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Modified Radau Collocation Method for Solving
Optimal Control Problems with Nonsmooth Solutions
Part I: Lavrentiev Phenomenon and the Search Space

Joseph D. Eide," William W. Hager,* and Anil V. Rao®
University of Florida, Gainesville, FL 32611

Abstract— A new method is developed for solving optimal
control problems whose solutions contain a nonsmooth optimal
control. The method developed in this paper employs a modified
form of the Legendre-Gauss-Radau (LGR) orthogonal direct collo-
cation method in which an additional variable and two additional
constraints are included at the end of a mesh interval. The
additional variable is the switch time where a discontinuity occurs.
The two additional constraints are a collocation condition on each
differential equation that is a function of control along with a
control constraint at the endpoint of the mesh interval that defines
the location of the nonsmoothness. These additional constraints
modify the search space of the NLP in a manner such that
an accurate approximation to the location of the nonsmoothness
is obtained. An example with a nonsmooth solution is used
throughout the paper to illustrate the improvement of the method
over the standard Legendre-Gauss-Radau collocation method.

I. INTRODUCTION

Over the past few decades, direct collocation methods have
become a popular tool to computationally solve nonlinear
optimal control problems. In a direct collocation method,
the state and control of a continuous time optimal control
problem are discretized at a set of points along a given time
interval. The infinite-dimensional optimal control problem is
then transcribed to a finite-dimensional nonlinear program-
ming problem (NLP) which can be solved using established
NLP solvers [1], [2]. In recent years, a significant amount of
research has focused on direct Gaussian quadrature orthogonal
collocation methods [3]-[6] where the dynamics are collocated
at points associated with a Gaussian quadrature. Most com-
monly used Gaussian quadrature methods employ Legendre-
Gauss (LG) points [3], Legendre Gauss Radau (LGR) points
[4]-[7], and Legendre-Gauss-Lobatto (LGL) points [8]. In
addition, in recent years a convergence theory has been
developed using Gaussian quadrature collocation. This the-
ory has led to recent work where it has been shown that,
under certain assumptions of the smoothness of solution and
coercivity, an hp Gaussian quadrature method that employs
either LG or LGR collocation points converges to a local
minimizer of the optimal control problem [9]-[13].

While Gaussian quadrature orthogonal collocation meth-
ods are well suited to solving optimal control problems
whose solutions are smooth, it is often the case that the
solution of an optimal control problem has a nonsmooth
optimal control [14]. The difficulty in solving problems with
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discontinuous control lies in determining when the discon-
tinuity occurs. For example, dynamical systems where the
control appears linearly or problems that have state inequal-
ity path constraints often have solutions where the control
and state may be nonsmooth. One approach to handling
nonsmoothness is to employ a mesh refinement method
where the optimal control problem is partitioned into a mesh
and a mesh that meets a specified solution accuracy tolerance
is obtained iteratively. In the context of Gaussian quadrature
collocation, so called hp-adaptive mesh refinement meth-
ods [15]-[19] have been developed more recently in order
to improve accuracy in a wide variety of optimal control
problems including those whose solutions are nonsmooth.
It is noted, however, that mesh refinement methods often
place an unnecessarily large number of collocation points
and mesh intervals near points of nonsmoothness in the
solution. Thus, it is beneficial to develop techniques that take
advantage of the rapid convergence of a Gaussian quadrature
collocation methods in segments where the solution is smooth
and only increase the size of the mesh when necessary (thus,
maintaining a smaller mesh than might be possible with a
standard mesh refinement approach).

Now, as it turns out, for optimal control problems where
the solution is nonsmooth the convergence theory developed
in Refs. [9]-[13] is not applicable. Consequently, when the
solution of an optimal control problem is nonsmooth, an hp
method may not converge to a local minimizer of the optimal
control problem. A well studied class of problems where
the smoothness and coercivity conditions found in Ref. [10]
are not met are those where the control appears linearly in
the problem formulation [14], [20]-[22]. One approach for
estimating the location of discontinuities is to introduce a
variable called a breakpoint [23] that defines the location of
a discontinuity and to include this variable in the NLP. The
key issue that arises by introducing a breakpoint is that the
NLP has an extra degree of freedom. As a result, the NLP
may converge to a solution where this additional variable
does not correspond to the location of the nonsmoothness.
Next, Ref. [24] introduced a variable that defines the switch
time and collocate the dynamics at both the end of a mesh
interval and the start of the subsequent mesh interval using
Legendre-Gauss-Lobatto collocation. Note, however, that the
LGL method used in Ref. [24] employs a square and singu-
lar differentiation matrix. Therefore, unlike the approach of
Ref. [23], which used Legendre-Gauss collocation, the scheme
used in Ref. [24] is not a Gauss quadrature integrator.

