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Abstract
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1 Introduction

In a companion paper [8], a convergence result is established for an hp-Radau collo-
cation method applied to an optimal control problem. The convergence analysis for
this direct transcription method employs bounds for integration matrices associated
with the collocated system dynamics. This paper establishes the required bounds, not
only for the Radau scheme, but also for the Gauss scheme analyzed in [9,11].

Let PN denote the Legendre polynomial of degree N , and let τi ∈ (−1, 1], 1 ≤ i ≤
N , be either the zeros of PN (the Gauss points) or the zeros of PN − PN−1 (the Radau
points), arranged in increasing order. Note that τN = 1 for the version of the Radau
points that we use, sometimes called the flipped Radau points, while the points −τi
are the ordinary Radau points [5,6], which can be analyzed in exactly the same way.

LetPN denote the space of polynomials of degree atmost N . In a collocationmethod
applied to an initial value problem,we search for a polynomial inPN which satisfies the
differential equation at N collocation points. For ease of exposition, let us consider
the trivial differential equation ẋ(τ ) = f (τ ), −1 ≤ τ ≤ 1, where x(−1) = x0 is
given. Let τ0 = −1 denote an additional noncollocated point corresponding to the
initial condition. The Lagrange basis associated with the τi is

L j (τ ) :=
N∏

i=0
i �= j

τ − τi

τ j − τi
, 0 ≤ j ≤ N .

Any x ∈ PN has the expansion

x(τ ) =
N∑

j=0

x j L j (τ ), x j = x(τ j ).

We enforce the differential equation at the collocation points to obtain a system of N
equations in N unknowns

ẋ(τi ) =
N∑

j=0

x j Di j = f (τi ), 1 ≤ i ≤ N , Di j = L̇ j (τi ),

where x0, the initial condition, is assumed to be given. In matrix notation, the system
is Dx = f where f ∈ R

N is the right side f (·) evaluated at the collocation points.
Suppose that f (·) is continuous, let x∗(·) denote the solution of the differential

equation, and let vectors x∗ ∈ R
N+1 and ẋ∗ ∈ R

N be defined by

x∗
0 = x0, x∗

i = x∗(τi ) and ẋ∗
i = ẋ∗(τi ), 1 ≤ i ≤ N .

Subtracting Dx∗ from each side of Dx = f yields an equation for the error:

D(x − x∗) = f − Dx∗ = ẋ∗ − Dx∗ := r. (1.1)
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Bounds for integration matrices that arise in Gauss and… 261

The residual r = ẋ∗ − Dx∗, the difference between the derivative of x∗(·) and the
derivative of the interpolant of x∗(·) evaluated at the collocation points, measures how
accurately the continuous x∗(·) satisfies the discrete collocation equations. Bounds
for r are given in [8–11].

Since the 0-th components of x and x∗ are equal, the 0-th component of x − x∗
vanishes. If e is the vector obtained by deleting the 0-th component of x − x∗, then
(1.1) reduces to D̄e = r, where D̄ ∈ R

N×N is obtained from D by deleting the 0-th
column. As shown in [7], D̄ is invertible.

If our goal was to only analyze the error in the solution of the discretized differential
equation, then the sup-norm could be used to obtain an error bound: ‖e‖∞ ≤ β∞‖r‖∞,

where β∞ = ‖D̄−1‖∞, the maximum absolute row sum in D̄
−1

. However, when a
collocation scheme is used to solve a constrained optimization problem, another norm
arises since the convergence analysis requires showing that the optimization problem
is stable under perturbations, and the stability analysis is performed in a 2-norm. In
particular, it is necessary to obtain an estimate for e in the sup-norm relative to a bound
for r in a 2-norm. We now explain how such a bound is obtained.

