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Abstract
For control problems with control constraints, a local convergence rate is established
for an hp-method based on collocation at the Radau quadrature points in each mesh
interval of the discretization. If the continuous problem has a sufficiently smooth
solution and the Hamiltonian satisfies a strong convexity condition, then the discrete
problem possesses a local minimizer in a neighborhood of the continuous solution, and
as either the number of collocation points or the number of mesh intervals increase,
the discrete solution convergences to the continuous solution in the sup-norm. The
convergence is exponentially fast with respect to the degree of the polynomials on
each mesh interval, while the error is bounded by a polynomial in the mesh spacing.
An advantage of the hp-scheme over global polynomials is that there is a convergence
guarantee when the mesh is sufficiently small, while the convergence result for global
polynomials requires that a norm of the linearized dynamics is sufficiently small.
Numerical examples explore the convergence theory.
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1 Introduction

A convergence rate is established for an hp-orthogonal collocation method applied to
a constrained control problem of the form

minimize C(x(1))
subject to ẋ(t) = f(x(t),u(t)), u(t) ∈ U , t ∈ �0,

x(0) = a, (x,u) ∈ C1(�0) × C0(�0),

⎫
⎬

⎭
(1.1)

where �0 = [0, 1], the control constraint set U ⊂ R
m is closed and convex with

nonempty interior, the state x(t) ∈ R
n , ẋ denotes the derivative of x with respect to t ,

f : Rn × R
m → R

n , C : Rn → R, and a is the initial condition, which we assume
is given; Cl(�0) denotes the space of l times continuously differentiable functions
mapping �0 toRd for some d. The value of d should be clear from context; states and
costates always have n components and controls have m components. It is assumed
that f and C are at least continuous.

The development of hp-techniques in the context of finite element methods for
boundary-value problems began with the work of Gui and Babuška [27–29] and
Babuška and Suri [1–3]. In the hp-collocation approach that we develop for (1.1),
the time domain �0 is initially partitioned into a mesh. To simplify the discussion,
we focus on a uniform mesh consisting of K intervals [tk−1, tk] defined by the mesh
points tk = k/K where 0 ≤ k ≤ K . The dynamics of (1.1) are reformulated using a
change of variables. Let tk+1/2 = (tk + tk+1)/2 be the midpoint of the mesh interval
[tk, tk+1]. We make the change of variables t = tk−1/2 + hτ , where h = 1/(2K ) is
half the width of the mesh interval and τ ∈ � := [−1, 1]; let us define xk : � → R

n

by xk(τ ) = x(tk−1/2 + hτ). Thus xk corresponds to the restriction of x to the mesh
interval [tk−1, tk]. Similarly, we define a control uk corresponding to the restriction of
u to the mesh interval [tk−1, tk]. In the new variables, the control problem reduces to
finding K state-control pairs (xk,uk), 1 ≤ k ≤ K , each pair defined on the interval
[−1, 1], to solve the problem

minimize C(xK (1))
subject to ẋk(τ ) = hf(xk(τ ),uk(τ )), uk(τ ) ∈ U , τ ∈ �,

xk(−1) = xk−1(1), 1 ≤ k ≤ K ,

(xk,uk) ∈ C1(�) × C0(�).

⎫
⎪⎪⎬

⎪⎪⎭

(1.2)

Since the function x0 does not exist (there is no 0-th mesh interval), we simply define
x0(1) = a, the initial condition. The condition

xk(−1) = xk−1(1) (1.3)

in (1.2) corresponds to the initial condition x(0) = a when k = 1 and to continuity of
the state across a mesh interval boundary when k > 1. Throughout the paper, (1.3) is
referred to as the continuity condition.

In the hp-scheme developed in this paper, the dynamics for xk are approximated
by the Radau collocation scheme developed in [11,13,24,25,33]. Let PN denote the
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space of polynomials of degree at most N defined on the interval�, and letPn
N denote

the n-fold Cartesian product PN × · · · ×PN . We analyze a discrete approximation to
(1.2) of the form

minimize C(xK (1))
subject to ẋk(τi ) = hf(xk(τi ),uki ), 1 ≤ i ≤ N , uki ∈ U ,

xk(−1) = xk−1(1), 1 ≤ k ≤ K , xk ∈ Pn
N .

⎫
⎬

⎭
(1.4)

Note that there is no polynomial associated with the control; uki corresponds to the
value of the control at tk−1/2 + hτi . In (1.4) the dimension of PN is N + 1 and there
are K mesh intervals, so a component of the state variable is chosen from a space of
dimension K (N + 1). Similarly, there are K N + K equations in (1.4) corresponding
to the collocated dynamics at K N points and the K continuity conditions, the initial
condition at t = 0 and the K − 1 continuity conditions for the state at the interior
mesh points.

For simplicity in the analysis, the same degree polynomials are used in each mesh
interval, while in practical implementations of the hp-scheme [11,12,41,43], polyno-
mials of different degrees are often used on different intervals. On intervals where the
solution is smooth, high degree polynomials are employed, while on intervals where
the solution is nonsmooth, low degree polynomials are used.

We focus on a collocation scheme based on the N Radau quadrature points satis-
fying

−1 < τ1 < τ2 < · · · < τN = 1.

If PN denotes the Legendre polynomial of degree N , then the Radau quadrature points
are the zeros of PN − PN−1. These quadrature points are sometimes called the flipped
Radau points, while the standard Radau points are −τi , 1 ≤ i ≤ N . The analysis is
the same for either set of points, while the notation is a little cleaner for the flipped
points. Besides the N collocation points, our analysis also utilizes the noncollocated
point τ0 = −1 corresponding to the initial condition.

It is pointed out in [34] that for a global collocation scheme where K = 1, the
discrete dynamics may be infeasible for certain choices of N . In contrast, the analysis
in this paper implies that locally, for each choice of the discrete control, there exists
a unique discrete state which satisfies the discrete dynamics when K is sufficiently
large, or equivalently, when h is sufficiently small, regardless of the choice for N . In
this respect, the hp-collocation approach is more robust than a global scheme.

Other global collocation schemes that have been presented in the literature are
based on the Lobatto quadrature points [19,22], on the Chebyshev quadrature points
[20,23], on the Gauss quadrature points [4,25], and on the extrema of Jacobi polyno-
mials [47]. Kang [39,40] considers control systems in feedback linearizable normal
form, and shows that when the Lobatto discretized control problem is augmented with
bounds on the states and control, and on certain Legendre polynomial expansion coef-
ficients, then the objectives in the discrete problem converge to the optimal objective
of the continuous problem at an exponential rate. Kang’s analysis does not involve a
coercivity assumption for the continuous problem, but instead imposes bounds in the
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discrete problem. Also, in [26] a consistency result is established for a scheme based
on Lobatto collocation.

Any of the global schemes could be developed into an hp-collocation scheme. Our
rationale for basing our hp-scheme on the Radau collocation points was the follow-
ing: In numerical experiments such as those in [25], there is often not much difference
between the convergence speed of approximations based on either Gauss or Radau
collocation, while the Lobatto scheme often converged much slower; and in some
cases, the Lobatto costate approximation did not converge due to a null space that
arises in the first-order optimality conditions—see [25]. On the other hand, the imple-
mentation of an hp-scheme based on the Radau quadrature points was much simpler
than the implementation based on the Gauss quadrature points. The Gauss points lie
in the interior of each mesh interval, which requires the introduction of the state value
at the mesh points. Since one of the Radau points is a mesh point, there is no need to
introduce an additional noncollocated point. The implementation ease of Chebyshev
quadrature should be similar to that of Gauss and was not pursued. The hp-collocation
scheme analyzed in this paper corresponds to the scheme implemented in the popular
GPOPS-II software package [45] for solving optimal control problems. This paper,
in essence, provides a theoretical justification for the algorithm implemented in the
software.

For x ∈ C0(�0), we use the sup-norm ‖ · ‖∞ given by

‖x‖∞ = sup{|x(t)| : t ∈ �0},

where | · | is the Euclidean norm. Given y ∈ R
n , the ball with center y and radius ρ is

denoted

Bρ(y) = {x ∈ R
n : |x − y| ≤ ρ}.

The following regularity assumption is assumed to hold throughout the paper.
Smoothness.The problem (1.1) has a localminimizer (x∗,u∗) in C1(�0)×C0(�0).

For some ρ > 0 and open set O ⊂ R
m+n such that

Bρ(x∗(t),u∗(t)) ⊂ O for all t ∈ �0,

the first two derivative of f and C are Lipschitz continuous on the closure of O and
on Bρ(x∗(1)) respectively.

Let λ∗ denote the solution of the linear costate equation

λ̇
∗
(t) = −∇x H(x∗(t),u∗(t),λ∗(t)), λ∗(1) = ∇C(x∗(1)), (1.5)

where H is the Hamiltonian defined by H(x,u,λ) = λTf(x,u) and ∇ denotes gra-
dient. By the first-order optimality conditions (Pontryagin’s minimum principle), we
have

− ∇u H(x∗(t),u∗(t),λ∗(t)) ∈ NU (u∗(t)) for all t ∈ �0. (1.6)
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Convergence rate for a Radau hp collocation method applied… 279

For any u ∈ U ,

NU (u) = {w ∈ R
m : wT(v − u) ≤ 0 for all v ∈ U},

while NU (u) = ∅ if u /∈ U .
We will show in Proposition 2.1 that the first-order optimality conditions (Karush–

Kuhn–Tucker conditions) for (1.4) are equivalent to the existence of λk ∈ Pn
N−1,

1 ≤ k ≤ K , such that

λ̇k(τi ) = −h∇x H (xk(τi ),uki ,λk(τi )) , 1 ≤ i < N , (1.7)

λ̇k(1) = −h∇x H (xk(1),ukN ,λk(1)) + [λk(1) − λk+1(−1)
]
N 2/2,

where λK+1(−1) := ∇C (xK (1)) (1.8)

NU (uki ) � −∇u H (xk(τi ),uki ,λk(τi )) , 1 ≤ i ≤ N . (1.9)

Since the K +1mesh interval does not exist, (1.8) includes a definition for λK+1(−1).
As we will see in Proposition 2.1, λk(−1) for k ≤ K is the multiplier associated
with the continuity condition (1.3). Notice that the system (1.7)–(1.9) for the costate
approximation does not contain a continuity condition as in the primal discretization
(1.4), so the costate approximation could be discontinuous across the mesh points.
Since PN−1 has dimension N and 1 ≤ k ≤ K , the approximation to a component of
the costate has dimension K N , while (1.7)–(1.8) provides K N equations. Hence, if
a continuity condition for the costate were imposed at the mesh points, the system of
Eqs. (1.7)–(1.9) along with the continuity condition would be overdetermined.

The following two assumptions are utilized in the convergence analysis.

(A1) The matrix ∇2C(x∗(1)) is positive semidefinite and for some α > 0, we have

[
x
u

]T

∇2
(x,u)H(x∗(t),u∗(t),λ∗(t))

[
x
u

]

≥ α|u|2

whenever t ∈ �0, x ∈ R
n , and u = v − w for some v,w ∈ U .

(A2) K is large enough, or equivalently h is small enough, that 2hd1 < 1 and 2hd2 < 1,
where

d1 = sup
t∈�0

‖∇x f(x∗(t),u∗(t))‖∞ and d2 = sup
t∈�0

‖∇x f(x∗(t),u∗(t))T‖∞.

(1.10)
Here ‖ · ‖∞ is the matrix sup-norm (largest absolute row sum).

