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ABSTRACT

The initial-final mass relation (IFMR) of white dwarfs (WDs) plays an important role
in stellar evolution. To derive precise estimates of IFMRs and explore how they may
vary among star clusters, we propose a Bayesian hierarchical model that pools photo-
metric data from multiple star clusters. After performing a simulation study to show
the benefits of the Bayesian hierarchical model, we apply this model to five star clus-
ters: the Hyades, M67, NGC 188, NGC 2168, and NGC 2477, leading to reasonable and
consistent estimates of IFMRs for these clusters. We illustrate how a cluster-specific
analysis of NGC 188 using its own photometric data can produce an unreasonable
IFMR since its WDs have a narrow range of zero-age main sequence (ZAMS) masses.
However, the Bayesian hierarchical model corrects the cluster-specific analysis by bor-
rowing strength from other clusters, thus generating more reliable estimates of IFMR
parameters. The data analysis presents the benefits of Bayesian hierarchical modelling
over conventional cluster-specific methods, which motivates us to elaborate the pow-

erful statistical techniques in this article.

Key words: methods: statistical — clusters: individual (Hyades, M67, NGC 188,
NGC 2168 and NGC 2477)— techniques: photometric

1 INTRODUCTION

The initial-final mass relation (IFMR) provides a mapping

between the zero-age main sequence (ZAMS) mass of a star
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to its white dwarf (WD) mass and is vital to an understand-
ing of mass loss during stellar evolution. Many researchers
have investigated the IFMR using data from different star
clusters, leading to numerous versions of the IFMR. For in-
stance, Williams et al. (2004) presented an empirical IFMR
based on spectroscopic analysis of seven massive WDs in
NGC 2168 (M35). Kalirai et al. (2005) presented 24 new
faint WDs in the open cluster NGC 2099 and determined
an IFMR based on their high turnoff mass (~ 2.4Mg). Cata-
lan et al. (2008) explored the application of common proper
motion pairs to improve the IFMR. Salaris et al. (2009) pro-
vided an empirical estimate of the IFMR using published re-
sults of WD properties in ten clusters. Williams et al. (2009)
probed the empirical IFMR using WDs in the open clus-
ter NGC 2168 (M35) at the high-mass end of the relation.
Cummings et al. (2016) observed a sample of 10 WD candi-
dates in the open cluster NGC 2323 and investigated a linear
IFMR for high-mass (= 0.9Mg) WDs. By contrast, Jeffery
et al. (2011) and Zhao et al. (2012) studied the IFMR in the
low ZAMS mass range of 1 — 2Mg. Andrews et al. (2015)
identified 65 new wide double WDs and used them to con-
strain the IFMR.

Stein et al. (2013) treated the parametrised IFMR
as cluster-specific parameters and developed simultaneous
principled Bayesian estimates of all cluster-specific parame-
ters, including those describing the IFMR. In addition, Stein
et al. (2013) detected the disagreement of IFMRs from the
Hyades, NGC 2168, and NGC 2477, which might be caused
by many factors such as observation errors or metallicity
differences among these clusters. In this paper, we approach
the possible variation of IFMRs for different clusters with
a Bayesian hierarchical model, which on average produces

more accurate estimates of the IFMR(s).

Bayesian hierarchical modelling (Gelman 2006; Gelman
et al. 2013) is a statistical method that simultaneously fits
object-specific parameters for multiple objects by pooling
their data under one overall model. The resulting estimates
from hierarchical models are shrinkage estimates (Si et al.
2017a) that generally have better statistical properties than
do their unpooled counterparts. Bayesian hierarchical mod-

els have been used in numerous projects in astrophysics (e.g.,

Jiao et al. 2016; Shariff et al. 2016; Mandel et al. 2017; Si
et al. 2017a,b; Si & van Dyk 2018). In the context of con-
straining the IFMR, Andrews et al. (2015) pooled 142 wide
double WDs in a hierarchical model.

In this paper we propose a Bayesian hierarchical model
for cluster IFMRs, show how this model can be fit using ex-
isting software, and use a suite of simulation studies to verify
the statistical advantages of the resulting IFRM estimates.
We aim to perform a comprehensive analysis of the IFMR by
combining multiple star clusters into a hierarchical model.
This allows us to simultaneously obtain better estimates of
each cluster’s IFMR and to estimate the intrinsic variance of
cluster-specific IFMRs. We apply the Bayesian hierarchical
model using data from five clusters: the Hyades, M67, NGC
188, NGC 2168 and NGC 2477. We obtain the shrinkage
estimates of IFMR parameters for these five clusters.

The paper is organised as follows. Section 2 summarises
the cluster-specific Bayesian model for cluster parameters
introduced by Stein et al. (2013) and proposes a hierarchi-
cal model to simultaneously fit multiple clusters. Section 3
presents a simulation study and demonstrates the advan-
tages of the hierarchical model. In Section 4, we analyse
five clusters via both the cluster-specific and hierarchical
approaches, and illustrate the advantages of the latter ap-
proach. Section 5 covers the sensitivity analysis of the prior
distribution used in the hierarchical model and membership
of WDs in the cluster M67. The conclusion and discussion

of the use of our statistical technique appears in Section 6.

2 STATISTICAL MODELS

In this Section, we review the Bayesian approach (Stein et al.
2013) to fit cluster-specific IFMR parameters and propose a
hierarchical model that allows us to combine data from mul-
tiple clusters to simultaneously improve the estimate of the
cluster-specific IFMR parameters and to explore the vari-

ability among IFMRs for different clusters.

2.1 Cluster-specific Analyses

Stein et al. (2013) develop a Bayesian approach for cluster

parameters such as age, metallicity, and distance modulus

MNRAS 000, 1-27 (2017)



while simultaneously estimating the IFMR for that cluster.
They estimate the IFMR and other cluster parameters us-
ing a state-of-the-art Markov chain Monte Carlo (MCMC)
algorithm and implement their methods using the software
package BASE-9 (von Hippel et al. 2006; DeGennaro et al.
2009; van Dyk et al. 2009). BASE-9, short for Bayesian Anal-
ysis of Stellar Evolution with 9 parameters, deploys MCMC
techniques to perform reliable Bayesian analysis for phys-
ical properties including age, distance modulus, metallic-
ity and mass, based on the photometry of stars in a star
cluster. Stein et al. (2013) fit one cluster at a time, i.e.,
cluster-specific analysis, so that each cluster has its own fit-
ted IFMR.

In this paper we adopt a similar mathematical nota-
tion to that of Stein et al. (2013), while the subscript is ex-
tended to accommodate multiple star clusters. Suppose we
have photometry for K star clusters, along with measure-
ment errors. The number of stars in each cluster can vary,
as can the number of photometric magnitudes observed for
each cluster or even for the stars within the clusters. We use
k to index clusters and i to index stars within clusters. With-
out loss of generality, we assume the number of stars within
each cluster is N and that the observed photometry vector
for star i within cluster k is Xg;, with known measurement
variance-covariance matrix Xy;. We assume that age (fage),
metallicity (f[re/m)), distance modulus (6m-my ), and absorp-
tion (6ay) are common to all stars in each cluster, and we de-
note them together as O = (Oge k> O[Fe/H), ks Om—My, ks OAv,k)-
We denote the parameters describing the IFMR of cluster k
by ay; below we use a linear IFMR model so each aj con-
sists of a intercept and a slope. Since a; is the same for all
WDs in cluster k, we treat @; as a cluster parameter. We
denote the ZAMS mass of star i within cluster k as My;.
Also, any star in the dataset may be a field star, i.e., not a
member of a specific cluster. We define Zy, = (Zgy, ..., ZkN),
where Z;; = 1 if star i observed on the field of the sky with
cluster k is indeed a cluster member, otherwise Z; = 0. (Of
course Zy; is unobserved and must be estimated.) See Table
1 for a summary of the model parameters.

We parametrise the IFMR of cluster k as a linear form

Mwp. ki = aro + g1 (My; —3.0) for WD i in cluster &, (1)
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Table 1. Cluster and stellar parameters.

Cluster parameters

Oage, k log;y age of the cluster k
OlFe/H], k metallicity of the cluster k
Om-My.k distance modulus of the cluster k
Oy, k absorption in V-band mag.
of the cluster k
g IFMR parameters of the cluster k
Stellar parameters
My the initial mass of the observed
star i of the cluster k
Zyi indicator for the membership of the

observed star i in the cluster k

where a; = (ap, ar1) are the intercept and slope param-
eters, and M px; is the mass of WD i within cluster k.
Specifically ayg is the WD mass of a star in cluster £ with
progenitor ZAMS mass equal to 3.0 Mg. For every addi-
tional increment of 1.0 Mg in ZAMS mass, we expect the
WD mass to increase by ;.

Though we have distinct evolution models for MS/RG
and WD stars, we denote them indistinguishably by G(-),
which comprises MS/RG evolution models, WD cooling
models, WD atmosphere models, and IFMR models. Be-
cause the expected photometric magnitudes of WDs depend
on the WD masses, G(-) must incorporate @;. Thus, for the
reminder of this article, the stellar evolution model G(-), is
viewed as a function of @y in addition to @y and My;. Due
to the computational complexity of stellar evolution models,
in practice we employ a computer-based model to evaluate
G(").

The cluster-specific model for cluster k is
Xpi | (@, My, ) ~ N(G(O, My, ap), Zyp), if Zgp =1, (2)

where N is a multivariate Gaussian distribution with mean
G(-) and variance-covariance matrix Xp;, and G(Oy, My;, ay)
is the predicted vector of photometric magnitudes for star
i within cluster k. Eq. 2 summarises the probabilistic rela-
tionship between the photometry of stars that are members
of cluster k (i.e., stars with Z;; = 1) and the model param-
eters. If a star in dataset k is a field star (i.e., Zg; = 0),
we assume that its magnitudes are uniformly distributed on
a hyper-rectangle which includes the full range of observed

magnitudes of stars for that field. We use pgelq(-) to denote
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the distribution of photometric magnitudes for field stars,
which is simply the reciprocal of the volume of the hyper-
rectangle. To be specific, for example, stellar cluster k has
photometric magnitudes in the U, B,V filters. Then we find
the range of U, B,V by using the maximum value of each
filter minus its minimum and denote them {7, {g and ¢y . If
a star with magnitudes Xj; is a field star, its likelihood is
Phield Xki) = m. Though uniform model for field stars
is unrealistic, Stenning et al. (2016) used a simulation study
to demonstrate that the simple but physically unrealistic
model can nevertheless identify field stars with a high level
of accuracy. For details, refer to Page 10 of Stenning et al.
(2016). Therefore, in this research I use uniform model for
field stars in each cluster.

