Vol. 1. Harare: Mercury Press.
Frisch, Stefan A., Janet B. Pierrehumbert, and Michael B. Broe. 2004. Similarity avoidance and the OCP.

Natural Language and Linguistic Theory 22 (1): 179–228.
Futrell, Richard, Adam Albright, Peter Graff, Edward Gibson, and Timothy J O’Donnell. 2015. A proba-

bilistic autosegmental model of phonotactics. Ms., MIT.
Gafos, Adamantios. 1999. The articulatory basis of locality in phonology. New York: Garland.
Gallagher, Gillian. 2014. An identity bias in phonotactics: Evidence from Cochabamba Quechua. Labora-

tory Phonology 5 (3): 337–378.
Gallagher, Gillian. 2015. Natural classes in cooccurrence constraints. Lingua 166: 80–98.
Gallagher, Gillian. 2016. Asymmetries in the representation of categorical phonotactics. Language 92 (3):

557–590.
Gallagher, Gillian, and Jessica Coon. 2008. Distinguishing total and partial identity: Evidence from Chol.

Natural Language and Linguistic Theory 27: 545–582.
Goldsmith, John, and Jason Riggle. 2012. Information theoretic approaches to phonology: The case of

Finnish vowel harmony. Natural Language and Linguistic Theory 30 (3): 859–896.
Goldwater, Sharon, and Mark Johnson. 2003. Learning OT constraint rankings using a Maximum En-

tropy Model. In Stockholm Workshop on Variation within Optimality Theory, eds. Jennifer Spenader,
Anders Eriksson, and Östen Dahl, 111–120. Stockholm: Stockholm University.

Gouskova, Maria, and Michael Becker. 2013. Nonce words show that Russian yer alternations are gov-
erned by the grammar. Natural Language and Linguistic Theory 31 (3): 735–765. http://ling.auf.net/
lingBuzz/001456.

Gouskova, Maria, Sofya Kasyanenko, and Luiza Newlin-Łukowicz. 2015. Selectional restrictions as
phonotactics over sublexicons. Lingua 167: 41–81. http://ling.auf.net/lingbuzz/002673.

Hannan, Michael. 1974. Standard Shona dictionary. Harare: College Press in conjunction with the Litera-
ture Bureau.

Hansson, Gunnar Olafur. 2001. Theoretical and typological issues in consonant harmony. PhD diss., Uni-
versity of California, Berkeley.

Hardman, Martha James. 2001. Aymara. München: Lincom Europa.
Hayes, Bruce, and James White. 2013. Phonological naturalness and phonotactic learning. Linguistic In-

quiry 44 (1): 45–75.
Hayes, Bruce, and Colin Wilson. 2008. A Maximum Entropy Model of Phonotactics and Phonotactic

Learning. Linguistic Inquiry 39 (3): 379–440.
Hayes, Bruce, Kie Zuraw, Péter Siptár, and Zsuzsa Cziráky Londe. 2009. Natural and unnatural constraints

in Hungarian vowel harmony. Language 85 (4): 822–863.
Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry 41 (4): 623–661.
Jardine, Adam. 2015. Learning tiers for long-distance phonotactics. In Generative Approaches to Lan-

guage Acquisition North America (GALANA) 6.

http://www.edd.uio.no/allex
http://ling.auf.net/lingBuzz/001456
http://ling.auf.net/lingBuzz/001456
http://ling.auf.net/lingbuzz/002673


M. Gouskova, G. Gallagher

Jardine, Adam, and Jeffrey Heinz. 2016. Learning tier-based strictly 2-local languages. Transactions of the
Association for Computational Linguistics 4: 87–98.

Kastner, Itamar, and Frans Adriaans. 2017. Linguistic constraints on statistical word segmentation: The
role of consonants in Arabic and English. Cognitive Science 2 (S2): 494–518.

Kimper, Wendell. 2011. Competing triggers: Transparency and opacity in vowel harmony. PhD diss.,
University of Massachusetts, Amherst.

Kochetov, Alexei, and Milica Radisic. 2009. Latent consonant harmony in Russian: Experimental evidence
for agreement by correspondence. In Formal Approaches to Slavic Linguistics (FASL) 17, eds. Maria
Babyonyshev, Darya Kavitskaya, and Jodi Reich, 111–130. Ann Arbor: Michigan Slavic Publica-
tions.

MacEachern, Margaret. 1997. Laryngeal cooccurrence restrictions. PhD diss., UCLA, Los Angeles.
Maddieson, Ian. 1990. Shona velarization: Complex consonants or complex onsets? UCLA Working Papers

in Linguistics 74: 16–34.
McCarthy, John J. 1986. OCP Effects: Gemination and antigemination. Linguistic Inquiry 17 (2): 207–

263.
McCarthy, John J. 1988. Feature geometry and dependency: A review. Phonetica 43: 84–108.
McCarthy, John J. 1989. Linear order in phonological representation. Linguistic Inquiry 20: 71–99.
McCarthy, John J. 1994. The phonetics and phonology of Semitic pharyngeals. In Phonological structure

and phonetic form: Papers in laboratory phonology 3, ed. Patricia Keating, 191–233. Cambridge:
Cambridge University Press.