The coercivity assumption (A1) ensures that the solution of the discrete problem is a
localminimizer. As explained in [37], the condition (A2) is needed to ensure feasibility
of the discretized problem (1.4) in a neighborhood of (x∗,u∗). In a p scheme where
K = 1, such as the scheme analyzed in [34], convergence is only guaranteed when
∇x f(x∗(t),u∗(t)) is sufficiently small. The convergence theory for the hp-scheme is
more robust since (A2) always holds when h is sufficiently small.

Given a local minimizer (x∗,u∗) of (1.1), let x∗
k , u

∗
k , and λ∗

k be the state, control,
and costate associated with the mesh interval [tk−1, tk] and the change of variables t =
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tk−1/2 + hτ , and define tk j = tk−1/2 + hτ j . The domain of x∗
k , u

∗
k , or λ∗

k is [−1,+1]
where −1 corresponds to tk−1 and +1 corresponds to tk . We define the following
related discrete variables:

X∗
k j = x∗

k (τ j ) = x∗(tk j ), 0 ≤ j ≤ N , 1 ≤ k ≤ K ,

U∗
k j = u∗

k (τ j ) = y∗(tk j ), 1 ≤ j ≤ N , 1 ≤ k ≤ K ,

�∗
k j = λ∗

k(τ j ) = λ∗(tk j ), 0 ≤ j ≤ N , 1 ≤ k ≤ K .

⎫
⎪⎪⎬

⎪⎪⎭

(1.11)

Suppose that xNk ∈ Pn
N , 1 ≤ k ≤ K , is a polynomial which is a stationary point of

(1.4) for some discrete controls uN
k , and suppose that λ

N
k ∈ Pn

N−1 satisfy (1.7)–(1.9).
We define the following related discrete variables:

XN
kj = xNk (τ j ), 0 ≤ j ≤ N , 1 ≤ k ≤ K ,

UN
kj = uN

kj , 1 ≤ j ≤ N , 1 ≤ k ≤ K ,

�N
kj = λN

k (τ j ), 0 ≤ j ≤ N , 1 ≤ k ≤ K .

Thus capital letters always refer to discrete variables. As noted earlier, the costate
polynomials associated with the discrete problem are typically discontinuous across
the mesh points, and �N

kN 
= �N
k+1,0.

The convergence analysis only involves the smoothness of the optimal state and
associated costate on the interior of each mesh interval. Let Hp(a, b) denote the
Sobolev space of functionswith square integrable derivatives on (a, b) throughorder p.
LetPHp(�0) denote the space of continuous functions whose restrictions to (tk−1, tk)
are contained inHp(tk−1, tk) for each k between 1 and K (piecewiseHp). The norm
on PHp(�0) is the same as the norm onHp(�0) except that the integral is computed
over the interior of each mesh interval. In this paper, the error bounds are expressed
in terms of a seminorm | · |PHp(�0) which only involves the p-th order derivative:

|x|PHp(�0) =
(

K∑

k=1

∫ tk

tk−1

∣
∣
∣
∣
d px(t)
dt p

∣
∣
∣
∣

2

dt

)1/2

.

The following convergence result relative to the vector sup-norm (largest absolute
element) will be established.

Theorem 1.1 Suppose that (A1) and (A2) hold. If (x∗,u∗) is a local minimizer for the
continuous problem (1.1) with x∗ and λ∗ ∈ PHη(�0) for some η ≥ 2, then for N
sufficiently large or for h sufficiently small with N ≥ 2, the discrete problem (1.4) has
a local minimizer and associated multiplier satisfying (1.7)–(1.9), and we have

max
{∥
∥
∥XN − X∗

∥
∥
∥∞ ,

∥
∥
∥UN − U∗

∥
∥
∥∞ ,

∥
∥
∥�

N − �∗
∥
∥
∥∞

}

≤ h p−1
( c

N

)p−1 |x∗|PHp(�0) + hq−1
( c

N

)q−1.5 |λ∗|PHq (�0), (1.12)

where p = min(η, N + 1), q = min(η, N ), and c is independent of h, N , and η.

123



Convergence rate for a Radau hp collocation method applied… 281

The proof of Theorem 1.1 begins in Section 2 where the discrete first-order opti-
mality conditions are formulated as an inclusion of the form T (X,U,�) ∈ F(U). In
Section 4 a bound is obtained for the distance d∗ from T (X∗,U∗,�∗) toF(U∗), where
(X∗,U∗,�∗) denotes the optimal discrete variables defined in (1.11). This bound is
based on an estimate given in Sect. 3 for theH1 approximation error of the polynomial
that interpolates x∗ at τi , 0 ≤ i ≤ N . The remainder of the paper focuses on showing
that the bound for d∗ is also a bound for the distance from (X∗,U∗,�∗) to a solu-
tion of the inclusion T (X,U,�) ∈ F(U). The analysis is based on Proposition 2.2,
where it is shown that such a bound can be obtained if a linearized version of the
original inclusion is stable under perturbations. More precisely, we need to show that
the problem of finding (X,U,�) such that

∇T (X∗,U∗,�∗)[X,U,�] + Y ∈ F(U)

has a unique solution which depends Lipschitz continuously on the perturbation Y.
This analysis begins in Section 5where perturbations in the linearized state and costate
discrete dynamics are analyzed. In Section 6 it is shown that solving the linearized
inclusion is equivalent to solving a quadratic program, where perturbations in the
inclusion appear as linear terms in the quadratic program; assumptions (A1) and (A2)
imply the existence of a unique solution to the quadratic program, which in turn
implies the existence of a unique solution to the inclusion. Finally, in Section 7 the
unique solution of the linearized inclusion is shown to depend Lipschitz continuously
on the perturbation. This Lipschitz property and the bound for d∗ are combined with
Proposition 2.2 to obtain (1.12). The tightness and possible extensions of the error
bound (1.12) are explored in Section 8 using some problems with known solutions. In
the proof of Theorem 1.1, we need to make the right side of (1.12) sufficiently small to
establish the existence of the claimed solution to the discrete problem. The conditions
η ≥ 2 and N ≥ 2 in the statement of the theorem ensure that h p−1 and hq−1 go to
zero as h goes to zero, and (c/N )p−1 and (c/N )q−1.5 go to zero as N tends to infinity.

Since the discrete costate could be discontinuous across a mesh point, Theorem 1.1
implies convergence of the discrete costate on either side of the mesh point to the
continuous costate at the mesh point. The discrete problem provides an estimate for
the optimal control at t = 1 in the continuous problem, but not at t = 0 since this
is not a collocation point. Due to the strong convexity assumption (A1), an estimate
for the discrete control at t = 0 can be obtained from the minimum principle (1.6)
since the initial state is given, while we have an estimate for the associated costate at
t = 0. Alternatively, polynomial interpolation could be used to obtain estimates for
the optimal control at t = 0.

In a recent paper [36], where we analyze a Gauss collocation scheme on a sin-
gle interval, p = q = min(η, N + 1). The differences between Radau and Gauss
collocation are due to the asymmetry of the Radau points, and the asymmetry in the
Radau first-order optimality conditions; that is, for the Radau points, λk ∈ Pn

N−1 while
xk ∈ Pn

N .
Notation. We let � denote the interval [−1, 1], while �0 is the interval [0, 1]. Let
PN denote the space of polynomials of degree at most N , while P0

N is the subspace
consisting of polynomials in PN that vanish at t = −1 and t = 1. The meaning of
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the norm ‖ · ‖∞ is based on context. If x ∈ C0(�), then ‖x‖∞ denotes the maximum
of |x(t)| over t ∈ [−1, 1], where | · | is the Euclidean norm. For a vector v ∈ R

m ,
‖v‖∞ is the maximum of |vi | over 1 ≤ i ≤ m. If A ∈ R

m×n , then ‖A‖∞ is the
largest absolute row sum (the matrix norm induced by the �∞ vector norm). We let
|A| denote the matrix norm induced by the Euclidean vector norm. Throughout the
paper, the index k is used for the mesh interval, while the indices i and j are associated
with collocation points. If p ∈ R

K Nn , then pk for 1 ≤ k ≤ K refers to vector with
components pk j ∈ R

n , for 1 ≤ j ≤ N . The dimension of the identity matrix I is often
clear from context; when necessary, the dimension of I is specified by a subscript. For
example, In is the n by n identity matrix. The gradient is denoted ∇, while∇2 denotes
the Hessian; subscripts indicate the differentiation variables. Throughout the paper, c
is a generic constant which has different values in different equations. The value of c
is always independent of h, N , and η. The vector 1 has all entries equal to one, while
the vector 0 has all entries equal to zero; again, their dimension should be clear from
context. If D is a matrix, then D j is the j-th column of D and Di : j is the submatrix
formed by columns i through j . We let⊗ denote the Kronecker product. IfU ∈ R

m×n

and V ∈ R
p×q , then U ⊗ V is the mp by nq block matrix whose (i, j) block is

ui jV. We let L2(�) denote the usual space of square integrable functions on �, while
Hp(�) is the Sobolev space consisting of functions with square integrable derivatives
through order p. The seminorm in Hp(�), corresponding to the L2(�) norm of the
p-order derivatives, is denoted | · |Hp(�). The subspace of H1(�) corresponding to
functions that vanish at t = −1 and t = 1 is denoted H1

0(�).

2 Abstract setting

The Lagrange basis functions associated with the τi are

L j (τ ) :=
N∏

i=0
i 
= j

τ − τi

τ j − τi
, 0 ≤ j ≤ N .

Any p ∈ PN has the expansion

p(t) =
N∑

j=0

p j L j (t), p j = p(τ j ).

Differentiating this identity and evaluating at τi gives

ṗ(τi ) =
N∑

j=0

p j Di j , Di j = L̇ j (τi ), 1 ≤ i ≤ N . (2.1)

The matrix D is called a differentiation matrix. Given a feasible point for the discrete
problem (1.4), define Xk j = xk(τ j ) and Uki = uki . It follows from (2.1) that
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N∑

j=0

Di jXk j = ẋk(τi ), 1 ≤ i ≤ N .

Hence, the discrete problem (1.4) can be reformulated as

minimize C(XK N )

subject to
∑N

j=0 Di jXk j = hf(Xki ,Uki ), Uki ∈ U , 1 ≤ i ≤ N ,

Xk0 = Xk−1,N , 1 ≤ k ≤ K ,

⎫
⎬

⎭
(2.2)

where X0N = a, the initial condition.
We introduce multipliers μki associated with the constraints in (2.2) and write the

Lagrangian as

L(μ,X,U) = C (XK N ) +
K∑

k=1

N∑

i=1

〈

μki , hf(Xki ,Uki ) −
N∑

j=0

Di jXk j

〉

+
K∑

k=1

〈
μk0,

(
Xk−1,N − Xk0

)〉
.

The first-order optimality conditions for (2.2), often called the Karush–Kuhn–Tucker
(KKT) conditions, lead to the following relations (we show the variable with which
we differentiate the Lagrangian followed by the associated condition):

Xk0 ⇒
N∑

i=1

Di0μki = −μk0, (2.3)

Xk j ⇒
N∑

i=1

Di jμki = h∇x H(Xk j ,Uk j ,μk j ), 1 ≤ j < N , (2.4)

XkN ⇒
N∑

i=1

DiNμki = h∇x H(XkN ,UkN ,μkN ) + μk+1,0, (2.5)

μK+1,0 := ∇C(XK N ), (2.6)

Uki ⇒ −∇u H
(
Xki ,Uki ,μki

) ∈ NU (Uki ). (2.7)

The KKT multipliers in (2.3)–(2.7) are connected to the polynomials satisfying
(1.7)–(1.9) through the Radau quadrature weights ωi , 1 ≤ i ≤ N . These are positive
numbers that sum to 2 and have the property [46, Thm. 3.26] that

∫ 1

−1
p(τ )dτ =

N∑

i=1

ωi p(τi )

for every p ∈ P2N−2. Note that ωN = 2/N 2, which appears in (1.8).
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Proposition 2.1 The multipliers μk ∈ R
Nn satisfy (2.3)–(2.7) if and only if the poly-

nomial λk ∈ Pn
N−1 given by λk(τi ) = μki/ωi , 1 ≤ i ≤ N, satisfies (1.7)–(1.9).

