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Abstract— A Gauss collocation method is developed for solv-
ing optimal control problems with convex control constraints.
The method has a local exponential convergence rate when
the solution of the continuous problem is smooth and the
Hamiltonian possesses a convexity property.

I. INTRODUCTION

This paper is an abbreviated version of results that just

appeared in [1] along with some more recent extensions

developed in [2]. The focus of the work is on optimal control

problems of the form

minimize C(x(1))
subject to ẋ(t) = f(x(t),u(t)), u(t) ∈ U ,

t ∈ Ω, x(−1) = x0,
(x,u) ∈ C1(Ω; R

n) × C0(Ω; R
m),

(1)

where Ω = [−1, 1], the control constraint set U ⊂ R
m is

closed and convex with nonempty interior, the state x(t) ∈
R

n, ẋ denotes the derivative of x with respect to t, x0 is

the initial condition which we assume is given, f : R
n ×

R
m → R

n, C : R
n → R, and Cl(Ω; R

n) is the space

of l times continuously differentiable functions mapping Ω
to R

n. It is assumed that f and C are at least continuous.

The problem domain is chosen to be [−1, 1] since the Gauss

points lie on this interval, which facilitates the formulation

of the collocation scheme. A general interval [T1, T2] can

be transformed to [−1, 1] by the change of variables s =
(2t − T1 − T2)/(T2 − T1).

We approximate each component of the state x by a

polynomial in PN , the space of polynomials of degree

at most N . Let Pn
N denote the n-fold Cartesian product

PN × . . . × PN . In a collocation scheme, the dynamics are
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enforced at a set of points τi, 1 ≤ i ≤ N . This leads to the

following discretization of (1) (see [3], [4]):

minimize C(x(1))
subject to ẋ(τi) = f(x(τi),ui), ui ∈ U ,

1 ≤ i ≤ N,
x(−1) = x0, x ∈ Pn

N .

(2)

The parameter ui represents an approximation to the control

at time τi. The dimension of PN is N + 1, and there are

N + 1 equations in (2) corresponding to the collocated

dynamics at N points and the initial condition. This paper

considers collocation at the Gauss quadrature points, which

are symmetric about t = 0 and satisfy

−1 < τ1 < τ2 < . . . < τN < +1.

It is also convenient to introduce two noncollocated points

τ0 = −1 and τN+1 = +1.

An earlier paper [5] considers collocation at the Gauss

points, but without control constraints. In this paper, we

introduce a control constraint u(t) ∈ U , which leads to

profound changes in the analysis. When control constraints

are present, the solution of (1) is typically nonsmooth,

and the assumption in [5] that the problem solution has

at least four derivatives is too strong. The earlier analysis

in [5] employed sup-norms and a bound for a Lebesgue

constant established in [6]. The new analysis for the control

constrained problem employs the 2-norm and Sobolev best

approximation results such as those in [7], [8].

The convergence analysis for (2) entrails an analysis of

the relationship between the Pontryagin minimum principle

associated with a solution of the continuous problem (1) and

the Karush-Kuhn-Tucker (KKT) conditions associated with

a solution of the finite dimensional programming problem

(2). Let (x∗,u∗) denote a local minimizer for (1) and let λ
∗

denote the solution of the linear costate equation

λ̇
∗(t) = −∇xH(x∗(t),u∗(t),λ∗(t)), (3)

λ
∗(1) = ∇C(x∗(1)), (4)

where H is the Hamiltonian defined by H(x,u,λ) =
λ

Tf(x,u). Under suitable assumptions, the minimum prin-

ciple asserts that

−∇uH(x∗(t),u∗(t),λ∗(t)) ∈ NU (u∗(t)) (5)

for all t ∈ Ω, where ∇ denotes gradient and NU is the normal

cone. For any u ∈ U ,

NU (u) = {w ∈ R
m : wT(v − u) ≤ 0 for all v ∈ U},
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while NU (u) = ∅ if u 6∈ U .

It can be shown that the KKT conditions for (2) are

equivalent to the existence of a polynomial λ ∈ Pn
N such

that

λ̇(τi) = −∇xH (x(τi),ui,λ(τi)) , 1 ≤ i ≤ N, (6)

λ(1) = ∇C(x(1)), (7)

NU (ui) ∋ −∇uH (x(τi),ui,λ(τi)) , 1 ≤ i ≤ N. (8)

Thus the KKT conditions are equivalent to the continuous

minimum principle enforced at the collocation points.