Let us define the ω-norm by

‖r‖ω =
(

N∑

i=1

ωi r
2
i

)1/2

= ‖W1/2r‖2, (1.2)

where the ωi are the quadrature weights associated with the collocation points, W ∈
R

N×N is the diagonal matrix with the ωi on the diagonal, and ‖ · ‖2 is the Euclidean
norm. The ω-norm is a discrete version of the standard L2-norm. Observe that

e = D̄
−1

r = (W1/2D̄)−1W1/2r. (1.3)

Hence, ei is the dot product between the i-th row of (W1/2D̄)−1 and the vectorW1/2r.
From the Schwarz inequality and Eqs. (1.2) and (1.3), it follows that

‖e‖∞ ≤ β2‖r‖ω,

where β2 denotes the maximum Euclidean norm of a row from (W1/2D̄)−1. In [8,11]
it is shown that β∞ ≤ √

2β2.
In the convergence analysis ofGauss andRadau collocation schemes for constrained

optimization problems, one needs to consider not only the original discrete dynamics
Dx = f, but also the adjoint dynamics. The adjoint dynamics are obtained bymultiply-
ing the original dynamics by a Lagrange multiplier and differentiating the Lagrangian
with respect to the state [2,14]. After some manipulations [8,11], the matrix D‡ in the
discrete dynamics for the adjoint that is the analogue of the matrix D̄ in the original

discrete dynamics is given by D‡ = −W−1D̄
T
W. As a result, for constrained opti-

mization, the convergence analysis of the Gauss and Radau collocation schemes also
requires a bound for β

‡
2 , the maximum Euclidean norm for a row from (W1/2D‡)−1.

In this paper, it is shown that both β2 and β
‡
2 are bound by

√
2, which provides the
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foundation for the convergence analysis of the Gauss and Radau collocation schemes
in [8,9,11]. Note that the bound β2 ≤ √

2 is also established in the appendix of [8],
however, it is not clear how to extend the analysis to obtain a bound for β

‡
2 associated

with the Radau collocation points. In contrast, the approach developed in this paper
for the analysis of β2 can be extended to prove the corresponding bound for β

‡
2 ; more-

over, it is shown that the Euclidean norm of the rows of (W1/2D̄)−1 is a monotone
increasing function of the row number, which implies that the last row has the largest
Euclidean norm.

The paper is organized as follows: In Sect. 2, properties of Gauss and Radau
quadrature are summarized. Sections 3 and 4 derive bounds for β2 and β

‡
2 respec-

tively. Section 5 examines how the Euclidean norm of rows from (W1/2D̄)−1 and
(W1/2D‡)−1 depend on the row number.

Historical Note The four bounds β∞ ≤ 2, β2 ≤ √
2, β

‡∞ ≤ 2, and β
‡
2 ≤ √

2
have been referred to in the literature [8,9,11] as properties (P1)–(P4) respectively.
(P1) was announced on William Hager’s web page in 2015 as the 10,000 Yen Prize
Problem, and it was first solved in 2017 [11]. A proof for (P2) was first given in 2018
[8]. (P3)–(P4) have remained open until this paper, which provides a unified approach
to all four properties. Note that (P1) is equivalent to the following: If p ∈ PN with
p(−1) = 0 and | ṗ(τi )| ≤ 1 for all 1 ≤ i ≤ N , then |p(τi )| ≤ 2 for all 1 ≤ i ≤ N . In
fact, the proof in [11] shows that |p(τ )| ≤ 2 for all τ ∈ [−1, 1]; the extreme case is
p(τ ) = 1 + τ .

2 Properties of Gauss and Radau points

Let ωi , 1 ≤ i ≤ N , denote the quadrature weights associated with the collocation
points. The quadrature formula

∫ 1

−1
p (τ ) dτ =

N∑

i=1

ωi p (τi ) (2.1)

is exact both for the Gauss points and polynomials of degree at most 2N − 1 and
for the Radau points and polynomials of degree at most 2N − 2. The Gauss points
are symmetric on the open interval (−1, 1), while the Radau points lie on (−1, 1].
Axelsson [1, p. 74] provides the following formula for the matrix A = D̄

−1
:

Ai j = ω j

2

{
1 + τi +

N−1∑

k=1

Pk
(
τ j

) [
Pk+1 (τi ) − Pk−1 (τi )

]
}

, (2.2)

The matrix A is referred to as the integration matrix in [4].
The orthogonality properties of the Legendre polynomials are

∫ 1

−1
Pn (τ ) Pm (τ ) dτ =

{
0 if n �= m,
2

2n+1 if n = m.