Moreover, μk0 = λk(−1).

Proof We start with multipliers μk satisfying (2.3)–(2.7). Define �ki = μki/ωi for
1 ≤ i ≤ N , and let λk ∈ Pn

N−1 be the polynomial that satisfies λk(τi ) = �ki . Also, set

�k0 = μk0. In terms of �ki and the matrix D‡
i j = −ω j D ji/ωi , the Eqs. (2.4), (2.5)

and (2.7) become

N∑

j=1

D‡
i j�k j = −h∇x H(Xki ,Uki ,�ki ), 1 ≤ i < N , (2.8)

N∑

i=1

D‡
Ni�ki = −[h∇x H(XkN ,UkN ,�kN ) + �k+1,0/ωN ], (2.9)

NU (Uki ) � −∇u H(Xki ,Uki ,�ki ), 1 ≤ i ≤ N . (2.10)

Since the polynomial that is identically equal to 1 has derivative 0 and since D is a
differentiation matrix, we have D1 = 0, which implies that D0 = −∑N

j=1D j , where
D j is the j-th column of D. Hence, the first definition in (2.3) can be written

�k0 = −
N∑

i=1

μki Di0 =
N∑

i=1

N∑

j=1

μki Di j =
N∑

i=1

N∑

j=1

ω j

(
μki

ωi

)

(ωi Di j/ω j )

= −
N∑

i=1

N∑

j=1

ωi D
‡
i j�k j (2.11)

= �k+1,0 + h
N∑

i=1

ωi∇x H(Xki ,Uki ,�ki ), (2.12)

where (2.12) is due to (2.8)–(2.9).
In Section 4.2.1 of [25], we introduce a matrix D† which is a differentiation matrix

for the collocation points τi , 1 ≤ i ≤ N . That is, if p is a polynomial of degree at most
N − 1 and p is the vector with components p(τi ), 1 ≤ i ≤ N , then (D†p)i = ṗ(τi ).
The matrix D‡ only differs from D† in a single entry: D‡

NN = D†
NN − 1/ωN . As a

result,

(D‡p)i = ṗ(τi ), 1 ≤ i < N , (D‡p)N = ṗ(τN ) − p(1)/ωN . (2.13)

It follows that

N∑

j=1

D‡
i j�k j = λ̇k(τi ), 1 ≤ i < N , and (2.14)
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N∑

j=1

D‡
N j�k j = λ̇k(1) − λk(1)/ωN . (2.15)

This substitution in (2.11) yields

�k0 = λk(1) −
N∑

i=1

ωi λ̇k(τi ). (2.16)

Since λ̇k ∈ Pn
N−2 and N -point Radau quadrature is exact for these polynomial, we

have
N∑

i=1

ωi λ̇k(τi ) =
∫ 1

−1
λ̇k(τ )dτ = λk(1) − λk(−1). (2.17)

Combine (2.16) and (2.17) to obtain

�k0 = λk(−1). (2.18)

Let xk ∈ Pn
N be the polynomial that satisfies xk(τ j ) = Xk j for all 0 ≤ j ≤ N .

By (2.14), (1.7) is equivalent to (2.8) which is equivalent to (2.4) after a change of
variables. By (2.15) and (2.18), (1.8) is equivalent to (2.9), which is equivalent to (2.5)
after a change of variables. Finally, (1.9) is the same as (2.10) which is equivalent to
(2.7) after a change of variables. The equivalence between�k0 andλk(−1)was derived
in (2.18). This shows that the polynomial λk(τ ) satisfies (1.7)–(1.9). The converse of
the proposition follows by reversing all the steps in the derivation. ��

The dynamics for (2.2), the first-order optimality conditions (2.8)–(2.10), the for-
mula (2.12) for �k0, and the terminal costate condition (2.6) can be written as
T (X,U,�) ∈ F(U) where

T1ki (X,U,�) =
⎛

⎝
N∑

j=0

Di jXk j

⎞

⎠− hf(Xki ,Uki ), 1 ≤ i ≤ N , (2.19)

T2k(X,U,�) = Xk0 − Xk−1,N , (2.20)

T3ki (X,U,�) =
⎛

⎝
N∑

j=1

D‡
i j�k j

⎞

⎠+ h∇x H(Xki ,Uki ,�ki ), 1 ≤ i < N ,

(2.21)

T3kN (X,U,�) =
N∑

j=1

D‡
N j�k j + h∇x H (XkN ,UkN ,�kN ) + �k+1,0/ωN ,

(2.22)

T4k(X,U,�) = �k0 − �k+1,0 − h
N∑

i=1

ωi∇x H(Xki ,Uki ,�ki ), (2.23)
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T5(X,U,�) = ∇C(XK N ) − �K+1,0, (2.24)

T6ki (X,U,�) = −h∇u H(Xki ,Uki ,�ki ), 1 ≤ i ≤ N , (2.25)

where 1 ≤ k ≤ K . The initial state is X0N = X10 = a. The components of F are
given by

F1 = F2 = F3 = F4 = F5 = 0, and F6ki (U) = NU (Uki ).

The proof of Theorem 1.1 is based on [18, Proposition 3.1], given below in a
slightly simplified form. Other results like this are contained in Theorem 3.1 of [17],
in Proposition 5.1 of [31], in Theorem 2.1 of [32], and in Theorem 1 of [30].

Proposition 2.2 Let X be a Banach space and let Y be a linear normed space with
the norms in both spaces denoted ‖ · ‖. Let F : X �→ 2Y and let T : X �→ Y with
T continuously Fréchet differentiable in Br (θ

∗), the ball with center θ∗ and radius
r , for some θ∗ ∈ X and r > 0. Suppose that the following conditions hold for some
δ ∈ Y and scalars ε and γ > 0:

(C1) T (θ∗) + δ ∈ F(θ∗).
(C2) ‖∇T (θ) − ∇T (θ∗)‖ ≤ ε for all θ ∈ Br (θ

∗).
(C3) Themap (F−∇T (θ∗))−1 is single-valued and Lipschitz continuous with Lipschitz

constant γ .

If εγ < 1 and ‖δ‖ ≤ (1 − γ ε)r/γ , then there exists a unique θ ∈ Br (θ
∗) such that

T (θ) ∈ F(θ). Moreover, we have the estimate

‖θ − θ∗‖ ≤ γ

1 − γ ε
‖δ‖. (2.26)

Proof Define�(θ) = [F−∇T (θ∗)]−1[T −∇T (θ∗)](θ). For all θ1 and θ2 ∈ Br (θ
∗),

a Taylor expansion with integral remainder term yields

[T − ∇T (θ∗)](θ2) = [T − ∇T (θ∗)](θ1)
+
∫ 1

0
[∇T (θ1 + s(θ2 − θ1)) − ∇T (θ∗)] ds (θ2 − θ1).

By (C2), it follows that

‖[T − ∇T (θ∗)])(θ2) − [T − ∇T (θ∗)](θ1)‖ ≤ ε‖θ2 − θ1‖. (2.27)

By (C3) and (2.27), we have

‖�(θ1) − �(θ2)‖
= ‖[F − ∇T (θ∗)]−1[T − ∇T (θ∗)](θ1)

−[F − ∇T (θ∗)]−1[T − ∇T (θ∗)](θ2)‖
≤ γ ‖[T − ∇T (θ∗)](θ1) − [T − ∇T (θ∗)](θ2)‖
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≤ εγ ‖θ1 − θ2‖.

Since εγ < 1, � is a contraction on Br (θ
∗). Subtracting ∇T (θ∗)(θ∗) from each side

of (C1) gives

[T − ∇T (θ∗)]θ∗ + δ ∈ [F − ∇T (θ∗)](θ∗),

and utilizing the uniqueness in (C3) yields

θ∗ = [F − ∇T (θ∗)]−1[(T − ∇T (θ∗))θ∗ + δ].

With this substitution, it follows from (2.27), (C3), and (C2) that

‖�(θ) − θ∗‖ = ‖[F − ∇T (θ∗)]−1[T − ∇T (θ∗)](θ)

−[F − ∇T (θ∗)]−1[(T − ∇T (θ∗))(θ∗) + δ]‖
≤ γ ‖[T − ∇T (θ∗)](θ) − [T − ∇T (θ∗)](θ∗) − δ]‖
≤ γ (ε‖θ − θ∗‖ + ‖δ‖) ≤ γ (εr + ‖δ‖) (2.28)

for all θ ∈ Br (θ
∗). The assumption that ‖δ‖ ≤ (1 − γ ε)r/γ can be rearranged to

obtain γ (εr+‖δ‖) ≤ r , which implies that ‖�(θ)−θ∗‖ ≤ r by (2.28). Since�maps
Br (θ

∗) into itself and � is a contraction on Br (θ
∗), the contraction mapping principle

yields the existence of a unique fixed point θ ∈ Br (θ
∗). Since ‖�(θ)−θ∗‖ = ‖θ−θ∗‖

for this fixed point, (2.26) is a consequence of (2.28). ��
We use Proposition 2.2 with θ∗ = (X∗,U∗,�∗) defined in (1.11) and θ =

(XN ,UN ,�N ). The norm on X is given by

‖θ‖ = ‖(X,U,�)‖∞ = max{‖X‖∞, ‖U‖∞, ‖�‖∞}. (2.29)

The space Y corresponds to the codomain of T . If y ∈ Y , then we let yl denote the
part of y associated with Tl , 1 ≤ l ≤ 6. The norm of y ∈ Y is given by

‖y‖Y = ‖y1‖ω + |y2| + ‖y3‖ω + |y4| + h1/2|y5| + h−1/2‖y6‖∞,

where for z ∈ R
K Nn , the ω-norm is defined by

‖z‖ω =
(

K∑

k=1

N∑

i=1

ωi |zki |2
)1/2

, zki ∈ R
n .

For z ∈ R
Nn , the ω-norm is

‖z‖ω =
(

N∑

i=1

ωi |zi |2
)1/2

, zi ∈ R
n .
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3 Interpolation error inH1

Our estimate for the distance from T (X∗,U∗,�∗) to F(U∗) utilizes the following
bound for the H1(�) error of the interpolant based on the point set τi , 0 ≤ i ≤ N .

Lemma 3.1 If u ∈ Hη(�) for some η ≥ 2, then there exists a constant c, independent
of N and η, such that

|u − uI |H1(�) ≤ (c/N )p−1|u|Hp(�), p = min{η, N + 1}, (3.1)

where uI ∈ PN is the interpolant of u satisfying uI (τi ) = u(τi ), 0 ≤ i ≤ N, and
N > 0. In the case η = p = 1, there exists a constant c, independent of N , such that

|u − uI |H1(�) ≤ c|u|H1(�), (3.2)

Proof Throughout the analysis, c denotes a generic constant whose value is indepen-
dent of N and η, and which may have different values in different equations. We
first show that if the lemma holds for all u ∈ H1

0(�) ∩ Hη(�), then it holds for
all u ∈ Hη(�). Suppose u ∈ Hη(�) and let � denote the linear function for which
�(±1) = u(±1). Since �I = �, it follows that

|u − uI |H1(�) = |(u − �) − (u − �)I |H1(�).