This goal of this research is to develop a method that em-
ploys Gaussian quadrature collocation for accurately solving
optimal control problems whose solution are nonsmooth. In
this paper, which is Part I of a two-part sequence, an ap-
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proach is developed to improve upon the approach originally
developed in Ref. [23] by gaining a better understanding as to
why an incorrect location of the nonsmoothness is obtained in
the optimal control when solving an optimal control problem
using Legendre-Gauss-Radau collocation. Specifically, it is
shown in this paper that the incorrect discontinuity location
is obtained due to so called Lavrentiev phenomenon [25].
Lavrentiev phenomenon occurs in a practical situation when
it is desired to minimize a numerical approximation of a
continuous (functional) optimization problem. Whenever a
numerical approximation of a functional leads to a minimizer
that is strictly greater than or less than the true minimizer of
the functional, the continuous optimization problem may be
subject to Lavrentiev phenomenon [26], [27]. Simple examples
of problems that possess Lavrentiev phenomenon are given
in Ref. [28], and the concept of Lavrentiev phenomenon has
been extended to optimal control through the Lavrentiev gap
[20]. The reason that the approximation of the continuous
optimization problem has a higher or lower optimal cost
arises from the possibility that the space over which the
numerical optimization is performed may be different from
the space over which the optimization needs to be performed
in order to converge to the optimal solution. Therefore, the ex-
istence and the behavior of Lavrentiev phenomenon depends
upon the choice of the approximation method. Moreover,
any numerical scheme that gives rise to Lavrentiev phe-
nomenon must somehow be augmented to compensate for
any errors caused by the Lavrentiev phenomenon itself. An
initial exploration of Lavrentiev phenomenon using Gaussian
quadrature collocation methods was given in Ref. [27]. In
order to properly account for Lavrentiev phenomenon it is
first necessary to understand the circumstances in which it
occurs for any given numerical scheme.

The approach developed in this paper is fundamentally
different from the approaches developed in Refs. [23] and
[24]. The key difference between the approach of this paper
and that of Ref. [23] is that the search space is modified
to include collocation constraints on the differential equa-
tions that are a function of control whereas the approach
of Ref. [23] introduces no such additional collocation con-
straints. Moreover, the key difference between the approach
of this paper and the work of Ref. [24] is that the work of
Ref. [24] collocates all of the differential equations at the end
of a mesh interval where a discontinuity may lie whereas in
this work collocation constraints are included at the end of
a mesh interval on only those differential equations that are
a function of control. Second, the method of Ref. [24] uses
Legendre-Gauss-Lobatto which employs a square and singu-
lar differentiation matrix whereas the approach developed in
this paper employs Legendre-Gauss-Radau collocation where
the differentiation matrix is rectangular and has been shown
previously to be a Gaussian quadrature integrator [4].

This paper is organized as follows. Section II provides a
brief introduction to solving optimal control problems using
an LGR collocation method. Section III examines a motivating
example to demonstrate the difficulties of solving optimal
control problems with discontinuities using LGR methods.
Section IV provides a brief introduction to Lavrentiev phe-
nomenon and examines the polynomial search space of the
LGR discretization scheme for an example problem. Section
VI introduces the modified LGR method. Finally, the motivat-

ing example studied in Section III is revisited using the newly
developed method to show the improvement in locating
the nonsmoothness in the numerical approximation using
the modified LGR method. Finally, Section VIII provides
conclusions on this work.