Mester, Armin. 1986. Studies in tier structure. PhD diss., University of Massachusetts, Amherst. Published
1988 in Outstanding Dissertations in Linguistics series. New York: Garland.

Mudzingwa, Calisto. 2010. Shona morphophonemics: Repair strategies in Karanga and Zezuru. PhD diss.,
University of British Columbia.

Myers, Scott. 1987. Tone and the structure of words in Shona. PhD diss., University of Massachusetts,
Amherst.

Padgett, Jaye. 1991. Stricture in feature geometry. PhD diss., University of Massachusetts, Amherst.
Rose, Sharon, and Rachel Walker. 2004. A typology of consonant agreement as correspondence. Language

80 (3): 475–532.
Siptár, Péter, and Miklós Törkenczy. 2000. The phonology of Hungarian. Oxford: Oxford University

Press.
Stanton, Juliet. 2016. Learnability shapes typology: the case of the midpoint pathology. Language 92 (4):

753–791.
Stanton, Juliet. 2017a. Constraints on the distribution of nasal-stop sequences: An argument for contrast.

PhD diss., Massachusetts Institute of Technology.
Stanton, Juliet. 2017b. Latin –alis/–aris and segmental blocking in dissimilation. In 2016 annual meeting

on phonology, eds. Karen Jesney, Charlie O’Hara, Caitlin Smith, and Rachel Walker.
Suzuki, Keiichiro. 1998. A typological investigation of dissimilation. PhD diss., University of Arizona.
Svantesson, Jan-Olof, Anna Tsendina, Anastasia Karlsson, and Vivan Franzén. 2005. The phonology of

Mongolian. Oxford: Oxford University Press.
Trubetzkoy, N. S. 1939. Grundzuge der Phonologie. Prague: Travaux du cercle linguistique de Prague 7.
Van Kampen, Anja, Güliz Parmaksiz, Ruben van de Vijver, and Barbara Höhle. 2008. Metrical and sta-

tistical cues for word segmentation: The use of vowel harmony and word stress as cues to word
boundaries by 6- and 9-month-old Turkish learners. In Language acquisition and development: Pro-
ceedings of GALA 2007, Vol. 2007, 313–324.

Walker, Rachel. 2001. Round licensing, harmony, and bisyllabic triggers in Altaic. Natural Language &
Linguistic Theory 19 (4): 827–878.

Walker, Rachel, Dani Byrd, and Fidèle Mpiranya. 2008. An articulatory view of Kinyarwanda coronal
harmony. Phonology 25 (03): 499–535. https://doi.org/10.1017/S0952675708001619.

Wilson, Colin, and Gillian Gallagher. 2018. Constraint complexity in surface-based phonotactics: A case
study of South Bolivian Quechua. Linguistic Inquiry 49 (3): 610–623.

Wilson, Colin, and Marieke Obdeyn. 2009. Simplifying subsidiary theory: Statistical evidence from Ara-
bic, Muna, Shona, and Wargamay. Ms., Johns Hopkins.

Zuraw, Kie. 2002. Aggressive reduplication. Phonology 19 (03): 395–439.
Zuraw, Kie, and Bruce Hayes. 2017. Intersecting constraint families: an argument for Harmonic Grammar.

Language 93 (3): 497–548.
Zuraw, Kie, and Yu-An Lu. 2009. Diverse repairs for multiple labial consonants. Natural Language &

Linguistic Theory 27 (1): 197–224.

https://doi.org/10.1017/S0952675708001619

	Inducing nonlocal constraints from baseline phonotactics
	Abstract
	Introduction
	An inductive projection learner
	An overview of the MaxEnt Phonotactic Learner
	Exploring the baseline grammar for placeholder trigrams
	Creating non-baseline projections
	Why not search exhaustively?

	Quechua
	Laryngeal restrictions in Quechua
	Methods: The training and testing data
	The baseline grammar
	Inducing projections and learning a ﬁnal grammar
	Summary

	Aymara
	Laryngeal restrictions in Aymara
	Methods: The training and testing data
	Descriptive statistics and the baseline grammar
	Inducing projections and learning a ﬁnal grammar
	Summary

	Shona
	Vowel height restrictions in Shona
	Methods: The training and testing data
	The baseline grammar
	Inducing projections and learning a ﬁnal grammar
	Multiple projections vs. one [+syllabic] projection
	Summary

	General discussion
	Previous computational and theoretical work
	Over- and under-generalization of the placeholder trigram approach
	Opacity and blocking
	Predictions for syllable structure and distance effects
	Learning nonlocal projections from alternations

	Conclusion
	Acknowledgements
	References


