2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

A pseudospectral method for optimal control based on collocation at
the Gauss points*

William W. Hager', Jun Liu?, Subhashree Mohapatra,® Anil V. Rao,* and Xiang-Sheng Wang®

Abstract— A Gauss collocation method is developed for solv-
ing optimal control problems with convex control constraints.
The method has a local exponential convergence rate when
the solution of the continuous problem is smooth and the
Hamiltonian possesses a convexity property.

I. INTRODUCTION

This paper is an abbreviated version of results that just
appeared in [1] along with some more recent extensions
developed in [2]. The focus of the work is on optimal control
problems of the form

minimize C(x(1)

)
subject to  x(t) = f(x(¢),u(t)), u(t) €U, )
te, x(—1)=x,
(x,u) € CH(Q; R") x CO(Q; R™),
where ) = [—1,1], the control constraint set I/ C R™ is

closed and convex with nonempty interior, the state x(t) €
R™, % denotes the derivative of x with respect to ¢, xq is
the initial condition which we assume is given, f : R™ X
R™ — R”, C : R® — R, and C'(Q2; R") is the space
of [ times continuously differentiable functions mapping €2
to R™. It is assumed that f and C' are at least continuous.
The problem domain is chosen to be [—1, 1] since the Gauss
points lie on this interval, which facilitates the formulation
of the collocation scheme. A general interval [T7,T5] can
be transformed to [—1,1] by the change of variables s =
(2t =Ty —To)/(To — T1).

We approximate each component of the state x by a
polynomial in Pp, the space of polynomials of degree
at most IN. Let Py denote the n-fold Cartesian product
Pn X ... x Py. In a collocation scheme, the dynamics are

*The authors gratefully acknowledge support by the Office of Naval
Research under grants N00O14-15-1-2048 and N00014-18-1-2100, by the
National Science Foundation under grants DMS-1522629, CBET-1404767,
and DMS-1819002, and by the U.S. Air Force Research Laboratory under
contract FA8651-08-D-0108/0054.

IWilliam W. Hager is with the Department of Mathematics, University
of Florida, Gainesville, FL 32611-8105 hager@ufl.edu

2Jun Liu is with the Department of Mathematics and Statistics, Southern
Ilinois University Edwardsville, Edwardsville, IL 62026
juliu@siue.edu

3Subhashree Mohapatra is with the Department of Mathematics, Univer-
sity of Florida, Gainesville, FL 32611-8105
subhashree3mohapatra@gmail.com

4Anil V. Rao is with the Department of Mechanical and Aerospace
Engineering, Gainesville, FL 32611-6250
anilvrao@ufl.edu

5Xiang-Sheng Wang is with the Department of Mathematics, University
of Louisiana at Lafayette, Lafayette, LA 70503
xswang@louisiana.edu

978-1-5386-1395-5/18/$31.00 ©2018 IEEE

enforced at a set of points 7;, 1 <4 < N. This leads to the
following discretization of (1) (see [3], [4]):

minimize  C(x(1))
subject to  x(7;) = f(x(7), w;), w; €U, @)
1<i<N,
x(—1) =x9, x€Pk.

The parameter u; represents an approximation to the control
at time 7;. The dimension of Py is N + 1, and there are
N + 1 equations in (2) corresponding to the collocated
dynamics at N points and the initial condition. This paper
considers collocation at the Gauss quadrature points, which
are symmetric about ¢ = 0 and satisfy

—l<m<m<...<7ny <+1.
It is also convenient to introduce two noncollocated points

T0 — —1 and TN4+1 = +1

An earlier paper [5] considers collocation at the Gauss
points, but without control constraints. In this paper, we
introduce a control constraint u(t) € U, which leads to
profound changes in the analysis. When control constraints
are present, the solution of (1) is typically nonsmooth,
and the assumption in [5] that the problem solution has
at least four derivatives is too strong. The earlier analysis
in [5] employed sup-norms and a bound for a Lebesgue
constant established in [6]. The new analysis for the control
constrained problem employs the 2-norm and Sobolev best
approximation results such as those in [7], [8].