123



Bounds for integration matrices that arise in Gauss and… 263

By (2.1), it follows that ifm+n ≤ 2N −1 for Gauss quadrature andm+n ≤ 2N −2
for Radau quadrature, then

N∑

i=1

ωi Pn (τi ) Pm (τi ) =
{

0 if n �= m,
2

2n+1 if n = m.
(2.3)

In particular, when m = n = 0, this shows that the sum of the quadrature weights is
2 since P0(x) = 1. Moreover, for m = 0 and n > 0, we have

N∑

i=1

ωi Pn (τi ) = 0, (2.4)

provided n ≤ 2N − 1 for Gauss quadrature and n ≤ 2N − 2 for Radau quadrature.
For convenience in the analysis, we define

an =
N∑

i=1

ωi P
2
n (τi ). (2.5)

If n < N , then an = 2/(2n + 1) by (2.3) since the degree of P2
n is ≤ 2N − 2. For the

Radau points, PN (τi ) = PN−1(τi ), so we have

aN =
N∑

i=1

ωi P
2
N (τi ) =

N∑

i=1

ωi PN (τi )PN−1(τi )

=
N∑

i=1

ωi P
2
N−1(τi ) = 2/(2N − 1) = aN−1. (2.6)

Thus aN = aN−1 for the Radau points.

3 Analysis ofˇ2

Let Ei denote the square of the Euclidean norm of the i-th row of (W1/2D̄)−1:

Ei =
N∑

j=1

1

ω j

(
D−1
i j

)2
, 1 ≤ i ≤ N , (3.1)

where D−1
i j denotes the (i, j) element of D̄

−1
. The bound β2 ≤ √

2 is equivalent to

Ei ≤ 2 for each i . Replace D−1
i j in (3.1) by Ai j and utilize Axelsson’s formula (2.2)

to obtain
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Ei =
N∑

j=1

ω j

4

{
1 + τi +

N−1∑

k=1

Pk
(
τ j

) [
Pk+1 (τi ) − Pk−1 (τi )

]
}2

, 1 ≤ i ≤ N . (3.2)

We write Ei = Ei1 + Ei2 + Ei3, where

Ei1 =
N∑

j=1

ω j

4
(1 + τi )

2,

Ei2 =
N∑

j=1

N−1∑

k=1

ω j

2
(1 + τi ) Pk

(
τ j

) [
Pk+1 (τi ) − Pk−1 (τi )

]
, (3.3)

Ei3 =
N∑

j=1

ω j

4

{
N−1∑

k=1

Pk
(
τ j

) [
Pk+1 (τi ) − Pk−1 (τi )

]
}2

. (3.4)

Since the sum of the quadrature weights is 2, Ei1 = (1 + τi )
2/2. Interchange the j

and k sums in (3.3) and utilize (2.4) to obtain Ei2 = 0. Due to the square in Ei3, it is
equivalent to a triple sum:

Ei3 = 1

4

N−1∑

n=1

N−1∑

m=1

⎛

⎝[Pm+1(τi ) − Pm−1(τi )][Pn+1(τi )

−Pn−1(τi )]
N∑

j=1

ω j Pm(τ j )Pn(τ j )

⎞

⎠ .

If n �= m, then the sum over j is zero due to the orthogonality of the Legendre
polynomials and (2.3). The only nonzero terms correspond to n = m. Adding the
nonzero terms in Ei3 to Ei1 yields

Ei = 1

2
(1 + τi )

2 + 1

4

N−1∑

n=1

an
[
Pn+1 (τi ) − Pn−1 (τi )

]2
, 1 ≤ i ≤ N , (3.5)

where an defined in (2.5) is 2/(2n + 1) since n ≤ N − 1 and the degree of P2
n is

≤ 2N − 2. The following lemma evaluates the summation in (3.5).

Lemma 3.1 For N ≥ 2, we have

1

2

N−1∑

n=1

an
[
Pn+1 (τ ) − Pn−1 (τ )

]2

= 2τ PN (τ ) PN−1 (τ ) − P2
N (τ ) − P2

N−1 (τ ) + 1 − τ 2. (3.6)
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Proof If g denotes the left side of (3.6), then

g′ =
N−1∑

n=1

an
[
Pn+1 − Pn−1

] [
P ′
n+1 − P ′

n−1

]
, (3.7)

where the (τ ) argument on the variables is dropped for simplicity. A well-known
identity (see [12, p. 95] or [13, p. 83]) for the Legendre polynomials is

P ′
n+1 − P ′

n−1 = (2n + 1)Pn =
(

2

an

)
Pn .

