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Abstract—Crossbar architecture has been widely used in neu- 
ral network accelerators, involving conventional and emerging 
devices. It performs well on the fully-connected layer through 
efficient vector-matrix multiplication. Whereas, the advantages 
degrade on the convolutional layer with huge data reuse, since 
the execution speed and resource overhead are imbalanced when 
using existing fully-unfolded or fully-folded mapping strategy.  
To address this issue, we propose a novel semi-folded mapping 
(SemiMap) framework for implementing the convolution on 
crossbars. It simultaneously folds the physical resources along 
the row dimension of feature maps and unfolds them along the 
column dimension. The former reduces the resource overhead, 
and the latter maintains the parallelism. A feature map slicing 
scheme is further proposed to enable the processing of large-size 
image. Via our mapping framework, a row-by-row streaming 
pipeline for intra-image dataflow and periodical pipeline for 
inter-image dataflow are easy to be obtained. To validate the 
idea, we build a many-crossbar architecture with several designs 
to guarantee the overall functionality and performance. Based  
on the measurement data of a fabricated chip, a mapping 
compiler and a cycle-accurate simulator are developed for the 
hardware simulation of large-scale networks. We evaluate the 
proposed SemiMap on various convolutional neural networks 

across different network scale. >35x resource saving and several 
hundred times cycle reduction are demonstrated compared to the 
existing fully-unfolded and fully-folded strategies, respectively. 
This work jumps out of the current extreme mapping schemes, 
and provides a balanced solution on how to efficiently deploy   
the computational graphs with data reuse on many-crossbar 
architecture. 

Keywords: Convolutional Neural Networks, Deep Learning 

Accelerator, Crossbar Architecture, Network Mapping 

 
I. INTRODUCTION 

The recent crossbar architecture targets integrating the 

compute and memory for efficiently executing the vector- 

matrix multiplication (VMM), which is the major operation 
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in various neural networks (NNs). On crossbars, the VMM 

can be completed with shorter time (e.g. conventional memory 

array based virtual crossbar for near-memory computing [1]– 

[3]) or even only one cycle (e.g. emerging physical crossbar 

for in-memory computing [4]–[9]). In this way, it presents 

great potential for building high-performance system. A many- 

crossbar architecture is usually characterized as two design 

levels: (1) functional crossbar that is a self-contained small 

neural network mainly based on a memory crossbar for the 

weighted connections and its peripheral processing circuits; 

(2) many-crossbar network wired by a scalable routing in- 

frastructure. This architecture has been widely used in NN 

accelerators. In particular, most neuromorphic platforms [10], 

[11], including early analog/digital mixed circuits [12]–[14]  

or recent fully digital circuits [1]–[3], [15], [16], use this 

many-crossbar architecture with various routing topologies [1], 

[15], [17], [18]. Besides conventional technologies, plenty of 

researches leverage modified SRAM [8]/ Flash [9] or various 

emerging non-volatile memory devices with in-memory com- 

puting capability to design this many-crossbar architecture, 

such as the most widely used RRAM (resistive RAM) [4]– 

[6], [19]–[24], PCRAM (phase-change RAM) [7], [25], and 

MRAM (magnetic RAM) [26]. 

This crossbar based architecture naturally  performs  well 

on fully connected (FC) layers with dense VMM, i.e. fast 

throughput and high utilization. However, these advantages 

degrade on convolutional (Conv) layers since the operands are 

greatly reused. Usually, there exist two strategies for mapping 

the Conv layer onto the many-crossbar architecture: fully- 

unfolded and fully-folded. The former first converts the Conv 

layer to an FC layer and then assigns independent physical 

cells for all logical neurons and weights. This way is able      

to achieve very high throughput, but at the cost of extremely 

huge resource overhead. For example, for convolutional neural 

networks (CNNs) on medium-size CIFAR10 dataset [27], it 

uses more than 30,000 crossbars [28]; and for larger models 

[29]–[31] on ImageNet dataset [32], more than hundreds of 

thousands of crossbars [33] are usually required. On the other 

hand, the fully-folded strategy sufficiently leverages the data 

reuse of Conv layer. Specifically, it fully reuses the crossbar 

cycle by cycle for completing the Conv operations across 

many sliding windows [6]. This results in much less resource 

overhead but at the cost of very high latency. Taking a Conv 

layer with 224 feature map (FM) size and 3   3 weight kernel 

as an example, more than 5   104  cycles are needed. In short, 

the above two mainstream mapping strategies are difficult to 

achieve  a  satisfactory  balance  between  the  execution speed 
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Fig. 1: Example of convolutional neural networks. 

 

and resource overhead. However, this is highly required by 

some application scenarios. For instance, the performance of 

unmanned aerial vehicle heavily depends on the real-time 

vision processing capability under great resource and energy 

limitation. 

To address the imbalance issue on current many-crossbar 

platforms is challenging. For the ones based on asynchronous 

communication [1], [15], the timing schedule is very simplex. 

Usually, the time step with identical operation flow is the 

minimum time unit. This makes it difficult to implement 

complex timing pattern for resource reuse. For other syn- 

chronous ones [6], the limited scalability makes it difficult    

to unfold the whole computational graph. To this end, we 

propose a semi-folded mapping (SemiMap) framework with 

slight modifications on current many-crossbar architectures. 

The ‘semi-folded’ represents that it simultaneously folds the 

physical resources along the row dimension of the FMs and 

unfolds them along the column dimension.  The  former  is  

for resource saving, and the latter is to maintain parallelism.  

In particular, we observe that generating one output row in 

Conv layer only requires several input rows and a shared 

weight kernel. Hence, we propose to reuse the computation 

resources and weight memory along the FM row dimension  

to save resources significantly. Meanwhile, we duplicate the 

weight parameters and neuron computations along the column 

dimension which maintains the parallelism to a great extent. 