The convergence analysis for (2) entrails an analysis of
the relationship between the Pontryagin minimum principle
associated with a solution of the continuous problem (1) and
the Karush-Kuhn-Tucker (KKT) conditions associated with
a solution of the finite dimensional programming problem
(2). Let (x*,u*) denote a local minimizer for (1) and let A*
denote the solution of the linear costate equation

N(t) = =V H(x"(1),u" (1), A"(t), 3)
A1) = Vo), )
where H is the Hamiltonian defined by H(x,u,A) =

ATf(x,u). Under suitable assumptions, the minimum prin-
ciple asserts that

—Vu H(x"(t),u"(t), A*(t)) € Ny(u*(t)) (5)

for all t € ), where V denotes gradient and IV, is the normal
cone. For any u € U,

Ny(u) = {w eR™:w'(v—u) <0 for all v €U},
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while Ny(u) =0 if u g U.

It can be shown that the KKT conditions for (2) are
equivalent to the existence of a polynomial A € Py such
that

Am) = =VoH (x(m),u;, A1), 1 <i < N, (6)
A1) VCO(x(1)), 7
Nu(ui) > —-V.,H (X(Ti),uq;, )\(Tz)) , 1 <i < N. (8)

Thus the KKT conditions are equivalent to the continuous
minimum principle enforced at the collocation points.

The following assumptions are utilized in the convergence
analysis.

Al. For some « > 0, the smallest eigenvalue of the Hessian
matrices V2C(x*(1)) and

Vo H (" (1), 0 (1), A (1))

are greater than «, uniformly for ¢ € [0, 1].

A2. For some § < 1/2, the Jacobian of the dynamics
satisfies
[VLE£(x*(t),u"(t))l|o < B
and

IVaf(x* (), u" () oo < 8

for all t € 2 where ||-||~ is the matrix sup-norm (largest
absolute row sum), and the Jacobian V,f is an n by n
matrix whose i-th row is (V f;).

The condition (A2) seems to be a strong requirement for a
solution of the continuous control problem. However, when
this condition is violated, it may not be possible to solve for
the discrete state in terms of the discrete control in (2). In
fact, the discrete dynamics could be infeasible even when
the continuous dynamics is feasible.

To motivate the need for this condition, suppose that
f(x,u) = Ax + g(u) where A is an n by n matrix. Since
the dynamics are linear in the state, it is possible to solve for
the continuous state as a function of the control whenever
g(u) is absolutely integrable, regardless of the choice for A.
Although the dynamics in the discrete approximation (2) are
also linear in the state, it may not be possible to solve for
the discrete state in terms of the control, as we will show.
On the other hand, the condition ||A||o < 1/2 ensures that
the discrete state is uniquely determined from the control,
independent of the degree of the polynomials used in the
discrete problem.

In general, (A2) could be replaced by any condition that
ensures the solvability in the discrete linearized dynamics
for the state in terms of the control, and the stability of
this solution under perturbations in the dynamics. In more
recent work [2] on hp-collocation schemes, (A2) is essen-
tially removed by partitioning the original domain 2 into
subdomains with a different polynomial on each subdomain.
More precisely, the condition 5 < 1/2 of (A2) is replaced
by hf3 < 1/2 where h is the subdomain width over 2, and
when hf3 < 1/2, convergence occurs when the degree of the
polynomials increase on each subdomain.

To better understand the dynamics in the discrete problem
(2), we need to introduce the differentiation matrix D. This
is the NV by N + 1 matrix defined by

N
D;; = Lj(n), where L;(T) := H U
1=
(=%

)

Tj*Tl

Given a vector p € RV*1, let p € Py be the polynomial that
satisfies the NV + 1 conditions p(7;) = p;, 0 < i < N. The
differentiation matrix has the property that (Dp); = p(7;),
1 <4 < N. Our differentiation matrix is nonsquare since
the derivative at 79 = —1 does not appear in the discrete
problem (2). The collocation conditions are only required to
hold at the NV Gauss points.

