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In this paper, a new type of high order Hermite weighted essentially non-oscillatory (HWENO) meth-
ods is proposed to solve the Hamilton-Jacobi (HJ) equations on unstructured meshes. We use a fourth
order accurate scheme to demonstrate our procedure. Both the solution and its spatial derivatives are
evolved in time. Our schemes have three advantages. First, they are more compact than the one in [38]
as more information is used at each node which allows us to achieve the same high order accuracy with
a more compact stencil. Second, the new HWENO approximation on the unstructured mesh allows arbi-
trary positive linear weights, which enhances the stability of our scheme. Third, the new HWENO proce-
dure produces an approximation polynomial on each triangle, which allows us to compute all the spatial
derivatives at the three nodes of each triangle based on this single polynomial, instead of computing each
derivative individually with different linear weights in the classical HWENO framework, which improves
the efficiency of our scheme. Extensive numerical experiments are performed to verify the accuracy, high

resolution and efficiency of this new scheme.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider numerical methods for solving the
Hamilton-]Jacobi (HJ) equations

¢+ HEX.Y.t. ¢x. y) =0 (1.1)
¢ (x.y.0) = do(x.y) '

The HJ equations can be used in many applications such as opti-
mal control, differential games, image processing, computer vision
and so on. It is well known that the solutions of HJ equations are
always continuous, however their derivatives could become discon-
tinuous even if the initial condition is smooth. With the definition
of the viscosity solution by Crandall and Lions [6], we can obtain
the unique weak solution for the HJ equations.
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As the spatial derivative of the HJ solution satisfies a conserva-
tion law equation in the one dimensional case, the HJ equation has
a close relationship with conservation laws. Many successful meth-
ods for conservation laws can be adapted to solve the HJ equations.
In general, the HJ equations are easier to solve than their corre-
sponding conservation laws because the solutions of HJ equations
are smoother than those for conservation laws (continuous versus
discontinuous).

There are many papers designing numerical schemes for HJ
equations on structured meshes. Crandall and Lion [7] introduced
first order monotone schemes and proved that the schemes can
converge to the viscosity solution. Although monotone schemes
are only first order accurate, they serve as the building blocks
for most higher order schemes. Osher and Shu [25] designed high
order essentially nonoscillatory (ENO) schemes for solving the H]J
equations. Jiang and Peng [11] generalized them to weighted ENO
(WENO) schemes, with tremendous success. The WENO schemes
in [11] have become standard choices for solving H] equations
on structured meshes. Hermite WENO (HWENO) schemes and re-
lated methods have been developed in [27,29,40,44] to achieve
more compact stencils for the same order of accuracy. Bryson and
Levy [2] presented central schemes for solving the HJ equations.
The schemes mentioned above are all designed in the finite dif-
ference framework, namely they approximate point values of the
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solution (and possibly also its spatial derivatives). There are also
many schemes designed in the finite volume or discontinuous
Galerkin (DG) framework, namely they solve for the cell aver-
ages of the solution (and possibly also its higher order moments),
mostly for the conservation law equations satisfied by the spatial
derivatives of the solution but some also for the HJ equations di-
rectly. These schemes can be defined both on structured meshes
and on unstructured meshes. Hu and Shu [9] designed the first DG
scheme of this type. Later, Li and Shu [18] reinterpreted and sim-
plified the DG scheme in [9]. Li and Yakovlev [19] proposed central
DG schemes to solve the HJ equations. Liu and Pollack [21] sug-
gested the alternative evolution DG (AEDG) schemes. Zhu and Qiu
[42] and Zheng and Qiu [39] designed finite volume schemes to
solve the HJ equations.

We are particularly interested in numerical methods on un-
structured meshes, because of their ability in dealing with prob-
lems in complicated domains. The first paper in this category is
[1] by Abgrall, who designed a Lax-Friedrichs (LF) type monotone
scheme on triangular meshes and proved its convergence to the
viscosity solution. The monotone scheme in [1] is the building
block for most higher order schemes for HJ equations on unstruc-
tured meshes. Li, Yan and Chan [20] also developed a monotone
and convergent scheme based on the weak form of the viscid HJ
equation. Lafon and Osher [14] proposed high order ENO methods
on triangular meshes. Zhang and Shu [38] and Levy et al. [15] de-
veloped high order WENO and central WENO schemes on trian-
gular meshes respectively. Zhu and Qiu [41,43,45] developed high
order HWENO schemes and related schemes on triangular meshes.
For more details of numerical solutions for HJ equations, we refer
to the lecture notes [31].

The schemes that we construct in this paper belong to the class
of HWENO schemes. HWENO schemes come from WENO schemes,
originally designed for solving conservation laws in [12,22]. The
WENO method has been applied in many areas, such as magne-
tohydrodynamics equations [4,5], shallow water equations [26,35],
detonation waves [8,34], multi-phase flow [36,46], Euler equations
[10,37] and so on. Comparing with earlier ENO schemes, WENO
schemes use a convex combination of several candidate stencils,
instead of using just one of them in the ENO procedure. WENO
schemes can achieve high order accuracy in smooth regions and
can keep sharp and non-oscillatory shock transition when disconti-
nuities appear. Comparing with WENO schemes, HWENO schemes
[28,29] use a more compact stencil for the same order of accu-
racy by evolving both the solution and its derivatives or first or-
der moments in each cell. HWENO schemes can also achieve both
high order accuracy and the essentially non-oscillatory property.
However, one major difficulty in the classical WENO and HWENO
methods is the computation of the linear weights. These linear
weights depend on the particular mesh, and for triangular meshes,
different cells and different quadrature points have different lin-
ear weights. When we implement WENO or HWENO methods on
triangular meshes, we would need to compute and prestore the
linear weights on every cell. This would be particularly expensive
if we use moving meshes. Furthermore, the linear weights, which
depend on the local mesh structure, could become negative, which
could lead to instability. Even though there is a procedure to han-
dle such negative weights [30], it may not always fix the stability
problem when the negative linear weight is very large [23]. Worse
still, in certain situations the linear weights for optimal accuracy
may fail to exist. Recently, Zhu and Qiu proposed a new type of
WENO method [44], with similar ideas in earlier work [3,16,17].
These WENO methods use a convex combination of a high order
polynomial on the large stencil and several low order polynomials
on small stencils. The high order polynomial determines the ac-
curacy and the low order polynomials play a major role in ensur-
ing the non-oscillatory performance when discontinuities appear.