Moreover, a FM slicing scheme to process the large-size 

image is elaborated. The whole intra-image dataflow can be 

executed under a row-by-row streaming pipeline and the inter- 

image dataflow further forms a periodical pipeline. In this way, 

we achieve an ideal trade-off between the resource overhead 

and running speed. To guarantee the functionality and per- 

formance, a many-crossbar architecture with versatile vector 

and matrix operations, multi-phase-per-step timing schedule, 

integrating point-to-point (P2P) and adjacent multicast (AMC) 

routing strategies, and routing-aware neuron reservation, is 

general solution on how to efficiently deploy the computational 

graphs with data reuse on many-crossbar architecture. 

The rest of this paper is organized as follows: Section II 

introduces some backgrounds of CNNs and crossbar archi- 

tecture; Section III provides the basic operations and routing 

modes, introduces existing mapping schemes, and  explains 

the proposed SemiMap framework in detail; The layer-level 

and network-level mapping results, routing optimization, and 

performance comparisons with state-of-the-art platforms, are 

reported in Section IV; Finally, Section V concludes and 

discusses the paper. 

 
II. CONVOLUTIONAL NEURAL NETWORK AND CROSSBAR 

ARCHITECTURE 

A. Convolutional Neural Network 

Compared to 1D  multi-layered  perceptron  (MLP),  CNN 

is specially designed for 2D data processing, such as image 

recognition. As shown in Figure 1, it usually includes three 

layer types: Conv layer, pooling layer (Pool), and FC layer. 

Conv layer generates the output FMs by executing the 2D 

sliding convolution operation, where each output FM is deter- 

mined by all input FMs. All the sliding windows between one 

input FM and one output FM share the same weight kernel. 

Adjacent sliding windows are often overlapped according to 

the stride value. The number of output FMs are determined by 

the number of weight kernels, and the size of output FMs is co- 

determined by the size of input FM, weight kernel, padding 

and stride value. Pool layer is used for down-sampling the  

size of FMs (also introducing translation invariance), but the 

output FM is only determined by its corresponding input FM 

and the adjacent pooling windows are usually not overlapped, 

which are different from Conv layer. The FC layer is similar 

to that in MLP with dense VMM operation. The whole CNN 

computation can be described as 

Conv : FMout  = ϕ(bn + 
Σ   

FMin ~ W(m, n)) 
 

designed. A real chip is fabricated to implement all these 
P ool : FMout = P ooling(FMin) 

(1) 

designs. Based on the measurement data, a mapping compiler 

and a cycle-accurate simulator are developed for the hard- 

ware simulation of large-scale networks. Various CNNs across 

different network scale are comprehensively evaluated. >35x 

resource saving and several hundred times cycle reduction 

F C : Y = ϕ(b + XW) 

where, for Conv and Pool layers, FMout is the n-th output  

FM, i.e. a 2D matrix of neuronal activations, bn is a bias item 

shared by all the neurons in FMout, FMin is the m-th input n m 

are demonstrated compared to the existing fully-unfolded and 

fully-folded strategies, respectively. This work promises a 

FM, W(m, n) is a 2D weight kernel (e.g. 3 × 3) connecting 

FMin  and FMout, ~ is a 2D convolutional operation, ϕ(·) is 
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Fig. 2: Illustration of the crossbar-based architecture, wherein the crossbar can be either physical crossbar (e.g. RRAM [5], 

PCRAM [7], MRAM [26], as well as modified SRAM [8] or Flash [9], etc.) for in-memory computing or virtual crossbar built 

by conventional memory array (e.g. SRAM [1], [3] or DRAM [2]) and PEs for near-memory computing. 

 

a nonlinear activation function, e.g. ReLU function ϕ(x) = 

max(x, 0); for FC layer, X and Y are the input and output 

vector of neuronal activation, respectively, W is the weight 

matrix, b is a bias vector, and ϕ( ) is the same as that in   

Conv layer. 

 
B. Crossbar Architecture 

The crossbar-based architecture is usually a hierarchical and 

scalable system. As shown in Figure 2, many independent 

functional crossbars (FunCs) are connected by the routing 

nonlinear activation function (realized by extra logics or look 

up table), possible pooling operation, and generates the output 

activation and sends it to the router. Router is a communication 

interface that connects four adjacent FunCs in a 2D-mesh 

network and the local FunC. Scheduler manages the whole 

timing sequence, wherein the compute and transformation 

engine can be enabled or disabled at each phase. The whole 

sequence is executed phase by phase with static weight matrix 

and dynamic activation dataflow. 

infrastructure to form a many-crossbar network. 

Functional Crossbar. FunC is a basic build block of our 

crossbar-based architecture. It is a self-contained NN with a 
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Packet 
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engine occupies the major computation, i.e. multiplications 

and accumulations (MACs). It multiplies the input activation 

vector read from the input buffer and the weight  matrix  

stored in the memory crossbar (N N ) for completing the 

VMM operation. If the memory crossbar is physically built  

by aforementioned in-memory computing devices [5], [7]–[9], 

[26], the VMM is processed on the crossbar itself; while if 

conventional memory array (e.g. SRAM [1], [3]/ DRAM [2]) 

is used, extra processing elements (PEs, e.g. multipliers and 

accumulators) are required to execute the VMM operation, and 

the ‘memory array & PEs’ forms a virtual crossbar. A shared 

memory is used to buffer the calculated intermediate activation 

from the compute engine. Then, the transformation engine 

conducts the activation transformation, including adding bias, 

Fig. 3: Two routing modes: point to point (P2P) and adjacent 

multicast (AMC). 

Many-Crossbar Network. FunCs communicate with each 

other via configuring the routing tables in every FunC to 

generate a netlist of neuronal connection topology. The target 

neurons can be in the local FunC or other intra-/inter-chip 

FunCs. As shown in Figure 3, the routing packet consists 

three segments: relative XY FunC addresses (∆x-8b; ∆y-8b), 

address mode (1b) and RAM address (16b), and activation 

data (8b). Here the address mode means where  to  put the 

data in the target FunC (0-input buffer; 1-memory crossbar). 