With this substitution in (3.7), the sum telescopes into

g′ = 2
[
PN PN−1 − P1P0

] = 2[PN PN−1 − τ ]. (3.8)

If h denotes the right side of (3.6), then

h′ = 2[PN PN−1 − τ ] + 2[τ P ′
N − P ′

N−1]PN−1 + 2[τ P ′
N−1 − P ′

N ]PN . (3.9)

The last two terms in (3.9) sum to zero due to the identities [13, p. 83]

N PN = τ P ′
N − P ′

N−1 and − N PN−1 = τ P ′
N−1 − P ′

N .

Hence, g′ = h′ and g and h differ by at most a constant. Since Pn(1) = 1 for any n,
it follows that g(1) = h(1) = 0, which implies that g and h are identically equal. ��

LetGi and Ri be the values of Ei corresponding to theGauss and Radau collocation
points respectively.

Theorem 3.1 For each 1 ≤ i ≤ N, we have

Gi = 1 + τi − 1

2
P2
N−1 (τi ) and Ri = 2 + (τi − 1)

{
P2
N (τi ) + 1

}
.

Proof Let us focus on the case N ≥ 2 since the validity of the theorem for N = 1
can be checked by hand. Since the Gauss collocation points are the zeros of PN , it
follows that PN (τi ) = 0. Hence, the PN terms in Lemma 3.1 vanish at the τi and
(3.5) yields the formula for Gi . Since the Radau collocation points are the zeros of
PN − PN−1, it follows that PN (τi ) = PN−1(τi ). Consequently, Lemma 3.1 and (3.5)
yield the formula for Ri . ��
Remark 3.1 The zeros of PN lie on (−1, 1), while the zeros of PN − PN−1 lie on
(−1, 1] with τN = 1; in [13, (7.21.1)] it is shown that for each i ,

|Pi (τ )| ≤ 1 for all τ ∈ [−1, 1] (3.10)
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with equality achieved only for τ = ±1. Hence, for each i ∈ [1, N ], Gi < 2 and
Ri ≤ 2 with RN = 2. Thus β2 <

√
2 for Gauss collocation and β2 = √

2 for Radau
collocation.

Next, let us examine how the Ei depend on i .

Proposition 3.1 For both the Gauss and Radau collocation points, Ei is a monotone
increasing function of i and β2 = √

EN .

Proof Let us define

E(τ ) = 1

2

{
(1 + τ)2 + g(τ )

}
, (3.11)

where g was introduced in the proof of Lemma 3.1. Based on the formula (3.8) for
g′, we have E ′(τ ) = PN (τ )PN−1(τ ) + 1. By (3.10), E ′(τ ) > 0 for τ ∈ (−1, 1),
which implies that E(·) is strictly increasing on [−1, 1]. Since the τi are arranged in
increasing order, Ei = E(τi ) is monotone increasing in i and EN is the maximum of
the Ei . ��

The property that β2 = √
EN was observed numerically in [9], while Proposi-

tion 3.1 provides a rigorous proof.

4 Analysis ofˇ‡
2

In this section, we exploit the results of Sect. 3 to show that β‡
2 ≤ √

2. Let E‡
i denote

the square of the Euclidean norm of the i-th row of the matrix [W1/2D‡]−1, we have

E‡
i =

N∑

j=1

1

ω j

(
D‡−1
i j

)2
. (4.1)

Hence, the inequality β
‡
2 <

√
2 is equivalent to E‡

i < 2. Let G‡
i and R‡

i denote the
square of the Euclidean norm of the i-th row of the matrix W1/2D‡−1 for the Gauss
and Radau collocation points respectively.

Theorem 4.1 For each 1 ≤ i ≤ N, we have

G‡
i = 1 − τi − 1

2
P2
N−1 (τi ). (4.2)

Proof Due to symmetry of the Gauss collocation points around τ = 0, it follows that
τi = −τN+1−i and ωi = ωN+1−i . As a consequence, it is shown in [9, Proposi-
tion 10.1] that

D‡−1
i j = −D−1

N+1−i,N+1− j , 1 ≤ i ≤ N , 1 ≤ j ≤ N .
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Bounds for integration matrices that arise in Gauss and… 267

Inserting this in (4.1) and exploiting the symmetry of the collocation points and The-
orem 3.1, we have

G‡
i = GN+1−i = τN+1−i + 1 − 1

2
P2
N−1 (τN+1−i ) = 1 − τi − 1

2
P2
N−1 (τi ) .

��
Remark 4.1 By Theorem 4.1, G‡

i < 2 for each i , which implies that β‡
2 <

√
2.

