
1

×
×

SemiMap: A Semi-folded Convolution Mapping

for Speed-Overhead Balance on Crossbars
Lei Deng, Member, IEEE, Ling Liang, Guanrui Wang, Liang Chang, Xing Hu, Xin Ma,

Liu Liu, Jing Pei, Guoqi Li, Member, IEEE, and Yuan Xie, Fellow, IEEE

Abstract—Crossbar architecture has been widely used in neu-
ral network accelerators, involving conventional and emerging
devices. It performs well on the fully-connected layer through
efficient vector-matrix multiplication. Whereas, the advantages
degrade on the convolutional layer with huge data reuse, since
the execution speed and resource overhead are imbalanced when
using existing fully-unfolded or fully-folded mapping strategy.
To address this issue, we propose a novel semi-folded mapping
(SemiMap) framework for implementing the convolution on
crossbars. It simultaneously folds the physical resources along
the row dimension of feature maps and unfolds them along the
column dimension. The former reduces the resource overhead,
and the latter maintains the parallelism. A feature map slicing
scheme is further proposed to enable the processing of large-size
image. Via our mapping framework, a row-by-row streaming
pipeline for intra-image dataflow and periodical pipeline for
inter-image dataflow are easy to be obtained. To validate the
idea, we build a many-crossbar architecture with several designs
to guarantee the overall functionality and performance. Based
on the measurement data of a fabricated chip, a mapping
compiler and a cycle-accurate simulator are developed for the
hardware simulation of large-scale networks. We evaluate the
proposed SemiMap on various convolutional neural networks

across different network scale. >35x resource saving and several
hundred times cycle reduction are demonstrated compared to the
existing fully-unfolded and fully-folded strategies, respectively.
This work jumps out of the current extreme mapping schemes,
and provides a balanced solution on how to efficiently deploy
the computational graphs with data reuse on many-crossbar
architecture.

Keywords: Convolutional Neural Networks, Deep Learning

Accelerator, Crossbar Architecture, Network Mapping

I. INTRODUCTION

The recent crossbar architecture targets integrating the

compute and memory for efficiently executing the vector-

matrix multiplication (VMM), which is the major operation

The work was partially supported by National Natural Science Founda-
tion of China (Grant No. 61475080, 61603209, and 61876215), National
Science Foundation (Grant No. 1719160, 1725447, 1730309, and CCF
1740352), and SRC nCORE NC-2766-A. Lei Deng and Ling Liang con-
tributed equally to this work, corresponding authors: Guoqi Li and Yuan
Xie. Lei Deng, Ling Liang, Xing Hu, Xin Ma, Liu Liu, and Yuan Xie
are with the Department of Electrical and Computer Engineering, University
of California, Santa Barbara, CA 93106, USA (email: leideng@ucsb.edu,
lingliang@ucsb.edu, xinghu@ucsb.edu, xinma@ucsb.edu, liu liu@ucsb.edu,
and yuanxie@ucsb.edu). Guanrui Wang, Jing Pei, and Guoqi Li are with
the Center for Brain Inspired Computing Research, Beijing Innovation
Center for Future Chip, & Department of Precision Instrument, Tsinghua
University, Beijing 100084, China (email: wgr16@mails.tsinghua.edu.cn,
peij@mail.tsinghua.edu.cn, and liguoqi@mail.tsinghua.edu.cn). Liang Chang
is with Fert Beijing Research Institute, BDBC, School of Electronic and
Information Engineering, Beihang University, Beijing 100191, China (email:
Liang.Chang@buaa.edu.cn).

in various neural networks (NNs). On crossbars, the VMM

can be completed with shorter time (e.g. conventional memory

array based virtual crossbar for near-memory computing [1]–

[3]) or even only one cycle (e.g. emerging physical crossbar

for in-memory computing [4]–[9]). In this way, it presents

great potential for building high-performance system. A many-

crossbar architecture is usually characterized as two design

levels: (1) functional crossbar that is a self-contained small

neural network mainly based on a memory crossbar for the

weighted connections and its peripheral processing circuits;

(2) many-crossbar network wired by a scalable routing in-

frastructure. This architecture has been widely used in NN

accelerators. In particular, most neuromorphic platforms [10],

[11], including early analog/digital mixed circuits [12]–[14]

or recent fully digital circuits [1]–[3], [15], [16], use this

many-crossbar architecture with various routing topologies [1],

[15], [17], [18]. Besides conventional technologies, plenty of

researches leverage modified SRAM [8]/ Flash [9] or various

emerging non-volatile memory devices with in-memory com-

puting capability to design this many-crossbar architecture,

such as the most widely used RRAM (resistive RAM) [4]–

[6], [19]–[24], PCRAM (phase-change RAM) [7], [25], and

MRAM (magnetic RAM) [26].

This crossbar based architecture naturally performs well

on fully connected (FC) layers with dense VMM, i.e. fast

throughput and high utilization. However, these advantages

degrade on convolutional (Conv) layers since the operands are

greatly reused. Usually, there exist two strategies for mapping

the Conv layer onto the many-crossbar architecture: fully-

unfolded and fully-folded. The former first converts the Conv

layer to an FC layer and then assigns independent physical

cells for all logical neurons and weights. This way is able

to achieve very high throughput, but at the cost of extremely

huge resource overhead. For example, for convolutional neural

networks (CNNs) on medium-size CIFAR10 dataset [27], it

uses more than 30,000 crossbars [28]; and for larger models

[29]–[31] on ImageNet dataset [32], more than hundreds of

thousands of crossbars [33] are usually required. On the other

hand, the fully-folded strategy sufficiently leverages the data

reuse of Conv layer. Specifically, it fully reuses the crossbar

cycle by cycle for completing the Conv operations across

many sliding windows [6]. This results in much less resource

overhead but at the cost of very high latency. Taking a Conv

layer with 224 feature map (FM) size and 3 3 weight kernel

as an example, more than 5 104 cycles are needed. In short,

the above two mainstream mapping strategies are difficult to

achieve a satisfactory balance between the execution speed

mailto:leideng@ucsb.edu
mailto:lingliang@ucsb.edu
mailto:xinghu@ucsb.edu
mailto:xinma@ucsb.edu
mailto:liu@ucsb.edu
mailto:wgr16@mails.tsinghua.edu.cn
mailto:peij@mail.tsinghua.edu.cn

2

n m

n

m n

m

n n

Image Input

28×28×1 Conv1
26×26×20

W1

3×3×1×20

Pool1

13×13×20

W2

2×2×20×20

Conv2

12×12×20 Pool2
6×6×20

W3

2×2×20×10

Conv3

5×5×10

Wfc

250×10
Fc 10

Fig. 1: Example of convolutional neural networks.

and resource overhead. However, this is highly required by

some application scenarios. For instance, the performance of

unmanned aerial vehicle heavily depends on the real-time

vision processing capability under great resource and energy

limitation.

To address the imbalance issue on current many-crossbar

platforms is challenging. For the ones based on asynchronous

communication [1], [15], the timing schedule is very simplex.

Usually, the time step with identical operation flow is the

minimum time unit. This makes it difficult to implement

complex timing pattern for resource reuse. For other syn-

chronous ones [6], the limited scalability makes it difficult

to unfold the whole computational graph. To this end, we

propose a semi-folded mapping (SemiMap) framework with

slight modifications on current many-crossbar architectures.

The ‘semi-folded’ represents that it simultaneously folds the

physical resources along the row dimension of the FMs and

unfolds them along the column dimension. The former is

for resource saving, and the latter is to maintain parallelism.

In particular, we observe that generating one output row in

Conv layer only requires several input rows and a shared

weight kernel. Hence, we propose to reuse the computation

resources and weight memory along the FM row dimension

to save resources significantly. Meanwhile, we duplicate the

weight parameters and neuron computations along the column

dimension which maintains the parallelism to a great extent.

Moreover, a FM slicing scheme to process the large-size

image is elaborated. The whole intra-image dataflow can be

executed under a row-by-row streaming pipeline and the inter-

image dataflow further forms a periodical pipeline. In this way,

we achieve an ideal trade-off between the resource overhead

and running speed. To guarantee the functionality and per-

formance, a many-crossbar architecture with versatile vector

and matrix operations, multi-phase-per-step timing schedule,

integrating point-to-point (P2P) and adjacent multicast (AMC)

routing strategies, and routing-aware neuron reservation, is

general solution on how to efficiently deploy the computational

graphs with data reuse on many-crossbar architecture.