When address mode is 0, the lower 8 bits in RAM address 

represent the row index in the input buffer, and the higher 8 
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bits are ignored; while when it is 1, the higher and lower 8 bits 

record the row and column index of the crossbar, respectively. 

On the 2D-mesh FunC plane, we use the coordinate format   

of  (y, x)  to  represent  the  FunC  location,  in  which  y  and 

x denote the vertical and horizontal position, respectively. 

Dimension-ordered point to point (P2P) routing is the most 

widely used routing strategy, and the horizontal (∆x) direction 

has higher priority than the vertical (∆y) direction. For in- 

stance, FunC(0, 0) sends a routing packet to FunC(1, 1) whose 

P2P target address (relative) is directly programmed into the 

routing table before the FunC execution. In this case, ∆x = 1 

and ∆y = 1 are initialized. The P2P routing parses ∆x firstly, 

thus sends the packet to FunC (0, 1), and then parses ∆y and 

sends it to the destination of FunC (1, 1). Every time passing 

an intermediate FunC router, the ∆x and ∆y will be updated 

until the packet reaches the destination FunC (i.e. ∆x = 0 & 

∆y = 0). The two address modes and another routing mode 

(adjacent multicast routing) will be explained in Section III-A 

for more details. 

 
III. SEMI-FOLDED MAPPING FRAMEWORK 

Before introducing the mapping framework, we design 

several operation modes and a multicast routing mode on the 

above many-crossbar architecture. Then we briefly recall the 

existing fully-unfolded and fully-folded mapping schemes. At 

last, in order to obtain a satisfactory balance between the speed 

and overhead, we propose the SemiMap framework in this 

section. 

 
A. Operation and Routing Mode 

For supporting CNNs well, we design three vector and ma- 

trix operations in the compute engine and five transformation 

operations in the transformation engine, as listed in Table I. 

 
    TABLE I: Computation and transformation operations.      
  Block Operation Definition  

or the memory crossbar) that requires two address modes as 

mentioned in Section II-B. Different from VMM and VVA 

operations, the vector buffer (VB) operation totally bypasses 

the crossbar and just copies the activations from the input 

buffer to the transformation engine, which is used in Pool 

layer or the one just for neuron copy. In the transformation 

engine, Bias (adding bias), Act Fun (activation  function),  

Out Copy (output copy), Out Trans (output transmission), and 

Pool operations are designed to support all the mentioned 

activation transformations in CNNs. Here the Out Copy  is  

for the duplication of neuron outputs within the convolution 

overlap between adjacent column-wise slices (to be introduced 

in Section III-D). 

 

Data: Received routing packet from local or adjacent 

FunC. 

Result: Update and send it out, or put it into local FunC. 

while Packet queue is non-empty do 

Read a packet; 

// P2P routing, routing priority ∆x > ∆y; 

if ∆x (∆y) 0 then 

if ∆x (∆y)> 0 then 

∆x (∆y) ∆x (∆y) - 1; 

Send it out to the Eastern (Southern) FunC; 

Continue; 

end 

if ∆x (∆y)< 0 then 

∆x (∆y) ∆x (∆y) + 1; 

Send it out to the Western (Northern) FunC; 

Continue; 

end 

else 

// AMC routing; 
if  (AMC  ∆y, AMC  ∆x) (0, 0) then 

Generate a new routing packet with (∆y, ∆x) 

= (AMC ∆y, AMC ∆x); 
Send it out according to above P2P strategy; 

VMM 

Compute Engine VVA y = 
y = W · x 

i xi, i = 0, 1, ..., 127 
end    

 

 
Trans. Engine 

VB y = x 
Bias y = x + xb 

Act Fun y = ϕ(x) 

Pool yi = max/ave( xj j pooli ) 
Out Copy Out datai = Out dataj 

if Addr mode=0 then 

Allocate the RAM addr[7:0]-th cell in the 

input buffer; 
else 

  Out Trans Send output to Router  Allocate the (RAM addr[15:8], 

RAM addr[7:0])-th cell in the crossbar; 

In the compute engine, besides the mentioned VMM op- 

eration, two other operations are also integrated. The vector- 

vector addition (VVA) operation reduces multiple vectors to 

one vector, that is useful for hierarchically accumulating large 

amount of FMs. In this case, one crossbar cannot complete the 

whole computation for generating one output neuron due to 

the limited crossbar size, then VVA can be used to accumulate 

the partial activations from multiple pre-VMM crossbars. Note 

that in VVA operation, the crossbar no longer stores the static 

weight matrix, instead, it stores the dynamic partial activations. 

The  whole  N    N  crossbar  splits  to  two   N     N  chunks   

for ping-pong buffer like the input buffer. In this sense, the 

routing data might have two destinations (the input buffer 

end 

Put the Activation[7:0] into the allocated cell; 

end 

end 
Algorithm 1: Routing Algorithm 

 
On the routing side, due to memory limitation, the routing 

table cannot be very large. Only one target address is allowed 

for each neuron, which indicates it can only be connected      

to N neurons in  the  target  FunC  at  most.  Different  from 

the fan-in limitation that can be addressed by hierarchical 

accumulation through VVA operation, the fan-out limitation 

becomes an intractable problem. Existing schemes usually 
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Fig. 4: Existing mapping schemes: (a) fully-unfolded mapping of FC layer; (b) fully-unfolded mapping of Conv layer; (c) fully-

unfolded of Pool layer; (d) fully-folded mapping of Conv or Pool layer. 

 

introduce copy neurons to solve it, i.e. Out Copy operation 

which just copies the activation while disables any effective 

computation. This is useful for small amount of duplications, 

such as for the convolution overlap copy. However, this intra- 

FunC copy is inefficient for large amount  of  duplications. 