Analogous to Proposition 3.1, we have the following:

Proposition 4.1 G‡
i is a monotone decreasing function of i and β

‡
2 =

√
G‡

1.

Proof Let us define

G‡(τ ) = 1

2

{
(1 − τ)2 + g(τ )

}
,

where g is defined in Lemma 3.1. The formula for g′ given in (3.8) implies that
G‡′

(τ ) = PN (τ )PN−1(τ ) − 1. By (3.10), G‡′
(τ ) < 0 for all τ ∈ (−1, 1), which

implies thatG‡(·) is strictly decreasing on [−1, 1]. Since the τi are arranged in increas-
ing order,G‡(τi ) ismonotone decreasing in i . By (3.6) and (4.2),G‡

i = G‡(τi ). Hence,

G‡
1 is the maximum of the G‡

i . ��

Due to the symmetry of the Gauss collocation points, the formula for G‡
i could

be deduced from the previously derived formula for Gi . However, the Radau points

are unsymmetric, and a new analysis is needed for R‡
i . Since D‡ = −W−1D̄

T
W,

Axelsson’s formula (2.2) gives

D‡−1
i j = −ω j

2

{
1 + τ j +

N−1∑

k=1

Pk (τi )
[
Pk+1

(
τ j

) − Pk−1
(
τ j

)]
}

. (4.3)

Therefore, R‡
i , the square of the Euclidean norm of the i-th row of [W1/2D‡]−1, can

be expressed as

R‡
i =

N∑

j=1

ω j

4

{
1 + τ j +

N−1∑

k=1

Pk (τi )
[
Pk+1

(
τ j

) − Pk−1
(
τ j

)]
}2

. (4.4)

Similar to the approach in Sect. 3, an explicit formula is derived for the sum in (4.4).

Theorem 4.2 For N = 1, we have R‡
1 = 2, while for N ≥ 2 and 1 ≤ i ≤ N,

R‡
i = 2 + (1 + τi )

[
PN−1 (τi ) PN−2 (τi ) − 1

] − N − 1

2N − 1

[
PN−1 (τi ) + PN−2 (τi )

]2
. (4.5)
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Proof The case N = 1 can be checked by hand, so we focus on N ≥ 2. Let us write
R‡
i = R‡

i1 + R‡
i2 + R‡

i3, where

R‡
i1 =

N∑

j=1

ω j

4

(
1 + τ j

)2
,

R‡
i2 =

N∑

j=1

ω j

2

{
(
1 + τ j

) N−1∑

k=1

Pk (τi )
[
Pk+1

(
τ j

) − Pk−1
(
τ j

)]
}

, (4.6)

R‡
i3 =

N∑

j=1

ω j

4

{
N−1∑

k=1

Pk (τi )
[
Pk+1

(
τ j

) − Pk−1
(
τ j

)]
}2

. (4.7)

Since N ≥ 2, Radau quadrature is exact for polynomials of degree two, and

R‡
i1 = 1

4

∫ 1

−1
(1 + τ)2dτ = 2

3
. (4.8)

Substitute 1 = P0(τ j ) and τ j = P1(τ j ) in (4.6) to obtain

R‡
i2 =

N−1∑

k=1

Pk (τi )

N∑

j=1

ω j

2

[
Pk+1

(
τ j

) − Pk−1
(
τ j

)] [
P1

(
τ j

) + P0
(
τ j

)]
. (4.9)

For N = 2, the fact that PN (τi ) = PN−1(τi ) is exploited to obtain

R‡
i2 = P1(τi )

2

2∑

j=1

ω j [P2(τ j ) − P0(τ j )][P1(τ j ) + P0(τ j )]

= P1(τi )

2

2∑

j=1

ω j [P2
1 (τ j ) − P2

0 (τ j )] = −2

3
P1(τi ), N = 2.

For N ≥ 3, the product of the polynomials in the j-sum of (4.9) has degree at most
N + 1 ≤ 2N − 2. Hence, the quadrature corresponding to the j-sum is equivalent to
the integral

1

2

∫ 1

−1
[Pk+1(τ ) − Pk−1(τ )][P1(τ ) + P0(τ )] dτ.