Taken together, this means that the likelihood function

for cluster k is

Zyi

'N [—x (3)

LMy, O, Zy e | Xi Zo) = | |

i=1

[272y;|
1 _
exp ( - E(in - G(My;, O, ak)) ) (in - G(My;, Oy, G’k))

+(1- Zi)Pﬁeld(in)],

where My = (Myq, ..., Min)s Xk = (Xk1, ..., Xgn), and Xy =
(Zk1s---»ZknN)- The prior distribution for the parameters is

assumed to be

PO, ay, My, Zy) = p(Op)p(ay)p(My)p(Zy) (4)

=p(Oage k)P O[Fe /H], k)P Om—my k)P0 av, k)P (@ )X
N
[ 1pMiidp(Zi)-
i=1

Specifically, for 0,ge r, O[Fe/H), ks Om-My,k and Oay x We use in-
dependent Gaussian prior distributions, with means set in
accordance with recently published fits and variances chosen
to be reasonably non-informative. In so doing, we eliminate
the influence of prior distributions in our analyses. For the
IFMR intercept aio we use a uniform prior distribution on
the real line. For the IFMR slope @ we use a uniform dis-
tribution on the positive part of the real line, which excludes
the possibility of a decreasing IFMR. The prior probability
of star i being a member of cluster k, p(Z;; = 1) is set based
on the best available external information, typically using
proper motions and/or radial velocities. Finally, we use one

version of the initial mass function (IMF) of Miller & Scalo

(1979) as the prior distribution of the ZAMS mass for star
i,i.e.,

1 (10g1()(Mi) + ]02)2
2 0.677 ’

p(log;o(M;)) o< exp ( -

truncated to 0.1 Mg to 8 Mg. The lower truncation is due
to the fact that an initial mass of less than about 0.1 Mg is
not sufficient to initiate the fusing of hydrogen into helium
necessary to form a star. The upper truncation is because
the star clusters we study are sufficiently old that any stars
with an initial mass above 8 Mg would have used up their
nuclear fuel long ago and become a neutron star or black
hole, and thus would not be included in our observed data
(van Dyk et al. 2009).

In their cluster-specific analysis of cluster k, Stein et al.
(2013) based statistical inference, including parameters’ es-

timates and error bars, on the joint posterior distribution,

PO, My, Zy., | X, Zi) %)
o< p(O, @k, My, Z)L(My, O, Zy, ap | X, Zi).
BASE-9 can draw a reliable sample for all parameters from
their joint posterior distribution in Eq. 5. This is a cluster-
specific study of the IFMRs because the fits of the IFMR
parameters only rely on data from one cluster. We aim to
perform a comprehensive analysis of the IFMR by combining
multiple star clusters into a hierarchical model. This allows
us to simultaneously obtain better estimates of each clus-
ter’s IFMR and to estimate the intrinsic variance of cluster-

specific IFMRs.

2.2 Hierarchical Model

In this section, we describe how to pool data from multiple
star clusters using a hierarchical model and how we fit this
comprehensive model. For K star clusters, our hierarchical

model is
Xii | (O Myis ) ~ NGO M, ). B ), i Zii = 1,

where ap ~N(y, I'), k=1,...,K.
(6)

For field stars (Zy; = 0), X; is uniformly distributed on
the aforementioned hyper-rectangle. We set prior distribu-

tions on O, My, Zi,k = 1,...,K as in the aforementioned
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cluster-specific analysis. We assume that IFMRs of differ-
ent clusters follow a common bivariate normal distribution,
which corresponds to the expectation that the IFMRs of dif-
ferent clusters, although not identical, are similar. The only
new parameters in the hierarchical model in Eq. 6 are y, the
mean of the IFMR intercept and slope, and the I' which is
the variance-covariance matrix of IFMR parameters among
the clusters. This assumption means that IFMR parame-
ters of different clusters are from the same bivariate normal
population with mean y and variance-covariance matrix I.
We must set prior distributions for ¥ and I' and so we set
p(y,T) = p(y|T)p(I') with p(y | I') uniform on its range. For

I', we set

1/ 0 )
, v+1],
0 1/

where the Inverse-Wishart! is the prior distribution for

I'| 21, 22 ~ Inverse-Wishart|2v

the variance matrix I' given A; and Ap, with 4,4, ~
Inverse-Gamma(1/2, 1/5000)2. It is sensible to take a diag-
onal scale matrix in the prior distribution of I' because we
parametrise the linear IFMR in Eq. 1 in terms of (My; —3.0),
where 3.0 is near the average of the ZAMS masses of the
WDs in our clusters. This way of parametrisation decreases
the correlation between IFMR intercept and slope, simplify-
ing computation of the hierarchical model. Huang & Wand
(2013) suggests setting v = 2 for a weakly informative prior
distribution on I'. In this paper, we set v = 2 and take a

weakly informative distribution for I', which reduces the ef-

' The Inverse-Wishart distribution is the conjugate prior distri-

bution for the variance-covariance matrix of a multivariate normal
distribution. The Inverse-Wishart distribution is parametrised in
terms of its scale matrix ¥ and its degrees of freedom v; its prob-
ability density function is
v

['¥|2
[ )4
2 Tp(%)

where I, is the multivariate gamma function and #r is the trace

+p+1 1 -1
PX|¥,v) = X[ e X,

function.

2 The Inverse-Gamma is the reciprocal of of Gamma distribution,

parametrised by its shape @ and its rate B; its density function is

pxlap) = Fsx Ve (- 2),

where T is the Gamma function.
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fect of the prior distribution and produces estimates that
mostly depend on the photometric data.

We fit the hierarchical model Eq. 6 in a Bayesian man-
ner, and it infers all parameters via their marginal posterior
distributions by integrating out other parameters from their
joint posterior distribution. MCMC techniques are employed
to simulate samples of all parameters. For details about the
statistical inference of hierarchical models, see Gelman et al.
(2013); Si et al. (2017a). The joint posterior density for all

parameters in Eq. 6 is

I)(V’ r3/l]3/12’®]3M17Z170’1’ e ’G)K’ MK’ ZK3 aK
| X1, Z1,--, Xk, k)
K
)
= pADPAP(. T | 4, ) x [ |
k=1

(p(G)k)P(Mkv Zi)p(ay | 7, T)L(My, O, Zy, ay | Xy, i)

In Appendix A we present a two-stage algorithm that draws
a reliable sample for parameters in the joint posterior in Eq.
7. In the first stage, it draws a sufficient sample of param-
eters from the cluster-specific analysis in Eq. 5 to be used
as the proposal distribution in a Metropolis-Hastings sam-
pler with target distribution equal to the hierarchical pos-
terior distribution in Eq. 7. This strategy tackles the high-
dimensional sampling problem in Eq. 7 by taking advantage

of the cluster-specific analyses.

3 SIMULATION STUDY

To illustrate the statistical advantages of our hierarchical
model, we simulate K = 10 star clusters with BASE-9 and
we recover their IFMRs via both cluster-specific and hier-
archical analyses. We simulate the cluster parameters using
the distributions in Table 2. These parameter values in Table
2 are set to be similar to those of the observed star clusters
that we analyse in Section 4. To mimic the errors of the
observed photometry, we compute the average standard de-
viations for filters B,V, and I of the WDs in the datasets
analysed in Section 4 and use them as the corresponding
errors in the simulated datasets. Specifically, the observed
errors for B,V, I are og = 0.026, 0y = 0.035, and o7 = 0.185.

After simulating the parameters Oagek, O[Fe/H]Lk>

Om-My. k> and 6ay of cluster k, we simulate photometric
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Table 2. Parameter distributions for Simulated Clusters

B,k ~ N(9.0,0.12),
Ofpe/my k. ~ N(—0.08,0.052),
Om-My, & = 10.0,
Oav,k ~ N(0.51, 0.432) truncated to positive values,
ag ~ Na(yo, T'o), with

0.722 0.052 -0.2-0.05 - 0.02
Yo= (0.107)’ To = (—0.2 -0.05 - 0.02 0.02?

data for each star in the cluster using BASE-9 (see the
BASE-9 User’s Manual, von Hippel et al. 2014). For each
cluster, we simulate 200 MS/RG stars brighter than V = 15
and 10 WDs. Subsequently, we recover the parameters of
each cluster by fitting the simulated datasets with BASE-9
using the cluster-specific analysis described in Section 2.1.
In so doing, we obtain a sample of the parameters for each
cluster from its posterior distribution, see Eq. 5. For this
paper, we employ the Dotter et al. (2008, as updated at
http://stellar.dartmouth.edu/ models/) MS/RG mod-
els, Montgomery et al. (1999) WD interior models, Bergeron
et al. (1995, with updates posted online) WD atmospheres,
and the IFMR model in Eq. 1.

We repeat the data generation and parameter estima-
tion 25 times, record results from both the hierarchical and
case-by-case methods. We compare estimates in terms of two
criteria: i.) root mean squared error (RMSE) of point esti-
mates, and 2.) actual versus nominal coverage probabilities
of interval estimates. When we require point estimates, we
utilise posterior means from MCMC samples, and for inter-
val estimates we use the 68.3% credible intervals from poste-
rior distributions by finding the 15.8% and 84.1% quantiles
from the MCMC samples.

Table 3 presents the RMSE of point estimates and the
actual coverage probabilities of 68.3% credible interval es-
timates for IFMR constants and slopes using two meth-
ods: Bayesian hierarchical modelling and case-by-case. The
68.3% confidence intervals of the coverage probabilities are
computed with the Clopper-Pearson exact method (Clopper
& Pearson 1934). From this table, the RMSE of hierarchical
estimates of IFMR constants is 0.067, about a third of that
from the case-by-case method (0.202). The performance of
hierarchical modelling is even better on IFMR slope with

its RMSE, 0.019, about 1/17 of that from the case-by-case

analysis. In terms of interval estimates of IFMR parameters,
the case-by-case (cluster-specific) method has actual cover-
age probabilities, 80% and 84.4% for IFMR constant and
slope respectively, higher than the nominal value, 68.3%.
The actual coverage probabilities of interval estimates from
Bayesian hierarchical modelling, 76.4% and 62.8% for IFMR,
constant and slope respectively, are closer to the nominal
value. In summary, the estimates of IFMR, parameters from
the hierarchical fits outperform that from case-by-case fits
in terms of RMSE and coverage property.