For instance in large models, each neuron is connected to 

thousands of post-neurons that require huge activation du- 

plications. To this end, we additionally  propose  an  adja-  

cent multicast (AMC) routing  mode.  As  shown  in  Figure  

3, the packet propagation along FunC (1, 1), FunC (1, 2), 

FunC (2, 2), to FunC(2, 1) can be completed by this AMC 

routing. If we configure the AMC registers, i.e. (AMC ∆y, 

AMC  ∆x), in FunC (1, 1), FunC (1, 2) and FunC (2, 2) to  

be (AMC ∆y=0, AMC ∆x=1), (AMC ∆y=1, AMC  ∆x=0),  

and (AMC ∆y=0, AMC  ∆x=  1),  respectively,  then  FunC 

(1, 2), FunC (2, 2) and FunC (2, 1) are able to share the 

same packets received by FunC (1, 1) from FunC (0, 0). In 

this relay-like way, there is no theoretical fan-out limitation. 

The pseudo codes of the P2P and AMC routing are shown in 

Algorithm 1. 

 
B. Existing Fully-unfolded/folded Mapping Schemes 

There exist two schemes for mapping the convolution onto 

many-crossbar architecture: fully-unfolded and fully-folded 

one. The former is widely used in neuromorphic field (e.g. 

[15], [28], [33]), which unfolds all the memory and computa- 

tion then transforms them to an FC layer with VMM operation 

for crossbar execution. Here we take 256×256 crossbar size 

and Pool layers are easy to map if we first transform them to 

an FC layer with VMM operation. As shown in Figure 4(b),   

a  Conv  layer  with  C1  input  FMs  of  m1  n1  size,  C2  output 
FMs of m2    n2  size, and r     r     C1     C2  weight kernel, can 
be converted to m2 n2 VMMs with size of (r2C1)  C2  for  
each. Consequently, each VMM can be mapped in the same 

way as above FC layer. For Pool layer in Figure 4(c), because 

each neuron is only determined by its neighboring neurons in 

the corresponding input FM, it only requires C   m2   n2  VB   

& Pool operations with size of r2  1. Here we use VB and  

Pool operations to replace the VMM and VVA operations in 

Conv layer. Note that, because r2 is often smaller than 256,  

we can merge multiple r2 1 matrices together to occupy the 

whole crossbar. 

The other extreme mapping scheme, fully-folded mapping 

[6], is presented in Figure 4(d). Here we focus on the Conv   

or Pool layer, because the FC layer has no data reuse and   

only fully-unfolded mapping is applicable. The fully-folded 

mapping only assigns the physical resources for one sliding 

window (red or blue box). Then it reuses these  resources 

cycle by cycle until all the sliding window are finished. Note 

that in Pool layer, each output FM is just produced by its 

corresponding input FM rather than all input FMs in Conv 

layer, which is not illustrated in Figure 4(d) for clarity. 

 

Row-wise Reuse 
 

 

as an example. As shown in Figure 4(a), for the simple FC 
layer  with  size  of  256M ×256N ,  it  can  be  completed   by Input: x_r0 x_r1 x_r2 
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input activations through AMC routing. Consequently, extra N 

crossbars are used for accumulating the partial activations via 

VVA operation mode (red color). The packet propagation from 

VMM FunCs to VVA FunCs is carried by P2P routing. Here 

we just take divisible VMM size as an example, and it is easy 

to extend to undivisible cases by using extra crossbars for the 

residual computation. Based on the FC layer mapping, Conv 
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resources. Consequently, the resulting speed and overhead are 

greatly imbalanced. To solve this imbalance, we propose a 

novel mapping framework (SemiMap) for efficient network 

deployment with several smart designs: row-wise folding and 

column-wise unfolding, FM slicing, multi-phase-per-step tim- 

ing schedule, neuron reservation, and streaming pipeline. We 

will illustrate them one by one in the following subsections. 

 
C. SemiMap: Row-wise Folding and Column-wise Unfolding 

In the fully-unfolded mapping, each cell has an independent 

physical space. While for the Conv layer, as well known, the 

activation and weight are greatly shared. This provides an 

opportunity for reusing the resources. Figure 5 presents our 

scheme of row-wise reuse, which takes a size of ‘3 3 input  

FM & 2 2 weight kernel  & 2  2 output FM’  as an example.  

In this case, we find the generation of each output row only 

requires two input rows, and the generation of consequent 

rows could reuse the same weight kernel. This promises the 

neuron multiplexing while remains the crossbar configuration 

unchanged. 

feedback connections are organized with a staggered row. In 

this way, the row-buffer crossbar is able to sequentially buffer 
and organize all the required rows within K  phases, where    

K is the size of weight kernel.  Here,  we  can  get  the first 
two rows ‘x0-x5’ and the second two rows ‘x3-x8’ at phase    

p1 and p2, respectively. These iterative inputs can be shared 

with the post computation crossbar through feedforward AMC 
routing. Then the consequent computation crossbar (VMM 

operation) can generate the output row ‘[y0, y1]’ and ‘[y2, y3]’ 

at phase p2 and p3, respectively. The weight kernel is copied 

for generating different elements in the same output FM row to 
maintain parallelism (unfolding), while they are reused among 

different rows for resource saving (folding). Specifically in this 

example at p2, we have y0 = x0w0 + x1w1  + x3w2  + x4w3 

and y1 = x1w0 + x2w1 + x4w2 + x5w3  with  two  copies  of 

the weight kernel; while at p3, the generation of y2 = x3w0 + 
x4w1 + x6w2 + x7w3 or y3 = x4w0 + x5w1 + x7w2 + x8w3 

reuses the same weight kernel copy for the above generation 

of y0 or y1 at p2, respectively. In this way, the row-dimension 
folding and column-dimension unfolding help achieve speed- 

overhead balance, and the row-by-row execution forms a 

seamless streaming dataflow. 

x8 x5 x2 

x7 x4 x1 

x6 x3 x0 

x8 x5 x2 
w3 

w3 w2 

w2 

p2 p1 p0 

P2P 
feedback 1 

w1 

w0 
w0 

p2 p1 p0 
AMC 

feedforward 
 y2 y3 p3 
y0 y1 p2 

Fig. 7: FM slicing for large-size image. 