The rest of this paper is organized as follows: Section II

introduces some backgrounds of CNNs and crossbar archi-

tecture; Section III provides the basic operations and routing

modes, introduces existing mapping schemes, and explains

the proposed SemiMap framework in detail; The layer-level

and network-level mapping results, routing optimization, and

performance comparisons with state-of-the-art platforms, are

reported in Section IV; Finally, Section V concludes and

discusses the paper.

II. CONVOLUTIONAL NEURAL NETWORK AND CROSSBAR

ARCHITECTURE

A. Convolutional Neural Network

Compared to 1D multi-layered perceptron (MLP), CNN

is specially designed for 2D data processing, such as image

recognition. As shown in Figure 1, it usually includes three

layer types: Conv layer, pooling layer (Pool), and FC layer.

Conv layer generates the output FMs by executing the 2D

sliding convolution operation, where each output FM is deter-

mined by all input FMs. All the sliding windows between one

input FM and one output FM share the same weight kernel.

Adjacent sliding windows are often overlapped according to

the stride value. The number of output FMs are determined by

the number of weight kernels, and the size of output FMs is co-

determined by the size of input FM, weight kernel, padding

and stride value. Pool layer is used for down-sampling the

size of FMs (also introducing translation invariance), but the

output FM is only determined by its corresponding input FM

and the adjacent pooling windows are usually not overlapped,

which are different from Conv layer. The FC layer is similar

to that in MLP with dense VMM operation. The whole CNN

computation can be described as

Conv : FMout = ϕ(bn +
Σ

FMin ~ W(m, n))

designed. A real chip is fabricated to implement all these
P ool : FMout = P ooling(FMin)

(1)

designs. Based on the measurement data, a mapping compiler

and a cycle-accurate simulator are developed for the hard-

ware simulation of large-scale networks. Various CNNs across

different network scale are comprehensively evaluated. >35x

resource saving and several hundred times cycle reduction

F C : Y = ϕ(b + XW)

where, for Conv and Pool layers, FMout is the n-th output

FM, i.e. a 2D matrix of neuronal activations, bn is a bias item

shared by all the neurons in FMout, FMin is the m-th input n m

are demonstrated compared to the existing fully-unfolded and

fully-folded strategies, respectively. This work promises a

FM, W(m, n) is a 2D weight kernel (e.g. 3 × 3) connecting

FMin and FMout, ~ is a 2D convolutional operation, ϕ(·) is

…

…

…

…
…

3

·

×

Fig. 2: Illustration of the crossbar-based architecture, wherein the crossbar can be either physical crossbar (e.g. RRAM [5],

PCRAM [7], MRAM [26], as well as modified SRAM [8] or Flash [9], etc.) for in-memory computing or virtual crossbar built

by conventional memory array (e.g. SRAM [1], [3] or DRAM [2]) and PEs for near-memory computing.

a nonlinear activation function, e.g. ReLU function ϕ(x) =

max(x, 0); for FC layer, X and Y are the input and output

vector of neuronal activation, respectively, W is the weight

matrix, b is a bias vector, and ϕ() is the same as that in

Conv layer.

B. Crossbar Architecture

The crossbar-based architecture is usually a hierarchical and

scalable system. As shown in Figure 2, many independent

functional crossbars (FunCs) are connected by the routing

nonlinear activation function (realized by extra logics or look

up table), possible pooling operation, and generates the output

activation and sends it to the router. Router is a communication

interface that connects four adjacent FunCs in a 2D-mesh

network and the local FunC. Scheduler manages the whole

timing sequence, wherein the compute and transformation

engine can be enabled or disabled at each phase. The whole

sequence is executed phase by phase with static weight matrix

and dynamic activation dataflow.

infrastructure to form a many-crossbar network.

Functional Crossbar. FunC is a basic build block of our

crossbar-based architecture. It is a self-contained NN with a

FunC(0,0)

R

FunC(0,1)

P2P

FunC(0,2)

R R

memory crossbar for weighted connections and its peripheral

processing circuits, such as input buffer, compute and transfor-

mation engine, router, and scheduler. The input buffer provides

the input activations for the compute engine and also buffers

FunC(1,0)

R

FunC(1,1)

R

P2P

FunC(1,2)

AMC
R

the output activations from the router (generated by local or

remote transformation engines). There are two memory chunks

here, assuming N cells for each, acting as two ping-pong

FunC(2,0)

R

FunC(2,1)

R

FunC(2,2)

R

AMC

AMC

buffers switching between modes of router write and compute

engine read. In this way, the computation and routing within

one phase is decoupled for better parallelism. The compute

Routing
Packet

Addr_mode[0]

 △x[7:0] △y[7:0] RAM_addr[15:0] Activation[7:0]

engine occupies the major computation, i.e. multiplications

and accumulations (MACs). It multiplies the input activation

vector read from the input buffer and the weight matrix

stored in the memory crossbar (N N) for completing the

VMM operation. If the memory crossbar is physically built

by aforementioned in-memory computing devices [5], [7]–[9],

[26], the VMM is processed on the crossbar itself; while if

conventional memory array (e.g. SRAM [1], [3]/ DRAM [2])

is used, extra processing elements (PEs, e.g. multipliers and

accumulators) are required to execute the VMM operation, and

the ‘memory array & PEs’ forms a virtual crossbar. A shared

memory is used to buffer the calculated intermediate activation

from the compute engine. Then, the transformation engine

conducts the activation transformation, including adding bias,

Fig. 3: Two routing modes: point to point (P2P) and adjacent

multicast (AMC).

Many-Crossbar Network. FunCs communicate with each

other via configuring the routing tables in every FunC to

generate a netlist of neuronal connection topology. The target

neurons can be in the local FunC or other intra-/inter-chip

FunCs. As shown in Figure 3, the routing packet consists

three segments: relative XY FunC addresses (∆x-8b; ∆y-8b),

address mode (1b) and RAM address (16b), and activation

data (8b). Here the address mode means where to put the

data in the target FunC (0-input buffer; 1-memory crossbar).

When address mode is 0, the lower 8 bits in RAM address

represent the row index in the input buffer, and the higher 8

R R
Crossbar-based

Input Buffer X

Chip

FunC

Parser ping pong

Mem 1

Physical
Crossbar

RRAM

MRAM
Modified SRAM

R
Inter-chip W

Comm.

…

L N

R
 E

R

S

R FunC
Scheduler

Interface

Compute Engine

Virtual
Crossbar

…

Memory Array

Modified Flash

Activation Shared Buffer W
… (SRAM, DRAM

Processing Ele

R
Scalable

R
Intra-chip

R

Comm. R Router
Out_Trans
(Out_Copy)

X

Pool

Act_Fun Bias

Look Up
Table …

4 I/O

R R Channels activation Transformation Engine

FunC FunC

FunC

…

…

M
 U

 X

In
te

rf
ac

e

4

⇐

⇐

Σ

{ | ∈ }

2 × ×

bits are ignored; while when it is 1, the higher and lower 8 bits

record the row and column index of the crossbar, respectively.

On the 2D-mesh FunC plane, we use the coordinate format

of (y, x) to represent the FunC location, in which y and

x denote the vertical and horizontal position, respectively.

Dimension-ordered point to point (P2P) routing is the most

widely used routing strategy, and the horizontal (∆x) direction

has higher priority than the vertical (∆y) direction. For in-

stance, FunC(0, 0) sends a routing packet to FunC(1, 1) whose

P2P target address (relative) is directly programmed into the

routing table before the FunC execution. In this case, ∆x = 1

and ∆y = 1 are initialized. The P2P routing parses ∆x firstly,

thus sends the packet to FunC (0, 1), and then parses ∆y and

sends it to the destination of FunC (1, 1). Every time passing

an intermediate FunC router, the ∆x and ∆y will be updated

until the packet reaches the destination FunC (i.e. ∆x = 0 &

∆y = 0). The two address modes and another routing mode

(adjacent multicast routing) will be explained in Section III-A

for more details.

III. SEMI-FOLDED MAPPING FRAMEWORK

Before introducing the mapping framework, we design

several operation modes and a multicast routing mode on the

above many-crossbar architecture. Then we briefly recall the

existing fully-unfolded and fully-folded mapping schemes. At

last, in order to obtain a satisfactory balance between the speed

and overhead, we propose the SemiMap framework in this

section.

A. Operation and Routing Mode

For supporting CNNs well, we design three vector and ma-

trix operations in the compute engine and five transformation

operations in the transformation engine, as listed in Table I.