Here are population-level parameters: the population
mean of IFMR parameters, ¥ = (y1,7¥2), in which y; and y,
are the mean of IFMR constants and slopes, respectively; the

population variance-covariance matrix of IFMR parameters,

2

= O'l pPO107
2 P
pPO107 o)

in which oq,0» and p are the standard deviations of IFMR,
constants, slopes and the correlation between them, respec-
tively. In our analysis, IFMR is parameterised as Mg, =
aq + @ (Mipitial — 3-0), but many researchers use another form
Mgina = @o + @1 Mipitial, @ = ag — 31, which is the intercept
of the IFMR line with the M, = 0.0. To make our results
comparable with others, we transform our results in the @
(intercept) and | form. We denote the population mean of
intercept at 0 to be 7.

Table 4 presents the RMSE of point estimates and the
actual coverage probabilities of 68.3% credible interval esti-
mates for population-level parameters using the Bayesian
hierarchical approach. The 68.3% confidence intervals of
the coverage probabilities are computed with the Clopper-
Pearson exact method (Clopper & Pearson 1934). The case-
by-case method does not pool star clusters into a popula-
tion, so it fails to produce estimates of the population. From
this table, the RMSE of Bayesian hierarchical estimates of
population-level parameters are small except o1 and p. From
the actual coverage property of interval estimates, the hier-
archical method tends to produce over-covered interval es-
timates. For parameters like y,, ¥ and o7, their interval es-
timates perform well, and their actual coverage probabili-
ties are close to the nominal level 68.3%, and their 68.3%

confidence interval of coverage contains the nominal value.

MNRAS 000, 1-27 (2017)
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Table 3. RMSE and coverage probabilities (CP) of 68.3% credible intervals (CI) for IFMR parameters from Bayesian hierarchical

modelling and case-by-case analyses.

It Hierarchical Case-by-case

ems RMSE CP _ 68.3% CI RMSE CP _ 68.3% CI
IFMR Const. 0.067 0.764  (0.734,0.792) 0.202 0.8 (0.771, 0.826)
IFMR Slope 0.019 0.628  (0.595, 0.660) 0.331 0.844  (0.818,0.867)

Table 4. RMSE and coverage probabilities (CP) of 68.3%
credible intervals (CI) for population-level parameters from the
Bayesian hierarchical modelling.

Ttems Hierarchical
RMSE CP 68.3% CI

Y1 0.021 0.92 (0.824,0.972)
b2 0.009 0.68 (0.561,0.782)
Y1 =713 0.034 0.76  (0.644,0.851)
o 0.057 0.6 (0.48,0.711)
o 0.007 0.88  (0.777,0.945)
el 0.281 0.96  (0.874, 0.993)

The difficulty of Bayesian hierarchical method in estimating
population-level parameters is mainly due to two reasons,
the small number of objects, I = 10. Other research have
also reported and discussed this problem, refer to Browne &
Goldstein (2002); Browne et al. (2006) for more details.

To further investigate the advantage of the hierarchi-
cal analysis in Eq. (6), we take one group of 10 simulated
clusters as an example and compare the estimates of IFMR
parameters from the case-by-case and Bayesian hierarchi-
cal fits. After we obtain the MCMC sample for the IFMR
parameters, we use its sample means as point estimates of

ap, k =1,...,K. We denote the sample means of IFMR pa-

5CS
ak N
~Hier
a/k .

rameters from the cluster-specific fits as and denote
those from the hierarchical analysis as

We simultaneously analyse the 10 simulated datasets
using a hierarchical model, obtaining a sample of all pa-
rameters from the posterior distribution given in Eq. 7. In
this paper, we focus on estimating the IFMR parameters
ay, ..., ak. After we obtain the MCMC sample for the IFMR,
parameters, we use its sample means as point estimates of
o,k =1,...,K. We denote the sample means of IFMR pa-
rameters from the cluster-specific analyses as dfs, and de-

Hier

k
Fig. 1 presents the scatter plot of IFMR intercept ver-

note those from the hierarchical analysis as @

sus slope, with points of three different shapes (triangle, cir-
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Figure 1. Scatter plot of IFMR intercept vs slope. Triangles,
circles, and plus signs represent true values, cluster-specific and
hierarchical estimates of IFMR parameters for 10 simulated clus-
ters. Dotted and solid lines connect the cluster-specific and hier-
archical estimates to their true values for one particular cluster.

cle, plus sign) representing true values, cluster-specific (indi-
vidual) and hierarchical estimates for IFMR parameters for
those 10 simulated clusters. To compare the distances be-
tween estimates and true values, for one particular cluster,
we connect its true values to cluster-specific and hierarchi-
cal estimates with dotted and solid lines, respectively. From
Fig. 1, it can be observed that for most clusters the hierarchi-
cal model yield more precise estimates of IFMR parameters
than the cluster-specific method.

Table 5 reports the true values of the 10 simulated
IFMR parameters and their estimates from both the hierar-
chical and cluster-specific analyses. For most of the clusters,

the hierarchical estimates are closer to their true values than
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Table 5. Point estimates of the IFMR parameters for the 10 simulated clusters from both the cluster-specific and hierarchical analyses.

Standard errors of estimates are presented in parentheses.

Cluster True Values Cluster-specific Estimates Hierarchical Estimates
IFMR Const. IFMR Slope IFMR Const. IFMR Slope IFMR Const. IFMR Slope
k) (@) (@) (a3 (a%) (after) (affer)
1 0.794 0.081 0.801 (0.018) 0.078 (0.018) 0.789 (0.024) 0.090 (0.020)
2 0.761 0.145 0.780 (0.039) 0.176 (0.042) 0.777 (0.032) 0.144 (0.020)
3 0.700 0.115 0.638 (0.048) 0.205 (0.061) 0.688 (0.036) 0.133 (0.023)
4 0.698 0.089 0.690 (0.030) 0.119 (0.029) 0.696 (0.026) 0.110 (0.021)
5 0.656 0.121 0.663 (0.040) 0.125 (0.036) 0.681 (0.030) 0.110 (0.023)
6 0.728 0.112 0.736 (0.020) 0.118 (0.022) 0.735 (0.019) 0.114 (0.016)
7 0.798 0.097 0.829 (0.047) 0.068 (0.046) 0.788 (0.030) 0.104 (0.032)
8 0.669 0.120 0.673 (0.020) 0.108 (0.032) 0.677 (0.017) 0.102 (0.022)
9 0.685 0.080 0.690 (0.049) 0.074 (0.028) 0.680 (0.037) 0.083 (0.022)
10 0.610 0.089 0.626 (0.036) 0.067 (0.027) 0.623 (0.031) 0.072 (0.025)
¥ —— Hierarchical Table 6. CPU Times of two methods in the IFMR project
- = Individual

Final Mass

4
Initial Mass

Figure 2. Estimated IFMR parameters for 10 simulated clusters
using both the hierarchical (red solid lines) and cluster-specific
(blue dashed lines) analyses.

are their cluster-specific counterparts. Specifically, the hier-
archical estimates are better for clusters 2, 3, 4, 6, 7, 9,
and 10. From the aspect of standard errors of estimates in
parentheses, the hierarchical modelling outperforms cluster-
specific fits, since it produces smaller standard errors for
every cluster except cluster 1. Overall, the RMSE of the hi-
erarchical estimates is 0.012, i.e., the average deviation of hi-
erarchical estimates from the true values is 0.012, while that
of the cluster-specific estimates is 0.029, more than twice the

hierarchical value.

Algorithms Time

Case-by-case Analysis  About 30 hours for 10000 draws

Hierarchical Model
Two-stage

About 30 hours and 10 minutes
for 10000 draws

Fig. 2 illustrates the recovered IFMRs for the 10 simu-
lated clusters. The red solid lines are the hierarchical fits and
the blue dashed lines are the cluster-specific fits. A key fea-
ture of the hierarchical estimates is that they tend to cluster
toward the centre, displaying the shrinkage effect (Morris &
Lysy 2012; Gelman et al. 2013) of hierarchical models. Sta-
tistically, this property stems from the assumption that the
IFMR parameters of different clusters are generated from
the same bivariate normal distribution in Eq. 6. Astrophys-
ically, this corresponds to the expectation that the IFMRs
of different clusters, although not identical, are similar. Our
Bayesian hierarchical model is similar in spirit to the method
in Si et al. (2017a), where we pool ten Galactic halo white
dwarfs in a Bayesian hierarchical analysis in which we as-
sume that their ages follow a common normal distribution. Si
et al. (2017b) verifies that even when this normality assump-
tion is violated, estimates based on the Bayesian hierarchical
model still outperform their case-by-case counterparts.

Table 6 presents the computing time of the case-by-case
and Bayesian hierarchical fits. Because each star cluster may
have different number of stars, which affects the computing
time, here is the time for a cluster consisting of 200 stars,

each of which has three photometric magnitudes U, V, and

MNRAS 000, 1-27 (2017)



1. The case-by-case analysis takes about 30 hours for 10000
draws and the hierarchical modelling with two-stage sampler
uses the case-by-case fits and costs additional 10 minutes to
produce estimates from the hierarchical model. Throughout
this research, all timings are carried out on a Ubuntu linux
server that has 64 AMD Opteron 2.5 GHz processors. We
wrote code in R programming language (R Core Team 2017)
to undertake computations. On other computer systems or
programming languages, the relative CPU times of different
methods should be similar.

In summary, the Bayesian hierarchical approach with a
two-stage sampler produces shrinkage estimates of the IFMR,
parameters that have smaller RMSEs than the case-by-case
analysis. Also, if the case-by-case samples are available, it
only takes the two-stage algorithm ten minutes to obtain the
estimates under the hierarchical model. So we recommend
readers to use our two-stage algorithm to fit hierarchical

models.

4 DATA ANALYSIS

In this section we deploy both the cluster-specific and hier-
archical analyses using photometry for five star clusters: the
Hyades, M67, NGC 188, NGC 2168, and NGC 2477. In the
data analysis, we use Montgomery et al. (1999) WD interior
models and Bergeron et al. (1995) WD atmospheres models.
For the MS/RG models, we use Dotter et al. (2008) mod-
els for all clusters except NGC2168, which is too young for
the Dotter et al. (2008) models, so we choose Girardi et al.
(2000) models instead.