Since u − � ∈ H1
0(�), (3.1) gives

|u − uI |H1(�) ≤ (c/N )p−1|u − �|Hp(�)

when η ≥ 2. Moreover, when η ≥ 2, |u − �|Hp(�) = |u|Hp(�) since derivatives of
order two or larger applied to the linear function � are zero. This establishes (3.1) for
all u ∈ Hη(�) with η ≥ 2. If η = 1, then by (3.2), we have

|u − uI |H1(�) ≤ c|u − �|H1(�) ≤ c
(|u|H1(�) + (|�|H1(�)

)
. (3.3)

Since �̇ = (u(1) − u(−1))/2, the Schwarz inequality gives

|�|H1(�) = |u(1) − u(−1)|√
2

= 1√
2

∣
∣
∣
∣

∫ 1

−1
u̇(τ ) dτ

∣
∣
∣
∣ ≤ |u|H1(�). (3.4)

Combine (3.3) and (3.4) to obtain (3.2) for all u ∈ H1(�). Henceforth, it is assumed
that u ∈ H1

0(�) ∩ Hη(�).
Let πNu denote the projection of u into P0

N relative to the norm | · |H1(�). Define
EN = u−πNu and eN = E I

N = (u−πNu)I = uI −πNu. Since EN −eN = u−uI ,
it follows that

|u − uI |H1(�) ≤ |EN |H1(�) + |eN |H1(�). (3.5)
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In [21, Prop. 3.1] it is shown that for η ≥ 1,

|EN |H1(�) ≤ (c/N )p−1|u|Hp(�), where p = min{η, N + 1}. (3.6)

We will establish the bound

|eN |H1(�) ≤ c|EN |H1(�). (3.7)

Combine (3.5)–(3.7) to obtain (3.1) and (3.2) for an appropriate choice of c.
By [5, Lem. 4.4] and the fact that eN ∈ P0

N , it follows that

|eN |H1(�) ≤ cN

(∫

�

e2N (τ )

1 − τ 2
dτ

)1/2

. (3.8)

Since eN ∈ P0
N and e2N (τ )/(1 − τ 2) ∈ P0

2N−2, N -point Radau quadrature is exact,
and we have

(∫

�

e2N (τ )

1 − τ 2
dτ

)1/2

=
(
N−1∑

i=1

ωi e2N (τi )

1 − τ 2i

)1/2

=
(
N−1∑

i=1

ωi E2
N (τi )

1 − τ 2i

)1/2

. (3.9)

The last equality holds since eN = EN at τi , 0 ≤ i ≤ N . Although Lemma 4.3 in
[5] was given for Lobatto quadrature, exactly the same proof can be used for both
Gauss and Radau quadrature. Consequently, since EN ∈ H1

0(�), it follows from [5,
Lem. 4.3] that

(
N∑

i=1

ωi E2
N (τi )

1 − τ 2i

)1/2

≤ c

⎡

⎣

(∫

�

E2
N (τ )

1 − τ 2
dτ

)1/2

+ N−1|EN |H1(�)

⎤

⎦ . (3.10)

By [36, Prop. 9.1], we have

N

⎡

⎣

(∫

�

E2
N (τ )

1 − τ 2
dτ

)1/2

+ N−1|EN |H1(�)

⎤

⎦ ≤ 2|EN |H1(�). (3.11)

Combine (3.8–3.11) to obtain (3.7). ��

Remark 3.1 In the analogue of Lemma 3.1 for the Gauss quadrature points given in
[36, Lem. 4.1], the exponent in the error bound is p − 1.5 instead of p − 1. The
difference in the exponent is due to the treatment of endpoints. In the Radau result,
the polynomial interpolates at both τ = −1 and τ = 1, while in the Gauss result, the
polynomial interpolates only at τ = −1.

123



290 W. W. Hager et al.

4 Analysis of the residual

The distance from T (X∗,U∗,�∗) to F(U∗) is now estimated.

Lemma 4.1 If x∗ and λ∗ ∈ PHη(�0) for some η ≥ 2, then there exists a constant c,
independent of N , h, and η, such that

dist[T (X∗,U∗,�∗),F(U∗)]Y
≤ h p−1/2

( c

N

)p−1 |x∗|PHp(�0) + hq−1/2
( c

N

)q−1.5 |λ∗|PHq (�0), (4.1)

where p = min(η, N + 1) and q = min(η, N ).

Proof Since T (X∗,U∗,�∗) appears throughout the analysis, it is abbreviated T ∗.
Since the minimum principle (1.6) holds for all t ∈ �0, it holds at the collocation
points, which implies that T ∗

6 ∈ F6(U∗). Also, T ∗
2 = T ∗

5 = 0 since the optimal state
is continuous and it satisfies the terminal condition (1.5) in the costate equation. Thus
we only need to analyze T ∗

1 , T ∗
3 , and T ∗

4 .
Let us first consider T ∗

1 . Since D is a differentiation matrix associated with the
collocation points, we have

N∑

j=0

Di jX∗
k j = ẋIk (τi ), 1 ≤ i ≤ N , (4.2)

where xIk ∈ Pn
N is the (interpolating) polynomial that passes through x∗

k (τ j ) for 0 ≤
j ≤ N . Since x∗ satisfies the dynamics of (1.1),

hf(X∗
ki ,U

∗
ki ) = ẋ∗

k (τi ). (4.3)

Combine (4.2) and (4.3) to obtain

T ∗
1ki = ẋIk (τi ) − ẋ∗

k (τi ) = ẋIk (τi ) − (ẋ∗
k )

J (τi ), (4.4)

where (ẋ∗
k )

J ∈ Pn
N−1 is the interpolant that passes through ẋ∗

k (τi ) for 1 ≤ i ≤ N .
Since both ẋI and (ẋ∗)J are polynomials of degree N − 1 and Radau quadrature is
exact for polynomials of degree 2N − 2, it follows that

‖T ∗
1 ‖2ω =

K∑

k=1

N∑

i=1

ωi |ẋIk (τi ) − (ẋ∗
k )

J (τi )|2

=
K∑

k=1

∫ 1

−1
|ẋIk (τ ) − (ẋ∗

k )
J (τ )|2 dτ

≤ 2
K∑

k=1

∫ 1

−1

(
|ẋIk (τ ) − ẋ∗

k (τ )|2 + |ẋ∗
k (τ ) − (ẋ∗

k )
J (τ )|2

)
dτ. (4.5)
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By Lemma 3.1, we have

‖ẋIk − ẋ∗
k‖L2(�) ≤ (c/N )p−1|x∗

k |Hp(�), p = min{η, N + 1}. (4.6)

The second term in (4.5) involves the difference between between ẋ∗
k ∈ H(η−1) and its

interpolant (ẋ∗
k )

J ∈ Pn
N−1 at the N Radau points. By the bound given in [9, (5.4.33)]

for the L2 error in Radau interpolation, this term has exactly the same bound as that
on the right side of (4.6). Since xk(τ ) = x(tk−1/2 + hτ), the derivatives contained in
the right side of (4.6) satisfy

d px∗
k (τ )

dτ p
= h p d px∗(t)

dt p

∣
∣
∣
∣
t=tk−1/2+hτ

.

Consequently, after a change of variables, we have

∫ 1

−1

∣
∣
∣
∣
d px∗

k (τ )

dτ p

∣
∣
∣
∣

2

dτ = h2p−1
∫ tk

tk−1

∣
∣
∣
∣
d px∗(t)
dt p

∣
∣
∣
∣

2

dt .

Combine this with (4.5) and (4.6) to deduce that ‖T ∗
1 ‖ω is bounded by the first term

on the right side side of (4.1).
The analysis ofT ∗

3 is similar to the analysis ofT ∗
1 . Letλ

I
k ∈ Pn

N−1 be the polynomial
that interpolates λ∗

k(τ j ) for 1 ≤ j ≤ N . By (2.14) and (2.15), we have

N∑

j=1

D‡
i j�

∗
k j = λ̇

I
k (τi ), 1 ≤ i < N , (4.7)

N∑

j=1

D‡
N j�

∗
k j = λ̇

I
k (τi ) − λ∗

k(1)/ωN . (4.8)

Since λ∗ satisfies (1.5), it follows that

h∇x H(X∗
ki ,U

∗
ki ,�

∗
ki ) = h∇x H(x∗

k (τi ),u
∗
k (τi ),λ

∗
k(τi )) = −λ̇

∗
k(τi ), (4.9)

1 ≤ i ≤ N . We substitute (4.7)–(4.9) in the definition of T3 to obtain

T3ki (X∗,U∗,�∗) = λ̇
I
k (τi ) − λ̇

∗
k(τi ) = λ̇

I
k (τi ) − (λ̇

∗
k)

J (τi ), 1 ≤ i ≤ N ,

where (λ̇
∗
k)

J ∈ Pn
N−1 is the polynomial that passes through λ̇

∗
k(τi ), 1 ≤ i ≤ N . Note

that the term −λ∗
k(1)/ωN in (4.8) cancels the corresponding term in T3k due to the

continuity of λ∗. Since λ̇
I
k ∈ Pn

N−2 and (λ̇
∗
k)

J ∈ Pn
N−1, and since Radau quadrature

is exact for polynomials of degree 2N − 2, we obtain, as in (4.5),

‖T ∗
3 ‖2ω ≤ 2

K∑

k=1

∫ 1

−1

(
|λ̇I

k (τ ) − λ̇
∗
k(τ )|2 + |λ̇∗

k(τ ) − (λ̇
∗
k)

J (τ )|2
)
dτ. (4.10)
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The last term in (4.10) has the bound

‖(λ̇∗
k)

J − λ̇
∗
k‖L2(�) ≤ h p(c/N )p−1|λ∗|Hp(tk−1,tk ), p = min{η, N + 1}, (4.11)

corresponding to the L2 error in interpolation at the Radau points. The other term,
however, is different from the state since λI

k has degree N − 1 while the state xIk has
degree N , and the state interpolates at both the quadrature points and at τ = −1,
while λI

k only interpolates at the quadrature points. The error in the derivative of the
interpolant at the Radau points has the bound [9, (5.4.34)]

‖λ̇I
k − λ̇

∗
k‖L2(�) ≤ hq(c/N )q−1.5|λ∗|Hq (�), q = min{η, N }. (4.12)

The exponent changes from p − 1 in (4.11) to q − 1.5 due to the fact that λI
k does not

interpolate at τ = −1, and q ≤ p since the polynomial associated with λI
k has degree

N −1. Note that if λ∗ ∈ PHη(�0), then λ∗ ∈ PH(η−1)(�0), so we can always ensure
that the error bound (4.12) dominates the error bound (4.11) by lowering η in (4.11)
if necessary. Utilizing the bound (4.12) in (4.10) and changing variables from τ to t ,
we deduce that ‖T3‖ω is bounded by the second term on the right side of (4.1).

Finally, let us consider T ∗
4 . Applying (4.9) and utilizing the continuity of λ∗ and

the exactness of Radau quadrature, we have

T ∗
4k = λ∗

k(−1) − λ∗
k+1(−1) +

N∑

i=1

ωi λ̇
∗
k(τi )

= λ∗
k(−1) − λ∗

k(1) +
N∑

i=1

ωi (λ̇
∗
k)

J (τi )

= λ∗
k(−1) − λ∗

k(1) +
∫ 1

−1
(λ̇

∗
k)

J (τ ) dτ =
∫ 1

−1
[(λ̇∗

k)
J (τ ) − λ̇

∗
k(τ )] dτ.

By (4.11) and the Schwarz inequality, we have

|T ∗
4k | ≤ √

2‖(λ̇∗
k)

J − λ̇
∗
k‖L2(�) ≤ h p(c/N )p−1|λ∗|Hp(�), p = min{η, N + 1}.