Fig. 6: Crossbar configuration through feedback and feedfor- 

ward routing. 

 

Specifically, we can just assign physical resources (a 

6 2 crossbar and two neurons) for generating the first row  

‘[y0, y1]’. Then at the next time phase, we can generate the 

second row ‘[y2, y3]’ but still using the same resources. In  

this way, we fold the convolution along the row dimension for 

resource saving, but still unfold the computation and memory 

along the column dimension to maintain parallelism. Com- 

pared to the fully-unfolded mapping with one 9 4 crossbar  

and the fully-folded mapping with four sliding cycles, our 

SemiMap only consumes a 6 2 crossbar and two cycles 

(considering the pipeline to be introduced in Section III-G). 

Note that here we just take small kernel and FMs as an 

example. In reality with larger size, we also need to convert 

this basic computation within several rows to the FC-like 

placement in Figure 4(a). 

Figure 6 shows its detailed implementation on the crossbar 

architecture. The input FM is injected into the row-buffer 

crossbar row by row at each phase, and the output is routed 

back (P2P) to the same crossbar as the input at next phase. 

The row-buffer crossbar uses diagonal identity weight matrix 

and VB operation. In fact,  the  VB  operation  will  bypass  

the crossbar and the diagonal identity weight matrix is just 

visualized for better understanding. More importantly, the 

 
Crossbar Crossbar 0 Crossbar 1 
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Fig. 8: Neuron reservation for routing guarantee in VVA 

operation. 

 
 

D. SemiMap: Feature Map Slicing 

From the above example, we can see that multiple rows 

could be buffered by a row-buffer crossbar with feedback 

connections. However, if we have many FMs or FM  with 

large width, it is impractical to accommodate all the required 

rows on one crossbar even if just generating one output row. 

For example, if the channel number is 512, FM width is 14, 

and weight kernel is 3   3, generating one output row requires 

14   3   512=21504  input  activations,  which  is  often   much 

larger than the fan-ins of one single crossbar. One usual way 

is to divide all input FMs into multiple groups for independent 

VMM operations and then accumulate the partial activations 
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Fig. 9: A mapping example involving routing topology and timing configuration. 

 

through VVA operations as shown in Figure 4(a). But at some 

extreme cases, such as FM width 224, it still exceeds the fan- 

in limitation of one single crossbar even if we only have one 

input FM. To address this issue, we propose an FM slicing 

scheme. 

As shown in Figure 7, we take a similar example by just 

changing the FM size to ‘5  5 input FM & 4   4 output FM’.   

If our crossbar just has 6 fan-ins, which indicates it cannot 

hold two input rows with 10 neurons at the same time. In    

this case, we slice the FM along the column dimension with 

three neurons per row in each slice. Note that because of the 

convolution overlap, we need to copy the overlapped neurons 

between two adjacent slices using the Out Copy operation. 

Then we can map the two slices onto independent crossbars 

for parallel execution. For every slice, we can do the same 

row-wise streaming reuse like that in Section III-C. 

 
E. SemiMap: Neuron Reservation 

In large scale networks, especially when the number of input 

FMs is large (e.g. 256, 512, etc.), it is still impossible to put 

all inputs onto a single crossbar even if we use the slicing 

scheme to reduce the FM width of each slice to only 3 (the 

minimum value limited by the weight kernel size such as 3 3). 

Therefore, we have to add extra crossbars for partial activation 

accumulation through VVA operation. As shown in Figure 

4(a), although it is presented for the FC layer mapping, it’s  

still required in SemiMap for the Conv layer. We can see that 

each VMM FunC only receives its own input FMs, but each 

VVA FunC needs to reduce all the partial activation vectors to 

be one complete vector. So the P2P routing burden is heavy in 

the VVA FunCs. Here we propose a neuron reservation method 

to alleviate this heavy traffic. 

Figure 8 presents  a  simplified  example  to  explain  how  

it works. The original VVA crossbar needs to  reduce  3  

partial activation vectors with length of 8 for each to one 

complete vector y0-y7. In this case, the total routing packets 

injected to this crossbar at one  phase  is  8  3=24.  If  the  

peak routing capability of one FunC during one phase is 

receiving 15 packets, the required packets will exceed this 

constraint. Then, we activate the neuron reservation method, 

which uses multiple (here is two) crossbars to finish the same 

task and each crossbar only shoulders 4 3=12 packets. This 

reduction meets the routing constraint. Although we leave 

some neurons along with the corresponding crossbar columns 

underutilized in every crossbar and use more crossbars, the 

routing capability is well guaranteed. Since the VVA FunCs 

are much less than the VMM ones, this extra cost is negligible 

(to be shown in Figure 12). 

 
F. SemiMap: Multi-phase-per-step Timing Schedule 

In fact, the above  row-wise  streaming  mapping  cannot  

be implemented without the support of compatible timing 

schedule. In conventional neuromorphic architecture [1], the 

minimum timing unit is the the time step. After the configu- 

ration initialization, the chip runs step by step with identical 

operations during every step. However, as shown in Figure 5, 

we expect the compute and transformation engine to execute 

different pattern at each phase during an intra-frame period. 

For instance, we want the Conv or Pool FunCs to start the 

effective compute and transformation at p2  and p3  phases,  

but disable them at p0 and p1 phases. Otherwise, we will 

obtain incorrect output if we start the calculation before the 

organization of required rows from  the  row  buffer  FunC.  