When BASE-9 fits a star cluster, it uses the MS/RG
model to estimate the age and other parameters of the clus-
ter based on main sequence, main sequence turn-off, sub-
giant branch and red giant stars, and uses the WD models
to estimate the ages of the cluster WDs, then it computes
the precursor ages for the WDs and uses the MS/RG models
again to determine the initial (ZAMS) masses of the WDs.
For the Dotter et al. models, the highest mass precursors
are ~ 3.5M¢ for the metallicity of NGC 2477, and BASE-9
therefore extrapolated the log;y(age) versus precursor mass
relation. This is not an ideal approach. Nevertheless, com-

paring the Dotter et al. (2008) model extrapolation to the

MNRAS 000, 1-27 (2017)
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Girardi et al. (2000) models yielded similar results with the
Dotter et al. precursor masses being consistently lower by
just 13.4% to 17.5% than the Girardi et al. precursor masses.
We return to this point in Section 4.2 when we examine and

compare the cluster IFMRs.

4.1 Cluster-specific Analysis

We perform the cluster-specific analysis developed by Stein
et al. (2013), which uses BASE-9 to deliver MCMC sam-
ples of all model parameters from the respective posterior
distribution for each cluster. The prior distributions that
we use for distance moduli, metallicities, and absorptions of
the five clusters are shown in Table 7. Because the MS/RG
models tend to poorly predict the photometry of faint main
sequence stars, we removed main sequence stars with V mag-
nitudes greater than the cluster-specific thresholds given in
Table 7. Table 7 also gives the references where we obtain
the cluster-specific prior distributions and cut-off for the V
magnitude. For reading continuity, we present the photomet-
ric data and errors for WDs in these five clusters in Tables
B1-B3 in Appendix B.

For NGC 2477 we set the prior standard deviations for
the distance modulus, absorption, and metallicity to zero.
The reason for doing this is that NGC 2477 suffers differ-
ential reddening, which is not within the BASE-9 model.
Stein et al. found that by fixing these three cluster param-
eters at certain reasonable values consistent with literature
estimates, BASE-9 produces good results for the age and
IFMR parameters of NGC 2477. In our analysis, we follow
the method of Stein et al. (2013).

Here we elaborate on the prior distribution of distance
modulus for the Hyades in Table 7. In the case-by-case
(cluster-specific) analysis via BASE-9, we assume that all
stars in a specific cluster have the same distance modulus.
This assumption is approximately true for clusters fairly far
from the Earth. For the Hyades, due to the fact that its
proximity (~ 50 pc) to the Solar System is comparable to its
depth (~ 10-20 pc), its member stars have significantly dif-
ferent distances, which violates the equal distance assump-
tion in the BASE-9. To address this problem, DeGennaro

(2009) adjusted the magnitudes of each star for its distance
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Table 7. Prior distributions, maximum V magnitudes, and references for the five analysed clusters

Cluster Dist. Mod. Metallicity Absorption® Max. V. Reference

Hyades N(0.0,0.03%)?  N(0.07,0.052) N(0.009,0.006%) 4.5 DeGennaro et al. (2009); Stein et al. (2013)

M67 N(9.62,0.0912)  N(-0.009,0.009%)  N(0.127,0.0132)  15.0 VandenBerg & Stetson (2004); Taylor (2006)

NGC 188  N(11.24,0.1%)  N(-=0.03,0.1%) N(0.27,0.1%) 15.5 von Hippel & Sarajedini (1998) and
Meibom et al. (2009)

NGC 2168  N(10.3,0.1%) N(-0.2,0.3%) N(0.682,0.1%) 30.0 Stein et al. (2013)

NGC 2477 N(11.46,0.0%2)  N(-0.1,0.0%) N(0.75,0.0%) 15.5 Jeffery et al. (2011); Stein et al. (2013)

“ All prior distributions of Absorptions are truncated to positive values.
b The Hyades is analysed with apparent magnitudes converted to absolute magnitudes.

using the precise distance estimates obtained by de Brui-
jne, J. H. J. et al. (2001). Each Hyades star was offset to a
nominal distance modulus of m — My = 0.0, i.e., 10 pc. We
therefore set the prior distance modulus to be a Gaussian
distribution with mean 0. Additionally, because the Hyades
is well-studied and the uncertainty of its distance modulus
is small, we take 0.03 as the prior standard deviation. Af-
ter we obtain the MCMC samples for the Hyades from the
case-by-case analysis, we add the average distance modulus
from multiple studies, 3.40, (Perryman et al. 1998; DeGen-
naro 2009) to the MCMC sample of distance modulus and
thereby recover the posterior sample of distance modulus
for Hyades with BASE-9. For details, refer to DeGennaro
(2009); DeGennaro et al. (2009); Stein et al. (2013).

The MCMC samples from the cluster-specific analyses
appear in Fig. 3. Each row corresponds to one cluster, and
the columns provide scatter plots of various parameter com-
binations. Because the prior standard deviations of metal-
licity, distance modulus, and absorption are set to zero for
NGC 2477, the scatter plots of age—metallicity, age—distance,
age—absorption degenerate into lines. The scatter plot of the
IFMR parameters for NGC 2477 has two separate modes.
The upper mode, accounting for 90.44% of the distribution,
tends to have a larger IFMR slope than the lower one, con-
stituting 9.56% of the posterior distribution. The most likely
explanation for the bimodal nature is uncertainty in cluster

membership of one or more stars.

The rightmost column of Fig. 3 displays the scatter
plots of the IFMR parameters for the five clusters under
the cluster-specific analyses. For all of the clusters except
NGC 188, the range of the IFMR intercept is 0.55 to 0.95
and that of the IFMR slope is 0.0 to 0.4, which are both

quite consistent with the results in Salaris et al. (2009) and
Williams et al. (2009). However, the IFMR parameters for
NGC 188 are both far from their commonly accepted ranges.
This appears to be because all of the WDs in NGC 188
have similar ZAMS masses (1.17 to 1.24 M), but their WD
masses vary significantly (0.52 to 0.80 Mg). We do not ad-
dress these particular properties of NGC 188 WDs, instead
leaving them to be discussed in Section 4.2. This difference in
the fitted IFMRs provides an opportunity to test the power
of the hierarchical model. In the next section, we simulta-
neously analyse the five clusters with a hierarchical model.
This allows us to borrow strength among the clusters and
provides more reliable estimates of the IFMR parameters,

particularly for NGC 188.

The estimates of cluster parameters from the cluster-
specific analyses are shown in the lower part in Table 8. The
IFMR parameters — intercept and slope — are in the last two
columns. From the cluster-specific analyses, the estimates of
the IFMR parameters vary significantly from cluster to clus-
ter. Most noticeably, the IFMR estimates of NGC 188 are
unrealistic with very large standard errors. The other star
clusters also exhibit significant differences in their estimated
IFMR parameters, especially in the IFMR slopes. We do
not know the exact reasons for these divergences. One pos-
sible explanation is that we assume each star cluster has its
own linear IFMR, which affects the estimates of the IFMR
parameters. Yet many researchers argue that the IFMR is
nonlinear (Marigo, P. & Girardi, L. 2007; Meng et al. 2008;
Choi et al. 2016). Alternatively cluster metallicity may af-
fect the IFMR (Meng et al. 2008; Zhao et al. 2012). The
metallicities of these five clusters vary significantly, which

might cause the divergences of their IFMR parameters.

MNRAS 000, 1-27 (2017)
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Figure 3. Cluster-specific results: projections of the joint posterior distributions onto the two dimensional planes of (from left to right)
age-metallicity, age—distance, age—absorption, and IFMR intercept—IFMR slope for the five analysed clusters.

Here we investigate the sensitivity of the cluster’s IFMR
parameters to its WD mass range. We still assume the lin-
ear functional form of the IFMRs and use NGC 2477 as an

example. NGC 2477 has seven WDs in the original cluster-

MNRAS 000, 1-27 (2017)

specific analysis and among them three have ZAMS between
2 to 4 Mg, with the other four above 4Mg. In this test we re-
move the three low mass WDs below 4Mg from NGC 2477,
use BASE-9 to fit the modified dataset and compare the
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fitted IFMR parameters. Fig. 4 displays the histograms of
IFMR parameters for NGC 2477 under the two conditions:
including all seven WDs and only including the four WDs
above 4Mg. The left and right panels show the posterior
distributions of IFMR constant and slope for NGC 2477,
respectively. The solid and dotted histograms represent re-
sults from the cases: 1) all seven WDs in NGC 2477 are used
and 2) only the WDs above 4M, are used, respectively. The
histograms of both IFMR constant and slope remain essen-
tially the same in both cases (with tiny difference caused
by simulation errors), which means that the estimates of
IFMR parameters for NGC 2477 vary insignificantly even as
its initial mass range diminishes. This small experiment im-
plies that at least for the current NGC 2477 data, that the
progenitor mass range does not affect the IFMR parameters.

Studies have shown that the metallicity may affect the
IFMR parameters of a cluster (e.g., Kalirai et al. 2005; Cata-
lan et al. 2008; Meng et al. 2008; Zhao et al. 2012). We have
explored the quantity and quality of data required to test
whether the IFMR intercept and slope depends on metallic-
ity. We can investigate the effect of metallicity on the IFMR
parameters via an extension of our Bayesian hierarchical
model. To achieve this, we adjust the bivariate Gaussian

assumption on IFMR parameters a; in Eq. 6 to be

)
ayp = ~ N(Bnk, F),
g
with
b1y bia 1
= Mg = ,
b1 b2 O[Fe/H],k

where matrix B is the effect of metallicity 6|ge/m),« of cluster
k on its IFMR parameters aj. Our two-stage algorithm has
the capacity to fit this complicated hierarchical model. This
model introduces four more parameters in the effect matrix
B, yet at present we only have five clusters in this study. So
for the present study we maintain the simple model of Eq.
(6) and we plan to investigate the effect of metallicity on the

IFMR once we have a sufficient number of stellar clusters.