 TABLE I: Computation and transformation operations.
 Block Operation Definition

or the memory crossbar) that requires two address modes as

mentioned in Section II-B. Different from VMM and VVA

operations, the vector buffer (VB) operation totally bypasses

the crossbar and just copies the activations from the input

buffer to the transformation engine, which is used in Pool

layer or the one just for neuron copy. In the transformation

engine, Bias (adding bias), Act Fun (activation function),

Out Copy (output copy), Out Trans (output transmission), and

Pool operations are designed to support all the mentioned

activation transformations in CNNs. Here the Out Copy is

for the duplication of neuron outputs within the convolution

overlap between adjacent column-wise slices (to be introduced

in Section III-D).

Data: Received routing packet from local or adjacent

FunC.

Result: Update and send it out, or put it into local FunC.

while Packet queue is non-empty do

Read a packet;

// P2P routing, routing priority ∆x > ∆y;

if ∆x (∆y) 0 then

if ∆x (∆y)> 0 then

∆x (∆y) ∆x (∆y) - 1;

Send it out to the Eastern (Southern) FunC;

Continue;

end

if ∆x (∆y)< 0 then

∆x (∆y) ∆x (∆y) + 1;

Send it out to the Western (Northern) FunC;

Continue;

end

else

// AMC routing;
if (AMC ∆y, AMC ∆x) (0, 0) then

Generate a new routing packet with (∆y, ∆x)

= (AMC ∆y, AMC ∆x);
Send it out according to above P2P strategy;

VMM

Compute Engine VVA y =
y = W · x

i xi, i = 0, 1, ..., 127
end

Trans. Engine

VB y = x
Bias y = x + xb

Act Fun y = ϕ(x)

Pool yi = max/ave(xj j pooli)
Out Copy Out datai = Out dataj

if Addr mode=0 then

Allocate the RAM addr[7:0]-th cell in the

input buffer;
else

 Out Trans Send output to Router Allocate the (RAM addr[15:8],

RAM addr[7:0])-th cell in the crossbar;

In the compute engine, besides the mentioned VMM op-

eration, two other operations are also integrated. The vector-

vector addition (VVA) operation reduces multiple vectors to

one vector, that is useful for hierarchically accumulating large

amount of FMs. In this case, one crossbar cannot complete the

whole computation for generating one output neuron due to

the limited crossbar size, then VVA can be used to accumulate

the partial activations from multiple pre-VMM crossbars. Note

that in VVA operation, the crossbar no longer stores the static

weight matrix, instead, it stores the dynamic partial activations.

The whole N N crossbar splits to two N N chunks

for ping-pong buffer like the input buffer. In this sense, the

routing data might have two destinations (the input buffer

end

Put the Activation[7:0] into the allocated cell;

end

end
Algorithm 1: Routing Algorithm

On the routing side, due to memory limitation, the routing

table cannot be very large. Only one target address is allowed

for each neuron, which indicates it can only be connected

to N neurons in the target FunC at most. Different from

the fan-in limitation that can be addressed by hierarchical

accumulation through VVA operation, the fan-out limitation

becomes an intractable problem. Existing schemes usually

5

y3 y2

−

×

×

· ×

· ·

× × × ×
×

× ×

× ×
(a)

256M
×

256N

M

...

From

pre-layers

FunC ...

...

256

N

m1

n1 r

r2C

r

r2C

m2

n2

 r2C

m1

n1
m2 n2

2 2 2

VMM

VVA

P2P ...

VMM 1

&
VVA C2

×
1 ... ×

1

C2 C2

m2n2

VB r
& ×

Pool 1

r ... r

1 1

Cm2n2

AMC
To post-layers

(b) (c) (d)

Fig. 4: Existing mapping schemes: (a) fully-unfolded mapping of FC layer; (b) fully-unfolded mapping of Conv layer; (c) fully-

unfolded of Pool layer; (d) fully-folded mapping of Conv or Pool layer.

introduce copy neurons to solve it, i.e. Out Copy operation

which just copies the activation while disables any effective

computation. This is useful for small amount of duplications,

such as for the convolution overlap copy. However, this intra-

FunC copy is inefficient for large amount of duplications.

For instance in large models, each neuron is connected to

thousands of post-neurons that require huge activation du-

plications. To this end, we additionally propose an adja-

cent multicast (AMC) routing mode. As shown in Figure

3, the packet propagation along FunC (1, 1), FunC (1, 2),

FunC (2, 2), to FunC(2, 1) can be completed by this AMC

routing. If we configure the AMC registers, i.e. (AMC ∆y,

AMC ∆x), in FunC (1, 1), FunC (1, 2) and FunC (2, 2) to

be (AMC ∆y=0, AMC ∆x=1), (AMC ∆y=1, AMC ∆x=0),

and (AMC ∆y=0, AMC ∆x= 1), respectively, then FunC

(1, 2), FunC (2, 2) and FunC (2, 1) are able to share the

same packets received by FunC (1, 1) from FunC (0, 0). In

this relay-like way, there is no theoretical fan-out limitation.

The pseudo codes of the P2P and AMC routing are shown in

Algorithm 1.

B. Existing Fully-unfolded/folded Mapping Schemes

There exist two schemes for mapping the convolution onto

many-crossbar architecture: fully-unfolded and fully-folded

one. The former is widely used in neuromorphic field (e.g.

[15], [28], [33]), which unfolds all the memory and computa-

tion then transforms them to an FC layer with VMM operation

for crossbar execution. Here we take 256×256 crossbar size

and Pool layers are easy to map if we first transform them to

an FC layer with VMM operation. As shown in Figure 4(b),

a Conv layer with C1 input FMs of m1 n1 size, C2 output
FMs of m2 n2 size, and r r C1 C2 weight kernel, can
be converted to m2 n2 VMMs with size of (r2C1) C2 for
each. Consequently, each VMM can be mapped in the same

way as above FC layer. For Pool layer in Figure 4(c), because

each neuron is only determined by its neighboring neurons in

the corresponding input FM, it only requires C m2 n2 VB

& Pool operations with size of r2 1. Here we use VB and

Pool operations to replace the VMM and VVA operations in

Conv layer. Note that, because r2 is often smaller than 256,

we can merge multiple r2 1 matrices together to occupy the

whole crossbar.

The other extreme mapping scheme, fully-folded mapping

[6], is presented in Figure 4(d). Here we focus on the Conv

or Pool layer, because the FC layer has no data reuse and

only fully-unfolded mapping is applicable. The fully-folded

mapping only assigns the physical resources for one sliding

window (red or blue box). Then it reuses these resources

cycle by cycle until all the sliding window are finished. Note

that in Pool layer, each output FM is just produced by its

corresponding input FM rather than all input FMs in Conv

layer, which is not illustrated in Figure 4(d) for clarity.

Row-wise Reuse

as an example. As shown in Figure 4(a), for the simple FC
layer with size of 256M ×256N , it can be completed by Input: x_r0 x_r1 x_r2

M N crossbars (gray color) of 256 256 size in VMM

operation mode. All FunCs on the same row share the same

Row Buffer:

Conv/Pool:

x_r0 x_r1
y_r0 y_r1

p0 p1 p2 p3

p2 p3

input activations through AMC routing. Consequently, extra N

crossbars are used for accumulating the partial activations via

VVA operation mode (red color). The packet propagation from

VMM FunCs to VVA FunCs is carried by P2P routing. Here

we just take divisible VMM size as an example, and it is easy

to extend to undivisible cases by using extra crossbars for the

residual computation. Based on the FC layer mapping, Conv

Multi-phase Timing Schedule

Fig. 5: SemiMap with folding along the row dimension and

unfloding along the column dimension.

Overall, the fully-unfolded mapping consumes large amount

of crossbar resources for high throughput, while the fully-

folded mapping consumes plenty of clock cycles for saving

x0

cycle 0 cycle n

y3 y2

y1 y0

y1 y0

x6 x7 x8

x5 x4 x3

x2 x1

2
×

2

C
o

n
v
/P

o
o

l

...

...

×

x0 x1 x2

x3 x4 x5

x6 x7 x8

x0 x1 x2

x3 x4 x5

x6 x7 x8

6

24
packets s et ck pa

2 1
pa s et ck

12

× ×
×

×

×

×

× ×
×

resources. Consequently, the resulting speed and overhead are

greatly imbalanced. To solve this imbalance, we propose a

novel mapping framework (SemiMap) for efficient network

deployment with several smart designs: row-wise folding and

column-wise unfolding, FM slicing, multi-phase-per-step tim-

ing schedule, neuron reservation, and streaming pipeline. We

will illustrate them one by one in the following subsections.

C. SemiMap: Row-wise Folding and Column-wise Unfolding

In the fully-unfolded mapping, each cell has an independent

physical space. While for the Conv layer, as well known, the

activation and weight are greatly shared. This provides an

opportunity for reusing the resources. Figure 5 presents our

scheme of row-wise reuse, which takes a size of ‘3 3 input

FM & 2 2 weight kernel & 2 2 output FM’ as an example.