As in the analysis of T3, we square this, sum over k, change variables from τ to t , and
take the square root to obtain a bound that can be dominated by the last term in (4.1).
This completes the proof. ��

5 Invertibility of linearized dynamics

The inclusion

T (X,U,�) ∈ F(U),
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corresponding to the first-order optimality conditions for the discrete problem (1.4),
will be linearized around (X∗,U∗,�∗). Given Y ∈ Y , the linearized problem is to
find (X,U,�) such that

(∇T ∗)[X,U,�] + Y ∈ F(U), (5.1)

where ∇T ∗ denotes ∇T (X∗,U∗,�∗), the derivative of T evaluated at (X∗,U∗,�∗).
Since � enters T in an affine manner, the linearization with respect to � is trivial.
On the other hand, the discrete state X and the discrete control U generally enter T in
a nonlinear fashion. The derivative of T in (2.19)–(2.25) is built from the following
matrices for 1 ≤ k ≤ K :

Aki = ∇x f(x∗(tki ),u∗(tki )), Bki = ∇uf(x∗(tki ),u∗(tki )),
Qki = ∇2

xx H
(
x∗(tki ),u∗(tki ),λ∗(tki )

)
, Ski = ∇2

xu H
(
x∗(tki ),u∗(tki ),λ∗(tki )

)
,

Rki = ∇2
uu H

(
x∗(tki ),u∗(tki ),λ∗(tki )

)
, T = ∇2C(x∗(1)).

As pointed out in (1.11), the optimal variables (x∗,u∗,λ∗) evaluated at the tki are
equivalent to the transformed optimal variables (x∗

k ,u
∗
k ,λ

∗
k) evaluated at the τi . The

elements of ∇T ∗[X,U,�] are the following:

∇T ∗
1ki [X,U,�] =

⎛

⎝
N∑

j=0

Di jXk j

⎞

⎠− h(AkiXki + BkiUki ), 1 ≤ i ≤ N ,

∇T ∗
2k[X,U,�] = Xk0 − Xk−1,N , where X0N = 0,

∇T ∗
3ki [X,U,�] =

⎛

⎝
N∑

j=1

D‡
i j�k j

⎞

⎠+ h(AT
ki�ki + QkiXki + SkiUki ), 1 ≤ i < N ,

∇T ∗
3kN [X,U,�] =

⎛

⎝
N∑

j=1

D‡
N j�k j

⎞

⎠+ h(AT
kN�kN + QkNXkN + SkNUkN )

+�k+1,0/ωN ,

∇T ∗
4k[X,U,�] = �k0 − �k+1,0 − h

N∑

i=1

ωi (AT
ki�ki + QkiXki + SkiUki ),

∇T ∗
5k[X,U,�] = TXK N − �K+1,0,

∇T ∗
6ki [X,U,�] = −h(BT

ki�ki + STkiXki + RkiUki ), 1 ≤ i ≤ N , (5.2)

where 1 ≤ k ≤ K .
In this section the invertibility of the linearized dynamics for either the state or the

costate is analyzed. The following properties of the submatrix D1:N , consisting of the
trailing N columns of D, are used in the analysis:

(P1) D1:N is invertible and ‖D−1
1:N‖∞ = 2.
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(P2) If W is the diagonal matrix containing the Radau quadrature weights ωi on the
diagonal, then the rows of thematrix [W1/2D1:N ]−1 have Euclidean norm bounded
by

√
2.

These properties are established in Lemma 10.1 of the “Appendix”. For further
analysis of (P1) and (P2), see the companion paper [10].

Lemma 5.1 If (A2) holds, then for eachq ∈ R
Kn andp ∈ R

K Nn withqk andpki ∈ R
n,

the linear system

N∑

j=0

Di jXk j = hAkiXki + pki , 1 ≤ i ≤ N , (5.3)

Xk0 = Xk−1,N + qk, X0N = 0, (5.4)

1 ≤ k ≤ K, has a unique solution X ∈ R
K (N+1)n. This solution has the bound

sup
1≤k≤K
1≤ j≤N

‖Xk j‖∞ ≤ h−1/2

(√
2‖p‖ω + |q|

(1 − 2hd1)K

)

. (5.5)

Remark 5.1 By (5.4), ‖Xk0‖∞ ≤ ‖Xk−1,N‖∞ +‖qk‖∞ ≤ ‖Xk−1,N‖∞ +|qk |. Hence,
the entire solution X of (5.3)–(5.4) has a sup-norm bound of the form (5.5).

Remark 5.2 Recall that d1 is defined in (1.10). Since the denominator expression (1−
2hd1)K = (1−d1/K )K in the bound (5.5) approaches e−d1 as K tends to infinity, the
denominator is bounded away from zero, uniformly in K . Hence, (5.5) also implies a
uniform bound, independent of K .

Proof We first show that for given Xk0, the linear system (5.3) uniquely determines
Xk1 through XkN . Since X0N = 0, it follows from (5.4) that X10 = q1 is known.
Consequently, for k = 1 up to k = K , we can use (5.3) to compute Xk1 through XkN ,
and then (5.4) to evaluate Xk+1,0. This shows that (5.3)–(5.4) has a unique solution
that can be computed by a recursive process.

LetXk be the vector obtained by vertically stackingXk1 throughXkN , letAk be the
block diagonal matrix with i-th diagonal blockAki , 1 ≤ i ≤ N , defineD = D1:N ⊗ In
where ⊗ is the Kronecker product, and let D0 denote the first column of D. With this
notation, (5.3)–(5.4) reduce to

(D − hAk)Xk = p − (D0 ⊗ In)Xk0 = p − (D0 ⊗ In)(Xk−1,N + qk). (5.6)

By (P1), D1:N is invertible and ‖D−1
1:N‖∞ = 2. Hence, ‖D−1‖ = ‖D−1

1:N ⊗ In‖ = 2,
and by (A2), we have 2h‖Ak‖∞ ≤ 2hd1 < 1, which implies that

h‖D−1
Ak‖∞ ≤ h‖D−1‖∞‖Ak‖∞ ≤ 2hd1 < 1.
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By [38, p. 351], I − hD
−1

Ak is invertible and

‖(I − hD
−1

A)−1‖∞ ≤ 1/(1 − 2hd1). (5.7)

Multiply (5.6) first by D
−1

and then by (I − hD
−1

Ak)
−1 to obtain

Xk = (I − hD
−1

Ak)
−1
(
D

−1
pk + D

−1
(D0 ⊗ In)(Xk−1,N + qk)

)
.

It is shown in [36, Lem. 5.1] that (D)−1[D0 ⊗ In] = −1 ⊗ In . Consequently,

Xk = (I − hD
−1

Ak)
−1
(
D

−1
pk − 1 ⊗ (Xk−1,N + qk)

)
.

Take norms and apply (5.7) to get

‖Xk‖∞ ≤
(

1

1 − 2hd1

)(
‖D−1

pk‖∞ + ‖Xk−1,N‖∞ + ‖qk‖∞
)

. (5.8)

In [36, Lem. 5.1] it is shown that by (P2), we have

‖D−1
pk‖∞ ≤ √

2‖pk‖ω, ‖pk‖ω =
(

N∑

i=1

ωi |pki |2
)

.

Insert this bound in (5.8) and utilize the trivial inequality ‖qk‖∞ ≤ |qk | to obtain

‖Xk‖∞ ≤
(

1

1 − 2hd1

)(
‖Xk−1,N‖∞ + √

2‖pk‖ω + |qk |
)

. (5.9)

Since XkN = 0 for k = 0 and ‖Xk,N‖∞ ≤ ‖Xk‖∞ for k > 0, (5.9) yields

‖Xk‖∞ ≤
k∑

j=1

√
2‖p j‖ω + |q j |

(1 − 2hd1)k− j+1 (5.10)

for 1 ≤ k ≤ K . The upper bound (5.5) is obtained by replacing 1/(1 − 2hd1)k− j+1

by its maximum 1/(1 − 2hd1)K and by utilizing the Schwarz inequality as in

k∑

j=1

‖p j‖ω ≤ √
k‖p‖ω ≤ h−1/2‖p‖ω and

k∑

j=1

|q j | ≤ √
k|q| ≤ h−1/2|q|. (5.11)

��
The linearized costate dynamics has an analogous bound. The analysis utilizes the

following properties of D‡ established in the companion paper [10]:
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(P3) D‡ is invertible and ‖(D‡)−1‖∞ ≤ 2.
(P4) The rows of the matrix [W1/2D‡]−1 have Euclidean norm bounded by

√
2.

Note that the bound ‖(D‡)−1‖∞ ≤ 2 in (P3) is implied by (P4) due to the inequality
(10.7) contained in the proof of (P1) and (P2).

Lemma 5.2 If (A2) holds, then for each q ∈ R
Kn, p ∈ R

K Nn, and �K+1,0 ∈ R
n with

qk and pki ∈ R
n, the linear system

N∑

j=1

D‡
i j�k j = pki − hAT

ki�ki , 1 ≤ i < N , (5.12)

N∑

j=1

D‡
N j�k j = pkN − hAT

kN�kN − �k+1,0/ωN , (5.13)

�k0 = �k+1,0 + qk + h
N∑

i=1

ωiAT
ki�ki , (5.14)

1 ≤ k ≤ K, has a unique solution � ∈ R
K (N+1)n. This solution has the bound

‖�‖∞ ≤ ‖�K+1,0‖∞ + h−1/2
√
2‖p‖ω +∑K

k=1 |qk |
(1 − 2hd2)K

. (5.15)

Proof The proof is similar to the proof of Lemma 5.1 except that the recursive solution
of (5.12)–(5.14) starts from k = K and descends to k = 1. In particular, we first show
that for given�k+1,0, the linear system (5.12)–(5.13) uniquely determines�k1 through
�kN ; then (5.14) can be used to evaluate �k0.

Define D
‡ = D‡ ⊗ In , where ⊗ is the Kronecker product. Equations (5.12) and

(5.13) can be combined into the single equation

D
‡
�k = pk − hAT

k�k − (eN ⊗ In)�k+1,0/ωN , (5.16)

where �k is obtained by vertically stacking �k1 through �kN and eN is the vector
whose N components are all zero except for the last component which is 1. By (2.14)
and (2.15), D‡1 = −eN/ωN , which implies that

D‡ −1eN = −ωN1. (5.17)

Hence, we have

D
‡ −1

(eN ⊗ In)/ωN = [D‡ −1 ⊗ In](eN ⊗ In)/ωN = −1 ⊗ In .

Multiply (5.16) by D
‡ −1

and rearrange to obtain

(I + hD
‡ −1

AT
k)�k = D

‡ −1
pk + (1 ⊗ In)�k+1,0. (5.18)
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By (A2) and (P3), h‖D‡ −1
AT
k‖∞ ≤ 2hd2 < 1. Consequently, thematrix I+hD

‡ −1
AT
k

is invertible with

∥
∥
∥
∥

(
I + hD

‡ −1
AT
k

)−1
∥
∥
∥
∥∞

≤ 1

1 − 2hd2
.