Due to the orthogonality of the Legendre polynomials, this integral is zero except
when k = 1 or k = 2, and the values of the integral are −1 and −1/3 respectively.
With these substitutions in (4.9), we obtain

Ri2 = −P1 (τi ) − 1

3
P2 (τi ) , N ≥ 3. (4.10)
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The expression (4.7) is equivalent to the triple sum

R‡
i3 = 1

4

N−1∑

n=1

N−1∑

m=1

⎛

⎝Pm(τi )Pn(τi )
N∑

j=1

ω j [Pm+1(τ j )

−Pm−1(τ j )][Pn+1(τ j ) − Pn−1(τ j )]
⎞

⎠ .

In the case N = 2, we have

R‡
i3 = P2

1 (τi )

4

N∑

j=1

ω j [P2(τ j ) − P0(τ j )]2

= P2
1 (τi )

4

N∑

j=1

ω j [P1(τ j ) − P0(τ j )]2 = 2

3
P2
1 (τi ).

Combining Ri1, Ri2 and Ri3 for N = 2 gives R‡
i = (2/3)[1 + P2

1 (τi ) − P1(τi )],
which is equivalent to (4.5) for N = 2. The remainder of the proof focuses on the case
N ≥ 3.

The j-sum in the expression for R‡
i3 expands into four sums of the form

N∑

j=1

ω j Pμ(τ j )Pν(τ j ),

whereμ = m+1 orm−1 and ν = n+1 or n−1. Ifμ �= ν andμ+ν ≤ 2N −2, then
the quadrature is exact, and the sum is zero due to the orthogonality of the Legendre
polynomials. The only cases where ν �= μ and ν +μ > 2N −2 is the term Pm+1Pn+1
with m = N − 1 and n = N − 2 or m = N − 2 and n = N − 1. Exploiting (2.6), the
contribution S0 of these two terms to R‡

i3 is given by

S0 = PN−1(τi )PN−2(τi )

2

N∑

j=1

ω j PN (τ j )PN−1(τ j ) = aN PN−1(τi )PN−2(τi )

2
. (4.11)

The only remaining nonzero terms in the j-sum correspond to those values of m
and n for which the associated subscript μ and ν are equal. Table 1 lists each of the
four terms associated with the j-sum and the value of m that makes the subscripts on
these terms equal. For example, in the term −Pm+1Pn−1, the two scripts are equal
when m = n − 2; since both m and n are constrained to lie between 1 and N − 1, n
should be further restricted to the range 3 : N − 1 (shown in column 3 of Table 1), so
that m lies in 1 : N − 3. If n lies in 3 : N − 1 and m = n − 2, then the corresponding
term in the j-sum is

N∑

j=1

ω j P
2
n−1(τ j ) = an−1,
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Table 1 The value of m for
which the subscripts in column 1
are equal

Term Equality n-range j-sum

Pm+1Pn+1 m = n 1 ≤ n ≤ N − 1 an+1

−Pm+1Pn−1 m = n − 2 3 ≤ n ≤ N − 1 an−1

−Pm−1Pn+1 m = n + 2 1 ≤ n ≤ N − 3 an+1

Pm−1Pn−1 m = n 1 ≤ n ≤ N − 1 an−1

which appears in the fourth column of Table 1. Recall from (2.5)–(2.6) that an =
2/(2n + 1) for n ≤ N − 1 and aN = aN−1.

Using Table 1, R‡
i3 is expressed as

R‡
i3 = S0 + 1

4

(
N−1∑

n=1

P2
n (τi )an+1 −

N−1∑

n=3

Pn−2(τi )Pn(τi )an−1

+
N−1∑

n=1

P2
n (τi )an−1 −

N−3∑

n=1

Pn+2(τi )Pn(τi )an+1

)
.