In this case, we find the generation of each output row only

requires two input rows, and the generation of consequent

rows could reuse the same weight kernel. This promises the

neuron multiplexing while remains the crossbar configuration

unchanged.

feedback connections are organized with a staggered row. In

this way, the row-buffer crossbar is able to sequentially buffer
and organize all the required rows within K phases, where

K is the size of weight kernel. Here, we can get the first
two rows ‘x0-x5’ and the second two rows ‘x3-x8’ at phase

p1 and p2, respectively. These iterative inputs can be shared

with the post computation crossbar through feedforward AMC
routing. Then the consequent computation crossbar (VMM

operation) can generate the output row ‘[y0, y1]’ and ‘[y2, y3]’

at phase p2 and p3, respectively. The weight kernel is copied

for generating different elements in the same output FM row to
maintain parallelism (unfolding), while they are reused among

different rows for resource saving (folding). Specifically in this

example at p2, we have y0 = x0w0 + x1w1 + x3w2 + x4w3

and y1 = x1w0 + x2w1 + x4w2 + x5w3 with two copies of

the weight kernel; while at p3, the generation of y2 = x3w0 +
x4w1 + x6w2 + x7w3 or y3 = x4w0 + x5w1 + x7w2 + x8w3

reuses the same weight kernel copy for the above generation

of y0 or y1 at p2, respectively. In this way, the row-dimension
folding and column-dimension unfolding help achieve speed-

overhead balance, and the row-by-row execution forms a

seamless streaming dataflow.

x8 x5 x2

x7 x4 x1

x6 x3 x0

x8 x5 x2
w3

w3 w2

w2

p2 p1 p0

P2P
feedback 1

w1

w0
w0

p2 p1 p0
AMC

feedforward
 y2 y3 p3
y0 y1 p2

Fig. 7: FM slicing for large-size image.

Fig. 6: Crossbar configuration through feedback and feedfor-

ward routing.

Specifically, we can just assign physical resources (a

6 2 crossbar and two neurons) for generating the first row

‘[y0, y1]’. Then at the next time phase, we can generate the

second row ‘[y2, y3]’ but still using the same resources. In

this way, we fold the convolution along the row dimension for

resource saving, but still unfold the computation and memory

along the column dimension to maintain parallelism. Com-

pared to the fully-unfolded mapping with one 9 4 crossbar

and the fully-folded mapping with four sliding cycles, our

SemiMap only consumes a 6 2 crossbar and two cycles

(considering the pipeline to be introduced in Section III-G).

Note that here we just take small kernel and FMs as an

example. In reality with larger size, we also need to convert

this basic computation within several rows to the FC-like

placement in Figure 4(a).

Figure 6 shows its detailed implementation on the crossbar

architecture. The input FM is injected into the row-buffer

crossbar row by row at each phase, and the output is routed

back (P2P) to the same crossbar as the input at next phase.

The row-buffer crossbar uses diagonal identity weight matrix

and VB operation. In fact, the VB operation will bypass

the crossbar and the diagonal identity weight matrix is just

visualized for better understanding. More importantly, the

Crossbar Crossbar 0 Crossbar 1

y0 y1 y2 y3 y4 y5 y6 y7 y0 y1 y2 y3 y4 y5 y6 y7

Fig. 8: Neuron reservation for routing guarantee in VVA

operation.

D. SemiMap: Feature Map Slicing

From the above example, we can see that multiple rows

could be buffered by a row-buffer crossbar with feedback

connections. However, if we have many FMs or FM with

large width, it is impractical to accommodate all the required

rows on one crossbar even if just generating one output row.

For example, if the channel number is 512, FM width is 14,

and weight kernel is 3 3, generating one output row requires

14 3 512=21504 input activations, which is often much

larger than the fan-ins of one single crossbar. One usual way

is to divide all input FMs into multiple groups for independent

VMM operations and then accumulate the partial activations

Row-wise Reuse
Column-wise
Parallelism

Row-wise Reuse

Overlap Copy

Slice0

Slice1

S0 FunCs S0 FunCs S1 FunCs S1 FunCs

x3 y2 y1 y0

x12 x13 x14

x9 x8 x7

x4 x3 x2

x10 x11 x12

x7 x6 x5

x2 x1 x0

y6 x7 y4 y5
w1 x0 x3 1

x1 x4 1

x2 x5 1

x0 x3 x6 1

x1 x4 x7 1

x0 x1 x2

x5 x6 x7

x10 x11 x12

x2 x3 x4

x7 x8 x9

x12 x13 x14

x0 x1 x2

x5 x6 x7

x10 x11 x12

x2 x3 x4

x7 x8 x9

x12 x13 x14

7

Input FM
3@28×28

Timing Configuration

0 1 2 3 4 5 6 7 8 9

5

Pool

A

M

C

×

× ×

×

×

Conv FM

20@26×26 Pooling FM
20@13×13

Pool

Buffer

Conv

Buffer

Input

Phase Index

Fig. 9: A mapping example involving routing topology and timing configuration.

through VVA operations as shown in Figure 4(a). But at some

extreme cases, such as FM width 224, it still exceeds the fan-

in limitation of one single crossbar even if we only have one

input FM. To address this issue, we propose an FM slicing

scheme.

As shown in Figure 7, we take a similar example by just

changing the FM size to ‘5 5 input FM & 4 4 output FM’.

If our crossbar just has 6 fan-ins, which indicates it cannot

hold two input rows with 10 neurons at the same time. In

this case, we slice the FM along the column dimension with

three neurons per row in each slice. Note that because of the

convolution overlap, we need to copy the overlapped neurons

between two adjacent slices using the Out Copy operation.

Then we can map the two slices onto independent crossbars

for parallel execution. For every slice, we can do the same

row-wise streaming reuse like that in Section III-C.

E. SemiMap: Neuron Reservation

In large scale networks, especially when the number of input

FMs is large (e.g. 256, 512, etc.), it is still impossible to put

all inputs onto a single crossbar even if we use the slicing

scheme to reduce the FM width of each slice to only 3 (the

minimum value limited by the weight kernel size such as 3 3).

Therefore, we have to add extra crossbars for partial activation

accumulation through VVA operation. As shown in Figure

4(a), although it is presented for the FC layer mapping, it’s

still required in SemiMap for the Conv layer. We can see that

each VMM FunC only receives its own input FMs, but each

VVA FunC needs to reduce all the partial activation vectors to

be one complete vector. So the P2P routing burden is heavy in

the VVA FunCs. Here we propose a neuron reservation method

to alleviate this heavy traffic.

Figure 8 presents a simplified example to explain how

it works. The original VVA crossbar needs to reduce 3

partial activation vectors with length of 8 for each to one

complete vector y0-y7. In this case, the total routing packets

injected to this crossbar at one phase is 8 3=24. If the

peak routing capability of one FunC during one phase is

receiving 15 packets, the required packets will exceed this

constraint. Then, we activate the neuron reservation method,

which uses multiple (here is two) crossbars to finish the same

task and each crossbar only shoulders 4 3=12 packets. This

reduction meets the routing constraint. Although we leave

some neurons along with the corresponding crossbar columns

underutilized in every crossbar and use more crossbars, the

routing capability is well guaranteed. Since the VVA FunCs

are much less than the VMM ones, this extra cost is negligible

(to be shown in Figure 12).

F. SemiMap: Multi-phase-per-step Timing Schedule

In fact, the above row-wise streaming mapping cannot

be implemented without the support of compatible timing

schedule. In conventional neuromorphic architecture [1], the

minimum timing unit is the the time step. After the configu-

ration initialization, the chip runs step by step with identical

operations during every step. However, as shown in Figure 5,

we expect the compute and transformation engine to execute

different pattern at each phase during an intra-frame period.

For instance, we want the Conv or Pool FunCs to start the

effective compute and transformation at p2 and p3 phases,

but disable them at p0 and p1 phases. Otherwise, we will

obtain incorrect output if we start the calculation before the

organization of required rows from the row buffer FunC.

To realize this non-identical execution pattern, we propose a

multi-phase-per-step timing schedule.