Given x € PR, let us define X; = x(7;). By the definition
of the differentiation matrix,

N
X(Tj) = ZD”XJ
j=0
Hence, the dynamics in the discrete problem (2) can be
reformulated as

N
Z DLJX] = f(Xia U’L')7
j=0

where for consistency we let U; denote the discrete control
approximation at ;.

Suppose that the continuous variables x and u are scalars
and the continuous dynamics has the form f(x,u) = Az +
g(u). If D; is the i-th column of D, Dy, is the submatrix
of D corresponding to columns 1 through N, X;.x is the
vector with components X;, 1 < i < N, and g(U) is the
vector with components g(U;), 1 < i < N, then the discrete
dynamics in (2) has the form

Di.nXin = AXi:v + 9(U) — Do Xo.

If X\ is an eigenvalue of D;., then the coefficient matrix
D;.ny—A of X is singular, and generally it is not possible
to solve for X;. in terms of g(U) and X.

Nonetheless, the differentiation matrix has two important

properties which are established in Appendix 1 of [2]:

(P1) D;.y is invertible and HD;}VHOO < 2.

(P2) If W is the diagonal matrix containing the Gauss
quadrature weights w;, 1 < ¢ < N, on the diagonal, then
the rows of the matrix [W1/2Dy,5]~! have Euclidean
length bounded by /2.

By (P1), we have
Di.ny — AL =Dy.n(I- D7 p),

which is invertible when || < 1/2 since |A||D7 y e < 1.
For the dynamics f(x,u) = Az + g(u), (A2) reduces to
the condition |A| < 1/2. In general, when (A2) holds, the
dynamics is locally, uniquely solvable for X;.y in terms of
the discrete control U and the initial condition Xj.
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If xV € PY is a solution of (2) associated with the discrete
controls u;, 1 < i < N, and if AN € Py satisfies (6)—(8),
then we define

XN = [XN(f]-)a XN(Tl)’ ceey XN(TN)a XN(+1)L
X*  =[x*(-1), x*(m), ..., x*(7n), x*(+1)],
UN [ up, ey uy 5
U =] u*(m), ..., u*(7n) 1,
AN AN(=1), AN(r), ..., AN(rwy), AN(+1)],
A =X (=1), A(m), ..., AX(7w), A*(+1)]

The following convergence result relative to the vector oo-
norm (largest absolute element) is essentially established in
[1]. In the statement of the theorem, |- [ (o; r») denotes the
seminorm defined by
5 1/2
dt) |

1
1X|7er (02 R = </
—1

Theorem 1. Suppose (x*,u*) is a local minimizer for the
continuous problem (1) with (x*, X*) € H"(Q2; R™) for some
n > 2. If (A1)-(A2) hold, then for N sufficiently large, the
discrete problem (2) has a local minimizer x¥ € P% and
u € R™Y, and an associated multiplier AN € PV, satisfying
(6)—(8),; moreover, there exists a constant ¢ independent of
N and n such that

max {[| XY — X* oo, [UY = U*|oc, [[AY — A*loc }

c\P=3/2 * *
= (N) (1x*[3er (s mr) + [A*Jrp (s my) 5 (10)

where p := min{n, N + 1}.

dPx(t)
dtp

One difference between this statement of the convergence
rate bound and the statement of the analogous result in
[1] is that the seminorm here is replaced by the full norm
|- l7¢» (; mny in [1]. The full norm involves all the derivatives
up to order p, while the seminorm only involves the p-th
order derivative. In order to analyze convergence in an hp-
setting where the domain (2 is partitioned into subdomains
as in [2], it is important to state the error bound in a
more precise way using seminorms since the error depends
on both the width of the subdomains and the degree of
the polynomials, and the impact of the subdomain size on
the error is connected with all the derivatives appearing in
the error bound. All the lower order derivatives should be
eliminated from the error bound in order to describe more
precisely the dependence of the error on the subdomain size.
This is accomplished using a result such as Proposition 3.1
of [8] where the error in best approximation is expressed
using a seminorm.

