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Abstract

Bounds are established for integration matrices that arise in the convergence analysis of
discrete approximations to optimal control problems based on orthogonal collocation.
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1 Introduction

In a companion paper [8], a convergence result is established for an 2p-Radau collo-
cation method applied to an optimal control problem. The convergence analysis for
this direct transcription method employs bounds for integration matrices associated
with the collocated system dynamics. This paper establishes the required bounds, not
only for the Radau scheme, but also for the Gauss scheme analyzed in [9,11].

Let Py denote the Legendre polynomial of degree N, andlett; € (—1,1],1 <i <
N, be either the zeros of Py (the Gauss points) or the zeros of Py — Py_1 (the Radau
points), arranged in increasing order. Note that 7y = 1 for the version of the Radau
points that we use, sometimes called the flipped Radau points, while the points —1;
are the ordinary Radau points [5,6], which can be analyzed in exactly the same way.

Let Py denote the space of polynomials of degree at most V. In a collocation method
applied to an initial value problem, we search for a polynomial in Py which satisfies the
differential equation at N collocation points. For ease of exposition, let us consider
the trivial differential equation x(7) = f(r), —1 < v < 1, where x(—1) = x¢ is
given. Let tp = —1 denote an additional noncollocated point corresponding to the
initial condition. The Lagrange basis associated with the 7; is

N
T—71 )
Li@:=[]— 0=j=N
i=0 /7
i

Any x € Py has the expansion
N
x(r) =Y xjLj(1), x;j=x().
j=0

We enforce the differential equation at the collocation points to obtain a system of N
equations in N unknowns

N
x(t) = ijDij =f(r), 1<i<N, Dj=L;x),
Jj=0
where x, the initial condition, is assumed to be given. In matrix notation, the system
is Dx = f where f € R" is the right side f(-) evaluated at the collocation points.
Suppose that f(-) is continuous, let x*(-) denote the solution of the differential
equation, and let vectors x* € RV*! and x* € R" be defined by
xyg =x0, x7 =x"(r;) and X7 =x"(7;), 1<i<N.
Subtracting Dx* from each side of Dx = f yields an equation for the error:

Dx—x*)=f—Dx*=x* —Dx* :=r. (1.1)
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Bounds for integration matrices that arise in Gauss and... 261

The residual r = x* — Dx™*, the difference between the derivative of x*(-) and the
derivative of the interpolant of x*(-) evaluated at the collocation points, measures how
accurately the continuous x*(-) satisfies the discrete collocation equations. Bounds
for r are given in [8-11].

Since the 0-th components of x and x* are equal, the 0-th component of x — x*
vanishes. If e is the vector obtained by deleting the O-th component of x — x*, then
(1.1) reduces to De = r, where D € RV*¥ is obtained from D by deleting the 0-th
column. As shown in [7], D is invertible.

If our goal was to only analyze the error in the solution of the discretized differential
equation, then the sup-norm could be used to obtain an error bound: ||e||cc < BoolIT|lc0s
where Boo = ||I_)_1 loc, the maximum absolute row sum in D' However, when a
collocation scheme is used to solve a constrained optimization problem, another norm
arises since the convergence analysis requires showing that the optimization problem
is stable under perturbations, and the stability analysis is performed in a 2-norm. In
particular, it is necessary to obtain an estimate for e in the sup-norm relative to a bound
for r in a 2-norm. We now explain how such a bound is obtained.

Let us define the w-norm by

1/2

N
Irlly = (Zwir,?) = [W'r|l3, (1.2)

i=1

where the w; are the quadrature weights associated with the collocation points, W €
RN >N s the diagonal matrix with the w; on the diagonal, and || - |, is the Euclidean
norm. The w-norm is a discrete version of the standard L?-norm. Observe that

e=D 'r= WD)~ w2, (1.3)

Hence, ¢; is the dot product between the i-th row of (Wl/ 21_))_1 and the vector W!/2r,
From the Schwarz inequality and Egs. (1.2) and (1.3), it follows that

lelloo < B2llTllws

where f, denotes the maximum Euclidean norm of a row from (W!'/2D)~!. In [8,11]
it is shown that Bse < /2.