Multiply (5.18) by (I + hD
‡ −1

AT
k)

−1 and take the norm of each side to obtain

‖�k‖∞ ≤
(

1

1 − 2hd2

)

(‖�k+1,0‖∞ + ‖D‡ −1
pk‖∞) (5.19)

≤
(

1

1 − 2hd2

)

(‖�k+1,0‖∞ + ‖D‡ −1
pk‖∞ + ‖qk‖∞) (5.20)

The norm of (5.14) gives

‖�k0‖∞ ≤ ‖�k+1,0‖∞ + ‖qk‖∞ + h
N∑

i=1

ωi‖AT
ki‖∞‖�ki‖∞

≤ ‖�k+1,0‖∞ + ‖qk‖∞ + 2hd2‖�k‖∞

since the ωi sum to 2. Using the bound for ‖�k‖∞ from (5.19) and the fact that
2hd2 < 1, we have

‖�k0‖∞ ≤ ‖qk‖∞ +
(

1

1 − 2hd2

)

(‖�k+1,0‖∞ + 2hd2‖D‡ −1
pk‖∞)

≤
(

1

1 − 2hd2

)

(‖�k+1,0‖∞ + 2hd2‖D‡ −1
pk‖∞ + ‖qk‖∞)

≤
(

1

1 − 2hd2

)

(‖�k+1,0‖∞ + ‖D‡ −1
pk‖∞ + ‖qk‖∞). (5.21)

Since �k,0 is contained in �k , it follows that ‖�k,0‖∞ ≤ ‖�k‖∞. Combine (5.20)
and (5.21) to obtain

‖�k‖∞ ≤
(

1

1 − 2hd2

)

(‖�k+1‖∞ + ‖D‡ −1
pk‖∞ + ‖qk‖∞),

where we define �K+1, j = 0 for j > 0 so that ‖�K+1‖∞ = ‖�K+1,0‖∞. This
inequality is applied recursively to obtain

‖�k‖∞ ≤ ‖�K+1‖∞
(1 − 2hd2)K+1−k

+
K∑

j=k

(
‖D‡ −1

p j‖∞ + ‖q j‖∞
(1 − 2hd2) j−k+1

)

.
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To bound the right side, the factors 1/(1−2hd2) j−k+1 are replaced by their maximum
1/(1 − 2hd2)K to obtain

‖�k‖∞ ≤
‖�K+1‖∞ +∑K

j=k

[
‖D‡ −1

p j‖∞ + |q j |
]

(1 − 2hd2)K
.

By the analysis given in [36, Lem. 5.1], (P4) implies that ‖D‡ −1
p j‖∞ ≤ √

2‖p j‖ω.
Hence, we have

‖�k‖∞ ≤
‖�K+1‖∞ +∑K

j=k

[√
2‖p j‖ω + |q j |

]

(1 − 2hd2)K
.

The first inequality in (5.11) completes the proof of (5.15). ��

6 Invertibility ofF − ∇T ∗

Now let us consider the invertibility of F − ∇T ∗.

Proposition 6.1 If (A1)–(A2) hold, then for each Y ∈ Y , there is a unique solution
(X,U,�) to (5.1).

Proof Similar to the strategy used in [14–16,18,30,33,34,36], a strongly convex
quadratic programming problem is formulated; the quadratic program is constructed
so that the first-order optimality conditions reduce to (5.1). In particular, we consider
the problem

minimize 1
2Q(X,U) + L(X,U,Y)

subject to
∑N

j=0 Di jXk j = h(AkiXki + BkiUki ) − y1ki , Uki ∈ U ,

Xk0 = Xk−1,N − y2k, X0N = 0,

⎫
⎪⎪⎬

⎪⎪⎭

(6.1)

where 1 ≤ i ≤ N and 1 ≤ k ≤ K . The quadratic and linear terms in the objective are

Q(X,U) = XT
K NTXK N + h

K∑

k=1

N∑

i=1

ωi

[
Xki

Uki

]T [Qki Ski
STki Rki

] [
Xki

Uki

]

, (6.2)

L(X,U,Y) = yT5XK N +
K∑

k=1

N∑

i=1

ωi

(
yT3kiXki − yT6kiUki

)

−
K∑

k=1

XT
k0

(

y4k +
N∑

i=1

ωiy3ki

)

. (6.3)

In (6.1), theminimization is overX andU, whileY is a fixed parameter. ByLemma 5.1,
the quadratic programming problem (6.1) is feasible, and the state can be expressed in
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terms of the controls. After substituting forX in terms ofU, the quadratic programming
problem (6.1) becomes a constrainedminimization overU. Since theRadau quadrature
weights ωi are strictly positive, it follows from (A1) that Q is strongly convex with
respect to the control. Hence, there exists a unique optimal solution to (6.1) for any
choice of Y. We now show that the first-order optimality conditions for (6.1) reduce
to ∇T ∗[X,U,�] + Y ∈ F(U). The first-order optimality conditions hold since U
has nonempty interior. Since the first-order optimality conditions are both necessary
and sufficient for optimality in this convex setting, there exists a solution to (5.1).
Uniqueness ofU is due to the strong convexity assumption (A1), while the uniqueness
of X and � is due to Lemmas 5.1 and 5.2 respectively.

The derivation of the first-order optimality conditions for (6.1) is essentially the
same process that we used in Section 2 to write the first-order optimality conditions
for the discrete problem (1.4) as T (X,U,�) ∈ F(U). The first two components of
∇T ∗[X,U,�]+Y ∈ F(U) are simply the constraints of (6.1). The Lagrangian L for
(6.1) is

L(λ,X,U) = 1
2Q(X,U) + L(X,U,Y) +

K∑

k=1

〈
λk0,

(
Xk−1,N − y2k − Xk0

)〉

+
K∑

k=1

N∑

i=1

〈

λki , h(AkiXki + BkiUki ) − y1ki −
N∑

j=0

Di jXk j

〉

The negative derivative of the Lagrangian with respect to Uki is

−h
[
BT
kiλki + ωi (STkiXki + RkiUki )

]
+ ωiy6ki .

After substituting λki = ωi�ki , the requirement that this vector lies in NU (Uki ) leads
the 6th component of (5.1). Equating to zero the derivative of the Lagrangian with
respect to Xk j , 1 ≤ j < N , yields the relation

N∑

i=1

Di jλki = h
[
AT
k jλk j + ω j (Qk jXk j + Sk jUk j )

]
+ ω jy3k j .

Equating to zero the derivative of the Lagrangian with respect to XkN yields the
relation

N∑

i=1

DiNλki = h
[
AT
kNλkN + ωN (QkNXkN + SkNUkN )

]
+ ωNy3kN + λk+1,0,

where λK+1,0 = TXK N + y5. After substituting Di j = −D‡
j iω j/ωi , λki = ωi�ki ,

and λk0 = �k0, we obtain the 3rd and 5th components of (5.1).

123



300 W. W. Hager et al.

Finally, we equate to zero the derivative of the Lagrangian with respect to Xk0:

N∑

i=1

Di0λki = −
(

λk0 + y4k +
N∑

i=1

ωiy3ki

)

.

Utilizing the identity (2.11), it follows that

N∑

i=1

N∑

j=1

ωi D
‡
i j�k j = −

(

�k0 + y4k +
N∑

i=1

ωiy3ki

)

. (6.4)

Multiply the equations in the 3rd component of (5.1) by ωi and sum over i to obtain

N∑

i=1

N∑

j=1

ωi D
‡
i j�k j = −�k+1,0 −

N∑

i=1

ωi

[
y3ki + h

(
AT
ki�ki + QkiXki + SkiUki

)]
.

By (6.4), it follows that

�k0 − �k+1,0 − h
N∑

i=1

ωi (AT
ki�ki + QkiXki + SkiUki ) + y4k = 0,

which is the 4th component of (5.1). This completes the proof. ��

7 Lipschitz continuity of (F − ∇T ∗)−1 and proof of themain theorem

We begin by making the change of variables X = Z(U) + χ(Y) where χ(Y) denotes
the solution of the state dynamics (5.3) corresponding to pki = −y1ki and qk = −y2k ,
and Z(U) denotes solution corresponding to pki = hBkiUki and qk = 0. With this
change of variables, the quadratic program (6.1) can be rewritten as a purely control
constrained problem of the form

minimize
1

2
Q(Z(U),U) + L(Z(U),U,Y) subject to Uki ∈ U , (7.1)

where 1 ≤ i ≤ N , 1 ≤ k ≤ K , and

L(Z,U,Y) = L(Z,U,Y) + χK N (Y)TTZK N

+h
K∑

k=1

N∑

i=1

ωi

[
χT
ki (Y)QkiZki + χT

ki (Y)SkiUki

]
. (7.2)

If [Z j ,U j ] = [Z(U j ),U j ] denotes the solution of (7.1) corresponding to Y j ∈ Y ,
j = 1 and 2, then by [15, Lem. 4], the solution change 
U = U1 − U2 satisfies the
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relation
Q(
Z,
U) ≤ |L(
Z,
U,
Y)|, (7.3)

where 
Y = Y1 − Y2 and 
Z = Z1 − Z2. Observe that the quadratic Q in (6.2)
is expressed in terms of the Hessian with respect to x and u of the Hamiltonian H
evaluated at (x∗(tki ),u∗(tki ),λ∗(tki )); by (A1) it follows that

Q(
Z,
U) ≥ αh‖
U‖2ω. (7.4)

Now consider the terms in L. Let c denote a generic constant which is independent
of K and N . ByLemma5.1 andRemark 5.1, ‖
Z‖∞ ≤ ch1/2‖
U‖ω. By the Schwarz
inequality, the bound for ‖
Z‖∞, and the fact that the ωi are positive and sum to 2,
we have

∣
∣
∣
∣
∣

K∑

k=1

N∑

i=1

ωi
yT3ki
Zki

∣
∣
∣
∣
∣
≤ ch1/2‖
U‖ω

K∑

k=1

N∑

i=1

ωi |
y3ki |

≤ ch1/2‖
U‖ω

K∑

k=1

‖
y3k‖ω

≤ c‖
U‖ω‖
y3‖ω ≤ c‖
U‖ω‖
Y‖Y .

Similarly, for the y6 term in L, the Schwarz inequality gives

∣
∣
∣
∣
∣

K∑

k=1

N∑

i=1

ωi
yT6ki
Uki

∣
∣
∣
∣
∣
≤ c‖
y6‖∞

K∑

k=1

N∑

i=1

ωi |
Uki | ≤ c‖
y6‖∞
K∑

k=1

‖
Uk‖ω

≤ ch−1/2‖
y6‖∞‖
U‖ω ≤ c‖
Y‖Y‖
U‖ω.

The last inequality is due to the h−1/2‖
y6‖∞ term in ‖
Y‖Y .
For the Zk0-term in L, the bound ‖
Z‖∞ ≤ ch1/2‖
U‖ω implies that

K∑

k=1

∣
∣
∣
∣
∣

ZT

k0

(


y4k +
N∑

i=1

ωi
y3ki

)∣
∣
∣
∣
∣

≤ ch1/2‖
U‖ω

K∑

k=1

(

|
y4k | +
N∑

i=1

ωi |
y3ki |
)

≤ c‖
U‖ω (|
y4| + ‖
y3‖ω) ≤ c‖
U‖ω‖
Y‖Y .

By Lemma 5.1, we have

‖χ(
Y)‖∞ ≤ ch−1/2(‖
y1‖ω + |
y2|) ≤ ch−1/2‖
Y‖Y . (7.5)
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Hence, the χ terms in (7.2) have a bound such as

h

∣
∣
∣
∣
∣

K∑

k=1

N∑

i=1

ωiχ
T
ki (
Y)Qki
Zki

∣
∣
∣
∣
∣
≤ ch‖χ(
Y)‖∞‖
Z‖∞

K∑

k=1

N∑

i=1

ωi

= c‖χ(
Y)‖∞‖
Z‖∞ ≤ c‖
Y‖Y‖
U‖ω.

For the terminal term in (7.2), we have the bound

|χK N (
Y)TT
ZK N | ≤ c‖χ(
Y)‖∞‖
Z‖∞ ≤ c‖
Y‖Y‖
U‖ω.

The y5 term in L is similar. By the Schwarz inequality,

|
yT5
ZK N | ≤ c‖
Z‖∞|
y5| ≤ ch1/2‖
U‖ω|
y5| ≤ c‖
U‖ω‖
Y‖Y .