Also, when [1] was published, (P2) had not yet been
proved. Hence, (P1) and (P2) appear as assumptions in
Theorem 1.1 of [1], while these assumptions are removed
in Theorem 1 above since these properties have now been
established in general.

II. ERROR ANALYSIS

The derivation of Theorem 1 proceeds as follows.

A. Reformulate the KKT conditions for the discrete prob-
lem (2) as a generalized equation of the form

T7(X,U,A) € F(U), (11)

where (X, U, A) correspond to the discrete state,
control, and costate evaluated at the collocation points
or at the end points of the interval [—1, 1].

B. Estimate the distance d* from 7 (X*,U* A*) to
F(U*). The bound we obtain for d* has the same
form as the right side of (10).

C. Linearize (11) around (X*,U* A*) and use (Al)
and (A2) to show that the linearization has a unique
solution which depends Lipschitz continuously on per-
turbations.

D. Combine these results to obtain (10). Further analysis
based on (Al) shows that the solution of the general-
ized equation is a local minimizer of (2).

A. The Generalized Equation

The generalized equation corresponds to (6)—(8) along
with the constraints of (2). The 7 in (11) has 7 components
and F is composed of 7 sets. The sets forming F are

Fozflz...:f5:{0},

and

Fei(U) = Ny(U;), 1<i<N.

The 7 components of 7 are as follows:

To(X,U,A) = Xg— xo,
N
ﬂi<X7 U, A) = Z ngXj - f(Xia Ui)7
j=0
N
L(X,U,A) = Xy —Xo— Y wif(X;,U)),
j=1
T3(X,U,A) = Ani1—Ag
N
+Zwiv1H(Xi7Ui7Ai)7
i=1
N+1
Tu(X,U,A) = (> DLA; | +V.H(X;, Uy, Ay),
j=1
(X, U,A) = Ani1—VCO(Xni1),
T6:(X,U,A) = -V, H(X;,U;,Ay),

where 1 <i < N and DT is defined by

N
_ wj T T _ 2 : T
Dij - (w) Djiv Di,N+1 - Dij’
K3 j:1

1 <4 < N. 7 corresponds to the initial condition, 7; yields
the discrete state dynamics, 75 is a quadrature formula giving
the discrete state at ¢ = 1, 73 is a quadrature formula giving
the discrete costate at t = —1, 7 yields the discrete costate
dynamics, 75 corresponds to the terminal condition for the
costate, and 7g corresponds to the minimum principle.
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B. Estimate for the Residual

Next, we start with a continuous solution (x*,u*) of
(1) and the associated costate A*, and evaluate them at
the collocation points to form the vectors (X*,U*, A*).
The goal is to obtain a bound for the distance d* from
T(X*,U*, A*) to F(U*). By (5), it follows that

_VUH(vaU;kv A;k) € NM(U:)a

which implies that the associated residual vanishes. The
components of the generalized equation where the residual
is nontrivial correspond to the differential equations. Let X*
denote the vector whose i-th component is x*(7;), 0 < i <
N. Since x* satisfies the dynamics in (1), it follows that

X; = f(X;,U;) (12)

for 1 <7< N.

Let x! denote the polynomial in ‘Px that passes through
x*(r;) for 0 < j < N, let X! denote the vector with
components X§ = x*(1;), 0 < j < N, and let X! denote
the vector with components Xg =x!(7j), 1 < j < N. With
these definitions and due to the property of the differentiation
matrix, we have

N N )
> DX | = | > DuXj | =X,
j=0 =0

1 <i < N. Combine (12) and (13) to obtain
T (X*, U A*) = X! - X*

13)

Since the derivative of a function is typically not equal to
the derivative of its interpolant, the residual 7; (X*, U*, A*¥)
is nonzero in general.