In the convergence analysis of Gauss and Radau collocation schemes for constrained
optimization problems, one needs to consider not only the original discrete dynamics
Dx = f, but also the adjoint dynamics. The adjoint dynamics are obtained by multiply-
ing the original dynamics by a Lagrange multiplier and differentiating the Lagrangian
with respect to the state [2,14]. After some manipulations [8,11], the matrix D* in the
discrete dynamics for the adjoint that is the analogue of the matrix D in the original

. . . . + 1T . .
discrete dynamics is given by D¥ = —W~!'D" W. As a result, for constrained opti-
mization, the convergence analysis of the Gauss and Radau collocation schemes also
requires a bound for ,B; , the maximum Euclidean norm for a row from (W!/2D%)~1.

In this paper, it is shown that both 8, and ,32i are bound by \/5, which provides the
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foundation for the convergence analysis of the Gauss and Radau collocation schemes
in [8,9,11]. Note that the bound 8, < /2 is also established in the appendix of [8],
however, it is not clear how to extend the analysis to obtain a bound for ,B; associated
with the Radau collocation points. In contrast, the approach developed in this paper
for the analysis of B, can be extended to prove the corresponding bound for ,Bg'; more-
over, it is shown that the Euclidean norm of the rows of (W'/2D)~! is a monotone
increasing function of the row number, which implies that the last row has the largest
Euclidean norm.

The paper is organized as follows: In Sect. 2, properties of Gauss and Radau
quadrature are summarized. Sections 3 and 4 derive bounds for 8, and ,8; respec-
tively. Section 5 examines how the Euclidean norm of rows from (W!/2D)~! and
(W!/2pH)—1 depend on the row number.

Historical Note The four bounds S < 2, B2 < ﬁ, ,Bgo < 2, and ,32i < V2
have been referred to in the literature [8,9,11] as properties (P1)—(P4) respectively.
(P1) was announced on William Hager’s web page in 2015 as the 10,000 Yen Prize
Problem, and it was first solved in 2017 [11]. A proof for (P2) was first given in 2018
[8]. (P3)—(P4) have remained open until this paper, which provides a unified approach
to all four properties. Note that (P1) is equivalent to the following: If p € Py with
p(—=1)=0and |p(7;)| < 1foralll <i < N, then |p(t;)] <2foralll <i < N.In
fact, the proof in [11] shows that |p(t)| < 2 for all T € [—1, 1]; the extreme case is
p(r)y=1+r1.

2 Properties of Gauss and Radau points

Let w;j, 1 < i < N, denote the quadrature weights associated with the collocation
points. The quadrature formula

1 N
flpqu=§:mpm> @1

i=1

is exact both for the Gauss points and polynomials of degree at most 2N — 1 and
for the Radau points and polynomials of degree at most 2N — 2. The Gauss points

are symmetric on the open interval (—1, 1), while the Radau points lie on (—1, 1].

Axelsson [1, p. 74] provides the following formula for the matrix A = D

' N-1
Ajj = % il +71+ kXZ; P (1) [Pis1 (1) — Pr—i (Ti)]} , (2.2)

The matrix A is referred to as the integration matrix in [4].
The orthogonality properties of the Legendre polynomials are

1 .
f &Uﬂ%ﬁwr={g ion gm,
-1

TS if n=m.
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By (2.1), it follows thatif m +n < 2N — 1 for Gauss quadrature and m +n < 2N —2
for Radau quadrature, then

N .
Sorrs e ={ 3 T @3

P 2n+1 n=m.

In particular, when m = n = 0, this shows that the sum of the quadrature weights is
2 since Py(x) = 1. Moreover, form = 0 and n > 0, we have

N
> wiPy (1) =0, (24)

provided n < 2N — 1 for Gauss quadrature and n < 2N — 2 for Radau quadrature.
For convenience in the analysis, we define

N
an =Y wi P (%) (2.5)

Ifn < N,thena, =2/(2n + 1) by (2.3) since the degree of P,l2 is < 2N — 2. For the
Radau points, Py (t;) = Py—_1(7;), so we have

N
Z PN(r,)—ZwIPN(r,)PN 1(1)

i=1

Wi Py_ (1) =2/Q2N — 1) = ay_i. (2.6)

I
'Mz i

I
_

1

Thus ay = ay—1 for the Radau points.