The τi terms are gotten by substituting into the original R‡
i3 expression, m = n or

m = n ± 2 in accordance with Table 1, Next, the indexing on the sums is modified so
that only an appears:

R‡
i3 = S0 + 1

4

(
N∑

n=2

P2
n−1(τi )an −

N−2∑

n=2

Pn−1(τi )Pn+1(τi )an

+
N−2∑

n=0

P2
n+1(τi )an −

N−2∑

n=2

Pn+1(τi )Pn−1(τi )an

)
.

Notice that the summations all share the common range 2 : N − 2. Taking into
account the identity aN = aN−1 given in (2.6), the four terms outside this range (in
the first and third summations) are

S1 = 1

4

(
aN [P2

N−1(τi ) + P2
N−2(τi )] + P2

1 (τi )a0 + P2
2 (τi )a1

)
,

For the terms in R‡
i3 where n ∈ [2, N − 2], we complete the square to obtain

R‡
i3 = S0 + S1 + 1

4

N−2∑

n=2

an[Pn+1(τi ) − Pn−1(τi )]2

= S0 + S1 − a1
4

[P2(τi ) − P0(τi )]
2 + 1

4

N−2∑

n=1

an[Pn+1(τi ) − Pn−1(τi )]2.
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Add together R‡
i1 in (4.8), R

‡
i2 in (4.10), and R‡

i3 to obtain

R‡
i = 1

4

(
aN

[
PN−1(τi ) + PN−2(τi )

]2 + 2(1 − τi )
2

+
N−2∑

n=1

an[Pn+1(τi ) − Pn−1(τi )]2
)

.

Applying Lemma 3.1 and then completing the square, it follows that

1

4

N−2∑

n=1

an[Pn+1(τi ) − Pn−1(τi )]2

= (1 + τi )PN−1(τi )PN−2(τi ) − 1

2
[PN−1(τi ) + PN−2(τi )]2 + 1

2
(1 − τ 2i ).

Inserting this in the formula for R‡
i gives (4.5). ��

Remark 4.2 For N > 1, it follows from (3.10) that PN−1(τi )PN−2(τi ) < 1 for τi �= 1.
Hence, R‡

i < 2 by (4.5). Consequently, β
‡
2 <

√
2 for the Gauss collocation points,

and for the Radau collocation points when N > 1.

Fig. 1 The Euclidean norms of the rows of [W1/2D̄]−1 and [W1/2D‡]−1 for the Gauss collocation points
with N = 50, plotted as a function of τi , 1 ≤ i ≤ N
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Fig. 2 The Euclidean norms of the rows of [W1/2D̄]−1 and [W1/2D‡]−1 for the Radau collocation points
with N = 50, plotted as a function of τi , 1 ≤ i ≤ N

5 Numerical experiments

We plot the norm of the rows of [W1/2D̄]−1 and [W1/2D‡]−1 as a function of τi for
the Gauss and Radau collocation points. The plots are given for N = 50, however, the
curves are similar for any choice of N . Figure 1 is based on the Gauss points. Both
curves are monotone as shown in Propositions 3.1 and 4.1. As noted in Remark 4.1,
the maximums are strictly less than

√
2. The fact that one curve is the flipped version

of the other was established in the proof of Theorem 4.1. Figure 2 is the analogous
plot for the Radau points. The monotonicity of the curve associated with the rows
of [W1/2D̄]−1 was established in Proposition 3.1, and the fact that the maximum is
exactly

√
2 is explained in Remark 3.1. The curve for [W1/2D‡]−1 is not monotone, as

shown in the magnified view of the lower right corner. Except for the glitch at τ = 1,
the numerically evaluated curve seems to be monotone, but currently, there is no proof
of this property.

6 Conclusions

It is shown that integration matrices associated with both Gauss and Radau collocation
schemes have the Euclidean norm of the rows bounded by

√
2. This property provides

the foundation for the error analysis of the collocation schemes for optimal control
problems developed in [2,3,5–9,11]. The analysis provides explicit expressions for the
norm of each row of the matrix; the structure of the bounds and properties of Legendre
polynomials lead to the upper bound

√
2. The analysis reveals that for three of the

four integration matrices, the Euclidean norm of the row is a monotone function of the
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row number. As a result, the maximum norm corresponds to either the first or last row
of the matrix. A key lemma in the analysis is a formula derived for a sum of squared
differences of Legendre polynomials.
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