II. LEGENDRE-GAUSS-RADAU COLLOCATION

In this paper we focus on second-order controlled dynam-
ical systems of the form %(7) = f(x(7),%(7),u(r)). Such a
form is quite broad in applicability in that it arises frequently
in mechanical systems (Newton-Euler or Lagrangian mechan-
ics). With such a class of dynamical systems as the focus,
consider the following optimal control problem defined on
T € [—1,+1]. Minimize the cost functional

T = M(x(=1),v(=1),x(+1),v(+1))

“ )
+ [ L&(7),v(7),u(r))dr,
—1
subject to the dynamic constraints
x(r) = (). o
v(r) = fx (1), v(7),u(n)),
inequality path constraints
c(x(7), v(7),u(r)) <0, ©)

and boundary conditions
b(x(=1), v(=1),x(+1), v(+1)) = 0, ©

where (x(7),v(7)) € R*" is the state (such that x(7) € R"
and v(7) € R"), u(r) € R™ is the control, f : R" xR" xR™ —
R", ¢:R*xR"xR™ = R, b : R"xR” xR" x R" — R”, M :
R"xR"xR"xR" - R, and £ : R" x R” x R™ — R. For con-
venience with the mathematical development that follows, all
vector quantities are treated as row vectors. For example, x(7)
and u(7) are defined as row vectors, respectively, as

a1(7) - xn(r) | €RT,
ur () um(r) | €R™.

All other vector quantities are defined in a similar manner to
that shown for x(7) and u(7) given in Eq. (5).

Suppose now that the state (x(7), v(7)) is approximated by
a polynomial of degree at most N. Let ¢; ( = 1,...,N + 1)
be a basis of Lagrange polynomials given by

x(7)
u(r) =

©)

P
tr =11 —
j=1

J#i

i=1,...,N+1.

The ;'™ component of x(7) and v(7) are then approximated
in terms of the Lagrange polynomial basis as

;(7) Xj(r) = Zlév;{ll Xijli(T),
v; () Vi(r) = 30 Vigli(r),
Differentiating x;(7) and v;(7) in Eq. (6) and evaluating the
result at 7 = 7, gives
Xj(r) = S0 Xigli(me) = 200" DirXig,
Vi(r) = S0 Vili(me) = Y00 DiVig

(6)

~
~
~
~

Zi?j(’T) ~

@)
The coefficients D, (i = 1,...,N; k=1,...,N + 1) form
the NV x (N +1) matrix D called the LGR differentiation matrix.
For convenience D is partitioned as

D= [ D, Ds DN+1 ] = [ Di.n DN+1 ]7 (8)
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where D; denotes the i'" column of D, Di.y € is
an N x N matrix formed from the first N columns of D,
and Dy is the last column of D [4]-[6]. Thus, unlike the
state and control, which are treated as row vectors at an
instant of time, in this exposition the differentiation matrix
is dealt with column-wise. Using the row vector convention
for the state and control, the matrices X € RW+D*" and
V € RVHD*" correspond row-wise to the state approxima-
tions at times (71,...,7n+1), while the matrix U € RV*™
corresponds row-wise to the approximations of the control
at times (71,...,7n). Therefore, the matrices X, V, and U
are given respectively

C X,
X = : = XunN+1,
L Xn1 ]
F VLT
vV o= : = Vinii, )
L Vg |
F U,
U = . = Uwn,
L Un

where the notation Y;.; denotes generically rows i through
j of the matrix Y. Also, the derivative approximations X (7)
and V(1) at the k' LGR point 74 are then given as row
vectors, respectively, as

X(r) = [DX], , V() = [DV],. (10)
It is noted that the state approximation is exact if the state is
a polynomial of degree at most N. The LGR approximation
of the state leads to the following nonlinear programming
problem (NLP) that approximates the optimal control prob-

lem given in Eqgs. (1)—(4):
minimize J = M(Xl, \717 XN+1, VN+1)

N
11
+ > wil(Xi, Vi, Uy), -
i=1
subject to
DX — Vl:N = 07
DV—f(XliNyvliN)UliN) = 07 (12)
C(Xl:Nz VI:N7 Ul:N) S 07
b(X1, Vi, Xnt1, Vi) <0,
where w;, (i =1,...,N) are the LGR quadrature weights

(and produce an exact integral if the integrand is a polyno-
mial of degree at most 2NV — 2). Equations (11) and (12) will
be referred to as the standard Legendre-Gauss-Radau collocation
method.