3 Analysis of 5>
Let E; denote the square of the Euclidean norm of the i-th row of (W12D)y—1:

N
Zwi( ) l<i<N, 3.1)

j=1"
where D;; ! denotes the (i, j) element of D', The bound B2 < /2 is equivalent to
E; < 2 for each i. Replace Di;l in (3.1) by A;; and utilize Axelsson’s formula (2.2)

to obtain
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N N—1 2
Ei= Z& L4+ + ) Pe(tj) [Prgt (7)) — Pic (Ti)]} , 1<i<N. (32
j=1 k=1

We write E; = E;1 + Ej» + Ej3, where

N
.
Eil :ZTJ““")Z’
j=1
N N-1

2.2 % (1 + ) P (7)) [Pest (@) = Pect ()]s (3.3)

j=1 k=1

N N—1 2

> % > P(t) [Py (r) = Pr ()] ¢ - (3.4)

J

Ej»
Ei3

1 k=1

Since the sum of the quadrature weights is 2, E;; = (1 + 7;)%/2. Interchange the j
and k sums in (3.3) and utilize (2.4) to obtain E;» = 0. Due to the square in E;3, it is
equivalent to a triple sum:

N—-1N-1

1
Eiz =72 3 | Pu1 (@) = Pu (5] Py (72)

n=1 m=1

N
— Py 1(t)] Y @) Pu(t)) Pu(z))

j=1

If n # m, then the sum over j is zero due to the orthogonality of the Legendre
polynomials and (2.3). The only nonzero terms correspond to n = m. Adding the
nonzero terms in E;3 to E;1 yields

N—-1
1 1 2 .
Ei=(+1)+ 7 ) [Pt (@) = P @], 1<i<N, (5)

n=1

where a, defined in (2.5) is 2/(2n + 1) since n < N — 1 and the degree of Pn2 is
< 2N — 2. The following lemma evaluates the summation in (3.5).

Lemma 3.1 For N > 2, we have

1 N-—1 5
5 2 @[ Patt (@) = Py ()]
n=1
=2tPy (v) Py_1 (v) — P} (v) — Ph_ (1) + 1 — 7% (3.6)
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Bounds for integration matrices that arise in Gauss and... 265

Proof If g denotes the left side of (3.6), then

N—-1
g =Y an[Puy1— Pa][Pri = Piy]. 3.7)
n=1

where the (t) argument on the variables is dropped for simplicity. A well-known
identity (see [12, p. 95] or [13, p. 83]) for the Legendre polynomials is

n

Pl — Pl =Qn+ )P, = (;) Pa.
With this substitution in (3.7), the sum telescopes into
§' =2[PyPy_1— P1Po]=2[PyPy-1 — 1. (3.8)
If h denotes the right side of (3.6), then
h' =2[PyPy_i1 —t]+2[tPy — Py_1PN—1 +2[tPy_; — PylPn. (3.9)
The last two terms in (3.9) sum to zero due to the identities [13, p. 83]
NPy =1tPy—Py_; and — NPy_j=1tPy_, — Py.

Hence, g’ = I’ and g and h differ by at most a constant. Since P,(1) = 1 for any n,
it follows that g(1) = k(1) = 0, which implies that g and & are identically equal. O

Let G; and R; be the values of E; corresponding to the Gauss and Radau collocation
points respectively.

Theorem 3.1 Foreach 1 <i < N, we have
1
Gi=1+7 =3Py (r) and Ry =2+ (r — 1){P1%,(t,-)+ 1}.

Proof Let us focus on the case N > 2 since the validity of the theorem for N = 1
can be checked by hand. Since the Gauss collocation points are the zeros of Py, it
follows that Py (t;) = 0. Hence, the Py terms in Lemma 3.1 vanish at the 7; and
(3.5) yields the formula for G;. Since the Radau collocation points are the zeros of
Py — Py_1, it follows that Py (t;) = Pny—1(7;). Consequently, Lemma 3.1 and (3.5)
yield the formula for R;. O

Remark 3.1 The zeros of Py lie on (—1, 1), while the zeros of Py — Py_1 lie on
(—1, 1] with Ty = 1;in [13, (7.21.1)] it is shown that for each i,

|Pi(t)| < 1forallt € [—1, 1] (3.10)
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266 W. Chen et al.

with equality achieved only for t = +1. Hence, for each i € [1, N], G; < 2 and
R; <2 with Ry = 2. Thus f; < V2 for Gauss collocation and B2 = V2 for Radau
collocation.

Next, let us examine how the E; depend on i.

Proposition 3.1 For both the Gauss and Radau collocation points, E; is a monotone
increasing function of i and By = /En.