4.2 Hierarchical Analysis

In this section, we present the result obtained under the hi-

erarchical analysis in Section 2.2. We deploy the two-stage

algorithm in Appendix A to obtain the MCMC samples for
all model parameters. For simplicity, we compute posterior
sample means and standard deviations to summarise the
posterior distributions of each parameter. Table 8 compares
the estimates and error bars for all five clusters obtained us-
ing the hierarchical and cluster-specific methods. In all five
cases, the estimates of log;y(Age), m — My, [Fe/H] and ab-
sorption are nearly the same for the hierarchical and cluster-
specific fits. The estimates of the IFMR parameters for NGC
188, however, differ substantially. From the cluster-specific
analysis, the posterior mean of the IFMR for NGC 188 is
Mwp =4.522 +2.195(Mzams — 3.0). This implies that a star
with ZAMS mass 3 Mp has a WD mass of 4.522 Mg and
that WD mass increases by 2.195 Mg for each additional
Mg in its ZAMS mass. Clearly, this result is nonsense: it vi-
olates conservation of mass. The reason the cluster-specific
analysis results in this bizarre IFMR is that the ZAMS
masses of WDs in NGC 188 are in a narrow range, 1.17
to 1.33 Mg, so they fail to constrain the IFMR parameters
over the whole ZAMS mass range. By contrast, the hierar-
chical model yields reasonable estimates for the IFMR pa-
rameters of NGC 188, Mwp = 0.749 + 0.088(Mzams — 3.0).
For the other clusters, the hierarchical and cluster-specific
estimates have slight differences due to the shrinkage effects
of the hierarchical model, which are further illustrated in
Fig. 7. The hierarchical and cluster-specific estimates of the
IFMR slopes differ by about one standard deviation for both
the Hyades and M67. This is caused by the shrinkage effect:
IFMR slopes of the five clusters shrink their grand mean.
M67 has the shallowest IFMR and the Hyades has the sec-
ond steepest IFMR, shallower only than NGC 188, so they

are more substantially affected by the hierarchical analysis.

Figs. 5 and 6 plot the colour magnitude diagrams
(CMD) for the five clusters. Fig. 5 presents the U-V and B-V
CMDs for the Hyades and the rows of Fig. 6 display CMDs
of clusters (from top to bottom) M67, NGC 188, NGC 2168,
and NGC 2477. The solid (red) lines are from the hierar-
chical fits and the dashed (blue) lines are from the cluster-
specific fits. In each row of Figs. 5 and 6, the left panel dis-
plays a close up of the WD region of the CMD and the right
panel shows the MS/RG stars. The CMDs for the MS/RG

MNRAS 000, 1-27 (2017)
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Figure 4. Two fits of NGC 2477: solid line is from the original fit (including all WDs in NGC 2477) and dotted line is from the fit after

three less massive white dwarfs are removed.

Table 8. Parameter estimates for the five clusters under both the hierarchical and cluster-specific fits

Cluster log;o(Age) m— My [Fe/H] Absorption IFMR Intercept IFMR Slope
Hyades 8.773+0.026  —0.000 +0.030  0.157 +0.020 0.017 £0.006  0.660 + 0.020 0.140 + 0.050
M67 9.591 +£0.002  9.850 £0.010 —-0.029 £0.007  0.142+0.008  0.680 +0.010 0.060 £ 0.010
Hierarchical NGC188 9.815+0.002 11.510+0.010 —-0.056+0.003 0.218 £0.003  0.750 +0.120 0.090 + 0.050
Estimates NGC2168 8.250+0.001 10.290+0.010  -0.219+0.015 0.774+0.012  0.790 = 0.040 0.100 + 0.020
NGC2477  9.019+£0.004 11.460+0.000  —0.100+0.000 0.750 +0.000  0.750 + 0.030 0.070 £ 0.020
Hyades 8.785+0.028  0.010 +0.030 0.164 +0.021 0.017 £0.006  0.650 + 0.020 0.200 + 0.060
M67 9.591+£0.002  9.850 +0.010 —-0.029 £0.007  0.142 +0.008  0.680 +0.010 0.050 £ 0.010
Cluster-specific NGC188 9.815+0.002 11.510+0.010  —-0.056+0.003  0.217+£0.003  4.520 + 3.130 2.200 + 1.750
Estimates NGC2168  8.250+0.001  10.290 £0.010  -0.221+0.015 0.775+0.012  0.810 + 0.050 0.100 + 0.020
NGC2477  9.019+0.004 11.460+£0.000 —0.100+0.000 0.750 +0.000 0.760 + 0.030 0.070 £ 0.020

regions from both the hierarchical and cluster-specific fits
are similar for all five clusters. Likewise, the CMDs for the
WDs are also similar, for all clusters except NGC 188. For
NGC 188, the cluster-specific CMD (dashed blue) is quite far
from the dimmest WD, while the hierarchical CMD (solid
red) is consistent with all of the cluster’s WDs. This illus-

trates an advantage of the hierarchical model.

Fig. 7 compares the estimated IFMRs (plotted as lines)
for the five clusters along with the 68.3% contours (plotted
as ovals) of the joint posterior distribution of initial (ZAMS)
and final (WD) masses for each WD in each cluster. Results
for both the hierarchical (solid) and cluster-specific (thick
dashed) analyses are plotted. Colours (red, blue, green, pur-

ple, and black) correspond to five clusters (Hyades, M67,

MNRAS 000, 1-27 (2017)

NGC 188, NGC 2168 and NGC 2477, respectively). The
solid IFMR lines from the hierarchical fits tend to be in the
centre and are consistent with the with prior IFMRs (e.g.
Williams, Bolte & Koester, 2004; Salaris et al. 2009; plot-
ted as grey solid, dashed and dotted lines, respectively. The
thick dashed fitted IFMRs from the cluster-specific approach
have more uncertainty. The most striking feature of this fig-
ure is that the cluster-specific analysis of NGC 188 yields an
unreasonably steep IFMR (plotted as a dashed green line),
whereas the hierarchical model produces a much shallower
and more reasonable IFMR for NGC 188 (plotted as a solid

green line).

Tables 9 — 11 present the initial masses, final masses,

and membership probabilities for WDs in the five clusters,
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Figure 5. Color magnitude diagrams for the Hyades based on
both the hierarchical and cluster-specific estimates. The solid
(red) lines are from the hierarchical fits and dashed (blue) lines
are from the cluster-specific fits.

based on both the cluster-specific and hierarchical modelling
approaches.

Table 12 presents the estimates of the average IFMR
parameters under the Bayesian hierarchical model and com-
pares them with results from Kalirai et al. (2008) and
Williams et al. (2009). In our analysis, we include five clus-
ters: the Hyades, M67, NGC 188, NGC 2168 and NGC 2477.
The 68.3% credible intervals for the IFMR intercept and
slope are 0.440 + 0.140 (i.e., [0.30,0.58]) and 0.090 + 0.040
(i-e., [0.05,0.13]), respectively. The point estimates of IFMR
parameters from Kalirai et al. (2008) and Williams et al.
(2009) falls into the credible intervals from our hierarchi-
cal model, so we consider that the average IFMR from our
analysis is consistent with results from these studies.

The point estimate of IFMR intercept from our
Bayesian hierarchical analysis is 0.440, greater than inter-
cepts from both Kalirai et al. (2008), 0.394, and Williams
et al. (2009), 0.339. On the other hand, our estimate of the
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Figure 6. Color magnitude diagrams for (from top to bottom)
M67, NGC 188, NGC 2168, NGC 2477, based on both the hierar-
chical and cluster-specific analyses. The solid (red) lines indicate
the hierarchical fits and dashed (blue) lines indicate the cluster-
specific fits.
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Table 9. Results from both the hierarchical and cluster-specific analyses for the WDs in the Hyades

Cluster WD Hierarchical Estimates Cluster-specific Estimates
ZAMS Mass WD Mass Mem. Prob. ZAMS Mass WD Mass Mem. Prob.

Hyades HZ14 2.801 £0.064 0.631 £0.024  1.000 2.776 £ 0.067  0.607 £ 0.024  1.000

VRI16 2.813£0.064 0.632+0.024 1.000 2.787 £0.067  0.609 +0.024  1.000

HZ7 2.942 £0.074  0.650 £0.020  1.000 2.910 £0.078  0.633 +£0.020 1.000

VRT7 2.988 £0.079  0.657 +£0.019  1.000 2.954 £0.084 0.641+0.019 1.000

HZ4 3.779£0.229  0.763 £0.026  1.000 3.649+£0.228 0.772+0.025 1.000

LB227 3.648+0.188 0.746 +0.022  1.000 3.543 £0.194  0.752+0.021  1.000

IFMR slope is the shallowest one, 0.090, and Williams et al.
(2009) has the steepest IFMR, at 0.129.

The most obvious characteristic of our result lies in the
large error bars, about 6 to 10 times the error bars in other
analyses. There are three reasons or this. 1) Only five clus-
ters are included in our analysis. By contrast, Kalirai et al.
(2008) and Williams et al. (2009) employed 13 and 11 stel-
lar clusters, respectively. They had more data to constrain
the IFMR parameters, which leads to the narrow error bars
in their studies. 2) In our analysis, clusters have different

IFMR parameters and we report the mean IFMR of these
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clusters. However, Kalirai et al. (2008) and Williams et al.
(2009) assume all clusters have the same IFMR. Their model
is simpler and can be fit with fewer data. 3) Kalirai et al.
(2008) and Williams et al. (2009) used linear regression to
fit the initial and final masses of WDs in their clusters, so
their estimates of the IFMR parameters are mainly subject
to uncertainties of the WDs’ initial and final masses. Their
estimates are also indirectly affected by the ages and dis-
tances of clusters. However, we utilise a Bayesian hierar-
chical model, which takes account of uncertainties of ages,

distances, metallicities, etc.
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Table 10. Results from the Hierarchical and Cluster-specific fits on WDs in M67