As illustrated in Figure 9, we use a Conv-Pool layer pair
to demonstrate how to implement this timing design. Here

the layer structure is ‘28×28×3-20C3P0S1-MP2’, where the

28×28×3 indicates there are 3 input FMs with size of 28×28,

20C3 denotes 20 output FMs with 3×3 weight kernels, P

 4

1 2

Conv Conv

3

Conv

 Pool
r

 6

 Buffe Buffe
Pool

r

7

Pool

 8

Buffe
Pool

r

26×20 (26×4)×5 10
 Pool

Buffer

11

Pool

 12

Buffer
Pool

13

Pool

A

M

C

A

M

C

A

M

C A

M

C

A

M

C

0

Buffer
Conv

A

M

C

9

Pool

A

M

C

2
8

×
3

8

×

×

× ×

× ×

∼

×

or S denotes the padding or stride value, respectively, and

MP2 means max pooling with 2 2 pooling window. Here

the Conv stride is 1 and Pool stride is 2, and both of them

have no padding. Generating one output row requires 3 input

rows, i.e. 28 3 3=252<256 neuronal activations. Therefore,

only one crossbar for row buffer is enough here. Because

each crossbar can fan out 9 output FMs (26 9=234<256), it

requires 3 Conv crossbars to generate 20 output FMs. Then the

20 output FMs are divided into 5 groups for pooling operation.

In each group, there are 4 FMs, i.e. totally 26 2 4=208<256

neuronal activations after considering that this pooling requires

2 input rows. As mentioned in Section II-A, the FMs are de-

coupled in Pool layer, so each row buffer crossbar just requires

another one crossbar for its consequent pooling operations.

Thus, we totally use 14 FunCs for this Conv-Pool layer pair.

The multi-phase configuration within one step is shown in

the top right of Figure 9. The input FMs are injected row by

row (0-27 phase for 28 rows). Then the Conv buffer crossbar

starts the row buffering from the second phase. It requires

3 phases to organize the first 3 rows for one convolution

operation, thus the Conv crossbars can start its compute and

transformation engine from the next phase (i.e. from phase

3). The Pool layer follows the similar pattern with Conv

layer. The major difference is that it enables its compute and

transformation engine every 2 phases. This is because the

stride of pooling operation is 2 (i.e. no overlap like that in

Conv layer). In a nutshell, the overall timing sequence acts

like a streaming dataflow with inter-crossbar relay.

Phase Timing

Output:

FC_Buffer:

Conv3:

C3_Buffer:

Pool2:

P2_Buffer:

Conv2:

C2_Buffer:

Pool1:

P1_Buffer:

Conv1:

C1_Buffer:

Input:

Fig. 10: Inter-frame periodical pipeline. Here ‘ppr’ denotes

phases per row.

G. SemiMap: Inter-frame Periodical Pipeline

After introducing the implementation details for a single

layer, now we present the timing sequence of a whole network

as shown in Figure 1 to gain the big picture. Figure 10 shows

the timing occupation of every layer within one frame and

among continuous frames. Here the ‘ppr’ represents phases per

row, i.e. how many phases are required to generate one output

row. Two observations we can get: (1) The ppr will double

every time passing a Pool layer (here we use 2 2 pooling

window with stride 2), i.e. its activity becomes sparser as

layer propagates; (2) The inter-frame timing sequence presents

as a periodical pipeline. The throughput is only determined

by the height of the input image (number of rows), and it is

decoupled with the network depth. This feature is distinct from

the conventional accelerators [34]–[36] whose performance is

mainly determined by the whole model size.

IV. RESULTS

A. Experimental Setup

In order to reduce the development period and save the

fabrication cost, we use off-the-shelf SRAM array with extra

multipliers and accumulators to simulate the crossbar-based

compute engine (i.e. virtual crossbar). Note that our mapping

framework is also applicable to other crossbars (virtual or

physical), as aforementioned in Section II-B. We fabricate a

chip in UMC 28nm HLP CMOS process to implement the

designed many-crossbar architecture. Considering the fabri-

cation cost, we only integrate 156 FunCs onto one single

chip. Figure 11 shows the IC layout and real chip picture.

At 300 MHz clock frequency, the chip runs (Chip busy=1)

only within the first 16.8 µs during each phase to complete all

the computations, which reflects the minimum phase latency

for guaranteeing the running correctness. Then we develop

a mapping compiler in Matlab for network partition and

resource allocation, and a C++ cycle-accurate simulator for

the hardware simulation of large-scale networks. For all the

experiments in this paper, the architecture configuration in

the simulator is listed in Table II. The power estimation is

based on the measured data of 1.95 6.29 mW per FunC

in different operation modes (Table I) or idle mode. In this

paper, we focus more on the mapping methodology, not the

specific hardware design. With this concern, we don’t consider

the inter-chip communication cost in our simulations, which

can be optimized by techniques such as using ultra-high

communication bus [37] (higher speed) or integrating more

FunCs onto one single chip [1] (lower power & higher speed).

Fig. 11: Chip layout and physical picture.

 TABLE II: Architecture configuration in the simulator.

FunCs per Chip Memory Crossbar Data Precision

 12×13 256×256 (SRAM) 8b-W/8b-A

Packet Length Clock Frequency Phase Latency

42 bits 300 MHz 16.8 µs

Regarding the evaluation network models, we use LeNet-

variant [38] on MNIST [39], VGG8 [38], [40], on CIFAR10

[27], and AlexNet [29]/VGG16 [30]/ResNet18 [31] on Ima-

geNet [32] as benchmarks. All the mapping schemes including

FunC Chip

Compute
Engine

(Memory
Array)

Compute
Engine
(PEs)

Compute
Engine

(Memory
Array)

12×13
FunC Array

Trans.
Engine

Trans.
Engine

4 ppr

4 ppr

4 ppr

4 ppr

2 ppr

2 ppr

2 ppr

2 ppr

1 ppr

1 ppr

1 ppr

1 ppr

Frame 0 Frame 1 Frame 2 Frame 3

9

(b)

VB VMM VVA

×

×

fully-unfolded, fully-folded, and SemiMap are completed in

our mapping compiler. The resource cost is directly obtained

from the mapping compiler, and the throughput is achieved

from the cycle-accurate simulator. Regarding the baseline

hardware platforms for lateral comparison, we use NVIDIA

GPU (Titan Xp) as well as several existing accelerators

including DRISA [41], Eyeriss [36], and DNA [42].

B. Layer Analysis

In this section, we use a single layer for a detailed analysis.
The layer is the conv2-2 layer from VGG16 network, the

structure of which is ‘112×112×128-128C3P1S1’.

Fig. 12: Profiling of the SemiMap results on one single Conv

layer: (a) relationship between the number of FM slices and

fan-in groups or overlapped columns; (b) relationship between

the number of FM slices and resource overhead.

Figure 12 presents the the mapping results of this layer

using the proposed SemiMap. From Figure 12(a), we can

see that the number of fan-in groups decreases with more

FM slices. Because more slices make the width of each FM

slice smaller, hence, each crossbar can accommodate more

input FMs (i.e. less fan-in groups). However, more slices will

generate more overlapped columns between adjacent slices,

which requires linearly increasing copy neurons. From Figure

12(b), we can see a trade-off between the slices and resource

overhead (i.e. number of FunCs). Too few slices generate

wider FM slices and many fan-in groups, that brings lower

crossbar utilization and larger crossbar amount. Meanwhile,

too many slices require more crossbars for row buffer since

each slice needs independent buffers. This will also increase

the resource overhead of this layer. In addition, the number

of copy neurons from previous layer increases due to more

overlapped columns. Another observation is that the VVA

FunCs for accumulating the partial activations occupy the

least fraction because they use the crossbar itself with larger

memory capacity for data stash, not the small input buffer in

VMM or VB operation mode.

 TABLE III: Layer mapping with three schemes.

Scheme
Number of FunCs

Phases

VB VMM VVA Total

Fully-unfolded – 62720 12544 75264 1

Fully-folded – 5 1 6 12544

SemiMap 224 896 56 1176 115

Table III shows the overall comparison among three map-

ping schemes: fully-unfolded, fully-folded, and SemiMap.

Note that we ignore the copy neurons for the copy of over-

lapped input activations. Fully-unfolded mapping can do all

things in only one phase, however, at the cost of huge resource

overhead, more than 7.5 104 FunCs. In stark contrast, the

fully-folded one saves resources to only several FunCs, while,

consuming more than 1.2 104 timing phases. This speed-

overhead imbalance is probably not acceptable in practical

applications. By using the proposed SemiMap, we can exe-

cute this layer within 115 phases, and consumes only 1176

FunCs. This reduces 64x resource overhead and 109x time

cost compared to the fully-unfolded and fully-folded mapping

scheme, respectively.

100

80

60

40

20

0

3500

3000

2500

2000

1500

1000

500

0

Fig. 13: Profiling of the SemiMap results on VGG16 network.