ITI. ILLUSTRATIVE EXAMPLE

To motivate the study of optimal control problems with
nonsmooth solutions and how Lavrentiev phenomenon man-
ifests itself when such problems are solved using the standard
LGR collocation method, consider the following optimal con-
trol problem [15]. Minimize the cost functional

T =1t (13)

subject to the dynamic constraints

i) = Lor)

the inequality path constraints

o) = Lu(r), (14)

(0, =10, =1) < (2(7), v(7), u(7)) < (00,10, +1), (15
and the boundary conditions
(a(=1),2(+1), v(~1), v(+1)) = (10,0,0,0).  (16)

The optimal solution to the optimal control problem given in
Egs. (13)—(16) is

w—F(r+1)° , -l1<T<,
* tf
() = =

" ’ Tr-1? . msrsHL

N —Vro(r+1) , —1<7<7],

vin) = 3 +To(r—1) 7o <7 <+,

_1 ) _1§T§Ts*7

ui(n) = +1, 7m<T<HL,

17)
where 77 = 0 and t} = 2\/z0 ~ 6.32456. It is seen that
the trajectory given in Eq. (17) is piecewise quadratic with
a single switch in the optimal control. Thus, it should be
possible to obtain the exact solution to the problem given in
Egs. (13)—(16) can be obtained by dividing the time interval
into two subintervals as follows. Minimize the objective
functional

J =ty (18)

subject to the dynamic constraints in each interval k € [1, 2],

jj(k)(.r) _ a(k)%fv(k)(T) i)(k)(T) _ a(k)%fu(k)(T),
(19)
the inequality path constraints in each interval k € [1, 2],

(0,-10,-1) < (x(k)(‘r),v(k)(r),u(k)(T)) < (00,10, +1)
(20)
and the boundary conditions

(2 (=1), 2@ (+1),0D (1), P (+1)) = (10,0,0,0),
(1)
where ") = (ts —t9)/(t; —to) and o'? = (t; —ts)/(t; —to).
Suppose now that the LGR collocation method is used to
approximate the two-interval optimal control problem of
Egs. (18)-(21). Because the optimal trajectory is piecewise
quadratic and the LGR quadrature is exact for polynomials of
degree at most 2NV —2, it should be possible to obtain an exact
solution using two collocation points in each subinterval (that
is, N = N = 9) with t, included as a variable in the
optimization. Furthermore, the control function, known as the
approximate control, can be obtained using ©(7) as

u(r) = o(7). (22)

The NLP control and the approximate control obtained by
solving the two-interval NLP are shown in Fig. 1. First, it is
seen that the NLP solver returns a switch time in the control
that is differs significantly from the optimal switch time. In
addition, the optimal cost returned by the NLP solver is less
than the known optimal cost. Finally, the approximate control
given by Eq. (22) exceeds the upper limit, umax, given in
Eq. (20) and, as a result, the NLP returns an approximate
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optimal control solution that is not a member of the ad-
missible set of solutions for the original continuous optimal
control problem described in Egs. (13)-(16). Consequently,
adding the switch time of the control as a variable results a
solution with a lower cost and an incorrect switch time, thus
making it the case that the allowable search space in the two-
interval problem is larger than what should be permissible.
The behavior of obtaining a lower than optimal cost simply
by partitioning the time interval and adding the switch time
as a variable in the optimization is an example of Lavrentiev
phenomenon.

T
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Fig. 1: Optimal control for example given in Egs. 18-21 by

including a variable corresponding to the location of the
switch time, 5, in the control.

IV. SEARCH SPACE AND LAVRENTIEV GAP

Given the incorrect result obtained in solving the two-
interval optimal control problem of Egs. (18)-(21), the goal
of this section is to generate the correct search space for
the modified optimal control problem. Identifying this new
search space allows for the addition of the appropriate con-
straints to the optimal control problem of Egs. (18)—(21). These
new constraints reduce the allowable search space in the LGR
discrete approximation of the continuous optimal control
problem, thus improving the accuracy of both the switch time
in the control and the minimum cost. In order to obtain the
search space, let P be the space of all polynomials of degree
N on the interval [—1, +1]. Furthermore, let A C Py be the
set of all polynomials of degree IV that satisfies the collocation
constraints of (12) at each LGR point (71,...,7n). Next, let
U” be the set of all control functions such that produce
a state approximation that lies in .A. Note that any state
approximation that arises from a control in U? satisfies the
collocation constraints of Eq. (12) at only the LGR points. Let
Y C Pn be the set of polynomials such that any polynomial
Y lies in a neighborhood of a solution to the continuous-time
optimal control problem given in Eqgs. (1)—(4). Finally, let U
be the set of controls such that any element in ¢4 produces
a state that lies in Y. Because Y is a set of polynomials
that lie in a neighborhood of an optimal solution, any state
in Y must also reside in A (that is, Y C .A) while any
control that lies in U must also lie in U? (that is, U C UP).
Suppose now that u* € U and U* € UP are the optimal
controls obtained when solving the LGR NLP with allowable
search spaces U and UP, respectively. Furthermore, let Ju«
and Ju~ be the costs obtained with u* and U”, respectively.
If Ju« < Ju=, then, because U C U?, the solution obtained
solving the LGR NLP with the allowable search space U”
exhibits Lavrentiev phenomenon [25], [26] and the optimal
control problem possess a Lavrentiev gap [20] defined by
UP —U. Figure 2 illustrates the Lavrentiev gap.