An important property of these WENO methods is that the lin-
ear weights can be chosen as arbitrary positive numbers provided
that they sum to one, thus the shortcomings of classical WENO
schemes mentioned above can be avoided. In this paper, we exploit
this idea in designing a new type of high order HWENO methods
for solving HJ equations. Our method belongs to the class of finite
difference schemes, in evolving approximations to the point val-
ues of the solution and its first order spatial derivatives at nodes.
Only the evolution of the solution itself is written in numerical
Hamiltonian form (corresponding to the conservative form for solv-
ing conservation laws). The evolution of the spatial derivatives is
performed in a non-conservative fashion, thus leading to a much
simpler and more efficient algorithm comparing with finite vol-
ume type schemes. We note that this will not affect convergence
to viscosity solutions (correct kink location) when the scheme con-
verges. The main procedure of these HWENO schemes is as follows.
First, we take the spatial derivatives of the original H] equation to
get a system of partial differential equations (PDEs) satisfied by
these spatial derivatives. Second, we replace the nonlinear terms
in the original and derived PDEs with numerical Hamiltonian and
approximate the derivatives using the new type of HWENO pro-
cedure. Finally, we evolve the solution and its spatial derivatives
by the Runge-Kutta method. The constructed HWENO schemes has
the following advantages. The scheme is more compact than the
WENO method for the same order of accuracy as it uses informa-
tion not only from the solution but also from its spatial deriva-
tives. We use the new type of HWENO approximation procedure,
which allows arbitrary positive linear weights as long as they sum
to one, thus simplifying the algorithms significantly on triangular
meshes. The new type of HWENO methods produces an approxi-
mation polynomial on each triangle, which allows us to compute
all the spatial derivatives at the three nodes of each triangle based
on this single polynomial, instead of computing each derivative in-
dividually with different linear weights in the classical WENO or
HWENO framework. This results in a significant saving of compu-
tational cost. Our scheme is analyzed for its formal high order of
accuracy, measured by local truncation errors, in Section 2.2.1, see
Remark 1 there.

The organization of this paper is as follows. In Section 2, we
introduce our new HWENO scheme in detail. In Section 3, we
present numerical results to demonstrate the performance of our
HWENO schemes. Conclusion remarks are given in Section 4.

2. The HWENO algorithm for 2D unstructured meshes

In this section, we describe in detail the framework of our
HWENO schemes for solving H] equations and the HWENO approx-
imation procedure on triangular meshes.

2.1. The framework

We consider the governing Eq. (1.1) solved on a domain €2,
which is partitioned into non-overlapping triangles denoted by
A l=1...N. We define |A;| and (x;, y,) as the area and the
barycenter of the triangle A; respectively. For every node i, we de-
fine the angular sectors which share the same node i as To, -~ , T},
in the anticlockwise order. 71),+% is the unit vector of the half-line
Dl+% =TT, and 0, is the inner angle of the sector T, 0 <l <k;.
See Fig. 1.

We define ¢; as the numerical approximation to the viscosity
solution of (1.1) at node i, and we denote (u; v;) as the numeri-
cal approximation to the spatial derivatives V¢ at node i. By tak-
ing spatial derivatives on both sides of the Eq. (1.1), we obtain the
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Fig. 1. Node i and its sectors.

following system for the approximation:
G =-H(Ve¢)
B — —Hy (Vi) uy, — Ho (Vhy)vy, (2.1)
i — _H, (Vgy)uy, — H(V)y,

where H;(u,v) = 3 and H,(u,v) = 9. As uy = vy, we can also
rewrite the system as the following:

G = —H(Ve)

B — _Hy (V) uy, — Ho (Vy)uy, (2.2)

L — _Hy (Vv — Ha(V)uy,

We introduce approximations to the right hand sides of (2.2) using
hats, and obtain the semi-discrete scheme as

déi _ _ @,

G = —Hi

@i = —Hyuy, + Houy, (23)
% = —H1 Uy, + Hﬂ/yI

Here, ﬁ, is the LF type monotone Hamiltonian for triangular
meshes introduced by Abgrall [1]. It is an important building block
for our schemes and is defined as follows:

ki

> 0(Vey) ki

2 VoV, \ =

Hon - IZO ﬁ1+% (7@2 2 1) LTS (24)

2

H=H

where 51+% =tan (%) +tan (G’T“> o=
max { max |H;(u,v)|, max |H;(u, 1/)|}. Here V¢, is the nu-
A<u<B A<u<B

C<v=D C=<v=D

merical approximation to V¢ at node i in sector T,. [A, B] is the
range of the value ¢, and [C D] is the range of the value ¢y,
over 0 <I<k; for the local LF Hamiltonian, and over 0 <I<k; and
0<i<N for the global LF Hamiltonian. In this paper, we use the
global LF Hamiltonian.