Cluster WD Hierarchical Estimates Cluster-specific Estimates
ZAMS Mass WD Mass Mem. Prob. ZAMS Mass WD Mass Mem. Prob.
M67 WD 1 1.615+£0.021  0.598 +0.019  1.000 1.619+£0.021  0.602 +0.017  1.000
WD 2 1.438 £0.003  0.588 £0.020  1.000 1.438 £0.003  0.593 +£0.018  1.000
WD 3 1.429 £0.003  0.588 +£0.020  1.000 1.429 £0.003  0.592 +0.018  1.000
WD 4 1.412+£0.003  0.587 +£0.020  0.000 1.412+0.003  0.591 £0.018  0.000
WD 5 1.364 £0.003  0.584 +0.021  0.209 1.364 £0.003  0.589+0.019 0.191
WD 6 1.426 £0.003  0.587 £0.020  1.000 1.426 £0.003  0.592 +0.018  1.000
WD 7 1.414 £0.003  0.587 +£0.020  1.000 1.414 £0.003  0.591 +£0.018  1.000
WD 8 1.396 £0.003  0.586 +0.020  1.000 1.395+0.003  0.590+0.018  1.000
WD 9 1.389 £0.003  0.585+0.020  1.000 1.388 £0.003  0.590 +0.018  1.000
WD 10 1.556£0.006 0.595+0.019 1.000 1.558 £0.006  0.599 +£0.017  1.000
WD 11  1.431+£0.003 0.588 +0.020 0.983 1.431 £0.003  0.592 +0.018 0.981
WD 12 1.394+£0.003 0.586+0.020 0.329 1.393 £0.003  0.590 +0.018  0.253
WD 13  1.370£0.003  0.584 +0.021  1.000 1.370 £ 0.003  0.589 +0.018  1.000
WD 14  1.506 £0.003 0.592+0.019 0.999 1.507 £0.003  0.596 +£0.017  0.999
WD 15 1.454+£0.003 0.589+0.020  1.000 1.454 +£0.003  0.594 +0.018  1.000
WD 16 1.828+0.056 0.610+0.019  1.000 1.838 £0.051 0.614+0.017  1.000
WD 17  1.440£0.003 0.588 +£0.020  1.000 1.440 +£0.003  0.593 +0.018  1.000
WD 18 1.473+£0.003 0.590£0.019  0.595 1.473 £0.003  0.595+0.017 0.544
WD 19 1.549+£0.005 0.594+0.019  1.000 1.550 £ 0.006  0.599 +0.017  1.000
WD 20 1.389+£0.003 0.585+0.020 0.173 1.388 £0.003  0.590 +0.018  0.221
WD 21  1.363+£0.003 0.584 +0.021 0.033 1.363 +0.003  0.589 +0.019  0.030
WD 22 2.424+0.270 0.644+0.025 1.000 2.424 £0.252 0.645+0.023  1.000
WD 23 3.335+0.682 0.695+0.038  1.000 3.365+0.747  0.695 +0.040  1.000
WD 24 1.398+0.003 0.586+0.020 0.092 1.398 £0.003  0.591 £0.018  0.056
WD 25 1.671£0.030 0.601 £0.019  0.999 1.677 £0.029  0.605+0.017  1.000
WD 26 1.768 £0.047  0.607 £0.019  1.000 1.777 £0.044  0.610+0.017  1.000
WD 27  1.466 £0.003  0.590 £0.020 0.976 1.466 £ 0.003  0.594 +£0.018  0.971
WD 28 1.708 £0.036  0.603 £0.019  1.000 1.715+0.034  0.607 £0.017  1.000
WD 29 1.607 £0.019 0.598 £0.019  1.000 1.611£0.019  0.602 +£0.017  1.000
WD 30 1.812+0.055 0.609+0.019 0.000 1.822£0.050 0.613+0.017  0.000
WD 31  1.437+0.003 0.588 £0.020 1.000 1.437£0.003  0.593 +£0.018  1.000
WD 32 1.856+£0.058 0.612+0.019 0.996 1.867 £0.052  0.615+0.017 0.998
WD 33 1.412+0.003 0.587 +£0.020 1.000 1.412+£0.003  0.591 £0.018  1.000
WD 34 1.449+0.003 0.589+0.020 0.098 1.449 £ 0.003  0.593 +0.018 0.073
WD 35 1.599 £0.016 0.597 £0.019  0.093 1.602 £0.017  0.601 £0.017  0.060

4.3 Comparison with Spectroscopic Mass

Estimates

In this section, we compare our estimates of initial and final
masses of Hyades WDs with those determined spectroscopi-
cally by Kalirai et al. (2014). The meaningful comparison is
among the final masses of WDs, because that is what Kalirai

et al. are directly determining with their spectroscopy.

Table 13 and Fig. 8 present the 68.3% confidence in-
tervals (CIs) for these initial and final WD masses. The left
panel presents the initial masses and the right panel presents
the final masses. In each of these plots, bars parallel to the x-
axis and y-axis are 68.3% Cls from our hierarchical analysis
and Kalirai et al. (2014), respectively. The BASE-9 results
in Fig. 8 are ~ 0.05 to 0.10M lower than the spectroscopic

results from Kalirai et al.. Interestingly, both are ultimately

based on the Montreal white dwarf group’s models, though
the spectroscopic technique relies on the Balmer line pro-
files whereas the photometric technique relies on the over-
all SED of the WD. While these differences are small, at
least in this case they appear systematic, and may indicate
subtle inconsistencies between the model colours and line
profiles. Alternatively, the photometric technique relies on
the cluster distance, which may be slightly in error and will
be improved upon with Gaia results (Babusiaux et al. 2018;

Lindegren et al. 2018).

4.4 Comparison with Gaia Estimates of Distance

Moduli

As this paper was completed, the Gaia Collaboration (Babu-

siaux et al. 2018; Lindegren et al. 2018) analysed all clusters

MNRAS 000, 1-27 (2017)
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Table 11. Results from the hierarchical and cluster-specific analyses for the WDs in NGC188, NGC2168 and NGC2477

Cluster WD Hierarchical Estimates Cluster-specific Estimates
ZAMS Mass WD Mass Mem. Prob. ZAMS Mass WD Mass Mem. Prob.
NGC188 WD 1 1.169 +£0.003  0.588 £0.117  1.000 1.171 £0.003  0.510+0.128  1.000
WD 2 1.184 +£0.003  0.590+0.116  1.000 1.185+0.003  0.538 £0.122  1.000
WD 3 1.187 £0.002  0.590 £0.116  1.000 1.188 £0.002  0.544 +£0.121 1.000
WD 4 1.184 £ 0.060  0.590 +0.117  1.000 1.177 £0.100  0.519+0.326  1.000
WD 5 1.191 £0.002  0.590 £0.116  1.000 1.191 £0.002  0.551+0.120  1.000
WD 6 1.208 £ 0.006  0.592 +0.116  1.000 1.210 £ 0.010  0.595+0.130  1.000
WD 7 1.219+£0.009 0.592+0.116  1.000 1.226 +0.017  0.639 +0.157  1.000
WD 8 1.219 £0.009  0.592 +0.116  1.000 1.224 +0.015  0.628 £0.146  1.000
WD 9 1.302 +£0.048  0.599+£0.118  1.000 1.333 £0.046  0.845+0.220 1.000
NGC2168 WD 1 4.627 £0.019  0.954 +0.016  1.000 4.625+0.019 0.96 £0.017 1.000
WD 2 5.762 +0.078  1.068 +0.015  1.000 5.764 +0.079  1.067 £0.015  1.000
WD 3 5.279 £0.045 1.020+0.012  1.000 5.277 +£0.047  1.021 £0.012  1.000
WD 4 4.244 +0.008 0.916 £0.022  1.000 4.243 +0.008  0.923 +0.023  1.000
WD 5 4.240 +£0.008 0.915+0.022  1.000 4.239 +£0.008  0.923 +0.023  1.000
WD 6 5.208 +0.045 1.013+0.012  1.000 5.203 +0.046  1.015+0.013  1.000
WD 7 6.430 +£0.135 1.134+0.020 1.000 6.450 +£0.138  1.131 +£0.021 1.000
WD 8 4.468 +0.018  0.938 +0.018  1.000 4.465+0.020 0.945+0.019 1.000
WD 9 4.240 +£0.008 0.915+0.022  1.000 4.239 +£0.008 0.923 +0.023  1.000
WD 10 5.469+0.057 1.039+0.013 1.000 5.467 +£0.059 1.039+0.013  1.000
WD 11  5.549 +0.061 1.047 +£0.014  1.000 5.546 +0.062  1.047 £0.014  1.000
WD 12 4.383+0.019 0.930+0.019 1.000 4.378 £0.020  0.936 +0.020  1.000
WD 13  4.979+0.029 0.990+0.013 1.000 4.976 £ 0.030  0.993 +0.014  1.000
NGC2477 WD 1 2.348 £0.033  0.701 £0.034  1.000 2.337+£0.036  0.714+£0.040 1.000
WD 2 3.114 £0.031 0.754+0.027  1.000 3.112+0.031 0.763 £0.030 1.000
WD 3 2.954 +£0.028 0.743 +£0.028  0.950 2.949 +£0.030 0.753+0.031 0.964
WD 4 6.951 +0.654 1.019+0.034 1.000 6.994 +0.678 1.010+0.049  1.000
WD 5 6.471 +£0.835 0.986 +0.061 1.000 6.565 +0.836  0.981 +0.063  1.000
WD 6 6.147 £0.981 0.965+0.080 1.000 6.294 +0.990 0.964 +0.078  1.000
WD 7 4.402 +0.735 0.845+0.050 1.000 4.354 +0.698  0.845+0.048 1.000
68.3% Cls for Initial Masses o 68.3% Cls for Final Masses
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Figure 8. The 68.3% confidence intervals for initial and final masses of the Hyades WDs from our Bayesian hierarchical modelling and
Kalirai et al. (2014). The left panel compares the initial masses of the two approaches and the right panel compares the final masses.

Horizontal and vertical error bars represents the 68.3% CIs from our hierarchical analysis and Kalirai et al. (2014).
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Table 12. Estimates of the average IFMR parameters from the
hierarchical model and comparisons with other results

IFMR Intercept IFMR Slope
Hierarchical Model 0.440 + 0.140 0.090 + 0.040
Kalirai et al. (2008) 0.394 +0.025 0.109 + 0.007
Williams et al. (2009)  0.339 £0.015 0.129 + 0.004

in this paper with the exception of NGC 2477, so we revisit
the distributions of distance moduli in our analysis and the
Gaia results.

Babusiaux et al. (2018) employed the Hertzsprung-
Russell diagrams (HRD) to study stars with data from Gaia
Data Release 2 (Gaia DR2) and presented several illustra-
tive examples. Lindegren et al. (2018) updates the results in
Babusiaux et al. (2018) by showing a global parallax zero
point of about —0.029 milli-arcsec (mas). Here we collect the
published parallaxes and their standard errors of these four
clusters from Table A.3 and A.4 in Babusiaux et al. (2018),
take 0.01 mas as the minimum error based on uncertainty
in the Gaia parallax zero point and compute their distance
moduli and standard errors as shown in Table 14. We follow
the correction from Lindegren et al. (2018), add 0.029 mas
to the published parallaxes in Babusiaux et al. (2018), take
0.01 mas as the minimum error of parallaxes and obtain the
corrected estimates of distance moduli presented in Table
14.

