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Abstract— A modified Legendre-Gauss-Radau collocation
method is developed for solving optimal control problems whose
solutions contain a nonsmooth optimal control. The method
includes an additional variable that defines the location of
nonsmoothness. In addition, collocation constraints are added
at the end of a mesh interval that defines the location of
nonsmoothness in the solution on each differential equation that
is a function of control along with a control constraint at the
endpoint of this same mesh interval. The transformed adjoint
system for the modified Legendre-Gauss-Radau collocation method
along with a relationship between the Lagrange multipliers of the
nonlinear programming problem and a discrete approximation
of the costate of the optimal control problem is then derived.
Finally, it is shown via example that the new method provides an
accurate approximation of the costate.

I. INTRODUCTION

Over the past few decades, direct collocation methods have
become a popular tool to computationally solve nonlinear
optimal control problems. In a direct collocation method,
the state and control of a continuous-time optimal control
problem are discretized at a set of points along a given time
interval. The infinite-dimensional optimal control problem is
then transcribed to a finite-dimensional nonlinear program-
ming problem (NLP) which can be solved using established
NLP solvers [1], [2]. In recent years, a significant amount
of research has focused direct Gaussian quadrature orthogonal
collocation methods [3], [4], [5], [6] where the dynamics are
collocated at points associated with a Gaussian quadrature.
Most commonly used Gaussian quadrature methods em-
ploy Legendre-Gauss (LG) points [3], Legendre Gauss Radau
(LGR) points [4], [5], [6], [7], and Legendre-Gauss-Lobatto
(LGL) points [8]. In addition, in recent years a convergence
theory has been developed using Gaussian quadrature collo-
cation. This theory has led to recent work where it has been
shown that, under certain assumptions of the smoothness of
solution and coercivity, an hp Gaussian quadrature method
that employs either LG or LGR collocation points converges
to a local minimizer of the optimal control problem [9], [10],
[11], [12], [13].

While Gaussian quadrature orthogonal collocation meth-
ods are well suited to solving optimal control problems
whose solutions are smooth, it is often the case that the
solution of an optimal control problem has a nonsmooth
optimal control [14]. The difficulty in solving problems with
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a nonsmooth optimal control lies in determining the loca-
tion of the nonsmoothness. For example, dynamical systems
where the control appears linearly or problems that have
state inequality path constraints often have solutions where
the control and state may be nonsmooth. One approach to
handling nonsmoothness is to employ a mesh refinement
method where the optimal control problem is partitioned
into a mesh and a mesh that meets a specified solution
accuracy tolerance is obtained iteratively. In the context of
Gaussian quadrature collocation, so called hp-adaptive mesh
refinement methods [15], [16], [17], [18], [19] have been
developed more recently in order to improve accuracy in
a wide variety of optimal control problems including those
whose solutions are nonsmooth. It is noted, however, that
mesh refinement methods often place an unnecessarily large
number of collocation points and mesh intervals near points
of nonsmoothness in the solution. Thus, it is beneficial to
develop techniques that take advantage of the rapid con-
vergence of a Gaussian quadrature collocation methods in
segments where the solution is smooth and only increase
the size of the mesh when necessary (thus, maintaining a
smaller mesh than might be possible with a standard mesh
refinement approach).

Now, as it turns out, for optimal control problems where
the solution is nonsmooth the convergence theory developed
in Refs. [9], [10], [11], [12], [13] is not applicable. Conse-
quently, when the solution of an optimal control problem
is nonsmooth, an hp method may not converge to a local
minimizer of the optimal control problem. A well studied
class of problems where the smoothness and coercivity con-
ditions found in Ref. [10] are not met are those where the
control appears linearly in the problem formulation [14],
[20], [21], [22]. One approach for estimating the location of
nonsmoothness in solutions to optimal control problems is
to introduce a variable called a breakpoint [23] that defines
the location of a point of nonsmoothness and to include this
variable in the NLP. The key issue that arises by introduc-
ing a breakpoint is that the NLP has an extra degree of
freedom. As a result, the NLP may converge to a solution
where this additional variable does not correspond to the
location of the nonsmoothness. Next, Ref. [24] introduced
a variable that defines the switch time and collocate the
dynamics at both the end of a mesh interval and the start of
the subsequent mesh interval using Legendre-Gauss-Lobatto
collocation. Note, however, that the LGL method used in
Ref. [24] employs a square and singular differentiation matrix.
Therefore, unlike the approach of Ref. [23], which used
Legendre-Gauss collocation, the scheme used in Ref. [24] is
not a Gauss quadrature integrator.