We define H; uxi/-i—\quyi in a similar way:

k K
YOV | 30 (uy)
0 far

Hyuy, + Houy, = Hy | £ H
1Ux;, + Hally, 1 o o + Hy

k; ki
YOV | > 0i(uy)
1=0 1=0

21 2

[
o - Vu, + Vu
XA ( Lt Vit ) T (2.5)

Fig. 2. The nodes used for the big stencil.

in which the definition of the parameters is the same as before.
Similarly, we can define H; v,q/-i-\szyi.

After we complete the spatial discretization, we can rewrite the
semi-discrete scheme as U; = £(U), where £ denotes the operator
of the spatial discretization. As to the time derivative, we can use
the third-order total variation diminishing (TVD) Runge-Kutta time
discretization [32] to solve the semi-discrete form (2.3):

UMD =U" + Atc(Um)
U@ — %U“ + %(U“) + AtLUMY) (2.6)
Ut = 1Um+ 2(U@ + AtL(U®))

Now, we have completed the description of our scheme, except
for the approximation of V¢, Vu and Vv, which would need to
be obtained by the HWENO method to maintain high order ac-
curacy in the smooth regions and sharp and non-oscillatory per-
formance when derivative discontinuities appear. In the following
section, we will describe the detailed procedure of the HWENO ap-
proximation method, using the fourth order version as an example.

2.2. Fourth order HWENO approximation

In this section, we follow similar ideas as in Zhu and Qiu
[44,45] to construct fourth order HWENO approximation to the
nodes 1,2,3 of the target cell Ay, as shown in Fig. 2, for V¢, Vu
and Vv.

2.2.1. Fourth order HWENO approximation for V¢

Step 1. In order to get a fourth order approximation to V¢, we
would like to first construct a fourth degree interpolation or least
square polynomial pg(x, y). Let (xg, ¥o) be the barycenter of the tar-
get cell Ag. We define & = 820 5 — UY0) Then, we can write

Va7 V1Al

the polynomial py(x, ¥) as

4
Pox.y) =) > a;&n 2.7)

Jj=0s+r=j

It has 15 degrees of freedom, so we would need to use at least 15
conditions from the nodes.

Step 2. Given a big stencil Sg = {1, 2, ---, 12} as shown in Fig. 2,
we would like to obtain the fourth degree polynomial pg(x, y) such
that

poxy) =¢ 1=1,2,3 (2.8)
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and

2
Po = argmin (Z(p(xl,yz) —9)° + A0l Y (;cp(xl,yz) - uz)
1 l

2
+[Ao] ) (E?yp(xl,lﬁ) - Ul) )
1

where | =4,5,---,12, and the minimum is taken over all polyno-
mials p of degree at most 4. The |Ay| factor in front of the deriva-
tive terms is introduced to get the correct scaling with the mesh
size.

We can rewrite the above problem in the following matrix
form:

a = argmin ||Bx — |3

X
st. Aa=b

where the A is a 3 x 15 matrix coming from the coefficients
of the Eq. (2.8), b is a 3x1 matrix coming from right hand
side of the Eq. (2.8), B is a 27 x 15 matrix coming from the
Eq. (2.9) and f is 27 x 1 matrix coming from the information of
&1, 4/ 1 Aoluy, /| Aglyy in the Eq. (2.9). Here a is the vector of coef-
ficients of pg(x, y) defined in (2.7).

In order to solve this constraint least square problem, we can
define the following Lagrange function:

(2.9)

(2.10)

L(x, ) = c(%xTBTBX _ fTBx) _AT(Ax—b)

where the second part of the Lagrange function comes from the
constraints and the first part comes from the objective function:
[IBx—f||2 =®Bx-HT(Bx—f)
= X"B"Bx — 2fTBx + f'f

Here, c is a parameter used to reduce the condition number nu-
merically, and it is taken as
o 1

~ 27max [B(@, )|’
i.j

(2.11)

where 27 is the number of the rows in the matrix B and B(i, j)
refers to the elements of B.

By requiring Lx (X, A) =0 and L, (x, ) = 0, we have the follow-
ing linear system:

cB"Bx — AT\ = cB'f
Ax=b (212)
2
1 -
> 0
-1
R ! | ! ! | ! !
2-2 1 0 1 2
X
Fig. 3. The sample mesh with the number of nodes N = 134.

We can rewrite the linear system in the matrix form:

(2 6 )H)

Solving this linear system, we get a = x as the coefficients of the
fourth degree polynomial pg, for which Vpg(x, y) will be a fourth
order approximation to V¢(x, y).

Step 3. We also need to construct four second degree poly-
nomials depending on four different small stencils in order to
form the HWENO approximation. We select these small stencils as
S1=1{1,2,3,4,5,6}, S, = {1,2,3,4,7,8}, S3 ={1,2,3,5,9, 10} and
S4=1{1,2,3,6,11, 12}. We would like to construct the interpolation
polynomials pg(x, ¥)

(213)

2
Pxy) =Y > aiEn’. k=1,234

j=0s+r=j

such that

P y) =, leS

Then, each Vp,(x, y) is a second order approximation to V¢(x, y).