C. Network Evaluation

Based on the single layer analysis, we give the mapping

results on a complete network, i.e. VGG16. As shown in

Figure 13(a), for the first few layers, more slices are usually

(a)

(b)

N
u
m

b
e
r

o
f S

lic
e

s
/G

ro
u
p

s

N
u

m
b
e

r
o

f
F

u
n

C
s

c
o
n
v
1
-1

c
o
n
v
1
-2

p
o
o
l1

c
o
n
v
2
-1

c
o
n
v
2
-2

p
o
o
l2

c
o
n
v
3
-1

c
o
n
v
3
-2

c
o
n
v
3
-3

p
o
o
l3

c
o
n
v
4
-1

c
o
n
v
4
-2

c
o
n
v
4
-3

p
o
o
l4

c
o
n
v
5
-1

c
o
n
v
5
-2

c
o
n
v
5
-3

p
o
o
l5

fc
1

fc
2

fc
3

c
o
n
v
1
-1

c
o
n
v
1
-2

p
o
o
l1

c
o
n
v
2
-1

c
o
n
v
2
-2

p
o
o
l2

c
o
n
v
3
-1

c
o
n
v
3
-2

c
o
n
v
3
-3

p
o
o
l3

c
o
n
v
4
-1

c
o
n
v
4
-2

c
o
n
v
4
-3

p
o
o
l4

c
o
n
v
5
-1

c
o
n
v
5
-2

c
o
n
v
5
-3

p
o
o
l5

fc
1

fc
2

fc
3

 FM Slice Fan-in Group

(a)

10

1E+6

1E+5

1E+4

1E+3

1E+2

1E+1

1E+0

Fig. 14: Inter-layer routing redundancy.

D. Optimized Speed-Overhead Trade-off

In this section, we will provide more overall evaluation

on more networks, and compare with other state-of-the-art

platforms. Figure 16 shows the resource overhead comparison

between the conventional fully-unfolded mapping and our

SemiMap. We can save many VMM FunCs for Conv layers,

VB FunCs for Pool layers (as well as other VB FunCs for

row buffer or overlapped neuron copy), and VVA FunCs. In

general, we are able to reduce 10x-36x resource overhead.

Because the proposed SemiMap is mainly designed for Conv

structure, there is little difference between fully-unfolded

mapping and SemiMap on FC layers.

On the speed side, Figure 17 shows the phase comparison

between the conventional fully-folded mapping and the pro-

posed SemiMap. We don’t consider the possible inter-layer

pipeline in fully-folded mapping, which means that the pro-
required to split the large-size FMs. Reversely, the fan-in

groups increase as the layer propagates, which is mainly

caused by the increasing number of FMs. In observing the

resource overhead in Figure 13(b), we can get the consistent

conclusion with Figure 12, that the VMM FunCs occupy the

most overhead and the VVA FunCs are the least. The Conv

layers usually consume more resources than the FC layers,

which is different from that of fully-folded mapping scheme

[6]. Furthermore, the Conv layers with more FMs usually

consume more crossbars. For example, the conv4 layer family

with 512 FMs occupies the most resources. The less overhead

of the conv5 layers is caused by the smaller FM size after a

pooling layer (pool4).

For many-crossbar architectures, the inter-FunC communi-

cation is the key for the activation movement and the overall

performance. Figure 14 shows the routing packets between

adjacent layers, from the output FunCs of previous layer to

the input FunCs of current layer. In Conv layer, the inter-layer

receiver is the VB FunCs for buffering rows, and in FC layer,

the receiver is VMM FunCs. We can see that the actual routing

traffic doesn’t reach the peak capability. This 86x routing

redundancy guarantees the smooth communication.

However, as shown in Figure 4(a), the reduce FunCs in

VVA operation mode has significantly increased traffic burden

since they have to receive the partial activations from all the

VMM FunCs. As mentioned in Section III-E, we design a

neuron reservation technique to optimize the routing capabil-

ity. As shown in Figure 15, first, we make full use of the

crossbar neurons. But in this case, the actual packets in many

layers exceed the peak routing capability. This may probably

cause communication failure, i.e. cannot complete the packet

transmission during one phase, thus cause system crash. After

leveraging the neuron reservation optimization, we utilize

less neurons in each VVA crossbar and keep some neurons

along with the corresponding crossbar columns underutilized.

Although this increases the number of VVA FunCs slightly,

we are able to guarantee the routing performance (with 1.14x

routing redundancy on VGG16). It’s worthy noting that, from

Figure 13, the VVA FunCs are the least part among the overall

resource overhead, so the slightly increased resource overhead

by using this routing optimization is negligible.

cessing of all the layers is serial. We are able to achieve much

less phases (23x-462x) on these benchmarks. Interestingly,

combined with the inter-frame pipeline mentioned in Section

III-G, the throughput of SemiMap is only determined by the

height of input image (number of rows). This is different

from most existing CNN accelerators whose throughput is

mainly determined by the model size. Note that the very

small differences in SemiMap among AlexNet, VGG16 and

ResNet18 on ImageNet are caused by the different padding

values.

At last, we compare the throughput of our SemiMap on

the proposed many-crossbar architecture with that of GPU

and several accelerators. Note that here we only provide

coarse comparisons, because it’s difficult to make it vary

fair on these different architectures if arguing on low-level

details. As shown in Figure 18, we can achieve 1.5x-2.8x

speedup over GPU on the datasets with small images, and

slight speedup (1.1x-1.4x) on ImageNet (except for AlexNet).

As aforementioned, the throughput of SemiMap is mainly

determined by the input image size rather than the overall

model size. So the reason why it performs a bit worse on

AlexNet is because its model size is relatively small but

the image size is large, which makes it less friendly to our

SemiMap framework on crossbars.

Table IV shows the throughput comparison with several

published CNN accelerators. Benefit from the high bandwidth

of processing-in-memory architecture, DRISA [41] achieves

high throughput, but we still present a slight speedup (1.3x)

averagely. The throughput of other two accelerators, Eyeriss

[36] and DNA [42], demonstrates strong dependency on

the model size (although DNA doesn’t show the results on

VGG16). We averagely achieve 14.7x and 2x speedup over

Eyeriss and DNA, respectively.

TABLE IV: Throughput comparison with existing accelerators.
 Network DRISA [41] Eyeriss [36] DNA [42] SemiMap

 VGG16 45 N.A. N.A. 263

 Average 200.3 17.9 131.0 262.5

N
u

m
b

e
r

o
f

R
o

u
ti
n

g
 P

a
c
k
e

ts

c
o

n
v
1

-1

c
o

n
v
1

-2

p
o

o
l1

c
o

n
v
2

-1

c
o

n
v
2

-2

p
o

o
l2

c
o

n
v
3

-1

c
o

n
v
3

-2

c
o

n
v
3

-3

p
o

o
l3

c
o

n
v
4

-1

c
o

n
v
4

-2

c
o

n
v
4

-3

p
o

o
l4

c
o

n
v
5

-1

c
o

n
v
5

-2

c
o

n
v
5

-3

p
o

o
l5

fc
1

fc
2

fc
3

A
v
e

ra
g

e

 Actual Packets Peak Packets

AlexNetConv 358 35 136 262

AlexNet 352 N.A. 126 262

VGG16Conv 46 0.7 N.A. 263

11

c
o
n

v
1

-2

c
o
n

v
2

-1

c
o
n

v
2

-2

c
o
n

v
3

-1

c
o
n

v
3

-2

c
o
n

v
3

-3

c
o
n

v
4

-1

c
o
n

v
4

-2

c
o
n

v
4

-3

c
o
n

v
5

-1

c
o
n

v
5

-2

c
o
n

v
5

-3

fc
1

fc
2

fc
3

A
v
e

ra
g

e

N
u

m
b

e
r

o
f

R
o

u
ti
n

g
 P

a
c
k
e

ts

Actual Packets Peak Packets Peak Packets (optimized)

1E+6

1E+5

1E+4

1E+3

1E+2

1E+1

1E+0

(a) (b)

Fig. 15: VVA routing optimized by neuron reservation.

2500

2000

1E+6 1500

1E+5

1E+4

1E+3

1E+2

1000

500

0

LeNet VGG8 AlexNet VGG16 ResNet18 Average

1E+1

1E+0

Fig. 16: FunC consumption comparison between fully-

unfolded mapping and SemiMap.

Fig. 18: Throughput comparison between GPU and this work

on many-crossbar architecture with SemiMap.

250

200

150

100

50

1E+6

0
LeNet VGG8 AlexNet VGG16 ResNet18 Average

1E+5

1E+4

1E+3

1E+2

1E+1

1E+0

LeNet VGG8 AlexNet VGG16 ResNet18

Fig. 19: Power comparison between GPU and this work on

many-crossbar architecture with SemiMap.