Z/[p

ur—-u

Fig. 2: Venn diagram of sets ¥ and U where the Lavrentiev
gap, UP — U, is the shaded region.

It has been shown in Refs. [9]-[13] that under conditions
of smoothness and coercivity, a Gaussian quadrature direct
LGR collocation will converge to a local minimizer of the
continuous-time optimal control problem. A locally minimiz-
ing solution may not, however, be obtained when the prob-
lem does not satisfy such coercivity conditions (for example,
a problem with a nonsmooth optimal control). In such a
situation, the solution of the LGR NLP may have a lower cost
than the cost of the minimizing solution of the continuous-
time optimal control problem. The continuous-time search
space of control is found by considering a set of polynomial
functions that approximate the state of the NLP and then
solving for the control that produce the admissible state
trajectories. Now the control search space of the LGR NLP
arising from the two-interval optimal control problem given
in Egs. (18)—(21) is examined to demonstrate how Lavrentiev
phenomenon can manifest in an LGR approximation of the
continuous time problem.

V. SEARCH SPACE USING STANDARD LGR COLLOCATION

The differentiation matrix D of the optimal control of
Section III using the chosen two-interval two-collocation-
point LGR approximation is given as

1 1 1
Dy Dy Dy 00
D_ D21 D22 D23 0 0 23
=l o Dp® p® p® (23)
© HO Lo
0 O DQI D22 D23

Furthermore, the collocation constraints for the two-interval
approximation approximation of the dynamics given in
Eq. (14) are given as

D 0] X ty [Via|

o ol e e
where V1.4 is the column vector formed using the first four
rows of the column vector V. Now, solving Eq. (14) gives
xz(ty) = xo + f:of v(T)dr. Suppose now that v(7) is approx-
imated as a Lagrange polynomial of degree two [as given
in Eq. (6)] in each mesh interval. Given that the boundary
conditions are fixed values, suppose now that V5, V3, and V4
are defined to be the coefficients of the Lagrange polynomial
approximation of v(7) at the following points, respectively:
(1) the second LGR point in the first mesh interval (that is,
the first interior LGR point in the first mesh interval); (2)
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the non-collocated point at the end of the first mesh interval
(which is the same coefficient as that at the first point of
the second interval); and (3) the second LGR point in the
second mesh interval (that is, the first interior LGR point in
the second mesh interval). Because v(7) is approximated as
a piecewise quadratic, varying these three coefficients results
in polynomial approximations for the integral of v(7) [that
is, 2(7)], and the derivative of v(7) [that is v(7)] along with
a value for t;. A feasible solution of the two-interval LGR
NLP that approximates the optimal control problem defined
in Egs. (13)-(16) for any given values of V3, V3, Vj is obtained
by solving the following system of four linear equations for
the unknowns X», X3 X4, and t;:
Dy D 0] X,
Dy Dy 0 | |Xs
o D Xa| | =-DWas —0.5V5
o D DF| Lts —DP x5 —0.5V4
To understand how the allowable values of the polynomial
approximations of the state compare to feasible solutions
of the corresponding continuous optimal control problem,
it is necessary to analyze the associated polynomial ap-
proximation of the state. Let (X*) (1), V*)(7)) be Lagrange
polynomial approximations of the state in mesh interval k
that satisfy the constraints of Eqs. (14)-(16) at the points
defined by the LGR approximation (that is, the state bounds
in Egs. (15)—(16) are satisfied at the collocation points and any
non-collocated points while the control bounds in Egs. (15)-
(16) are satisfied at all collocation points). Figure 3 shows
all possible control functions, that is, all functions (which in
this case are polynomials because the state approximation is
a polynomial and the dynamics of the example in Section III
are linear in the control) of the form