Table 14 summarises the prior and posterior distribu-
tions of distance moduli for four clusters (Hyades, M67,
NGC 188 and NGC 2168) in our analysis and the results
from the Gaia Data Release 2 (Gaia DR2). The zj, zp-scores
are statistical measures of the consistency between the prior
distributions of distance moduli in our analysis and results
based on Babusiaux et al. (2018) and Lindegren et al. (2018),
respectively. If the z-score is less than or equal to 1.96, it
means that the prior distribution we used is consistent to
the Gaia result under the significance level 0.05. Otherwise,
the two are significantly different. Therefore, the prior dis-
tributions of distance moduli for Hyades and M67 are con-
sistent with the Gaia results from Babusiaux et al. (2018)
and Lindegren et al. (2018). For NGC 188, the prior dis-
tribution in our analysis is significantly different from the

estimate from Babusiaux et al. (2018), but it is consistent

with the corrected distance modulus estimate in Lindegren
et al. (2018). For NGC 2168, its distance modulus prior dis-
tribution is significantly different from estimates from both
Babusiaux et al. (2018) and Lindegren et al. (2018).

The posterior distributions in our analysis are also
shown in Table 14. For NGC 188, we used N(11.24,0.1%)
as its distance modulus prior distribution and it yielded a
distance modulus posterior distribution N(11.51,0.012), dif-
fering significantly from the prior, which means that the
posterior distribution is dominated by the photometric data
rather than the prior. Therefore, the prior distribution does
not matter much for NGC 188. Interestingly, our distance
modulus posterior distribution for NGC 188 is close to the
result from Babusiaux et al. (2018). So we believe the joint
posterior distribution for NGC 188 is unlikely to change even
if we used its Gaia distance modulus estimate as the prior.

In summary, three (the Hyades, M67 and NGC 188) of
the four clusters would most likely be unchanged with the
Gaia distance priors. The other one (NGC 2168) most likely
would be changed, but without a full re-analysis, which will
be accomplished in the future with more clusters, it is hard
to know how this would affect the hierarchical IFMR results.
We will very likely redo the hierarchical analysis with the
Gaia distance moduli as prior distributions when 10 or more

clusters are available to us in the near future.

5 SENSITIVITY ANALYSIS

In this section, we present the sensitivity analysis in the

hierarchical analysis of IFMR parameters.

5.1 Sensitivity to Prior Distribution

Here we investigate whether the hierarchical analysis in Eq.
6 is sensitive to the prior distribution on I'. We use the
marginally non-informative prior distribution proposed by

Huang & Wand (2013), i.e.,

. /a0
I'| 14, 22 ~ Inverse Wishart|2v , v+ 1],
0 1/,

A1, Ap ~ Inverse Gamma(1/2,1/A),

A1 and Ap are hyper-parameters, and they indepen-

dently follow the same inverse gamma distribution with its

MNRAS 000, 1-27 (2017)
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Table 13. 68.3% confidence intervals for the initial and final masses of WDs in Hyades obtained through our hierarchical model and
spectroscopic analysis in Kalirai et al. (2014)

WDs Name Initial Mass Final Mass
Hierarchical Kalirai et al. Hierarchical Kalirai et al.

0352+096 HZ 4 3.779£0.229  3.59+0-21 0.763 £0.026  0.80 +0.03
04064169 LB 227 3.648 +0.188 3.49f0f,§ 0.746 +0.022  0.85 +0.03
04214162 VR 7 2.988+0.079  2.90 +0.02 0.657 +£0.019  0.70 +0.03
04254168 VR 16 2.813+0.064 2.79 +0.01 0.632+0.024  0.71 +0.03
04314126 HZ 7 2.942+0.074 2.84+0.02 0.650 £0.020  0.69 + 0.03
04384108 HZ 14 2.801+0.064 2.78 +0.01 0.631+0.024  0.73 +0.03

Table 14. The prior and posterior distributions of distance moduli of four clusters (Hyades, M67, NGC 188 and NGC 2168) in our
analysis and results based on Gaia DR2 (Babusiaux et al. 2018; Lindegren et al. 2018). The resulting zj-scores and zp-scores are statistical

differences between prior distributions and Gaia estimates from Babusiaux et al. (2018) and Lindegren et al. (2018), respectively.

Cluster Prior Posterior Babusiaux et al.  Lindegren et al.  zj—score  zp—score
Hyades 3.40 +0.03 3.40 +0.03 3.384 + 0.007 3.381 +0.007 0.52 0.62
M67 9.62+0.091 9.85+0.01 9.73 +0.019 9.675 +0.019 1.18 0.59
NGC 188 11.24 £ 0.1 11.51 £0.01  11.482+0.043 11.361 £ 0.041 2.22 1.12
NGC 2168 10.3+0.1 10.29 +0.01  9.756 £ 0.019 9.70 + 0.019 5.34 5.89

first parameter fixed at 1/2 and second parameter 1/A a
small positive number, i.e., large positive A. Huang & Wand
(2013) showed that v = 2 leads to a marginal uniform distri-
bution for correlation p and arbitrarily large positive A leads
to arbitrarily weakly informative prior distributions for o
and o0p. Because v = 2 is necessary to have a marginally
non-informative prior distribution on p, so in this hierarchi-
cal analysis, we take v = 2. As for A, we choose four large
values: 103, 104, 105, 10° and fit the hierarchical model with
these values, then compare the MCMC draws of IFMR pa-
rameters of the five included clusters.

Fig.s 9-11 present the QQ plots of IFMR parameters
from the hierarchical fits when A takes different values. All
points in these QQ plots lie close to the 45° red line, meaning
that MCMC draws of IFMR parameters are essentially the
same. Though there are some small deviations from the red
line, they are mainly caused by Monte Carlo errors. So we
conclude that the hierarchical result is not sensitive to the

choice of value of A provided that A > 103.

5.2 Sensitivity to Membership of WDs in M67

Table 10 presents the hierarchical and case-by-case estimates
of initial and final masses and membership probabilities for

35 WDs in M67, among which nine WDs have posterior

MNRAS 000, 1-27 (2017)

membership probabilities less than 0.5 and are classified as
non-members or field stars. The other 26 WDs are inferred
as members of M67. In this section we investigate whether
the membership of these nine WDs affects the case-by-case

posterior distribution of cluster M67.

In Section 4, when performing the case-by-case analysis
on the cluster M67 with BASE-9, we set the prior member-
ship probabilities of all WDs based on other research (e.g.,
Bellini et al. 2010a,b; Williams et al. 2013; Barnes et al.
2016). For clarity, we call this analysis the original fit. Then
we fit M67 under two other circumstances: 1.) Case I: setting
all WDs to have a 100% prior probability of being a mem-
ber in M67, and 2.) Case II: assigning nine non-members
as determined by the original fit (Table 10) to have prior
membership probabilities equal to 0 and the apparent clus-
ter members to have prior probabilities equal to 1. In other
words, the first case forces all WDs in M67 to be cluster
members whereas the second case removes nine apparent
non-members and assumes that the other 26 as definitive

cluster members.

Table 15 presents the point estimates of M67 parame-
ters under three settings. The last two columns present the
IFMR constant and slope, respectively. The case-by-case es-

timates of the IFMR slope vary under different settings. In
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Figure 11. Quantile-quantile plots of MCMC samples of IFMR parameters of five clusters. The x-axis and y-axis are quantiles
corresponding to fits with A = 103 and A = 109, respectively. The 45° red line represents that quantiles from samples in x and y axes are
equal.
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Case I, when all WDs are forced to be M67 members, the
IFMR slope is the steepest, while in the original fit, the
IFMR is the shallowest. The estimates of other parameters
are similar under the settings except the age. The estimate
of age from the original fit is consistent to that from the
Case II, while the age estimate from Case I is younger than
the others. The age estimates from the original fit and Case
I are close to the results obtained through other approaches
(Bellini et al. 2010b; Williams et al. 2013).

Fig. 12 presents the CMD plots for these three fits. The
black lines are from the fitted model under the original fit,
and the red and blue lines are from models under Case I
and II, respectively. From this plot, both fits from Case I
(red line) and II (blue line) miss the main sequence turnoff
stars, sub-giant branch and base of the red giant branch.
By contrast, the model under the original fit (black line)
matches both parts of the cluster well. We conclude that the
original fit, where BASE-9 was able to assign its own cluster
membership probabilities, is more reliable than the other
fits. In summary, the membership of these WDs affect the
posterior distribution of cluster parameters, yet our further
analysis supports the original fit because it best matches the

photometric data among those three fits.

5.3 Sensitivity to WD-WD Binaries

Our BASE-9 model does not include WD-WD binaries.
While it will likely be preferable to do so eventually, cur-
rent studies of cluster WDs are inadequate to determine the
fraction of double degenerates in clusters and even further
from determining which cluster WDs are unresolved bina-
ries. The possible exceptions to this are the Hyades WDs,
which are nearby, relatively bright, and well-studied. Among
the 7 Hyades in our study, it is likely that all are single
WDs. Theoretical studies (e.g., Hurley et al. 2005) indicate
that the number of unresolved WD-WD binaries is proba-
bly < 10% of a cluster’s WD population. Thus ~ 3 of the
M67 WDs and ~ 1 each for NGC 188, NGC 2168, and NGC
2477 may be unresolved double degenerates. The WD re-
gions of the CMDs for all of these clusters are consistent
with this possibility. Fortunately, BASE-9 is robust against
a small fraction of WDs having a large effect on the IFMR
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fit because (a) the double degenerate fraction is likely to
be small and (b) objects that fall overly far from the best
fit isochrones are fit as non-members and therefore do not
contribute to the cluster solution (age, WD mass, IFMR pa-

rameters).

6 CONCLUSIONS AND DISCUSSIONS

We proposed a Bayesian hierarchical model for the IFMR
parameters that simultaneously analyses data from multiple
clusters in a single overall model and produces more precise
estimates of the IFMR, parameters. Also, we develop an ef-
ficient two-stage algorithm that takes advantage of existing
software for cluster-specific analysis to obtain the fit under
the hierarchical model. We combine data from five open clus-
ters in the Bayesian hierarchical model and find that it can
correct an error in the estimates of IFMR parameters for
the cluster NGC 188 and produce reasonable estimates of
IFMR for NGC 188. Based on our hierarchical analysis, we

estimate the linear IFMR averaged across clusters to be
Miinar = (0.09 £ 0.04)Mipigiar + (0.44 £ 0.14) M,

with 0.8Mp < Mipita < 8.0Mg.