The following assumptions are utilized in the convergence

analysis.

A1. For some α > 0, the smallest eigenvalue of the Hessian

matrices ∇2C(x∗(1)) and

∇2
(x,u)H(x∗(t),u∗(t),λ∗(t))

are greater than α, uniformly for t ∈ [0, 1].
A2. For some β < 1/2, the Jacobian of the dynamics

satisfies

‖∇xf(x
∗(t),u∗(t))‖∞ ≤ β

and

‖∇xf(x
∗(t),u∗(t))T‖∞ ≤ β

for all t ∈ Ω where ‖·‖∞ is the matrix sup-norm (largest

absolute row sum), and the Jacobian ∇xf is an n by n
matrix whose i-th row is (∇xfi).

The condition (A2) seems to be a strong requirement for a

solution of the continuous control problem. However, when

this condition is violated, it may not be possible to solve for

the discrete state in terms of the discrete control in (2). In

fact, the discrete dynamics could be infeasible even when

the continuous dynamics is feasible.

To motivate the need for this condition, suppose that

f(x,u) = Ax + g(u) where A is an n by n matrix. Since

the dynamics are linear in the state, it is possible to solve for

the continuous state as a function of the control whenever

g(u) is absolutely integrable, regardless of the choice for A.

Although the dynamics in the discrete approximation (2) are

also linear in the state, it may not be possible to solve for

the discrete state in terms of the control, as we will show.

On the other hand, the condition ‖A‖∞ < 1/2 ensures that

the discrete state is uniquely determined from the control,

independent of the degree of the polynomials used in the

discrete problem.

In general, (A2) could be replaced by any condition that

ensures the solvability in the discrete linearized dynamics

for the state in terms of the control, and the stability of

this solution under perturbations in the dynamics. In more

recent work [2] on hp-collocation schemes, (A2) is essen-

tially removed by partitioning the original domain Ω into

subdomains with a different polynomial on each subdomain.

More precisely, the condition β < 1/2 of (A2) is replaced

by hβ < 1/2 where h is the subdomain width over 2, and

when hβ < 1/2, convergence occurs when the degree of the

polynomials increase on each subdomain.

To better understand the dynamics in the discrete problem

(2), we need to introduce the differentiation matrix D. This

is the N by N + 1 matrix defined by

Dij = L̇j(τi), where Lj(τ) :=

N
∏

l=0
l 6=j

τ − τl

τj − τl
. (9)

Given a vector p ∈ R
N+1, let p ∈ PN be the polynomial that

satisfies the N + 1 conditions p(τi) = pi, 0 ≤ i ≤ N . The

differentiation matrix has the property that (Dp)i = ṗ(τi),
1 ≤ i ≤ N . Our differentiation matrix is nonsquare since

the derivative at τ0 = −1 does not appear in the discrete

problem (2). The collocation conditions are only required to

hold at the N Gauss points.

Given x ∈ Pn
N , let us define Xj = x(τj). By the definition

of the differentiation matrix,

ẋ(τj) =

N
∑

j=0

DijXj .

Hence, the dynamics in the discrete problem (2) can be

reformulated as

N
∑

j=0

DijXj = f(Xi,Ui),

where for consistency we let Ui denote the discrete control

approximation at τi.

Suppose that the continuous variables x and u are scalars

and the continuous dynamics has the form f(x,u) = λx +
g(u). If Di is the i-th column of D, D1:N is the submatrix

of D corresponding to columns 1 through N , X1:N is the

vector with components Xi, 1 ≤ i ≤ N , and g(U) is the

vector with components g(Ui), 1 ≤ i ≤ N , then the discrete

dynamics in (2) has the form

D1:NX1:N = λX1:N + g(U) − D0X0.

If λ is an eigenvalue of D1:N , then the coefficient matrix

D1:N−λI of X1:N is singular, and generally it is not possible

to solve for X1:N in terms of g(U) and X0.

Nonetheless, the differentiation matrix has two important

properties which are established in Appendix 1 of [2]:

(P1) D1:N is invertible and ‖D−1
1:N‖∞ ≤ 2.