Proof Let us define

E(t) = {(1+r)2+g(r)}, 3.11)

| =

where g was introduced in the proof of Lemma 3.1. Based on the formula (3.8) for
g, we have E'(t) = Py(t)Py—1(7) + 1. By (3.10), E'(t) > Ofort € (—1, 1),
which implies that E(-) is strictly increasing on [—1, 1]. Since the t; are arranged in
increasing order, E; = E(t;) is monotone increasing in i and Ey is the maximum of
the E;. O

The property that f, = /Ey was observed numerically in [9], while Proposi-
tion 3.1 provides a rigorous proof.

4 Analysis of 5%

In this section, we exploit the results of Sect. 3 to show that ,32: < V2. Let E lj; denote
the square of the Euclidean norm of the i-th row of the matrix [(W2D#]~! we have

Yol
Zw—(Dij ) . 4.1

j=1"

Hence, the inequality /3;' < +/2 is equivalent to Ef < 2. Let Gf and Rli denote the
square of the Euclidean norm of the i-th row of the matrix W!/?D*~! for the Gauss
and Radau collocation points respectively.

Theorem 4.1 Foreach 1 <i < N, we have

, 1
Gi=1-1— Epj%,_l (7). 4.2)

Proof Due to symmetry of the Gauss collocation points around t = 0, it follows that
T, = —tn+1-; and w; = wny41—i. As a consequence, it is shown in [9, Proposi-
tion 10.1] that

=1 _ 1 . .
D DNH!NJrl _j I1<i<N,1<j<N.

@ Springer



Bounds for integration matrices that arise in Gauss and... 267

Inserting this in (4.1) and exploiting the symmetry of the collocation points and The-
orem 3.1, we have

P L ) 1_12 ._1_4_12 .
G,- =GNy1—i = TN+1-i + ) N—1 (TN41-i) = T 2 N—1 (ti) .

Remark 4.1 By Theorem 4.1, Gii < 2 for each i, which implies that ﬂg < \/5

Analogous to Proposition 3.1, we have the following:

Proposition 4.1 G;F is a monotone decreasing function of i and ﬂ; = Gf.

Proof Let us define
Gt = 3 [0 -0+ 50
2 9

where g is defined in Lemma 3.1. The formula for g’ given in (3.8) implies that
G¥ (1) = Py(t)Py_1(t) — 1. By (3.10), G¥'(r) < O forall T € (—1, 1), which
implies that G*(\)is strictly decreasing on [—1, 1]. Since the 7; are arranged in increas-
ing order, G#(t;) is monotone decreasingini. By (3.6) and (4.2), G;‘.t = G*(1;). Hence,
GJI: is the maximum of the G?E. O

Due to the symmetry of the Gauss collocation points, the formula for Glj.; could
be deduced from the previously derived formula for G;. However, the Radau points

are unsymmetric, and a new analysis is needed for Rl.i . Since D¥ = —W_ll_)TW,
Axelsson’s formula (2.2) gives

N—-1
Dl:‘tj_l = —% {1 +71+ Z Py (7)) [Pk+1 (Tj) — Pr—1 (TJ)]} : 4.3)
k=1

Therefore, Rl" , the square of the Euclidean norm of the i-th row of [Wl/ 2Di]_l, can
be expressed as

N N-—1 2
Rl-?t = Z &!1 +7;+ Z P (7)) [Pk+1 (Tj) — P (T])]} . 4.4)

j=1 k=1

Similar to the approach in Sect. 3, an explicit formula is derived for the sum in (4.4).

Theorem 4.2 For N = 1, we have Rli =2, whilefor N >2and1 <i <N,

2N —1

R,E]: =2+ 1 +7)[Pyv_i (%) Pv—a (ti) — 1] — [Pv-1 (1)) + Py—2 (Ti)]z- 4.5)
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268 W. Chen et al.

Proof The case N = 1 can be checked by hand, so we focus on N > 2. Let us write
Rl = Rl1 + Rl2 + Rl3, where

N
(1)
Riil = ZT(I +TJ) )

N N-—1
Ro=> Y {u +5) 3 P [Pt (1) = Fic “”]’ o

=1 k=1
N w N—1 2

b= 2| T no e () - ne ] @)
= k=1

Since N > 2, Radau quadrature is exact for polynomials of degree two, and

R} ]/1(1+ Vdr = 2 (4.8)
= — T T=—. .