Step 4. We compute the smoothness indicators B, 1=
0,1,---,4, which measures the smoothness of the polynomials p,
on the target cell Ag. The smaller the indicators are, the smoother
the polynomials are. We use a similar definition as in [11,38]:

alil 2
Br = Z/A |Ao||12<8xhaylzpk(x,y)> dxdy, k=0,1,...,4
0

[1]=2

where | = (I1, 1) and || =11 + L.
Step 5. We set the positive linear weights as y;, = 0.2 for k=
0,1,...,4. Then we can rewrite pg(x, y) as follows:

1 4 4
Po(x.y) =vo[ —Po(x,y) =) 2 pexy) | + D Vb (X, ).
Yo i1 70 k=1
Step 6. We compute the nonlinear weights defined as follows:
W= e r

>iw e+ B

where the parameter 7 is defined as follows:

2
W,:y,(1+ ) [=0.1,--. .4,

4
=) (Bo— B’

k=1

o
AVAVAV.\VAVAVAY, \VAV.\VAV/\VAVAVAV/\VAY, VAVAVAVAVAVAVAVAVAY, VAVAVAVAVAVAVA

N VAVAVAVAVAVAVAVA AVAVAVAVAVAVAY
-2 -1 0 1 2
X

Fig. 4. The sample mesh for Examples 4 and 5 with the number of nodes N = 1876.
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Fig. 5. Burgers equation. T = 1.5/72. Left: surface of the solution; right: contour plot of the solution.
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Fig. 6. Nonlinear equation. T = 1.5/72. Left: surface of the solution; right: contour plot of the solution.

Here, we take ¢ = 1076 in order for avoiding the denominator to

become zero.
Step 7. The final HWENO approximation is given by:

4 4
p(x.y) = wo [ = po(x.y) - S Lpey) | + 3 wipe(x ).
Yo k=1 0 k=1
Remark 1. We would like to verify that, in smooth regions, the
approximation to V¢ can achieve fourth order accuracy. First, by
Taylor expansions, we have the following estimate for the 8’s in
smooth regions:

2
fo= (2 FgrPen] ) Jisol+0a0)
and
gl 2
b= | Z o9, |A0l(1+0(/1A0])).
k=1,2,3,4.

Also by Taylor expansions, we have

T

T _0(lAg»).  1=0.1,.-.4
8+.Bl (| 0|)

which leads to

wy =y +0(|Agl?), =01, ,4.

Therefore, we have
Vpx,y) —Vo(x.y)

Yk
ZVpe(x,
” Pe(x,y)

1 4
=wo| —Vpox.y) =)
Yo k=1

4
£ WP y) - Vo (x.y)
k=1

1 4
= o+ wo— )| —VPoxy) = 3 LVpx y) - Vo x y)
Yo = Yo
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4
+ Y e+ Wi = Y) (VD) = Vo (x,y))
k=1

— Vpox.y) - Vo(x.y) + (Wo — y0) (;OVpl *x.y)

4
-3 %vmx,y) ~Vo(x. y))
k=1

4

+Y W= Y (VDY) = Vo (x,¥))

=1
= 0(|Aol®) + 0(|Ao|»)O(|Ao]) + O(1 Ag|*)O(| Ag))
= 0(|Ao]?)

which verifies fourth order accuracy for V.

(2.14)

Remark 2. It is well known that, for general triangular meshes, if
we use exactly 15 pieces of information to determine the fourth
degree polynomial, the interpolation problem may not be well de-
fined, as the linear system could be ill-conditioned or even singu-
lar. It is therefore more prudent to use more than 15 pieces of in-
formation and the least square procedure to determine the fourth
degree polynomial. Also, it appears to be necessary to require the
polynomial to interpolate the function ¢ at the three nodes 1,2,3 of
the target cell Ay in order to ensure stability. We do observe linear
instability in our numerical experiments when we do not require
exact interpolation at these three nodes and treat them the same
way as the other conditions through the least square procedure.

Remark 3. In fact, the nodes used in the stencils may not be dif-
ferent. For example, the node 8 and node 9 as shown in Fig. 2 may
be the same in some triangulations. Because of the many slacks in
the least square procedure, our method still works in such situa-
tion.

2.2.2. Fourth order HWENO approximation for Vu and Vv

The procedure to obtain fourth order HWENO approximations
for Vu and Vv is similar to the one described in the previous sec-
tion for approximating V¢.

-1 -0.5 0 0.5 1
X

Fig. 7. The uniform mesh for Example 6 with the number of nodes N = 369.

|
-0.5 0 0.5
X

Fig. 8. Convergence study of the nonconvex and nonconcave case.

Step 1. In order to get a fourth order approximation to Vu, we
would need to construct a fifth degree polynomial py(x, y) as

5
Pox.y) =YY ayEn”

Jj=0s+r=j

(2.15)

It has 21 degrees of freedom, so we would need to use at least 21
conditions at the nodes.

Step 2. Given the same big stencil Sg = {1, 2,---,12} as shown
in Fig. 2, we would like to obtain the fifth degree polynomial py(x,
y) such that

pox.y)=¢ 1=1,2,3
Pox(xp,y) =u 1=1,2,3 (2.16)
poy(x.yD =1 1=1,23

and

2
po = argmin (Z(p(xl,%) =)+ 100l Y ((;JXP(XLYI) - Ul)
I I

2
+180 Y (aayP(Xl,J’z) - UI) )
I

where | =4,5,---,12, and the minimum is taken over all polyno-
mials p of degree at most 5.

Again, we can rewrite the above problem into a matrix form
as before, facilitating its implementation. We skip the details here
to save space. The fifth degree polynomial py thus obtained would
have the following properties: pgoxx(x, y) would be a fourth order
approximation to ¢xx(x, ¥), poxy(x, ¥) would be a fourth order ap-
proximation to @xy(x, y), and pgyy(x, y) would be a fourth order ap-
proximation to ¢yy(x, y). We have therefore obtained fourth order
approximations to Vu and Vv.