To realize this non-identical execution pattern, we propose a 

multi-phase-per-step timing schedule. 

As illustrated in Figure 9, we use a Conv-Pool layer pair    
to demonstrate how to implement this timing design. Here   

the layer structure is ‘28×28×3-20C3P0S1-MP2’, where the 

28×28×3 indicates there are 3 input FMs with size of 28×28, 

20C3  denotes  20  output  FMs  with  3×3  weight  kernels, P 
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or S denotes the padding or stride value, respectively, and 

MP2 means max pooling  with  2  2  pooling window.  Here 

the Conv stride is 1 and Pool stride is 2, and both of them 

have no padding. Generating one output row requires 3 input 

rows, i.e. 28 3 3=252<256 neuronal activations. Therefore, 

only one crossbar for row buffer is enough here. Because 

each crossbar can fan out 9 output FMs (26 9=234<256), it 

requires 3 Conv crossbars to generate 20 output FMs. Then the 

20 output FMs are divided into 5 groups for pooling operation. 

In each group, there are 4 FMs, i.e. totally 26 2 4=208<256 

neuronal activations after considering that this pooling requires 

2 input rows. As mentioned in Section II-A, the FMs are de- 

coupled in Pool layer, so each row buffer crossbar just requires 

another one crossbar for its consequent pooling operations. 

Thus, we totally use 14 FunCs for this Conv-Pool layer pair. 

The multi-phase configuration within one step is shown in 

the top right of Figure 9. The input FMs are injected row by 

row (0-27 phase for 28 rows). Then the Conv buffer crossbar 

starts the row buffering from the second phase. It requires 

3 phases to organize the first 3 rows for one convolution 

operation, thus the Conv crossbars can start its compute and 

transformation engine from the next phase (i.e. from phase   

3). The Pool layer follows the similar pattern with Conv  

layer. The major difference is that it enables its compute and 

transformation engine every 2 phases. This is because the 

stride of pooling operation is 2 (i.e. no overlap like that in 

Conv layer). In a nutshell, the overall timing sequence acts 

like a streaming dataflow with inter-crossbar relay. 

 
Phase Timing 

Output: 

FC_Buffer: 

Conv3: 

C3_Buffer: 

Pool2: 

P2_Buffer: 

Conv2: 

C2_Buffer: 

Pool1: 

P1_Buffer: 

Conv1: 

C1_Buffer: 

Input: 

 

Fig. 10: Inter-frame periodical pipeline. Here ‘ppr’ denotes 

phases per row. 

 
 

G. SemiMap: Inter-frame Periodical Pipeline 

After introducing the implementation details for a single 

layer, now we present the timing sequence of a whole network 

as shown in Figure 1 to gain the big picture. Figure 10 shows 

the timing occupation of every layer within one frame and 

among continuous frames. Here the ‘ppr’ represents phases per 

row, i.e. how many phases are required to generate one output 

row. Two observations we can get: (1) The ppr will double 

every time passing a Pool layer (here we use 2 2 pooling 

window with stride 2), i.e. its activity becomes sparser as 

layer propagates; (2) The inter-frame timing sequence presents 

as a periodical pipeline. The throughput is only determined  

by the height of the input image (number of rows), and it is 

decoupled with the network depth. This feature is distinct from 

the conventional accelerators [34]–[36] whose performance is 

mainly determined by the whole model size. 

 

IV. RESULTS 

A. Experimental Setup 

In order to reduce the development period and save the 

fabrication cost, we use off-the-shelf SRAM array with extra 

multipliers and accumulators to simulate the crossbar-based 

compute engine (i.e. virtual crossbar). Note that our mapping 

framework is also applicable to other crossbars (virtual or 

physical), as aforementioned in Section II-B. We fabricate a 

chip in UMC 28nm HLP CMOS process to implement the 

designed many-crossbar architecture. Considering the fabri- 

cation cost, we only integrate 156 FunCs onto one  single 

chip. Figure 11 shows the IC layout and real chip picture.     

At 300 MHz clock frequency, the chip runs (Chip busy=1) 

only within the first 16.8 µs during each phase to complete all 

the computations, which reflects the minimum phase latency 

for guaranteeing the running correctness. Then we develop     

a mapping compiler in Matlab for network partition and 

resource allocation, and a C++ cycle-accurate simulator for 

the hardware simulation of large-scale networks. For all the 

experiments in this paper, the architecture  configuration in 

the simulator is listed in Table II. The power estimation is 

based on the  measured  data  of  1.95  6.29  mW  per  FunC  

in different operation modes (Table I) or idle mode. In this 

paper, we focus more on the mapping methodology, not the 

specific hardware design. With this concern, we don’t consider 

the inter-chip communication cost in our simulations, which 

can be optimized by techniques such as using ultra-high 

communication bus [37] (higher speed) or integrating more 

FunCs onto one single chip [1] (lower power & higher speed). 
 

Fig. 11: Chip layout and physical picture. 

 
   TABLE II: Architecture configuration in the simulator.      

FunCs per Chip Memory Crossbar Data Precision 

           12×13 256×256 (SRAM) 8b-W/8b-A       

Packet Length Clock Frequency Phase Latency 

42 bits 300 MHz 16.8 µs 
 

 

Regarding the evaluation network models, we use LeNet- 

variant [38] on MNIST [39], VGG8 [38], [40], on CIFAR10 

[27], and AlexNet [29]/VGG16 [30]/ResNet18 [31] on Ima- 

geNet [32] as benchmarks. All the mapping schemes including 
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VB VMM VVA 
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fully-unfolded, fully-folded, and SemiMap are completed in 

our mapping compiler. The resource cost is directly obtained 

from the mapping compiler, and the throughput is achieved 

from the cycle-accurate simulator. Regarding the baseline 

hardware platforms for lateral comparison, we use NVIDIA 

GPU (Titan Xp) as well as several existing accelerators 

including DRISA [41], Eyeriss [36], and DNA [42]. 