UR(r) =v®(r). (26)

—-DWay — 050

~|-DWz — 05V, 25)

that arise from state approximations (X*) (), V*)(7)) that
satisfy the constraints of the LGR NLP. It is seen from Fig. 3
that the possible control function that satisfy the LGR NLP
constraints violate the bounds on the control as given in
Eq. (16). Consequently, the set of possible solutions of the
LGR discrete approximation produce control approximations
that are infeasible with respect to the continuous constraints
given in Egs. (15)—(16). The goal of the next section is to
modify the search space for the standard LGR method by
introducing constraints into the NLP that allow the admissi-
ble solutions of the NLP to more closely represent the feasible
solutions of the continuous time problem.

Fig. 3: Possible approximate control functions for the example
given in Egs. (18)—(21).

In order to modify the search space in the LGR collocation
method, suppose now that the functions (X*(7), V*) (7))

defined previously are restricted such that the only possible
control functions U™ (7) are those such that the state and
control approximations, (X (), V® (r), and U*) (7)), are
feasible with respect to the control bounds (“min, Umax)given
in Eq. (16). In other words, the only possible state approxi-
mations are those that are feasible with respect to the control
bounds and simultaneously satisfy all other constraints in the
LGR NLP. Using Eq. (26), a search space different from that of
the standard LGR collocation method can now be constructed
that provides those control function approximations that lead
to state approximations (X®)(7), V¥ (7)) that are feasible
with respect to the constraints of the NLP arising from LGR
collocation.

VI. MODIFICATION OF SEARCH SPACE

Using the results of Section V, additional constraints are
now augmented to the standard collocation method pre-
sented in Section II in order to improve the approximation
of the location of the nonsmoothness in the solution to the
optimal control problem (thereby improving the accuracy of
the solution itself). In particular collocation constraints are
added at the end of a mesh interval where nonsmoothness
occurs, but such constraints are added to only those differen-
tial equations that are a function of control. In this manner, and
as stated in Section I, the approach developed in this research
different fundamentally from the approaches developed in
Refs. [23] and [24].

In order to better understand why collocation constraints
are added to only those differential equations that are a
function of control, consider first the first differential equation
in the example of Section III, that is, consider the dynamics
(1) = wv(7), where z(7) and v(r) are the two components
of the state. Next, let P be the space of all polynomials of
degree N on the domain t € [~1,+1]. Let z(7) € PV and
v(r) € PV. Finally, let (71, ...,7n) be the LGR points and let
Tn+1 = +1 be what was originally the noncollocated point in
the first of the two mesh intervals of the two-interval formula-
tion that was used in Section III. Suppose now that both X (7)
and V/(7) are Lagrange polynomial approximations of degree
N as given in Eq. (6). Then, the function X (1) — V(7) is a
polynomial of degree NV and, thus, has NV roots. Consequently,
the only possible way that the constraint X (1) — V() will be
satisfied at the N +1 points (71,...,7n41), is if this constraint
is satisfied at every point in the domain 7 € [—1, +1]. Now,
because the state approximation is a polynomial of degree at
most N, the approximation X (7) —V/(7) is also a polynomial
of degree at most /N and can be zero at only NV points. Thus,
enforcing the constraint X (7) — V() at N + 1 points will
lead to an overdetermined system which is why collocation
constraints are not added at 7 = +1 for a differential equation
that is not a function of control.

Next, consider the second differential equation in the ex-
ample of Section III, that is, consider the dynamics o(7) =
EQf—u(T), where v(7) is the second component of the state
and u(7) is the control. Suppose again that the state ap-
proximation V(7) of v(7) is a polynomial of degree N in
each of the two mesh intervals of a two-interval formulation
of the optimal control problem given in Section III. Finally,
suppose that the constraint o(7) = LZLu(T) is enforced at the
N LGR points plus the final point of the first mesh interval.
Because V' (7) is a polynomial of degree N and the differential
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equation is a function of control, it is possible to satisfy all
N + 1 conditions

V(ir)—U;=0, (i=1,...,N+1) 27)

in the first mesh interval because the control is a variable
in Eq. (27). In other words, Un41 can be varied in order to
satisfy Eq. (27) at the endpoint of the first interval. Moreover,
when adding this collocation condition, it is also necessary
to add the constraint that umin < Un4+1 < Umax in order to
ensure that the control at the end of the first mesh interval
satisfies the limits on the control.