To measure the size of the residual associated with the
dynamics, we use the w-norm defined by

N 1/2
2|2 = (Zwizi|2> , zeR™, (14)
i=1
where | - | is the Euclidean norm. Hence, we have
17X, U A o = X = Xl

Let (x*)7 € P%_, denote the interpolant that passes through
%x*(r;) for 1 < i < N. Since both %! and (x*)7 are
polynomials of degree N — 1 and Gaussian quadrature is
exact for polynomials of degree 2N — 1, it follows that

X=X o = %" = (%)l

%" — %*|| 220 + I%X* — (X*)7 || 22(0)-

IN

The L? error in polynomial interpolation has classic bounds
such as

15 = (&%) Ml 220 < (e/N)PHx hyen(e),

(see (5.4.33) in [9]). The estimation of the error in the
derivative of the interpolant, however, is more subtle. In [1]
we establish the following bound, where again the full norm
is replaced by the seminorm:

Lemma 1. If u € H"(QY) for some n > 1, then there exists
a constant c, independent of N and n, such that
Ju— ') < (/NP lub), (15

where p = min{n, N + 1} and u' € Py is the interpolant
of u satisfying u’(7;) = u(r;), 0 <i < N, and N > 0.

Lemma 1 relies both on results of [7] and an observation of
Yvon Maday given in Appendix 2 of [1]. Applying Lemma 1
to the dynamics of both the state and the costate, we obtain
the following estimate for the distance from 7 (X*, U*, A*)
to F(U*).

Corollary 1. If x* and A\* € H"(Q); R™) for some 1 > 2,
then there exists a constant c, independent of N and n, such
that

dist[7 (X*, U*, A*), F(U*)]

p—3/2
()™ e Wl

where p = min{n, N + 1}.

C. Stability of the Generalized Equation

By Corollary 1, the distance d* from 7 (X*,U* A*) to
F(U*) tends to zero as N tends to infinity. To obtain Theo-
rem 1, we need to analyze the stability of the generalized
equation with respect to a small parameter. The analysis
entails a study of a linearized version of the generalized
equation (11): Given a parameter Y, the linearized problem
is to find (X, U, A) such that

VT(X*, U, A")[X,U,Al+Y € F(U). (16)
Here VT (X*,U*, A*)[X, U, A] denotes the derivative of 7
evaluated at (X*, U*, A*) operating on [X, U, A]. The term
VT (X*,U* A*) will be abbreviated VT *.
Let us introduce the following matrices:

A(t) = VuEx*(t),u*(1)),

B(t) = V. f(x*(t),u*(t)),

Q(t) = VaH(x*(t),u"(t),A"(1)),
S(t) = VuH (x*(t),u"(t),A"(t)),

R(t) = VuuH (x*(t),u*(t),\*(t)),
T V20 (x*(1))

Subscripts are used to denote the value of these matrices at
the collocation points:

With this notation, the 7 components of V7 *[X, U, A] are
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as follows:

VI, X, U,A] = Xo,
N
VT;[X,U,A] = Z D;;X; | — AiX; - B;U;,
j=1
VI;[X,U,Al = Xy —Xo
N
=) wi(AX; + B;U;),
j=1
VI [X,U,A] = Ans1— Ao
N
+Y wi(AJA; + QX +S,U;),
j=1
N+1
VI;X,UA] = | Y DLA;
j=1
+AJA; + QX +S,U;,
VI [X, U, Al = Anyi—TXyi1,
VT [X, U, Al = —(S/X;+R,U; +BjA)),

where 1 < < N.