Step 3. We also need to construct four third degree polyno-
mials depending on four different small stencils in order to form
the HWENO approximation. We select these small stencils as S; =
{1,2,3,4,5,6}, S, ={1,2,3,4,7,8}, S3={1,2,3,5,9,10} and S4 =
{1,2,3,6, 11, 12}. We would like to construct the least square poly-
nomials py(x, y)

(2.17)

3
P y)=>" 3" aEn, k=1.2,34

J=0 s+r=j
such that

pr(xy,, 1) = @y,

Fig. 9. The mesh for Example 7 with the number of nodes N = 4138.
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Fig. 10. Control problem. Left: surface of the solution; Right: the optimal control w = sign(¢y).

and

2
. d
pe=argmin{ > (p(xy,. y1,) —#,)*+| Aol Y (axp(xh ,J/ll)—uh)
%3 kL

2
ad
+180 Y (ayp(xl”y”) - Uh)
lh

where I; =1,2,3 and L, € S;\{1, 2, 3}. The minimum is taken over
all the polynomials p, of degree at most 3. Then, pyxx(x, y) is a sec-
ond order approximation to @xx(x, ¥), Pxxy(x, ¥) is a second order
approximation to ¢yy(x, ¥) and pyyy(x, ) is a second order approx-
imation to ¢yy(x, y), hence we have obtained four second order
approximations to Vu and Vv.

Step 4. We compute the smoothness indicators B, 1=

0,1,---,4 as follows:

30" ’
ﬁk:§A0|A0| ka(x,y) dxdy, I(:O,l,~~~,4
where [ = (I1, ) and || =11 + L.

The remaining Step 5 through Step 7 are identical to the ones
described in the previous subsection for approximating ¢. Once
the final fifth degree HWENO approximation polynomial p(x, y) is
obtained in Step 7, we can take its second derivatives to obtain ap-
proximations to Vu and Vv. By Taylor expansions, we can verify
that the HWENO approximations are indeed fourth order accurate
in smooth regions.

3. Numerical results

In this section, we present numerical experiments using the
fourth order HWENO method on triangular meshes. The time step
is taken as

1 |A|min
At = ->+—
2 o
where |A|qp;, = min|A;|, « is the parameter in the LF type mono-
1

tone Hamiltonian. The only exception is for the accuracy test which
needs smaller time step to guarantee that the spatial error dom-
inates. For the sake of evaluating the performance of different
choices of the linear weights, we set three different types of lin-
ear weights for the accuracy tests: (1) Yo=yV1=Y2=V3=V4=

0.2; (2) Y0 =10.96 and y; = y» = y3 = ¥4 = 0.01; (3) yp = 0.04 and
Y1 =)o =y3 = Y4 = 0.24. We also present the results of the lin-
ear scheme, which use the linear weights instead of the nonlinear
weights, to make the comparison with our HWENO schemes. All
the numerical tests are nondimensionalized.

Example 1. We solve the two dimensional linear scalar equation

e+ b+ ¢y =0,

with the initial datum ¢(x,y,0) = —cos(5 (x+y)) and periodic
boundary condition. A sample mesh with boundary triangle size
h = 0.4 is shown in Fig. 3. We compute the result up to t =2 to
test the accuracy of ¢ and V¢ of both the linear scheme and the
HWENO schemes. The errors and numerical orders of accuracy are
shown in Tables 1 and 2, where HWENO(i) refers to the (i)th choice
of the linear weights indicated above, for i =1,2,3. We can see
that the HWENO schemes can achieve its designed order of accu-
racy, at least in L; and L, norms. We also notice that the differ-
ent choices of the linear weights do not change the results signifi-
cantly. We list the CPU time of these schemes as well, see Table 3.

-2<xy<2

0.5

VAVAVAVAVAVAY: VAVAVAVAVAVAVAVAVAY VAVAVAVAVAVAVA

©
(&)
AVAVAVAVAVAVAY, \VAV.)