LR 3

Substitute 1 = Py(r;) and t; = P;(t;) in (4.6) to obtain

- N
Q—z&mz%kﬂn — P ()] [P (5) + Po ()] 49)

For N = 2, the fact that Py (t;) = Py—1(t;) is exploited to obtain

P 1
R}T-Q: 1(7: Za)j[Pz(‘Cj) Po(tp)IIPi(z)) + Po(z))]
j=1
2
P (7 )
B ];T)Z“’f”’f(ff)—P&(fj)l=—§P1<r1->, N=2.

j=1

For N > 3, the product of the polynomials in the j-sum of (4.9) has degree at most
N + 1 < 2N — 2. Hence, the quadrature corresponding to the j-sum is equivalent to
the integral

1 1
3 f 1[1"k+1(f) = Pe—1(D[P1(7) + Po()] d7.

Due to the orthogonality of the Legendre polynomials, this integral is zero except
when k = 1 or k = 2, and the values of the integral are —1 and —1/3 respectively.
With these substitutions in (4.9), we obtain

1
Rip = —Pi (i) — §P2 (ti), N =3. (4.10)
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Bounds for integration matrices that arise in Gauss and... 269

The expression (4.7) is equivalent to the triple sum

1 N—1N-1 N
Riy=2 2 2 | Pn@Pam) Yol (1))
n=1 m=1

j=1
=P 1T Put1(t)) — Pu—1(7))]

In the case N = 2, we have

P2(t; al
R?S = 1:’:) Za)j[Pz(fj) — PO(T/‘)]2
j=1

P (%)

N

2 2 2
D @ilPi(T) = ot = S PE(x).
j=1

Combining R;i, Rj> and R;3 for N = 2 gives Rl.i = (2/3)[1 + Plz(ri) — Pi(t)],
which is equivalent to (4.5) for N = 2. The remainder of the proof focuses on the case
N > 3.

The j-sum in the expression for R;t3 expands into four sums of the form

N
Y w0 Pu(r) Pu(t)),
j=1
wherey =m+lorm—1landv=n+lorn—1.Ifu #Zvand u+v < 2N —2, then
the quadrature is exact, and the sum is zero due to the orthogonality of the Legendre

polynomials. The only cases where v % pand v+ > 2N — 2 is the term Py, 41 P41
withm =N —landn =N —2orm = N —2andn = N — 1. Exploiting (2.6), the

contribution Sy of these two terms to R;g is given by

N
Pyn_1(tj)) Pn_2(T;
— MzijN(fj)PN—l(Tj) —

j=1

ay Pn—1(t;) PN—2(%;) 4.11)

S
0 2

The only remaining nonzero terms in the j-sum correspond to those values of m
and n for which the associated subscript i and v are equal. Table 1 lists each of the
four terms associated with the j-sum and the value of m that makes the subscripts on
these terms equal. For example, in the term — Py, 11 P,—1, the two scripts are equal
when m = n — 2; since both m and n are constrained to lie between 1 and N — 1, n
should be further restricted to the range 3 : N — 1 (shown in column 3 of Table 1), so
thatm liesin1 : N —3.Ifnliesin3 : N — 1 and m = n — 2, then the corresponding
term in the j-sum is

N

2
Y wiPl (1) =an1,
j=1
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Table 1 The value of m for

which the subscripts in column 1 Term Equality /i-range J-sum
are equal Pt Pas1 m=n l<n<N-—1 sl
—Pui1Pi m=n-—2 3<n<N-1 a1
—Pp—1Ppt1 m=n+2 I<n<N-3 Ap41
Pp—1Py—1 m=n l<n<N-1 ay_1

which appears in the fourth column of Table 1. Recall from (2.5)—(2.6) that a,, =
2/2n+1)forn < N —1landay = an—1.
Using Table 1, Rl% is expressed as

N—1 N—1
1
R = So+ Z (§ PH(T)ans1 — Y Paoa (%) Pa(ti)an-1
n=1 n=3

N—1 N-3
+ Z Pnz(ti)an—l - Z Pn+2(ti)Pn(Ti)an+l> .

n=1 n=1
The 7; terms are gotten by substituting into the original R?3 expression, m = n or
m = n £+ 2 in accordance with Table 1, Next, the indexing on the sums is modified so
that only a,, appears:

N N-2
. 1
Rz = S0+ 2 ( E 21[’,12_1(11')% - E . Pp_1(Ti) Ppy1(ti)an
n= n=

N-2 N-=-2
+Y Pra@a,— ) Pn+1(r,-)Pn_1<ri)an> :
n=0

n=2
Notice that the summations all share the common range 2 : N — 2. Taking into

account the identity ay = ay—_1 given in (2.6), the four terms outside this range (in
the first and third summations) are

1
S1= 5 (avIPy_1() + PRl + PP(rag + P (w)ai )

For the terms in R;t3 where n € [2, N — 2], we complete the square to obtain

N-2
1
Rl = S+ 81+ 5 3 anlPui (@) = Pt (@)1
n=2
ai 1 N-=-2
= S0+ S1 = 7 [Pa(m) = Po(t)* + 3 2; anl Pos1 (ti) — Poe1 (712
n—=
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Bounds for integration matrices that arise in Gauss and... 271

Add together RITT1 in (4.8), sz in (4.10), and Rt'.T3 to obtain

Rf = (aN [Pn—1(t) + PN—z(Ti)]2 +2(1 — 1)?

FN

N-2
+ Y @l Payi (1) — Pn_l(mF) :

n=1

Applying Lemma 3.1 and then completing the square, it follows that

N-2
> anl Pugi(1i) = Puca ()1
n=1

FN-

1 1
= (1+ 1) Py-1 (1) Py () — 5 [Pn-1 () + Py_a(m)* + S = ).

Inserting this in the formula for Rl:‘t gives (4.5). O

Remark 4.2 For N > 1, it follows from (3.10) that Py _(7;) Py—2(7;) < 1forz; # 1.
Hence, Rii < 2 by (4.5). Consequently, ﬂ; < /2 for the Gauss collocation points,
and for the Radau collocation points when N > 1.

1.042

Euclidean norm

1.012

0.981

0.949

-0.093  -0.031 0 0.031  0.093

T
1 ! 1 1 1 1 1 | y

€

-1 -08 -06 -04 -02 0 02 04 06 038 1
T

Fig. 1 The Euclidean norms of the rows of [Wl/ 2]_)]*1 and [Wl/ 2])1]71 for the Gauss collocation points
with N = 50, plotted as a function of 7;, 1 <i < N
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1.5

[Wl/ZD} -1
- [W1/2Di] -1

Euclidean norm

0.05

0.979 099 09971

1 1 1 T 1 1 1 1

-1 -08 -06 -04 -02 0 02 04 06 08 1
T

0

Fig.2 The Euclidean norms of the rows of [Wl/ 21_)]_1 and [Wl/ zDi]_l for the Radau collocation points
with N = 50, plotted as a function of 7;, 1 <i < N

5 Numerical experiments

We plot the norm of the rows of [Wl/ 21_)]_1 and [Wl/ 2D‘T]_1 as a function of t; for
the Gauss and Radau collocation points. The plots are given for N = 50, however, the
curves are similar for any choice of N. Figure 1 is based on the Gauss points. Both
curves are monotone as shown in Propositions 3.1 and 4.1. As noted in Remark 4.1,
the maximums are strictly less than +/2. The fact that one curve is the flipped version
of the other was established in the proof of Theorem 4.1. Figure 2 is the analogous
plot for the Radau points. The monotonicity of the curve associated with the rows
of [Wl/ 21_)]_l was established in Proposition 3.1, and the fact that the maximum is
exactly 2 is explained in Remark 3.1. The curve for [Wl/ 2Di] ~1is not monotone, as
shown in the magnified view of the lower right corner. Except for the glitch at t = 1,
the numerically evaluated curve seems to be monotone, but currently, there is no proof
of this property.

6 Conclusions

It is shown that integration matrices associated with both Gauss and Radau collocation
schemes have the Euclidean norm of the rows bounded by +/2. This property provides
the foundation for the error analysis of the collocation schemes for optimal control
problems developed in [2,3,5-9,11]. The analysis provides explicit expressions for the
norm of each row of the matrix; the structure of the bounds and properties of Legendre
polynomials lead to the upper bound /2. The analysis reveals that for three of the
four integration matrices, the Euclidean norm of the row is a monotone function of the
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row number. As a result, the maximum norm corresponds to either the first or last row
of the matrix. A key lemma in the analysis is a formula derived for a sum of squared
differences of Legendre polynomials.
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