We now need to show that the linearized problem (16)
has a solution, and then analyze its stability with respect to
the parameter Y. To carry out this analysis, a norm must
be chosen for Y. There is one component of Y, denoted y;
where 0 < ¢ < 6, for each component of 7. The following
norm is employed in the analysis:

I¥lly = lyol+Ily2l+lys|+lys|+l[yelloo + l[y1llw+[lyall-

Again, | - | denotes the Euclidean norm, while the w-norm
used for y; (state dynamics) and y,4 (costate dynamics) is
defined in (14).

Part of the linearized problem corresponds to the linearized
dynamics for the state and the costate. These are analyzed
using assumption (A2) and properties (P1) and (P2). In
particular, for each qp and q; € R" and p € RN with
p; € R", 1 <¢ < N, the linear system

N
ZDinj —AX; = pi 1<i<N,
=0

N

Xny1— Xo — ijAij = qi1, Xg=4qp,

=1

has a unique solution X € R™N+2)  Moreover, there exists
a constant ¢, independent of IV, such that

1Xloo < e(laol + [ar] + [IP[lw)-

The costate dynamics have an analogous bound; namely,
for each qp and q; € R™ and p € R™" with p; € R,

1 <4 < N, the linear system

N+1

> DIA; | +AJA; = p; 1<i<N
j=1

)

N
AN+1—A0+ijAJTAj = do, Any1=aq,

Jj=1

has a unique solution A € R*V+2) Moreover, there exists
a constant ¢, independent of IV, such that

[Alloe < clqol + |ar| + [Ip]l)-

These stability results for the linearized state dynamics
and the linearized costate dynamics enter into the complete
analysis of the linearized problem (16). The analysis of the
linearized problem is accomplished through an analysis of
the following related quadratic programming problem:

minimize Q(X,U) + £(X,U,Y)

subject to Zjvzl Din]‘ =A;X; +B,U, — Yii,
U,eld, 1<i<N,
XO = —Yo,

XNt1 < Xo—y2
+22m1wi (A X; +B;Uj ).

Here the quadratic and linear terms in the objective are
O(X,U) = X, TXy 11
+ 30 wi (XTQiX; +2XTS,U; + UTR,U;),
and
LX,U,Y) = XOT (YS - Zf\il wi}’4i)
~ys X1+ Zzlil Wi (yLXi - ygz’Ui) .

It can be shown that the first-order optimality conditions
for the quadratic program reduce to (16); and conversely,
when the convexity condition (A1) holds, a solution of (16) is
also the solution of the quadratic program. Using (A1), (A2),
(P1), and (P2) we can then analyze the effect of Y on the
solution of (16). More precisely, the change (AX, AU, AA)
in the solution of (16) corresponding to a change AY in Y
satisfies

max {[|AX]|oo, [AUl[o, [AA[loc} < ¢|AY ||y,

where c is independent of N.

D. Final results

The final step is to combine the bound for the residual with
the stability of the linearized problem to obtain Theorem 1.
Existing results in the literature that lead to Theorem 1
include [10, Proposition 3.1], [11, Thm. 3.1], [12, Thm. 1],
[13, Prop. 5.1], and [14, Thm. 2.1]. The proof that the
solution to the discrete problem (2) is a local minimizer is
a small modification of the analysis in [5, Thm. 2.1].
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III. CONCLUSIONS

If the derivatives of a solution (x*,u*) of (1) are uni-
formly bounded, then we can take n = oo in Theorem 1
to see that the error in the solution to the discrete problem
(2) decays exponentially fast like 1/N™V~1/2. For control
problems where the optimal control is Lipschitz continuous
in time, we often have (x*, A\*) € H2({;R"™). In this case,
Theorem 1 shows that the error decays like 1/v/N. Hence,
there is convergence in a case where our earlier theory in [5]
did not yield convergence. Our most recent work [2] develops
a convergence theory for collocation at the Radau quadrature
points, and treats hp-methods where the problem domain
is partitioned into subdomains and a different polynomial
approximates the state variable on each subdomain.
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