(P2) If W is the diagonal matrix containing the Gauss

quadrature weights ωi, 1 ≤ i ≤ N , on the diagonal, then

the rows of the matrix [W1/2D1:N ]−1 have Euclidean

length bounded by
√

2.

By (P1), we have

D1:N − λI = D1:N (I − λD−1
1:N ),

which is invertible when |λ| < 1/2 since |λ|‖D−1
1:N‖∞ < 1.

For the dynamics f(x,u) = λx + g(u), (A2) reduces to

the condition |λ| < 1/2. In general, when (A2) holds, the

dynamics is locally, uniquely solvable for X1:N in terms of

the discrete control U and the initial condition X0.
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If xN ∈ Pn
N is a solution of (2) associated with the discrete

controls ui, 1 ≤ i ≤ N , and if λ
N ∈ Pn

N satisfies (6)–(8),

then we define

XN = [xN (−1), xN (τ1), . . . , xN (τN ), xN (+1)],
X∗ = [x∗(−1), x∗(τ1), . . . , x∗(τN ), x∗(+1)],
UN = [ u1, . . . , uN ],
U∗ = [ u∗(τ1), . . . , u∗(τN ) ],
ΛN = [λN (−1), λ

N (τ1), . . . , λ
N (τN ), λ

N (+1)],
Λ∗ = [λ∗(−1), λ

∗(τ1), . . . , λ
∗(τN ), λ

∗(+1)].

The following convergence result relative to the vector ∞-

norm (largest absolute element) is essentially established in

[1]. In the statement of the theorem, | · |Hp(Ω; Rn) denotes the

seminorm defined by

|x|Hp(Ω; Rn) =

(

∫ 1

−1

∣

∣

∣

∣

dpx(t)

dtp

∣

∣

∣

∣

2

dt

)1/2

.

Theorem 1. Suppose (x∗,u∗) is a local minimizer for the

continuous problem (1) with (x∗,λ∗) ∈ Hη(Ω; Rn) for some

η ≥ 2. If (A1)–(A2) hold, then for N sufficiently large, the

discrete problem (2) has a local minimizer xN ∈ Pn
N and

u ∈ R
mN , and an associated multiplier λ

N ∈ Pn
N satisfying

(6)–(8); moreover, there exists a constant c independent of

N and η such that

max
{

‖XN − X∗‖∞, ‖UN − U∗‖∞, ‖ΛN − Λ∗‖∞
}

≤
( c

N

)p−3/2
(

|x∗|Hp(Ω; Rn) + |λ∗|Hp(Ω; Rn)

)

, (10)

where p := min{η,N + 1}.

One difference between this statement of the convergence

rate bound and the statement of the analogous result in

[1] is that the seminorm here is replaced by the full norm

‖·‖Hp(Ω; Rn) in [1]. The full norm involves all the derivatives

up to order p, while the seminorm only involves the p-th

order derivative. In order to analyze convergence in an hp-

setting where the domain Ω is partitioned into subdomains

as in [2], it is important to state the error bound in a

more precise way using seminorms since the error depends

on both the width of the subdomains and the degree of

the polynomials, and the impact of the subdomain size on

the error is connected with all the derivatives appearing in

the error bound. All the lower order derivatives should be

eliminated from the error bound in order to describe more

precisely the dependence of the error on the subdomain size.

This is accomplished using a result such as Proposition 3.1

of [8] where the error in best approximation is expressed

using a seminorm.

Also, when [1] was published, (P2) had not yet been

proved. Hence, (P1) and (P2) appear as assumptions in

Theorem 1.1 of [1], while these assumptions are removed

in Theorem 1 above since these properties have now been

established in general.

II. ERROR ANALYSIS

The derivation of Theorem 1 proceeds as follows.

A. Reformulate the KKT conditions for the discrete prob-

lem (2) as a generalized equation of the form

T (X,U,Λ) ∈ F(U), (11)

where (X,U,Λ) correspond to the discrete state,

control, and costate evaluated at the collocation points

or at the end points of the interval [−1, 1].
B. Estimate the distance d∗ from T (X∗,U∗,Λ∗) to

F(U∗). The bound we obtain for d∗ has the same

form as the right side of (10).

C. Linearize (11) around (X∗,U∗,Λ∗) and use (A1)

and (A2) to show that the linearization has a unique

solution which depends Lipschitz continuously on per-

turbations.