Note that h1/2|
y5| is one of the terms in ‖
Y‖Y . Combine these bounds for the
linear term to obtain

|L(
Z,
U,
Y)| ≤ c‖
Y‖Y‖
U‖ω.

Hence, (7.4) implies that
‖
U‖ω ≤ ch−1‖
Y‖Y . (7.6)

Next, the ω-norm on the left side of (7.6) will be converted to an ∞-norm. Due to
the identity 
X = 
Z + χ(
Y) and the bounds (7.5) and (7.6), it follows that

‖
X‖∞ ≤ ‖
Z‖∞ + ‖χ(
Y)‖∞
≤ ch1/2‖
U‖ω + ch−1/2‖
Y‖Y ≤ ch−1/2‖
Y‖Y . (7.7)

Also, using (7.7), we have

‖
X‖ω ≤ h−1/2‖
X‖∞ ≤ ch−1‖
Y‖Y . (7.8)

Apply Lemma 5.2 with

pki = − 
y3ki − h(Qki
Xki + Ski
Uki ), 
�K+1,0 = T
XK N + 
y5, and

qk =
N∑

i=1

ωi (h [Qki
Xki + Ski
Uki ] − 
y4ki ) .

By (5.15), we have

‖
�‖∞ ≤ c

(

‖
y5‖∞ + ‖
XK N‖∞ + h−1/2‖p‖ω +
K∑

k=1

|qk |
)

. (7.9)
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By (7.7), ‖
XK N‖∞ ≤ ch−1/2‖
Y‖Y . Taking the ω-norm of p and using (7.6) and
(7.8) gives

‖p‖ω ≤ ‖
y3‖ω + h‖
X‖ω + h‖
U‖ω ≤ c‖
Y‖Y .

Finally, (7.6) and (7.8) and the Schwarz inequality yield

K∑

k=1

|qk | ≤ c
K∑

k=1

(‖
y4k‖ω + h‖
Xk‖ω + h‖
Uk‖ω)

≤ ch−1/2‖
y4‖ω + h1/2 (‖
X‖ω + ‖
U‖ω)] ≤ ch−1/2‖
Y‖ω.

Inserting these bounds in (7.9), we have

‖
�‖∞ ≤ ch−1/2‖
Y‖Y . (7.10)

Recall thatRki := ∇2
uu H(x∗(tki ),u∗(tki ),λ∗(tki )). By (A1)Rki is positive definite

with smallest eigenvalue greater than or equal to α. It follows from the 6th component
of the inclusion (5.1) that the control solves the quadratic program

min
Uki∈U

h

(
1

2
UT
kiRki + XT

kiSki + �T
kiBki

)

Uki + yT6kiUki .

Again by [15, Lem. 4], the solution change associated with the data change 
Y has
the bound

hα|
Uki |2 ≤
∣
∣
∣h
(

XT

kiSki + 
�T
kiBki

)

Uki + 
y6ki
Uki

∣
∣
∣ .

Hence, we deduce that

‖
Uki‖∞ ≤ |
Uki | ≤ c
(
‖
Xki‖∞ + ‖
�ki‖∞ + h−1‖
y6ki‖∞

)
.

Utilizing the bounds (7.7) and (7.10), and the h−1/2 factor associated with the 6-th
component of the Y-norm, yields

‖
Uki‖∞ ≤ ch−1/2‖
Y‖Y . (7.11)

The bounds (7.7), (7.10), and (7.11) combine to establish the following Lipschitz
continuity property:

Lemma 7.1 If (A1) and (A2) hold, then there exists a unique solution of (5.1) for each
Y ∈ Y , and there exists a constant c, independent of K and N, such that the solution
change 
X, 
U, and 
� relative to the change 
Y satisfies

‖(
X,
U,
�)‖∞ ≤ ch−1/2‖
Y‖Y .
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Theorem 1.1 is proved using Proposition 2.2. The Lipschitz constant γ of Propo-
sition 2.2 is given by γ = ch−1/2 where c is the constant of Lemma 7.1. The terms
involving D, D‡, �k0, �k+1,0, Xk0, and Xk−1,N are constants in the derivative ∇T
and hence these terms cancel when we compute the difference ∇T (θ) − ∇T (θ∗),
where θ = (X,U,�) and θ∗ = (X∗,U∗,�∗). We are left with terms involving the
difference of derivatives of f or C up to second order at points in a neighborhood of
θ∗. By the Smoothness assumption, these derivatives are Lipschitz continuous in a
neighborhood of (X∗,U∗). Hence, there exists constants τ and r > 0 such that

‖∇[f(Xki ,Uki ) − f(X∗
ki ,U

∗
ki )]‖∞ ≤ τ‖θ − θ∗‖∞,

‖∇[∇xH(Xki ,Uki ,�ki ) − ∇xH(X∗
ki ,U

∗
ki ,�

∗
ki )]‖∞ ≤ τ‖θ − θ∗‖∞,

‖∇[∇uH(Xki ,Uki ,�ki ) − ∇uH(X∗
ki ,U

∗
ki ,�

∗
ki )]‖∞ ≤ τ‖θ − θ∗‖∞,

‖∇[∇C(XK N ) − ∇C(X∗
K N )]‖∞ ≤ τ‖θ − θ∗‖∞,

whenever ‖θ − θ∗‖∞ ≤ r . In applying Proposition 2.2, we need a bound for the
Y-norm of ∇T (θ) − ∇T (θ∗). Taking into account the location of h’s in T and the
location of h’s in the Y-norm, it follows from the Lipschitz bounds relative to τ that
there exists a constant κ such that

‖∇T (θ) − ∇T (θ∗)‖Y ≤ κh1/2‖θ − θ∗‖∞,

whenever ‖θ − θ∗‖∞ ≤ r . Choose r > 0 smaller if necessary to ensure that cκr < 1,
where c is the constant in Lemma 7.1. In Proposition 2.2, ε = κh1/2r and γ = ch−1/2.
Hence, γ ε = cκr < 1. Referring to Lemma 4.1, choose N large enough or h small
enough so that

dist[T (θ∗),F(U∗)] ≤ (1 − γ ε)r

γ
.

Combine Lemma 4.1 with (2.26) and the formula γ = ch−1/2 to obtain the bound
(1.12) of Theorem 1.1.

The solution to T (X,U,�) ∈ F(U) corresponds to the first-order optimality con-
dition for either (2.2) or (1.4).We use the second-order sufficient optimality conditions
to show that this stationary point is a local minimum when it is sufficiently close to
(X∗,U∗,�∗). After replacing theKKTmultipliers by the transformed quantities given
by �ki = λki/ωi , the Hessian of the Lagrangian is a block diagonal matrix with the
following matrices forming the diagonal blocks:

ωi∇2
(x,u)H(Xki ,Uki ,�ki ), 1 ≤ i < N ,

ωi∇2
(x,u)H(Xki ,Uki ,�ki ) + ∇2

(x,u)C(Xki ), i = N ,

where H is the Hamiltonian and 1 ≤ k ≤ K . The second-order sufficient optimality
condition involves showing that the quadratic associated with the Hessian is positive
definite when applied to controls of the form U = V − W, where Vki and Wki
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lie in U for each k and i , and X is the solution of the linearized discrete dynamics
associated with the control U and the initial condition X0N = 0. When the Hessian
and the linearized dynamics are evaluated at (X,U,�) = (X∗,U∗,�∗), then the
positive definiteness is a consequence of (7.4). On the other hand, when (X,U,�) is
close to (X∗,U∗,�∗), then the matrices in the Hessian and in the linearized dynamics
are all close to the matrices corresponding to (X∗,U∗,�∗). Consequently, positives
definiteness is preserved for (X,U,�) sufficiently close to (X∗,U∗,�∗), and by the
second-order sufficient optimality condition [42, Thm. 12.6], (X,U,�) is a strict local
minimizer. This completes the proof of Theorem 1.1.

8 Numerical illustrations

In this sectionwe analyze the errors associatedwith the proposedRadau hp-collocation
method using numerical examples with known analytic solutions. Consequently, it is
possible to precisely determine the error in the hp-approximations. More complex
examples, which do not have known analytic solutions, appear in both [45] and at the
GPOPS-II examples website: http://www.gpops2.com/Examples/Examples.html. In
[45] it is observed that the solutions computed by Radau hp-collocation are in close
agreement to the solutions computed by Betts’ Sparse Optimization Suite (SOS) [6].

8.1 Example 1

First we consider the unconstrained control problem given by

min

{

−x(2) : ẋ(t) = 5

2
(−x(t) + x(t)u(t) − u2(t)), x(0) = 1

}

. (8.1)

The optimal solution and associated costate are

x∗(t) = 4/a(t), a(t) = 1 + 3 exp(2.5t),

u∗(t) = x∗(t)/2,
λ∗(t) = −a2(t) exp(−2.5t)/[exp(−5) + 9 exp(5) + 6].

The time domain [0,2] is divided into equally spacedmesh intervals, and on eachmesh
interval, we collocate at the Radau points using polynomials of the same degree. We
consider polynomials of degree N = 2, 3, and 4. Convergence to the true solution
is achieved by increasing the number of mesh intervals. Figure 1 plots the base 10
logarithm of the error at the collocation points in the sup-norm versus the base 10
logarithm of mesh size. The results were obtained using the software GPOPS-II [44]
and the optimizer IPOPT [7] to solve the discrete nonlinear program. The markers
plotted in Figure 1 correspond to the sup-norm error at a given value for h, while the
lines have slope N +2 for the state and control, and N +1 for the costate. The vertical
placement of each line yields the least squares fit to the markers. Observe that the
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Fig. 1 The logarithm of the
sup-norm error in Example 1 as
a function of mesh size for
polynomials of degree N = 2, 3,
and 4. The errors in the controls,
marked by plus signs, are
beneath the state error plots. The
errors in the costate, marked by
diamonds, are above the state
error plots
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log 10 (h)
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10
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N=3 (state)
N=4 (state)

error decays roughly linearly in this log–log plot, and the pointwise error is roughly
O(hN+2) in the state and control, and O(hN+1) in the costate for fixed N .

The bound given in Theorem 1.1 for fixed N is O(hN−1), which is much slower
than the observed convergence rate O(hN+1). This discrepancy could be due to either
the simple nature of the example, or to looseness in the analysis. In our analysis, the
exponent of h is reduced by the following effects:

(a) Although the state is approximated by a polynomial of degree N , the costate is
approximated by a polynomial of degree N − 1. This difference between the state
and the costate becomes apparent in Proposition 2.1. We are not free to choose the
costate polynomial, its degree comes from the KKT conditions. In the analysis of
the residual given in Lemma 4.1, the reduced degree for the costate polynomial
implies that the exponent of h in the bound (4.1) is the minimum of N and η rather
than the minimum of N + 1 and η.

(b) In our analysis at the end of Section 7, we showed that by taking r small enough,
the expression γ ε in the denominator of (2.26) was strictly bounded from one. The
analysis also showed that that the Lipschitz constant satisfied γ ≤ ch−1/2. Hence,
we lose a half power of h through the Lipschitz constant in the error bound (2.26).

If example 1 indeed represents the typical behavior of the error, then the analysis must
be sharpened to address the losses described in (a) and (b).