Besides the throughput evaluation, we also provide a coarse

power comparison with GPU, as shown in Figure 19. An

average 6.5x improvement of power efficiency is achieved.

Note that the computation of zero rows on the crossbar with

VMM operation is skipped for further energy reduction.

In a nutshell, by implementing the proposed SemiMap

scheme on the many-crossbar architecture, it is able to ap-

Fig. 17: Phase consumption comparison between fully-folded

mapping and SemiMap.

proach a good balance between the speed and resource over-

head. Regarding the speed, even if we sacrifice the perfor-

mance to some extent for resource saving, we still demonstrate

higher throughput compared to existing platforms; regarding

Crossbar Neurons

VVA FunCs

250

200

150

100

50

0

Crossbar Neurons (optimized)

VVA FunCs (optimized)

LeNet VGG8 AlexNet VGG16 ResNet18

VMM (Conv) VB (Pool)

VVA VB (Others)

Total FunCs

VMM (FC)

33379

3026
5198

802
462X 145X

23X

89X
29X

34 28

230 226 227

104500

SemiMap Fully-folded

617

262 230 263
180

259

486
589

932

1751

1433

2126

Titan Xp SemiMap

N
u

m
b

e
r

o
f

F
u

n
C

s

N
u
m

b
e
r

o
f

P
h

a
s
e

s

N
u

m
e

r
o
f

N
e
u

ro
n

s
/F

u
n

C
s

F
u
ll
y
-u

n
fo

ld
e
d

S
e
m

iM
a

p

F
u
ll
y
-u

n
fo

ld
e
d

S
e
m

iM
a

p

F
u
ll
y
-u

n
fo

ld
e
d

S
e
m

iM
a

p

F
u
ll
y
-u

n
fo

ld
e
d

S
e
m

iM
a

p

F
u
ll
y
-u

n
fo

ld
e
d

S
e
m

iM
a

p

F
ra

m
e
s
 p

e
r

S
e

c
o

n
d

 (
F

P
S

)
P

o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (

W
)

c
o

n
v
1

-2

c
o

n
v
2

-1

c
o

n
v
2

-2

c
o

n
v
3

-1

c
o

n
v
3

-2

c
o

n
v
3

-3

c
o

n
v
4

-1

c
o

n
v
4

-2

c
o

n
v
4

-3

c
o

n
v
5

-1

c
o

n
v
5

-2

c
o

n
v
5

-3

fc
1

fc
2

fc
3

A
v
e

ra
g
e

Titan Xp SemiMap

230

 129
116

62

77
58.63

0.16

7.35

7.41

15.42 17.79

12

the resource, the reduced overhead brings much lower power

consumption compared to GPU.

V. CONCLUSION AND DISCUSSION

In this work, we propose a SemiMap framework for bal-

ancing the execution speed and resource overhead on the

widely used crossbar architecture. Through row-wise folding

and column-wise unfolding, it is able to achieve the reduced

overhead and maintained parallelism in the meantime. FM slic-

ing scheme allows the processing of large-size image, multi-

phase-per-step timing schedule enables complex intra- and

inter-frame streaming pipeline, and AMC routing and routing-

aware neuron reservation optimize the communication capa-

bility. To validate the mapping methodology, a many-crossbar

chip is designed and fabricated. Based on the measurement

data, a mapping compiler and a cycle-accurate simulator are

developed for the simulation of large-scale networks. Testing

over several CNN benchmarks, SemiMap is able to reduce the

crossbar overhead up to 36x and accelerate the execution phase

up to 462x. In the coarse lateral comparisons, it performs up

to 2.8x and 14.7x throughput improvement compared to state-

of-the-art GPU and accelerators, respectively, as well as much

less power consumption than GPU.

Because CNNs have been proven to be more powerful

than MLP networks, the crossbar architecture must solve the

challenge of speed-overhead imbalance to support CNNs

more efficiently. In this work, we address this issue well by

optimizing the higher-level mapping scheme, which provides

a new way to improve the performance. Our implementation

using off-the-shelf SRAM array and extra PEs to mimic the

crossbar behavior is just for cost saving, and in fact, the

proposed SemiMap can be easily extended to other crossbar

architectures, such as the emerging devices with in-memory

computing [5]–[9], [21]–[26]. Furthermore, since the convo-

lution operation is symmetric in both the row and column

dimensions. The row-driven mapping and timing schedule in

this paper can be easily extended to a column-driven version.

One disadvantage of this SemiMap scheme is that the cross-

bars cannot be fully utilized along the temporal dimension.

Specifically, as shown in Figure 10, each FunC occupies only

a part of the periodical duration. This insufficient utilization

becomes more severe in the last few layers with large ppr (i.e.

more sparser). In the idle state, the peripheral circuits within

the FunC still consume power, such as memories, router,

clock tree, and the leakage. This will decrease the overall

power efficiency to some extent. But anyway, regarding the

throughput and resource overhead, we can achieve a good

balance. The temporal utilization issue is one of our future

works. Another problem deserves investigation is the spatial

utilization on the crossbar. In contrast to the naturally high

utilization of FC layer, Conv layer only occupies a fraction of

the crossbar cells (many of them are zero values) due to the

sliding operations. One promising direction is to study the

crossbar-aware sparsification like that in [43].

REFERENCES

[1] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al., “A

million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[2] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker
project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[3] L. Shi, J. Pei, N. Deng, D. Wang, L. Deng, Y. Wang, Y. Zhang, F. Chen,
M. Zhao, S. Song, F. Zeng, G. Li, H. Li, and C. Ma, “Development of a
neuromorphic computing system,” in 2015 IEEE International Electron
Devices Meeting (IEDM), pp. 4.3.1–4.3.4, Dec 2015.

[4] D. Garbin, O. Bichler, E. Vianello, Q. Rafhay, C. Gamrat, L. Perniola,
G. Ghibaudo, and B. DeSalvo, “Variability-tolerant convolutional neural
network for pattern recognition applications based on oxram synapses,”
in Electron Devices Meeting (IEDM), 2014 IEEE International, pp. 28–
4, IEEE, 2014.

[5] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev,
and D. B. Strukov, “Training and operation of an integrated neuro-
morphic network based on metal-oxide memristors,” Nature, vol. 521,
no. 7550, p. 61, 2015.

[6] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: a novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in ACM SIGARCH
Computer Architecture News, vol. 44, pp. 27–39, IEEE Press, 2016.

[7] G. W. Burr, R. M. Shelby, S. Sidler, C. Di Nolfo, J. Jang, I. Boybat,

R. S. Shenoy, P. Narayanan, K. Virwani, E. U. Giacometti, et al.,
“Experimental demonstration and tolerancing of a large-scale neural
network (165 000 synapses) using phase-change memory as the synaptic
weight element,” IEEE Transactions on Electron Devices, vol. 62, no. 11,
pp. 3498–3507, 2015.

[8] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a
machine-learning classifier in a standard 6t sram array,” IEEE Journal
of Solid-State Circuits, vol. 52, no. 4, pp. 915–924, 2017.

[9] X. Guo, F. M. Bayat, M. Bavandpour, M. Klachko, M. Mahmoodi,
M. Prezioso, K. Likharev, and D. Strukov, “Fast, energy-efficient,
robust, and reproducible mixed-signal neuromorphic classifier based on
embedded nor flash memory technology,” in Electron Devices Meeting
(IEDM), 2017 IEEE International, pp. 6–5, IEEE, 2017.

[10] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[11] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” Interna-
tional journal of neural systems, vol. 19, no. 04, pp. 295–308, 2009.

[12] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner,
“A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in Circuits and systems (ISCAS), proceedings of 2010 IEEE
international symposium on, pp. 1947–1950, IEEE, 2010.

[13] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chan-
drasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla,
and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system
for large-scale neural simulations,” Proceedings of the IEEE, vol. 102,
no. 5, pp. 699–716, 2014.

[14] J. Hasler and H. B. Marr, “Finding a roadmap to achieve large neuro-
morphic hardware systems,” Frontiers in neuroscience, vol. 7, p. 118,
2013.

[15] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, et al.,
“Truenorth: Design and tool flow of a 65 mw 1 million neuron pro-
grammable neurosynaptic chip,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537–
1557, 2015.

[16] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[17] P. Merolla, J. Arthur, R. Alvarez, J.-M. Bussat, and K. Boahen, “A multi-
cast tree router for multichip neuromorphic systems,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 61, no. 3, pp. 820–833,
2014.

[18] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson,
D. R. Lester, A. D. Brown, and S. B. Furber, “Spinnaker: A 1-w 18-core
system-on-chip for massively-parallel neural network simulation,” IEEE
Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1943–1953, 2013.