D. Combine these results to obtain (10). Further analysis

based on (A1) shows that the solution of the general-

ized equation is a local minimizer of (2).

A. The Generalized Equation

The generalized equation corresponds to (6)–(8) along

with the constraints of (2). The T in (11) has 7 components

and F is composed of 7 sets. The sets forming F are

F0 = F1 = . . . = F5 = {0},

and

F6i(U) = NU (Ui), 1 ≤ i ≤ N.

The 7 components of T are as follows:

T0(X,U,Λ) = X0 − x0,

T1i(X,U,Λ) =





N
∑

j=0

DijXj



 − f(Xi,Ui),

T2(X,U,Λ) = XN+1 − X0 −
N

∑

j=1

ωjf(Xj ,Uj),

T3(X,U,Λ) = ΛN+1 − Λ0

+

N
∑

i=1

ωi∇xH(Xi,Ui,Λi),

T4i(X,U,Λ) =





N+1
∑

j=1

D†
ijΛj



 + ∇xH(Xi,Ui,Λi),

T5(X,U,Λ) = ΛN+1 −∇C(XN+1),

T6i(X,U,Λ) = −∇uH(Xi,Ui,Λi),

where 1 ≤ i ≤ N and D† is defined by

Dij = −
(

ωj

ωi

)

D†
ji, D†

i,N+1 = −
N

∑

j=1

D†
ij ,

1 ≤ i ≤ N . T0 corresponds to the initial condition, T1 yields

the discrete state dynamics, T2 is a quadrature formula giving

the discrete state at t = 1, T3 is a quadrature formula giving

the discrete costate at t = −1, T4 yields the discrete costate

dynamics, T5 corresponds to the terminal condition for the

costate, and T6 corresponds to the minimum principle.
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B. Estimate for the Residual

Next, we start with a continuous solution (x∗,u∗) of

(1) and the associated costate λ
∗, and evaluate them at

the collocation points to form the vectors (X∗,U∗,Λ∗).
The goal is to obtain a bound for the distance d∗ from

T (X∗,U∗,Λ∗) to F(U∗). By (5), it follows that

−∇uH(X∗
i ,U

∗
i ,Λ

∗
i ) ∈ NU (U∗

i ),

which implies that the associated residual vanishes. The

components of the generalized equation where the residual

is nontrivial correspond to the differential equations. Let Ẋ∗

denote the vector whose i-th component is ẋ∗(τi), 0 ≤ i ≤
N . Since x∗ satisfies the dynamics in (1), it follows that

Ẋ∗
i = f(X∗

i ,U
∗
i ) (12)

for 1 ≤ i ≤ N .

Let xI denote the polynomial in Pn
N that passes through

x∗(τj) for 0 ≤ j ≤ N , let XI denote the vector with

components XI
j = x∗(τj), 0 ≤ j ≤ N , and let ẊI denote

the vector with components ẊI
j = ẋI(τj), 1 ≤ j ≤ N . With

these definitions and due to the property of the differentiation

matrix, we have




N
∑

j=0

DijX
∗
j



 =





N
∑

j=0

DijX
I
j



 = ẊI
i , (13)

1 ≤ i ≤ N . Combine (12) and (13) to obtain

T1(X
∗,U∗,Λ∗) = ẊI − Ẋ∗.

Since the derivative of a function is typically not equal to

the derivative of its interpolant, the residual T1(X
∗,U∗,Λ∗)

is nonzero in general.

To measure the size of the residual associated with the

dynamics, we use the ω-norm defined by

‖z‖2
ω =

(

N
∑

i=1

ωi|zi|2
)1/2

, z ∈ R
nN , (14)

where | · | is the Euclidean norm. Hence, we have

‖T1(X
∗,U∗,Λ∗)‖ω = ‖ẊI − Ẋ∗‖ω.

Let (ẋ∗)J ∈ Pn
N−1 denote the interpolant that passes through

ẋ∗(τi) for 1 ≤ i ≤ N . Since both ẋI and (ẋ∗)J are

polynomials of degree N − 1 and Gaussian quadrature is

exact for polynomials of degree 2N − 1, it follows that

‖ẊI − Ẋ∗‖ω = ‖ẋI − (ẋ∗)J‖L2(Ω)

≤ ‖ẋI − ẋ∗‖L2(Ω) + ‖ẋ∗ − (ẋ∗)J‖L2(Ω).