 
B. Layer Analysis 

In this section, we use a single layer for a detailed analysis. 
The layer is the conv2-2 layer from VGG16 network, the 

structure of which is ‘112×112×128-128C3P1S1’. 

 

Fig. 12: Profiling of the SemiMap results on one single Conv 

layer: (a) relationship between the number of FM slices and 

fan-in groups or overlapped columns; (b) relationship between 

the number of FM slices and resource overhead. 

Figure 12 presents the the mapping results of this layer 

using the proposed SemiMap. From Figure  12(a),  we  can 

see that the number of fan-in groups  decreases  with more 

FM slices. Because more slices make the width of each FM 

slice smaller, hence, each crossbar can accommodate more 

input FMs (i.e. less fan-in groups). However, more slices will 

generate more overlapped columns between adjacent slices, 

which requires linearly increasing copy neurons. From Figure 

12(b), we can see a trade-off between the slices and resource 

overhead (i.e. number of FunCs). Too few slices generate 

wider FM slices and many fan-in groups, that brings lower 

crossbar utilization and larger crossbar amount. Meanwhile, 

too many slices require more crossbars for row buffer since 

each slice needs independent buffers. This will also increase 

the resource overhead of this layer. In addition, the number   

of copy neurons from previous layer increases due to more 

overlapped columns. Another observation is that the VVA 

FunCs for accumulating the partial activations occupy the 

least fraction because they use the crossbar itself with larger 

memory capacity for data stash, not the small input buffer in 

VMM or VB operation mode. 

  TABLE III: Layer mapping with three schemes.  

Scheme 
Number of FunCs 

Phases
 

VB VMM VVA Total 
 

Fully-unfolded – 62720 12544 75264 1 

Fully-folded – 5 1 6 12544 

SemiMap 224 896 56 1176 115 

 

Table III shows the overall comparison among three map- 

ping schemes: fully-unfolded, fully-folded, and SemiMap. 

Note that we ignore the copy neurons for the copy of over- 

lapped input activations. Fully-unfolded mapping can do all 

things in only one phase, however, at the cost of huge resource 

overhead, more than 7.5 104 FunCs. In stark contrast, the 

fully-folded one saves resources to only several FunCs, while, 

consuming more than 1.2 104 timing phases. This speed- 

overhead imbalance is probably not acceptable in practical 

applications. By using the proposed SemiMap, we can exe- 

cute this layer within 115 phases, and consumes only 1176 

FunCs. This reduces 64x resource overhead and 109x time 

cost compared to the fully-unfolded and fully-folded mapping 

scheme, respectively. 

 
 

 

100 

80 

60 

40 

20 

0 

 
 

 

 

3500 

3000 

2500 

2000 

1500 

1000 

500 

0 

 
 
 
 

Fig. 13: Profiling of the SemiMap results on VGG16 network. 

 

 
C. Network Evaluation 

Based on the single layer analysis, we give the mapping 

results on a complete network, i.e. VGG16. As shown in 

Figure 13(a), for the first few layers, more slices are usually 
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Fig. 14: Inter-layer routing redundancy. 

D. Optimized Speed-Overhead Trade-off 

In this section, we will  provide  more  overall evaluation 

on more networks, and compare with other state-of-the-art 

platforms. Figure 16 shows the resource overhead comparison 

between the conventional fully-unfolded mapping and our 

SemiMap. We can save many VMM FunCs for Conv layers, 

VB FunCs for Pool layers (as well as other VB FunCs for  

row buffer or overlapped neuron copy), and VVA FunCs. In 

general, we are able to reduce 10x-36x resource overhead. 

Because the proposed SemiMap is mainly designed for Conv 

structure, there is little difference between fully-unfolded 

mapping and SemiMap on FC layers. 

On the speed side, Figure 17 shows the phase comparison 

between the conventional fully-folded mapping and the pro- 

posed SemiMap. We don’t consider the possible inter-layer 

pipeline in fully-folded mapping, which means that the pro- 
required to split the large-size FMs. Reversely, the fan-in 

groups increase as the layer propagates, which is mainly 

caused by the increasing number of FMs. In observing the 

resource overhead in Figure 13(b), we can get the consistent 

conclusion with Figure 12, that the VMM FunCs occupy the 

most overhead and the VVA FunCs are the least. The Conv 

layers usually consume more resources than the FC layers, 

which is different from that of fully-folded mapping scheme 

[6]. Furthermore, the Conv layers with more FMs usually 

consume more crossbars. For example, the conv4 layer family 

with 512 FMs occupies the most resources. The less overhead 

of the conv5 layers is caused by the smaller FM size after a 

pooling layer (pool4). 

For many-crossbar architectures, the inter-FunC communi- 

cation is the key for the activation movement and the overall 

performance. Figure 14 shows the routing packets between 

adjacent layers, from the output FunCs of previous layer to  

the input FunCs of current layer. In Conv layer, the inter-layer 

receiver is the VB FunCs for buffering rows, and in FC layer, 

the receiver is VMM FunCs. We can see that the actual routing 

traffic doesn’t reach the peak capability. This 86x routing 

redundancy guarantees the smooth communication. 

However, as shown in Figure 4(a), the reduce FunCs in 

VVA operation mode has significantly increased traffic burden 

since they have to receive the partial activations from all the 

VMM FunCs. As mentioned in Section III-E, we design a 

neuron reservation technique to optimize the routing capabil- 

ity. As shown in Figure 15, first, we make full use of the 

crossbar neurons. But in this case, the actual packets in many 

layers exceed the peak routing capability. This may probably 

cause communication failure, i.e. cannot complete the packet 

transmission during one phase, thus cause system crash. After 

leveraging the neuron reservation optimization, we utilize  

less neurons in each VVA crossbar and keep some neurons 

along with the corresponding crossbar columns underutilized. 