The preceding argument leads to a modification of the
LGR collocation method for the case where the solution may
be nonsmooth. First, as stated, an additional variable that
defines the location of the discontinuity is added. Second,
a collocation condition similar to that given in Eq. (27) is
included along with a constraint that enforces the control
bounds at the end of the mesh interval. This modification
leads to the use of the modified LGR differentiation matrix
~ |:D1:N DN+1:|

D= [Py P 28)

in the mesh intervals where the additional collocation con-
straints are included for those differential equations that
are a function of the control. It is noted in Eq. (28) that
[Di.n Dyy1] € RV s the standard N x (N + 1) LGR
differentiation matrix [4]-[6]. Finally, the last row of the D
matrix consists of E € RN and E, € R, where this last
row corresponds to the fact that a collocation point has been
added in the modified LGR method. With the inclusion of the
new collocation constraint, the collocation equations given
Eq. (12) are modified as

DX — VI:N - 07

DV —f(X,V,U) = o. (29)
where U
Ij =
[ Un+1 ]

and Uy is the value of the control at 7 = +1. Observe
that, consistent with the explanation provided earlier in this
section, the first constraint in Eq. (29) is not a function of
control and, as a result, is identical to the first constraint
given in Eq. (12). The cost function given in Eq. (11), together
with the constraints in Eq. (29), is referred to as the modified
Legendre-Gauss-Radau collocation method.

VII. SEARCH SPACE OF MODIFIED LGR METHOD

The example of Section III is now revisited using the mod-
ified LGR collocation method. Fig. 4a demonstrates that each
admissible set for control now falls between the allowable
control limits (Umin, Umax) = (—1,+1). Next, to examine the
effect that the modified LGR method has on the solution of
the NLP for the example in Section III, Fig. 4b shows the
cost of the modified LGR NLP as a function of the switch
time, ts, where it is assumed that the switch time is fixed.
At the optimal switch time 3, the cost of both the original
and modified LGR methods is identical. Note, however, that
when for ts < tZ, the optimal cost of the standard LGR
method is smaller than the modified LGR method. In fact,
Fig. 4b shows that the optimal cost for the modified LGR
method occurs when ts = t;. This last result indicates
that the modified LGR method reduces the allowable search

T Ts

(a) Admissible controls for ex- (b) Optimal cost, J*, for example
ample defined by Eqs. (18)-(21) defined by Egs. (18)—(21) as a
using modified LGR collocation function of switch time, ¢s.
method (assuming a fixed switch

time).

T

(c) Optimal control for the ex-
ample defined by Egs. (13)—(16)
using the modified LGR method.

Fig. 4: Admissible controls for modified LGR collocation
method, comparison of optimal cost for both standard and
modified LGR collocation methods as a function of switch
time, ts, and optimal control obtained using modified LGR
collocation method.

space such that the solution of the NLP leads to a state
approximation that is closer to the solution of the continuous-
time optimal control problem. Figure 4c shows the control
solution obtained by solving for the control as a function of
time using the Lagrange polynomial approximation of the
state obtained using the modified LGR collocation method.
It is seen that, not only does the control function lie within
its allowable limits (tmin, Umax) = (—1,+1), but the switch
time obtained using the modified LGR collocation method
matches the switch time of the solution of the continuous-
time optimal control problem.

VIII. CONCLUSIONS

A modified Legendre-Gauss-Radau (LGR) collocation
method has been developed for solving optimal control prob-
lems whose solutions are nonsmooth. The effect of Lavrentiev
phenomenon on LGR collocation has been explored. It was
shown that when a continuous-time optimal control problem
is transcribed into an NLP using the original LGR colloca-
tion method that the possible solutions for the NLP may
not correspond to possible solutions to the optimal control
problem. The search space of the original LGR collocation
method has been modified by including new constraints into
the NLP. The new constraints include a collocation point for
those differential equations that are functions of the control
at the end of a mesh interval where the nonsmoothness in the
solution occurs along with a control constraint at this same
point. An example was considered throughout to describe
the various phenomena and to justify the modifications to
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the original LGR collocation method. The results of this paper
demonstrate that the modified LGR method developed in this
paper significantly improves the numerical approximation for
optimal control problems whose solutions are nonsmooth.
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