The L2 error in polynomial interpolation has classic bounds

such as

‖ẋ∗ − (ẋ∗)J‖L2(Ω) ≤ (c/N)p−1|x∗|Hp(Ω),

(see (5.4.33) in [9]). The estimation of the error in the

derivative of the interpolant, however, is more subtle. In [1]

we establish the following bound, where again the full norm

is replaced by the seminorm:

Lemma 1. If u ∈ Hη(Ω) for some η ≥ 1, then there exists

a constant c, independent of N and η, such that

|u − uI |H1(Ω) ≤ (c/N)p−3/2|u|Hp(Ω), (15)

where p = min{η,N + 1} and uI ∈ PN is the interpolant

of u satisfying uI(τi) = u(τi), 0 ≤ i ≤ N , and N > 0.

Lemma 1 relies both on results of [7] and an observation of

Yvon Maday given in Appendix 2 of [1]. Applying Lemma 1

to the dynamics of both the state and the costate, we obtain

the following estimate for the distance from T (X∗,U∗,Λ∗)
to F(U∗).

Corollary 1. If x∗ and λ
∗ ∈ Hη(Ω; R

n) for some η ≥ 2,

then there exists a constant c, independent of N and η, such

that

dist[T (X∗,U∗,Λ∗), F(U∗)]

≤
( c

N

)p−3/2
(

|x∗|Hp(Ω; Rn) + |λ∗|Hp(Ω; Rn)

)

,

where p = min{η,N + 1}.

C. Stability of the Generalized Equation

By Corollary 1, the distance d∗ from T (X∗,U∗,Λ∗) to

F(U∗) tends to zero as N tends to infinity. To obtain Theo-

rem 1, we need to analyze the stability of the generalized

equation with respect to a small parameter. The analysis

entails a study of a linearized version of the generalized

equation (11): Given a parameter Y, the linearized problem

is to find (X,U,Λ) such that

∇T (X∗,U∗,Λ∗)[X,U,Λ] + Y ∈ F(U). (16)

Here ∇T (X∗,U∗,Λ∗)[X,U,Λ] denotes the derivative of T
evaluated at (X∗,U∗,Λ∗) operating on [X,U,Λ]. The term

∇T (X∗,U∗,Λ∗) will be abbreviated ∇T ∗.

Let us introduce the following matrices:

A(t) = ∇xf(x
∗(t),u∗(t)),

B(t) = ∇uf(x
∗(t),u∗(t)),

Q(t) = ∇xxH (x∗(t),u∗(t),λ∗(t)) ,

S(t) = ∇uxH (x∗(t),u∗(t),λ∗(t)) ,

R(t) = ∇uuH (x∗(t),u∗(t),λ∗(t)) ,

T = ∇2C(x∗(1)).

Subscripts are used to denote the value of these matrices at

the collocation points:

Ai = A(τi), Bi = B(τi), Qi = Q(τi)

Si = S(τi), Ri = R(τi).

With this notation, the 7 components of ∇T ∗[X,U,Λ] are
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as follows:

∇T ∗
0 [X,U,Λ] = X0,

∇T ∗
1i[X,U,Λ] =





N
∑

j=1

DijXj



 − AiXi − BiUi,

∇T ∗
2 [X,U,Λ] = XN+1 − X0

−
N

∑

j=1

ωj(AjXj + BjUj),

∇T ∗
3 [X,U,Λ] = ΛN+1 − Λ0

+
N

∑

j=1

ωj(A
T

j Λj + QjXj + SjUj),

∇T ∗
4i[X,U,Λ] =





N+1
∑

j=1

D†
ijΛj





+AT

i Λi + QiXi + SiUi,

∇T ∗
5 [X,U,Λ] = ΛN+1 − TXN+1,

∇T ∗
6i[X,U,Λ] = −(ST

i Xi + RiUi + BT

i Λi),

where 1 ≤ i ≤ N .

We now need to show that the linearized problem (16)

has a solution, and then analyze its stability with respect to

the parameter Y. To carry out this analysis, a norm must

be chosen for Y. There is one component of Y, denoted yi

where 0 ≤ i ≤ 6, for each component of T . The following

norm is employed in the analysis:

‖y‖Y = |y0|+ |y2|+ |y3|+ |y5|+‖y6‖∞+‖y1‖ω +‖y4‖ω.