1 VAVAVAVAVAVAVA TAVAYAVAY VAVA\ AVAVAVAVAVAVAVAVAVA AVAVAVAVAVAVAY
-0.5 0 0.5 1
X

'
-

Fig. 11. The mesh for Example 8 with the number of nodes N = 1876.
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Table 1
G+ Px+ ¢y =0, d(x.y,0) = —cos(Z (x+y)). Periodic boundary conditions. t = 2.
Linear:¢ HWENO(1):¢
N L., error Order L, error Order L. error Order L, error Order
134 3.60E-02 1.76E-02 4.93E-01 3.15E-01
492 1.78E-03 4.34 8.57E-04 4.36 7.02E-02 2.81 2.97E-02 3.40
1876 1.01E-04 415 4.84E-05 415 1.32E-03 5.73 2.67E-04 6.80
7337 6.18E-06 4.03 2.98E-06 4.02 2.29E-05 5.85 4.19E-06 6.00
29204 3.57E-07 411 1.81E-07 4.04 5.32E-07 5.43 1.86E-07 449
HWENO(2):¢ HWENO(3):¢
N L., error Order L, error Order L. error Order L, error Order
134 1.82E-01 1.14E-01 5.05E-01 3.23E-01
492 6.53E-03  4.80 1.91E-03 5.90 7.51E-02 2.75 330E-02  3.29
1876 1.71E-04 525 5.46E-05 513 1.51E-03 5.64 3.16E-04 6.71
7337 6.93E-06 4.63 3.02E-06 4.18 2.64E-05 5.84 4.57E-06 6.11
29204 3.61E-07 4.26 1.82E-07 4.06 5.68E-07 5.54 1.87E-07 4.61
Table 2
G+ Px+dy =0, d(x.y,0) = —cos(Z (x+y)). Periodic boundary conditions. t = 2.
Linear:V¢ HWENO(1):V¢
N L., error Order L, error Order L., error Order Ly error Order
134 6.47E-02 2.75E-02 8.67E-01 4.41E-01
492 3.70E-03 413 1.43E-03 4.27 2.15E-01 2.01 1.12E-01 197
1876 2.38E-04 3.96 7.93E-05 417 9.87E-03 4.44 1.81E-03 5.95
7337 1.76E-05 3.76 5.03E-06 3.98 2.22E-04 5.47 2.68E-05 6.08
29204 1.43E-06 3.62 3.03E-07 4.05 4.59E-06 5.60 4.99E-07 5.75
HWENO(2):V¢ HWENO(3):V¢
N L., error Order L, error Order L., error Order L, error Order
134 3.98E-01 1.49E-01 8.84E-01 4.53E-01
492 2.55E-02 3.96 7.03E-03 4.40 2.26E-01 197 1.17E-01 1.96
1876 7.19E-04 5.15 1.45E-04 5.60 1.16E-02 4.29 2.16E-03 5.75
7337 2.52E-05 4.83 5.67E-06 4.68 2.65E-04 5.44 3.14E-05 6.11
29204 1.43E-06 414 3.08E-07 4.20 5.30E-06 5.65 5.43E-07 5.85
Table 3
CPU time (in seconds) for ¢ + ¢x + ¢y = 0. ¢(x,y,0) = —cos(Z (x +y)). Periodic boundary con-
ditions. t = 2.
N 134 492 1876 7337 29,204
Linear scheme 072 817 78.82 914.32 9039.87
Average time for three HWENO schemes 1.03 11.75 113.20 1328.17 13211.49

Example 2. We solve the two dimensional Burgers equation

G+ 2+ dy+1)2 =0,

with the initial datum ¢(x,y,0) = —cos(%(x+y)) and periodic
boundary condition. The coarsest mesh with h = 0.4 is shown in
Fig. 3. We compute the result up to t = %’. At this time, the so-
lution is still smooth. Both the linear scheme and the HWENO
schemes are tested in this case and the errors and the orders of
accuracy of ¢ and V¢ are listed in Tables 4 and 5. We can see that
the HWENO schemes can reach its designed order of accuracy. We
also list the CPU time of these schemes, see Table 6.

-2<Xxy<2

Example 3. We solve the two dimensional nonlinear equation

¢ —cos(px+ ¢y +1) =0,

with the initial datum ¢(x,y,0) = —cos(5(x+y)) and periodic
boundary condition. The coarsest mesh with h = 0.4 is shown in
Fig. 3. We compute the result up to ¢t = %. At this time, the so-
lution is still smooth. Again, we test the accuracy of ¢ and V¢
of both the linear scheme and the HWENO scheme. From Tables 7
and 8, we can see that the HWENO schemes can reach the ex-
pected order of accuracy. We also list the CPU time of these
schemes, see Table 9.

-2<xy<2

For the following examples, we will use the first choice of the
linear weights, namely yg =y =y =3 =4 =0.2.

Example 4. We solve the two dimensional Burgers equation

G+ 3+ +1)2=0,

with the initial datum ¢(x,y,0) = —cos(% (x+y)) and periodic
boundary condition, and compute the result up to t = 1.5/7w2. At
this time, the solution is not smooth any more. We compute the
HWENO scheme with the mesh shown in Fig. 4 and plot the results
in Fig. 5. From the figure, we can see that the HWENO scheme can
achieve good resolution in this case.

-2<x,y<2

Example 5. We solve the two dimensional equation

¢t —cos(px+ ¢y +1) =0,

with the initial datum ¢(x,y,0) = —cos(5 (x+y)) and periodic
boundary condition, see [25]. The mesh is shown in Fig. 4. We
compute the result up to t =1.5/w2 when the solution is not
smooth any more. From Fig. 6, we can see that the scheme can
achieve high resolution in this example.