[19] L. Deng, G. Li, N. Deng, D. Wang, Z. Zhang, W. He, H. Li, J. Pei,
and L. Shi, “Complex learning in bio-plausible memristive networks,”
Scientific reports, vol. 5, p. 10684, 2015.

[20] G. Li, L. Deng, D. Wang, W. Wang, F. Zeng, Z. Zhang, H. Li, S. Song,
J. Pei, and L. Shi, “Hierarchical chunking of sequential memory on
neuromorphic architecture with reduced synaptic plasticity,” Frontiers
in computational neuroscience, vol. 10, p. 136, 2016.

13

[21] Y. Long, E. M. Jung, J. Kung, and S. Mukhopadhyay, “Reram crossbar
based recurrent neural network for human activity detection,” in Neural
Networks (IJCNN), 2016 International Joint Conference on, pp. 939–
946, IEEE, 2016.

[22] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[23] T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, “Binary convolutional
neural network on rram,” in Design Automation Conference (ASP-DAC),
2017 22nd Asia and South Pacific, pp. 782–787, IEEE, 2017.

[24] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on, pp. 541–
552, IEEE, 2017.

[25] O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, and

C. Gamrat, “Visual pattern extraction using energy-efficient 2-pcm
synapse neuromorphic architecture,” IEEE Transactions on Electron
Devices, vol. 59, no. 8, pp. 2206–2214, 2012.

[26] D. Fan and S. Angizi, “Energy efficient in-memory binary deep neural
network accelerator with dual-mode sot-mram,” in 2017 IEEE 35th
International Conference on Computer Design (ICCD), pp. 609–612,
IEEE, 2017.

[27] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” tech. rep., Citeseer, 2009.

[28] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,
A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch,
C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D. Flickner, and D. S.
Modha, “Convolutional networks for fast, energy-efficient neuromorphic
computing,” Proceedings of the National Academy of Sciences, vol. 113,
no. 41, pp. 11441–11446, 2016.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248–
255, IEEE, 2009.

[33] Y. Ji, Y. Zhang, W. Chen, and Y. Xie, “Bridge the gap between
neural networks and neuromorphic hardware with a neural network
compiler,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, pp. 448–460, ACM, 2018.

[34] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, et al., “Dadiannao: A machine-learning supercomputer,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 609–622, IEEE Computer Society, 2014.

[35] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on, pp. 243–254, IEEE, 2016.

[36] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–
138, 2017.

[37] A. Roshan-Zamir, O. Elhadidy, H.-W. Yang, and S. Palermo, “A recon-
figurable 16/32 gb/s dual-mode nrz/pam4 serdes in 65-nm cmos,” IEEE
Journal of Solid-State Circuits, vol. 52, no. 9, pp. 2430–2447, 2017.

[38] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li, “Gxnor-net: Training
deep neural networks with ternary weights and activations without full-
precision memory under a unified discretization framework,” Neural
Networks, vol. 100, pp. 49–58, 2018.

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[40] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in neural information processing systems, pp. 3123–3131,
2015.

[41] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in Proceedings of the

50th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 288–301, ACM, 2017.

[42] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei, “Deep con-
volutional neural network architecture with reconfigurable computation
patterns,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 8, pp. 2220–2233, 2017.

[43] L. Liang, L. Deng, Y. Zeng, X. Hu, Y. Ji, X. Ma, G. Li, and

Y. Xie, “Crossbar-aware neural network pruning,” IEEE Access, vol. 6,
pp. 58324–58337, 2018.

Lei Deng received his B.E. degree and Ph.D. de-
gree from University of Science and Technology
of China, Hefei, China, and Tsinghua University,
Beijing, China, in 2012 and 2017, respectively. He
is currently a Postdoc at Department of Electrical
and Computer Engineering, University of California,
Santa Barbara, CA, USA. Dr. Deng is a Guest
Associate Editor for Frontiers in Neuroscience. His
research interests include computer architecture,
machine learning, brain-inspired computing, tensor
analysis, and complex systems.

Ling Liang received the B.E. degree from Beijing
University of Posts and Telecommunications, Bei-
jing, China, in 2015, and M.S. degree from Univer-
sity of Southern California, CA, USA, in 2017. He
is currently pursuing the Ph.D. degree at Department
of Electrical and Computer Engineering, University
of California, Santa Barbara, CA, USA. His current
research interests include machine learning security
and computer architecture.

Guanrui Wang received the B.E. degree in elec-
tronic engineering from Jilin University, Jilin China,
in 2016. He is currently pursuing the Ph.D. degree in
instrumentation science and technology at Tsinghua
University, Beijing, China. His current research in-
terests include neuromorphic chips, computer archi-
tecture, and network-on-chip systems.

Liang Chang received the M.S. degree in micro-
electronics from Beihang University, Beijing, China,
in 2014. He is currently pursuing the Ph.D. de-
gree in spintronics, at the Fert Beijing Institute,
BDBC, and the School of Electronic Information
and Engineering, Beihang University. His research
interests include reconfigurable circuit design and
advanced computer architectures based on emerging
non-volatile memory devices.

Xing Hu received the B.S. degree from Huazhong
University of Science and Technology, Wuhan,
China, and Ph.D. degree from University of Chinese
Academy of Sciences, Beijing, China, in 2009 and
2014, respectively. She is currently a Postdoc at
Department of Electrical and Computer Engineer-
ing, University of California, Santa Barbara, CA,
USA. Her current research interests include emerg-
ing memory system and domain-specific hardware
computing.

Xin Ma received his B.S. and Ph.D degree in
Physics from University of Science and Technology
of China, Hefei, China, in 2009 and The College
of William and Mary, VA, USA, in 2014 respec-
tively. He is currently a Postdoc at Department of
Electrical and Computer Engineering, University of
California, Santa Barbara, CA,USA. His research
interests include designing in-memory computing
with emerging non-volatile memory technologies.

14

Liu Liu received the B.S. degree and Ph.D degree
from University of Electronic Science and Tech-
nology of China, Chengdu, China, and University
of California, Santa Barbara, CA, USA, in 2013
and 2015, respectively. He is currently pursuing the
Ph.D. degree with the Department of Computer Sci-
ence, University of California, Santa Barbara, CA,
USA. His research interests include deep learning,
computer architecture, and emerging non-volatile
memory.

Jing Pei received his B.E. and M.E. degrees in
instrument science and technology from Tsinghua
University, Beijing, China, in 1987 and 1989, re-
spectively. He worked for Tsinghua University since
1990. He is currently an Associate Professor with
the Department of Precision Instrument, Tsinghua
University, Beijing, China. He has published over
50 papers in journals and conferences and obtained
over 30 invention patents. He won once second prize
of national invention award and once second prize of
national scientific and technological progress award.

His research interests include optical information storage system, optical
signal processing, and recently, he focuses on specialized chip for brain-
inspired computing based on neuromorphic engineering.

Guoqi Li received the B.E. degree from the Xian
University of Technology, Xian, China, in 2004, the
M.E. degree from Xian Jiaotong University, Xian,
China, in 2007, and the Ph.D. degree from Nanyang
Technological University, Singapore, in 2011. He
was a Scientist with Data Storage Institute and the
Institute of High Performance Computing, Agency
for Science, Technology and Research (ASTAR),
Singapore, from 2011 to 2014. He is currently an As-
sociate Professor with the Department of Precision
Instrument, Tsinghua University, Beijing, China. He

has published over 70 journal and conference papers. His current research
interests include brain inspired computing, complex systems, neuromorphic
computing, machine learning, and system identification.

Yuan Xie received his Ph.D. degrees from Electri-
cal Engineering Department, Princeton University,
Princeton, NJ, USA in 2002. He was with IBM,
Armonk, NY, USA, from 2002 to 2003, and AMD
Research China Lab, Beijing, China, from 2012 to
2013. He was a Professor with Pennsylvania State
University, State College, PA, USA, from 2003 to
2014. He is currently a Professor with the De-
partment of Electrical and Computer Engineering,
University of California at Santa Barbara, Santa
Barbara, CA, USA.

Dr. Xie is an expert in computer architecture who has been inducted to
ISCA/MICRO/HPCA Hall of Fame. He has been an IEEE Fellow since
2015. He served as the TPC Chair for HPCA 2018 and he is Editor-in-
Chief for ACM Journal on Emerging Technologies in Computing Systems
(JETC), Senior Associate Editor (SAE) for ACM Transactions on Design
Automations for Electronics Systems (TODAES), and Associate Editor for
IEEE Transactions on Computers (TC). His current research interests include
computer architecture, Electronic Design Automation, and VLSI design.