Again, | · | denotes the Euclidean norm, while the ω-norm

used for y1 (state dynamics) and y4 (costate dynamics) is

defined in (14).

Part of the linearized problem corresponds to the linearized

dynamics for the state and the costate. These are analyzed

using assumption (A2) and properties (P1) and (P2). In

particular, for each q0 and q1 ∈ R
n and p ∈ R

nN with

pi ∈ R
n, 1 ≤ i ≤ N , the linear system





N
∑

j=0

DijXj



 − AiXi = pi 1 ≤ i ≤ N,

XN+1 − X0 −
N

∑

j=1

ωjAjXj = q1, X0 = q0,

has a unique solution X ∈ R
n(N+2). Moreover, there exists

a constant c, independent of N , such that

‖X‖∞ ≤ c(|q0| + |q1| + ‖p‖ω).

The costate dynamics have an analogous bound; namely,

for each q0 and q1 ∈ R
n and p ∈ R

nN with pi ∈ R
n,

1 ≤ i ≤ N , the linear system




N+1
∑

j=1

D†
ijΛj



 + AT

i Λi = pi 1 ≤ i ≤ N,

ΛN+1 − Λ0 +
N

∑

j=1

ωjA
T

j Λj = q0, ΛN+1 = q1,

has a unique solution Λ ∈ R
n(N+2). Moreover, there exists

a constant c, independent of N , such that

‖Λ‖∞ ≤ c(|q0| + |q1| + ‖p‖ω).

These stability results for the linearized state dynamics

and the linearized costate dynamics enter into the complete

analysis of the linearized problem (16). The analysis of the

linearized problem is accomplished through an analysis of

the following related quadratic programming problem:

minimize 1
2Q(X,U) + L(X,U,Y)

subject to
∑N

j=1 DijXj = AiXi + BiUi − y1i,

Ui ∈ U , 1 ≤ i ≤ N,
X0 = −y0,
XN+1 = X0 − y2

+
∑N

j=1 ωj (AjXj + BjUj) .

Here the quadratic and linear terms in the objective are

Q(X,U) = XT

N+1TXN+1

+
∑N

i=1 ωi

(

XT

i QiXi + 2XT

i SiUi + UT

i RiUi

)

,

and

L(X,U,Y) = XT

0

(

y3 −
∑N

i=1 ωiy4i

)

−yT

5 XN+1 +
∑N

i=1 ωi

(

yT

4iXi − yT

6iUi

)

.

It can be shown that the first-order optimality conditions

for the quadratic program reduce to (16); and conversely,

when the convexity condition (A1) holds, a solution of (16) is

also the solution of the quadratic program. Using (A1), (A2),

(P1), and (P2) we can then analyze the effect of Y on the

solution of (16). More precisely, the change (∆X,∆U,∆Λ)
in the solution of (16) corresponding to a change ∆Y in Y

satisfies

max {‖∆X‖∞, ‖∆U‖∞, ‖∆Λ‖∞} ≤ c‖∆Y‖Y ,

where c is independent of N .

D. Final results

The final step is to combine the bound for the residual with

the stability of the linearized problem to obtain Theorem 1.

Existing results in the literature that lead to Theorem 1

include [10, Proposition 3.1], [11, Thm. 3.1], [12, Thm. 1],

[13, Prop. 5.1], and [14, Thm. 2.1]. The proof that the

solution to the discrete problem (2) is a local minimizer is

a small modification of the analysis in [5, Thm. 2.1].
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III. CONCLUSIONS

If the derivatives of a solution (x∗,u∗) of (1) are uni-

formly bounded, then we can take η = ∞ in Theorem 1

to see that the error in the solution to the discrete problem

(2) decays exponentially fast like 1/NN−1/2. For control

problems where the optimal control is Lipschitz continuous

in time, we often have (x∗,λ∗) ∈ H2(Ω; Rn). In this case,

Theorem 1 shows that the error decays like 1/
√

N . Hence,

there is convergence in a case where our earlier theory in [5]

did not yield convergence. Our most recent work [2] develops

a convergence theory for collocation at the Radau quadrature

points, and treats hp-methods where the problem domain

is partitioned into subdomains and a different polynomial

approximates the state variable on each subdomain.
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