-2<xy<2

Example 6. We solve the problem

Ge+ (07 -1D(g; -4 =0
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Table 4
O+ 2@+ Py +1)2 =0, ¢(x,y,0) = —cos(Z (x+)). Periodic boundary conditions. t = 0.5/72.
Linear:¢ HWENO(1):¢
N L., error Order L, error Order L., error Order L, error Order
134 2.42E-02 3.55E-03 1.07E-01 3.11E-02
492 2.60E-03 3.22 2.84E-04 3.65 1.70E-02 2.65 3.75E-03 3.05
1876 1.87E-04 3.80 1.26E-05 4.50 4.09E-04 538 5.74E-05 6.03
7337 1.39E-05 3.75 6.10E-07 4.36 1.18E-05 511 7.99E-07 6.17
29204 4.96E-07 4.80 2.37E-08 4.69 4.80E-07 4.62 2.46E-08 5.02
HWENO(2):¢ HWENO(3):¢
N L., error Order L, error Order L., error Order L, error Order
134 5.75E-02 1.42E-02 1.10E-01 3.23E-02
492 4.74E-03 3.60 487E-04  4.86 1.83E-02 2.59 4.15E-03 2.96
1876 1.81E-04 471 1.17E-05 5.37 4.74E-04 5.27 6.76E-05 5.94
7337 1.36E-05 3.73 5.97E-07 4.30 1.16E-05 5.36 8.67E-07 6.29
29204  4.96E-07 4.78 2.36E-08 4.66 4.77E-07 4.60 2.51E-08 511
Table 5
O+ 2 ( @+ By +1)2 =0, ¢(x,y,0) = —cos(Z (x+)). Periodic boundary conditions. t = 0.5/72.
Linear: V¢ HWENO(1):V¢
N L., error Order L, error Order L., error Order L, error Order
134 7.87E-02 1.44E-02 1.95E-01 5.52E-02
492 1.47E-02 242 1.65E-03 312 6.35E-02 1.62 9.32E-03 2.57
1876 1.54E-03 3.25 9.69E-05 4.09 6.00E-03 3.40 5.58E-04  4.06
7337 1.95E-04 2.98 5.70E-06 4.09 7.70E-04 2.96 1.95E-05 4.84
29,204 1.19E-05 4.04 2.22E-07 4.68 1.69E-05 5.51 3.01E-07 6.02
HWENO(2):V¢ HWENO(3): V¢
N L., error Order Ly error Order Lerror Order Ly error Order
134 1.48E-01 3.15E-02 1.96E-01 5.66E-02
492 2.68E-02 2.47 2.58E-03 3.61 6.68E-02 1.55 1.01E-02 2.48
1876 5.30E-03 234 1.78E-04 3.86 6.02E-03 347 6.17E-04 4.04
7337 3.02E-04 413 6.58E-06 4.76 7.91E-04 293 2.17E-05 4.83
29204 1.19E-05 4.67 2.24E-07 4.88 1.81E-05 5.45 3.21E-07 6.08
Table 6
CPU time (in seconds) for ¢ + %(d)x +¢y+1)2=0, ¢(x.y.0) = —cos(5 (x+y)). Peri-
odic boundary conditions. t = 0.5/72.
N 134 492 1876 7337 29,204
Linear scheme 010 0.86 834 93.08 938.36
Average time for HWENO schemes 0.13 112 10.88 122.01 1093.53
with the initial datum ¢(x,y,0) = —2|x|, see [38]. The periodic The scheme in this case is the same
boundary condition is applied in the y-direction. We solve the d¢ _ _ [
problem in the domain [-1, 1] x [-0.2, 0.2] with the sample mesh dt ! o o
shown in Fig. 7. This is a demanding test case, many schemes can % = —Hyuy; + Hyuy; — Hy; (31)
not obtain satisfactory results, some of them may even fail to con- dv; Ty T
verge to the correct viscosity solution. We compute the results up a = ~MiUxi + Haly; = Hy;

to t =1 with h= 5, /., &. and plot the solution along the cut
line y = 0. From Fig. 8, we can see that the HWENO scheme can
converge to the correct viscosity solution with mesh refinement.

Example 7. We solve a problem from optimal control:

& + sin(y)x + (sin(x) + sign(¢y))py — % sin?(y) +cos(x) — 1 = 0,
T <Xy <T

with ¢(x,y,0) =0 and periodic boundary conditions, see [25]. No-
tice that this is a H] equation with a Hamiltonian which also de-
pends on x and y:

@+ H(Px, dy,x,y) =0

in which the definition of ﬁl H, u,q/+\H2uyl-, H1Um2vyi, Hy and
Hy are similar as before, just adding x; and y; inside the Hamilto-
nians. The mesh is shown in Fig. 9. The solution at t = 1 is shown
in Fig. 10, and we can see that our scheme can obtain good result
for this example.

Example 8. We solve the two dimensional Riemann problem:

@; + sin(¢x + ¢y) =0,

with ¢(x.y,0) = (ly| — |x]), see [25]. The mesh is shown in
Fig. 11. We compute the solution up to t = 1. The solution is shown
in Fig. 12. Again, we observe our scheme can achieve good result.

-1<xy=<1

Example 9. We solve the level set equation

g+ sign(@) (VOT+ 97 - 1) =0, F</Rry <1

(3.2)
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Table 7
¢ —cos(@y+ ¢y +1) =0, 9 (x,y.0) = —cos(% (x+)). Periodic boundary conditions. t = 0.5/72.
Linear:¢ HWENO(1):¢
N L., error Order L, error Order L. error Order L, error Order
134 5.77E-03 1.80E-03 2.47E-02 7.73E-03
492 1.57E-03 1.88 2.52E-04 2.84 3.63E-03 2.77 8.14E-04 3.25
1876 3.61E-04 212 1.92E-05 3.71 3.77E-04 3.27 2.39E-05 5.09
7337 4.88E-05 2.89 1.55E-06 3.64 4.80E-05 297 1.47E-06 4.02
29204 2.94E-06 4.05 7.02E-08 4.46 2.86E-06 4.07 6.76E-08 444
116012 1.17E-07 4.65 2.96E-09 4.56 1.17E-07 4.61 2.96E-09 4.51
HWENO(2):¢ HWENO(3):¢
N L., error Order L, error Order L, error Order L, error Order
134 1.75E-02 3.55E-03 2.48E-02 8.05E-03
492 1.59E-03 3.46 2.70E-04 3.72 3.77E-03 2.72 8.91E-04 3.18
1876 3.61E-04 214 1.91E-05 3.82 3.80E-04 331 2.53E-05 5.14
7337 4.86E-05 2.89 1.53E-06 3.64 4.79E-05 2.99 1.47E-06 411
29204 2.94E-06 4.05 7.00E-08 445 2.84E-06 4.08 6.73E-08 4.45
116,012 1.17E-07 4.65 2.96E-09 4.56 1.17E-07 4.60 2.96E-09 4.51
Table 8

¢ — cos(@x + ¢y +1) =0, p(x.y.0) = —cos(% (x +y)). Periodic boundary conditions. t = 0.5/72.