Although this increases the number of VVA FunCs slightly, 

we are able to guarantee the routing performance (with 1.14x 

routing redundancy on VGG16). It’s worthy noting that, from 

Figure 13, the VVA FunCs are the least part among the overall 

resource overhead, so the slightly increased resource overhead 

by using this routing optimization is negligible. 

cessing of all the layers is serial. We are able to achieve much 

less phases (23x-462x) on these benchmarks. Interestingly, 

combined with the inter-frame pipeline mentioned in Section 

III-G, the throughput of SemiMap is only determined by the 

height of input image (number of rows). This is  different 

from most existing CNN accelerators whose throughput is 

mainly determined by the model size. Note that the very  

small differences in SemiMap among AlexNet, VGG16 and 

ResNet18 on ImageNet are caused by the different padding 

values. 

At last, we compare the throughput of  our SemiMap on  

the proposed many-crossbar architecture with that of  GPU 

and several accelerators. Note that here we only provide 

coarse comparisons, because it’s difficult  to  make  it  vary 

fair on these different architectures if arguing on low-level 

details. As shown in Figure 18, we can achieve 1.5x-2.8x 

speedup over GPU on the datasets with small images, and 

slight speedup (1.1x-1.4x) on ImageNet (except for AlexNet). 

As aforementioned, the throughput of SemiMap is mainly 

determined by the input image size rather than the overall 

model size. So the reason why it performs a bit worse on 

AlexNet is because its model  size  is  relatively  small  but  

the image size is large, which makes it less friendly to our 

SemiMap framework on crossbars. 

Table IV shows the throughput comparison with several 

published CNN accelerators. Benefit from the high bandwidth 

of processing-in-memory architecture, DRISA [41] achieves 

high throughput, but we still present a slight speedup (1.3x) 

averagely. The throughput of other two accelerators, Eyeriss 

[36] and DNA [42], demonstrates  strong  dependency  on  

the model size (although DNA doesn’t show the results on 

VGG16). We averagely achieve 14.7x and 2x speedup over 

Eyeriss and DNA, respectively. 

TABLE IV: Throughput comparison with existing accelerators. 
      Network DRISA [41] Eyeriss [36] DNA [42] SemiMap   
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Fig. 15: VVA routing optimized by neuron reservation. 
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Fig. 16: FunC consumption comparison between fully- 

unfolded mapping and SemiMap. 

Fig. 18: Throughput comparison between GPU and this work 

on many-crossbar architecture with SemiMap. 
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Fig. 19: Power comparison between GPU and this work on 

many-crossbar architecture with SemiMap. 

 
Besides the throughput evaluation, we also provide a coarse 

power comparison with GPU, as shown in Figure 19. An 

average 6.5x improvement of power efficiency is achieved. 

Note that the computation of zero rows on the crossbar with 

VMM operation is skipped for further energy reduction. 

In a nutshell, by implementing the proposed SemiMap 

scheme on the many-crossbar architecture, it is able to ap- 

Fig. 17: Phase consumption comparison between fully-folded 

mapping and SemiMap. 
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the resource, the reduced overhead brings much lower power 

consumption compared to GPU. 

 

V. CONCLUSION AND DISCUSSION 

In this work, we propose a SemiMap framework for bal- 

ancing the execution speed and resource overhead on the 

widely used crossbar architecture. Through row-wise folding 

and column-wise unfolding, it is able to achieve the reduced 

overhead and maintained parallelism in the meantime. FM slic- 

ing scheme allows the processing of large-size image, multi- 

phase-per-step timing schedule enables complex intra- and 

inter-frame streaming pipeline, and AMC routing and routing- 

aware neuron reservation optimize the communication capa- 

bility. To validate the mapping methodology, a many-crossbar 

chip is designed and fabricated. Based on the measurement 

data, a mapping compiler and a cycle-accurate simulator are 

developed for the simulation of large-scale networks. Testing 

over several CNN benchmarks, SemiMap is able to reduce the 

crossbar overhead up to 36x and accelerate the execution phase 

up to 462x. In the coarse lateral comparisons, it performs up 

to 2.8x and 14.7x throughput improvement compared to state- 

of-the-art GPU and accelerators, respectively, as well as much 

less power consumption than GPU. 

Because CNNs have been proven to  be  more  powerful 

than MLP networks, the crossbar  architecture  must  solve the 

challenge of speed-overhead imbalance to support CNNs 

more efficiently. In this work, we address this issue well by 

optimizing the higher-level mapping scheme, which provides 

a new way to improve the performance. Our implementation 

using off-the-shelf SRAM array and extra PEs to mimic the 

crossbar behavior is just for cost saving, and in fact, the 

proposed SemiMap can be easily extended to other crossbar 

architectures, such as the emerging devices with in-memory 

computing [5]–[9], [21]–[26]. Furthermore, since the convo- 

lution operation is symmetric in both the row and column 

dimensions. The row-driven mapping and timing schedule in 

this paper can be easily extended to a column-driven version. 

One disadvantage of this SemiMap scheme is that the cross- 

bars cannot be fully utilized along the temporal dimension. 

Specifically, as shown in Figure 10, each FunC occupies only 

a part of the periodical duration. This insufficient utilization 

becomes more severe in the last few layers with large ppr (i.e. 

more sparser). In the idle state, the peripheral circuits within 

the FunC still consume power, such as memories,  router, 

clock tree, and the leakage. This will decrease the overall 

power efficiency to some extent. But anyway, regarding the 

throughput and resource overhead, we can achieve a good 

balance. The temporal utilization issue is one of our future 

works. Another problem deserves investigation is the spatial 

utilization on the crossbar. In contrast to the naturally high 

utilization of FC layer, Conv layer only occupies a fraction of 

the crossbar cells (many of them are zero values) due to the 

sliding operations. One promising direction is to study the 

crossbar-aware sparsification like that in [43]. 
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