This paper focus on the use of statistical techniques
to the IFMR project, and the detailed results are prelim-
inary. In particular, the astronomical results in this paper
are not definitive and they depend upon the models inside
the black-box code (in our case, the BASE-9) and other as-
sumptions. Specifically, we assumed that the IFMR param-
eters from different clusters follow a bivariate normal dis-
tribution. However, this assumption might be too idealised.
Bayesian hierarchical models always require a population
distribution on all objects and the shape of the distribution
of IFMR parameters across all clusters is not available. We
therefore use the bivariate normal distribution as a start-
ing point. If a case can be made for a different distribution,
the statistical algorithm developed in this chapter will work
as long as the case-by-case results are valid. Studies have
indicated that metallicity may affect the IFMR (See, e.g.,
Kalirai et al. 2005; Catalan et al. 2008; Meng et al. 2008;
Zhao et al. 2012). We showed how the Bayesian hierarchical

model in Eq. (6) can be readily extended to investigate the
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Table 15. Estimated cluster parameters for M67 under three cases.

19

20

21

22

23

24

Settings  Age (Gyr) m- My [Fe/H]' Abs.! IFMR Constant IFMR Slope
Original 3.90+0.02 9.85+0.01 -0.03 0.14 0.68 +0.01 0.05+0.01
Case 1 3.07+0.03 9.86+0.02 —0.01 0.15 0.67 £0.01 0.10+0.01
Case 11 3.89+0.02 9.86+0.01 -0.04 0.16 0.68 +0.01 0.07 £0.01

!. The standard errors for metallicity and absorption under these fits

are all 0.01.

Me67
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e Members Original fit o
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— Include All WDs
— RelmoveQWIil)s
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Figure 12. Colour-magnitude diagram (CMD) plots of three fits. The black lines are from the original fit, red lines from the fit that
includes all WDs in M67, blue lines from the fit that removes nine non-members. In the left panel, open circles represent non-member
WDs from the original fit and solid points are members. Observed error bars are included for the WDs.
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effect of metallicity. In addition, even though our research is
based on the BASE-9 package, our statistical techniques can
be employed with other black-box packages as long as they
produce MCMC samples in their case-by-case fits. Different
underlying stellar evolution models will affect the results of
case-by-case fits, hence they will most likely impact the re-
sulting hierarchical fit. Our statistical approach and compu-
tational algorithm are independent of these inputs and can

be broadly applied.
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APPENDIX A: COMPUTATIONAL
ALGORITHM

The joint posterior distribution in Eq. 7 is high-dimensional,
with 2N X K + 6K + 7 parameters. In this appendix, we
show how to take advantage of the cluster-specific fittings
in BASE-9 via a two-stage (T'S) algorithm to fit the hierar-
chical model.

To simplify the description of the TS algorithm, we in-
troduce Q; = (M, Ry, Zy,0;) for k = 1,2,...,K. We use
Y = diag(1/44, 1/22).

Step Oa: For each star cluster run BASE-9 to obtain a
Monte Carlo sample of p(My, Ry, ay, Zi, Or| Xk, i) via the
cluster-specific analysis. Thin each chain to obtain an es-
sentially independent Monte Carlo sample and label it
@ e 00 W =12 1y},

Step Ob: In the following, we denote the TS samples with
the tilde notation. Simulate K random integers between

1 and fp¢c, denote them rY,...,ry, and initialise the

. K?
o

parameters dg) =a, 2 and f!;(l) = Q;:") fork=1,...,K.

Step Oc: Given f!(ll), d(ll),...,ﬂ(lé), d(l;), simulate )7(1) and

'Y via the partially collapsed Gibbs (PCG) sampler (van
Dyk & Park 2008),

K
f‘(l) ~ Inverse Wishart(K + v, Z(dg) - d(l))(dg) - d(]))T s
k=1

71~ Nz(&“), f“)/K),

. ~ ~(1
with @ = % 2,’521 a/i ).
Step 0d: Given f(l), we simulate A, 4> from their condi-

tional posterior distributions,
~ 1 ~
/15,1) ~ Inverse Gamma(l +v/2, A_g + V(I‘(l))z}

for £ =1,2.

For s =1,---, run Step 1 and Step 2 iteratively.

MNRAS 000, 1-27 (2017)
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Step 1: Randomly generate K integers between 1 and tp;c,

and denote them ry,...,rg. For each k = 1,...,K, set az

a;:k) and Q7 = Q;(r"') as the new proposal and set dl(j“) =

*15(5) )
L M} th

« A(s+l) P . .
a;,Q = Q7 with probability min { —
k k play .1

erwise, set 075(”1) = d/;(s), Q(S+1) = fl(s).
Step 2: Given /iés),f = 1,2 and d/](:ﬂ), and Q;{Hl),k =
1,...,K, update 7,T via

I~“(S+1) ~ Inverse Wishart(K + v,

i (&;:H) _ d,(s+1)) (d;{ﬁl) _ d(s+1))"' N 2vdiag(1//i(1S)9 1/19)))’
k=1

)7(s+1) ~ N, (d'(“l), f(Hl)/K),
with @G+ = % Zszl dgjﬂ)~

Given I~“(Hl)7 simulate g, £ = 1,2 via

~ 1 -
/IE,HI) ~ Inverse Gamma(l +v/2, A_g + V(F(SJr]))E(} .

APPENDIX B: PHOTOMETRY DATA FOR
WDS IN FIVE STAR CLUSTERS

Here are the photometry data for the WDs in these five star

clusters in Section 4.

This paper has been typeset from a TEX/IATEX file prepared by
the author.
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Table B1. Photometry for the WDs in the Hyades

Cluster WD U +oy B+op Vxoy

Hyades HZ14 9.155 +0.032 10.195 +0.030  10.351 +0.029
VR16 9.298 +0.114 10.274 £ 0.114  10.373 £0.113
HZ7 9.969 + 0.025 10.859 +£0.022  10.903 +0.016
VR7 10.129 £0.049  10.977 £0.041  11.004 + 0.035
HZ4 11.136 £ 0.054  11.811 +0.054  11.725 +0.054
LB227 11.034+£0.015 11.752+0.015 11.697 +£0.014

References: DeGennaro et al. (2009); Stein et al. (2013)

Table B2. Photometry for the WDs in M67.

Cluster WD Btop V+oy
M67 WD 1 23.854 +0.010  23.505 +0.018
WD 2 22.293 +0.010  22.047 +0.010
WD 3 22.119+0.010 21.910+0.010
WD 4 21.721 £0.010  21.646 +0.010
WD 5 19.656 £ 0.010  19.837 £0.010
WD 6 22.074 £0.010  21.834 +0.010
WD 7 21.843 £0.010  21.611 £0.010
WD 8 21.469 +£0.010  21.290 +0.010
WD 9 21.286 £0.010  21.152 £ 0.010
WD 10 23.603+0.010 23.224+0.014
WD 11  22.206 £0.010  21.899 +0.010
WD 12  21.454+0.010 21.216 +0.010
WD 13  20.530+0.010 20.527 +£0.010
WD 14 23.194+0.010 22.820+0.010
WD 15 22.587+0.010 22.275+0.010
WD 16  24.227+0.010 23.693 +0.019
WD 17 22.359+0.010 22.061 +0.010
WD 18 22.855+0.010 22.493+0.010
WD 19 23.552+0.010 23.181 +0.012
WD 20 21.243+0.010 21.204 £0.010
WD 21  18.579 £0.010  18.890 + 0.010
WD 22 24.530+£0.013 23.970 £ 0.026
WD 23 24.576 £0.013  24.053 +0.028
WD 24 21.563+0.010 21.298 +0.010
WD 25 23.977+0.010 23.610+0.018
WD 26 24.147 +0.010 23.678 +£0.019
WD 27 22.757+0.010 22.413+0.010
WD 28 24.048 +0.010 23.641 +£0.017
WD 29 23.845+0.010 23.444 +0.017
WD 30 24.156 £0.010  23.979 £ 0.022
WD 31 22.298 +0.010 22.022 +0.010
WD 32 24.234+£0.010 23.838 +£0.020
WD 33 21.803+0.010 21.573+0.010
WD 34 22.517+0.010 22.172+£0.010
WD 35 23.849+0.010 23.299 +0.019

References: Bellini et al. (2010a,b)

MNRAS 000, 1-27 (2017)



Bayesian Hierarchical Modelling IFMRs

Table B3. Photometry for the WDs in NGC188, NGC2168 and NGC2477.

Cluster

WD

U +oy

B+top

V+oy

I1+oy

NGC188

WD 1
WD 2
WD 3
WD 4
WD 5
WD 6
WD 7
WD 8
WD 9

22.651 +0.054
23.350 +0.119
23.490 + 0.060
23.508 +0.105
23.669 + 0.045
24.206 + 0.131
24.439 £ 0.074
24.469 + 0.054
25.261 +£0.120

22.496 +0.124
23.538 +£0.386
23.413 £0.185
23.416 £ 0.559
23.176 £ 0.149
23.756 +£0.228
24.078 £ 0.255
23.720 £ 0.195
24.422 £ 0.297

NGC2168

WD 1
WD 2
WD 3
WD 4
WD 5
WD 6
WD 7
WD 8
WD 9
WD 10
WD 11
WD 12
WD 13

19.858 £0.019
20.532 £ 0.028
20.506 + 0.020
18.764 £ 0.017
18.568 +0.017
20.339 £ 0.025
20.826 +0.023
19.727 £ 0.024
18.720 £ 0.018
20.479 £ 0.026
20.280 + 0.025
19.558 £0.019
20.243 +0.020

20.953 £0.020
21.63 +0.031

21.364 +0.022
19.937 £ 0.018
19.735 £ 0.017
21.348 £0.028
21.759 £ 0.028
20.746 + 0.024
19.665 +0.017
21.488 +0.029
21.650 +0.031
20.645 £ 0.019
21.170 £ 0.022

20.989 +0.019
21.569 +0.032
21.216 +0.020
20.065 +0.017
19.863 £ 0.016
21.303 +£0.026
21.701 £ 0.027
20.785 £ 0.022
19.657 £ 0.016
21.398 £ 0.026
21.631 +0.029
20.719 £ 0.019
21.175 £ 0.020

NGC2477

WD 1
WD 2
WD 3
WD 4
WD 5
WD 6
WD 7

23.108 + 0.008
23.689 +0.010
23.566 +0.011
23.972 £ 0.016
23.957 £0.015
23.963 +0.015
23.904 +0.012

22.816 £0.018
23.237 £0.025
23.282 £ 0.024
23.638 +£0.034
23.586 +0.031
23.576 +0.030
23.461 £ 0.031

References for NGC188: von Hippel & Sarajedini (1998); Meibom et al. (2009)

References for NGC2168: Sung & Bessell (1999); Williams et al. (2004)

References for NGC2477: Jeffery et al. (2011); Stein et al. (2013)
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