Linear:V¢ HWENO(1):V¢
N Ly error Order  L; error Order Ly error Order  L; error Order
134 4.79E-02 715E-03 9.19E-02 1.74E-02
492 1.74E-02 1.46 1.81E-03 1.98 2.84E-02 170 2.80E-03  2.63
1876 442E-03 197 2.42E-04 291 6.90E-03  2.04 438E-04  2.68
7337 7.71E-04  2.52 2.80E-05  3.11 1.70E-03 2.02 5.51E-05  2.99
29,204 7.69E-05 333 148E-06  4.24 226E-04 291 2.95E-06  4.23
116,012  5.58E-06  3.78 6.10E-08 4.60 7.14E-06 4,99 7.70E-08 5.26
HWENO(2):V¢ HWENO(3): V¢
N L., error Order L, error Order L., error Order L, error Order
134 7.59E-02 9.75E-03 9.25E-02 1.77E-02
492 2.25E-02 175 1.96E-03 232 2.87E-02  1.69 2.88E-03  2.62
1876 5.25E-03 210 3.13E-04 2.64 6.98E-03  2.04 453E-04  2.67
7337 1.10E-03 2.25 337E-05 322 1.75E-03 2.00 5.72E-05  2.99
29204 1.08E-04  3.34 1.60E-06  4.40 2.36E-04  2.88 3.12E-06 420
116,012  5.59E-06  4.28 6.18E-08 4.69 8.22E-06  4.85 8.02E-08  5.28
Table 9

CPU time (in seconds) for ¢ — cos(¢x + ¢y +1) =0,

conditions. t = 0.5/72.

¢ (x,y,0) = —cos(5 (x+y)). Periodic boundary

N 134 492 1876 7337 29,204 116012
Linear scheme 0.03 031 244 2441 246.24  2554.30
Average time for three HWENO schemes  0.03  0.38  3.00 29.65 300.55  2955.74

with the initial datum ¢(x,y,0) = ¢o(x,y). This problem comes
from Sussman et al. [33]. The solution has the same zero level set
as the initial condition ¢, and the steady state solution is the dis-
tance function to that zero level curve. In this example, the exact
solution is the distance function to the inner circle of the domain.
It is difficult to use rectangular meshes for this problem. Instead
we use the triangle mesh shown in Fig. 13 left. We compute the
problem to reach a steady state solution, using the exact solution
of the steady state as the boundary condition. The numerical so-
lution is shown in Fig. 13 right. We can see that the scheme can
obtain good result for this test.

Example 10. We solve the two dimensional eikonal equation

G+ P2+ +1=0, O=<xy<l

with the initial datum ¢(x,y,0) = %(cos(an) —1)(cos(2my) —
1) — 1. This problem comes from Jin and Xin [13]. We compute the
solution up to t = 0.6 on the mesh shown in Fig. 14. The solution is
shown in Fig. 15. High resolutions are observed with our scheme.

Example 11. We solve

¢~ (1-eK)\ /97 + P +1=0,

where K is the mean curvature defined by:

_¢xx(1 +P7) = 20y Pxdy + Dy (1 + B7)
(1+¢5 +¢7)%?

and ¢ is a small constant, with the initial datum ¢(x,y,0) =1 —
%(cos(an) —1)(cos(2my) — 1) and periodic boundary condition
is used. This problem comes from Osher and Sethian [24].

When ¢ = 0, we can treat the equation with the same method
as before. When ¢ #0, we can rewrite the equation as follows:

¢t + H(¢X7 ¢yv ¢xx: ¢xy, ¢yy) =0.

O0<x,y<1

K=

Then, we have
ddd;i = _H(()bx’ ¢_Vv ¢XXv ¢xy, ¢yy)
% = —Hiux+ quy - Eum - muxy - ﬁSUyy (33)
dv;

—Hyvx + Hyvy — H3Vxx — HyVyy — Hsvyy
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and define H; and Hs similarly. In order to obtain the approxima-
tion to the second derivatives uyy, Uxy, Uyy, we simply find a third
degree polynomial gg(x, ¥), such that:

Qo(xpy)=u 1=1,23
and
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where [ =4,5,.--,12, and the minimum is taken over all the
polynomials p of degree at most 3. Then, we take the second
derivatives of the obtained polynomial qg as approximations to
the second derivatives uyy, Uxy, Uyy. In a similar way, we can obtain

DO,

o
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mesh for Examples 10 and 11 with the number of nodes N = 7357.
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approximations to the second derivatives vyx, Vxy, Vyy. The time
step is taken as

At = L ,

max o 4l )23 V3
d {0,5\/|A|min’ 025 Al * 025 AT 0251 Aloin

where y; = max |H3|, ¥, = max |Hy|, y3 = max|Hs|. We compute
the solution on the mesh shown in Fig. 14, and list the results
of € =0 (pure convection) and ¢ =0.1 in Fig. 16. The surfaces
at t =0 for ¢ =0 and for £ =0.1, and at t =0.1 for ¢ =0.1 are
shifted downward in order to show the details of the solution at
later time. We can see that our scheme can obtain good result in
this case.

4. Conclusion

In this paper, we design a fourth order finite difference HWENO
scheme for the Hamilton-Jacobi equations on triangle meshes. The
main advantage of this scheme is its compactness and efficiency.
Extensive numerical experiments show that the scheme can main-
tain high order accuracy in the smooth case and can keep high
resolution in the non-smooth case.
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