It is interesting to compare the analysis in this paper to the analysis of Runge–
Kutta schemes given in [8,31]. For a fixed N , the Radau scheme in this paper is
equivalent to aRunge–Kutta schemewhere theAmatrix andbvector of [31] describing
the Runge–Kutta scheme are D−1

1:N/2 and the last row of D−1
1:N/2 respectively. For

N = 2 and N = 3, the corresponding Runge–Kutta schemes have order 3 and 4
respectively, which means that the error in the Runge–Kutta schemes are O(h3) and
O(h4) respectively. This exactly matches the costate error for the hp-scheme in this
example. A fundamental difference between the results of [31] and the results in this
paper is that [31] estimates the error at the mesh points, and there is no information
about the error at the intermediate points, while in Theorem 1.1, we estimate the error
at both collocation and mesh points. In the hp-framework, it is important to have
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Fig. 2 The base 10 logarithm of
the error in the sup-norm as a
function of the number of
collocation points for Example 1

N
4 6 8 10 12 14 16

lo
g 1

0
|E

|
-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1
log10 |Ex|
log10 |Eu|
log10 |Eλ|

estimates at the collocation points since K could be fixed, and the convergence is
achieved by letting N grow.

Based on the theory developed in the paper [8] of Bonnans and Laurent-Varin,
many conditions must be satisfied to achieve high order convergence of a Runge–
Kutta scheme for optimal control (4116 conditions for order 7). Potentially, the hp-
scheme based on Radau collocation could be used to generate high order Runge–Kutta
schemes.

Next, we examine in Figure 2 the exponential convergence rate predicted by Theo-
rem 1.1 when there is a single interval and the degree of the polynomials is increased.
Since the plot of the base-10 logarithm of the error versus the degree of of the poly-
nomial is nearly linear, the error behaves like c10−αN where α ≈ 0.6 for either the
state or the control and α ≈ 0.8 for the costate. Since the solution to this problem is
infinitely smooth, we can take η = N in Theorem 1.1. The error bound in Theorem 1.1
is somewhat complex since it involves the derivatives of the solution. Nonetheless,
when we take the base-10 logarithm of the error bound, the asymptotically dominant
term appears to be −N log10 N for Example 1. Consequently, the slope of the curve
in the error bound varies like− log10 N . For N between 4 and 16, log10 N varies from
about 0.6 to 1.2. Hence, our observed slopes 0.6 and 0.8 fall in the anticipated range.

8.2 Example 2

Next we consider the problem [35] given by

minimize
1

2

∫ 1

0
[x2(t) + u2(t)] dt

subject to ẋ(t) = u(t), u(t) ≤ 1, x(t) ≤ 2
√
e

1 − e
for all t ∈ [0, 1],

x(0) = 5e + 3

4(1 − e)
.
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The exact solution to this problem is

0 ≤ t ≤ 1
4 : x∗(t) = t − 1

4 + 1+e
1−e , u∗(t) = 1,

1
4 ≤ t ≤ 3

4 : x∗(t) = et−
1
4

1−e

(
1 + e

3
2−2t

)
, u∗(t) = et−

1
4

1−e

(
1 − e

3
2−2t

)
,

3
4 ≤ t ≤ 1 : x∗(t) = 2

√
e

1−e , u∗(t) = 0.

The solution of this problem is smooth on the three intervals [0, 0.25], [0.25, 0.75],
and [0.75, 1.0], however, at the contact points where one of the constraints changes
from active to inactive, there is a discontinuity in the derivative of the optimal control
and a discontinuity in the second derivative of the optimal state. The goal with this test
problem is to determine whether exponential convergence occurs for the hp-scheme
with a careful choice of the mesh, and whether a state constrained problem, which
is not covered by the error analysis in this paper, possesses similar errors bounds to
those for control constrained problems.

First, we solve the problem using K = 1, in which case convergence is achieved
by increasing the degree N of the polynomials. In Fig. 3a we plot the logarithm of the
error at the collocation points in the sup-norm versus the logarithm of the polynomial
degree. Convergence occurs, but it is slow due to the discontinuity in the derivatives.
The lines in Fig. 3a have slope −2; their vertical placement was chosen to achieve the
best least squares fit to the markers (the measured error). Since the logarithm of the
error is approximately fit by a line of slope −2, the error decays like c/N 2, which is
faster than what might be expected from a bound like that given in Theorem 1.1 with
regularity H2.5−ε for any ε > 0.

Next, we divide the time interval [0,1] into three subintervals [0, 0.25], [0.25, 0.75],
and [0.75, 1.0], and use different polynomials of the same degree on each subinterval.
By this careful choice of the mesh intervals, we obtain an exponential convergence
rate in Fig. 3b. Comparing Figs. 3a and b, we see that a huge improvement in the error
is possible when we have good estimates for the contact points where the constraints

(a)

6 9 12 15 18 21 24
N
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-2

-1
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10
(e

rr
or

)

state
control

(b)
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10
(e

rr
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)

state
control

Fig. 3 The error in the solution to Example 2 as a function of the degree of the polynomials used in the
hp-approximation. In a the polynomials are defined on the interval [0, 1]. In b there are three mesh intervals
[0, 0.25], [0.25, 0.75], and [0.75, 1.0], and different polynomials of the same degree are used on each mesh
interval
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change between active and inactive.Note that 16-digit accuracywas obtained in Fig. 3b
by using MATLAB’s quadprog to solve the quadratic program associated with the
hp-discretization of Example 2.

In a very rough sense, the error bound given by Theorem 1.1 for a smooth prob-
lem has the general form c1(c2/N )N . The continuous curves plotted in Fig. 3b were
obtained by choosing c1 and c2 to achieve the least squares best fit to the markers
(the measured error). For the state variable, (c1, c2) = (0.0016, 0.1990), while for the
control (c1, c2) = (0.0950, 0.2801). Hence, it seems plausible that a state-constrained
control problemmay possess an error bound similar to that established in Theorem 1.1
for control constrained problems.

9 Conclusions

A convergence rate is derived for an hp-orthogonal collocation method based on the
Radau quadrature points applied to a control problem with convex control constraints.
If the problem has a smooth local solution and a Hamiltonian which satisfies a strong
convexity assumption, then the discrete approximation has a local minimizer in a
neighborhood of the continuous solution. For the hp-scheme, both the number ofmesh
intervals in the discretization and the degree of the polynomials on each mesh interval
can be freely chosen. As the number ofmesh intervals increases, convergence occurs at
a polynomial rate relative to the mesh width. When there is control over the growth in
derivatives, the convergence rate is exponentially fast relative to the polynomial degree.
Convergence rates were investigated further using numerical examples. When the
polynomial degree is fixed and themeshwidth tends to zero, the observed convergence
rate was faster than the rate associated with the error bound. For a problem with
control and state constraints, exponentially fast convergence was observed whenmesh
points are located at the contact points where the constraints change between active
and inactive. Based on the numerical results, it seems plausible that the convergence
result established for control constrained problem could extend to problems with state
constraints.

10 Appendix: Proof of (P1) and (P2)

We analyze (P1) and (P2) when τi , 1 ≤ i ≤ N , are either the Radau quadrature points
analyzed in this paper, or the Gauss quadrature points studied in [36].

Lemma 10.1 For either the Gauss or Radau quadrature points, the rows of the matrix
[W1/2D1:N ]−1 have Euclidean length bounded by

√
2. For the Gauss quadrature

points, ‖D−1
1:N‖∞ ≤ 2, and ‖D−1

1:N‖∞ approaches 2 as N tends to infinity, while for
the Radau quadrature points, ‖D−1

1:N‖∞ = 2.

Proof Given p ∈ R
N , let p ∈ PN denote the polynomial that satisfies p(−1) = 0 and

p(τi ) = pi , 1 ≤ i ≤ N . Let ṗ ∈ R
N denote the vector with components ṗi = ṗ(τi ),

and let � j be the Lagrange polynomial defined by
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� j (τ ) =
N∏

i=1
i 
= j

τ − τi

τ j − τi
, 1 ≤ j ≤ N .

The identity

ṗ(τ ) =
N∑

j=1

� j (τ ) ṗ j (10.1)

holds since ṗ ∈ PN−1 and the polynomials on each side of (10.1) are equal at the N
quadrature points. Integrate (10.1) to obtain

pi =
∫ τi

−1
ṗ(τ ) dτ =

N∑

j=1

(∫ τi

−1
� j (τ ) dτ

)

ṗ j . (10.2)

Since D is a differentiation matrix and p(−1) = 0, it follows that D1:Np = ṗ. If the
vector ṗ = 0, then the polynomial ṗ = 0 since ṗ has degree N − 1 and vanishes at
N points. Since p(−1) = 0, it follows that polynomial p = 0, which implies that
the vector p = 0. Hence, D1:N is invertible, and p = D−1ṗ. Comparing the equality
p = D−1ṗ to (10.2), we deduce that

(D−1)i j =
∫ τi

−1
� j (τ ) dτ. (10.3)

Choose any s ∈ [−1, 1] and define

d j (s) =
∫ s

−1
� j (τ ) dτ and R(s) =

N∑

j=1

d j (s)2

ω j
.

Observe that (D−1)i j = d j (τi ) and R(τi ) is the square of the Euclidean length of row
i in (W1/2D)−1. Let q ∈ PN−1 be the polynomial defined by

q(τ ) =
N∑

j=1

d j (s)� j (τ )

ω j
.

Hence, by the triangle and Schwarz inequalities,

R(s) =
∫ s

−1
q(τ ) dτ ≤

∫ 1

−1
|q(τ )| dτ ≤ √

2

(∫ 1

−1
q(τ )2 dτ

)1/2

. (10.4)

Since q2 ∈ P2N−2, both Radau and Gauss quadrature are exact, and

∫ 1

−1
q(τ )2 dτ =

N∑

i=1

ωi q(τi )
2, (10.5)
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where the τ j are either the Radau or Gauss quadrature points and the ω j are the
associated weights. Since � j (τi ) = 1 for i = j and � j (τi ) = 0 otherwise, it follows
from the definition of q that q(τi ) = di (s)/ωi . This substitution in (10.5) yields

∫ 1

−1
q(τ )2 dτ =

N∑

i=1

di (s)2

ω j
= R(s). (10.6)

Equating the expressions (10.4) and (10.6) implies that

(∫ 1

−1
q(τ )2 dτ

)1/2

≤ √
2.

By (10.6), R(s) ≤ 2 for any s ∈ [−1, 1]. In particular, R(τi ) ≤ 2 for 1 ≤ i ≤ N .
Since R(τi ) is the square of the Euclidean length of row i in (W1/2D)−1, the rows
of (W1/2D)−1 have Euclidean length bounded by

√
2. This result holds for both the

Radau and Gauss quadrature points since since q2 ∈ P2N−2, and both Radau and
Gauss quadrature are exact for polynomials of this degree.

If r is a row ofD−1
1:N , then by the Schwarz inequality and the fact that the quadrature

weights sum to 2 and the rows of the matrix [W1/2D1:N ]−1 have Euclidean length
bounded by

√
2, we have

N∑

i=1

|ri | =
N∑

i=1

√
ωi
(|ri |/√ωi

) ≤
(

N∑

i=1

ωi

)1/2 ( N∑

i=1

r2i /ωi

)1/2

≤ 2. (10.7)

Consequently, the absolute row sums for D−1
1:N are all bounded by 2, or equivalently,

‖D−1
1:N‖∞ ≤ 2. Given any polynomial p ∈ PN with p(−1) = 0 and | ṗ(τi )| ≤ 1 for

1 ≤ i ≤ N , it is observed in Section 9 of [36] that ‖D−1
1:N‖∞ ≥ max{p(τi ) : 1 ≤

i ≤ N }. Take p(τ ) = 1 + τ to deduce that ‖D−1
1:N‖∞ ≥ 1 + τN . Hence, 1 + τN ≤

‖D−1
1:N‖∞ ≤ 2. Since τN = 1 for the Radau points, it follows that ‖D−1

1:N‖∞ = 2.
For the Gauss points, τN approaches 1 as N tends to infinity; consequently, ‖D−1

1:N‖∞
approaches 2 as N tends to infinity for the Gauss points. ��
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