The goal of this research is to develop a method that
accurately determines the locations of nonsmoothness in
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the numerical solution of optimal control problems using
Gaussian quadrature collocation. In this paper, which is Part
II of a two-part sequence, the transformed adjoint system is
derived that relates the Lagrange multipliers of the Karush-
Kuhn-Tucker (KKT) system associated with the modified
Legendre-Gauss-Radau (LGR) collocation method developed
in Ref. [25] to the costate of the optimal control problem.
Recall that the modified LGR collocation method developed
in Ref. [25] includes collocation conditions adds, to those
differential equations that are a function of control, colloca-
tion conditions at the end of a mesh interval that may be
the point of nonsmoothness in the solution of an optimal
control problem. As a result, the transformed adjoint system
of the modified LGR method differs from the transformed
adjoint system of the standard LGR collocation method [4],
[5], [6]. Using this modified transformed adjoint system, a
costate estimate for the modified LGR collocation method is
developed.

This paper is organized as follows. Section II provides a
description of the modified LGR collocation method in a man-
ner similar to that given in Ref. [25]. Section III derives the
Karush-Kuhn-Tucker optimality conditions for the modified
LGR collocation method. In addition, Section III provides a
costate estimate that relates the dual variables of the modified
LGR collocation method to the costate of the continuous-
time optimal control problem. Section IV demonstrates the
accuracy of the costate estimate derived in Section III on
an example. Finally, Section V provides conclusions on this
work.

II. LEGENDRE-GAUSS-RADAU COLLOCATION

The focus of this paper is on second-order controlled
dynamical systems of the form ẍ(τ) = f(x(τ), ẋ(τ),u(τ)) (a
form that arises frequently in mechanical systems such as
Newton-Euler or Lagrangian mechanics). With such a class
of dynamical systems as the focus, consider the following
optimal control problem defined on τ ∈ [−1,+1]. Minimize
the cost functional

J = M(x(−1),v(−1),x(+1),v(+1))

+

∫ +1

−1

L(x(τ),v(τ),u(τ))dτ,
(1)

subject to the dynamic constraints

ẋ(τ) = v(τ),
v̇(τ) = f(x, (τ),v(τ),u(τ))

(2)

and boundary conditions

b(x(−1),v(−1),x(+1),v(+1)) = 0, (3)

where (x(τ),v(τ)) ∈ R
2n is the state (such that x(τ) ∈ R

n

and v(τ) ∈ R
n), u(τ) ∈ R

m is the control, f : Rn×R
n×R

m →
R

n, b : Rn×R
n×R

n×R
n → R

b,M : Rn×R
n×R

n×R
n → R,

and L : Rn × R
n × R

m → R.
For convenience with the mathematical development that

follows, the state or control at a value τ is considered a row
vector. For example, x(τ) and u(τ) are defined as row vectors,
respectively, as

x(τ) =
[

x1(τ) · · ·xn(τ)
]

∈ R
n,

u(τ) =
[

u1(τ) · · ·um(τ)
]

∈ R
m.

(4)

All other vector quantities are defined in a similar manner to
that shown for x(τ) and u(τ) given in Eq. (4).

Suppose now that the state (x(τ),v(τ)) is approximated by
a polynomial of degree at most N . Let ℓi (i = 1, . . . , N + 1)
be a basis of Lagrange polynomials given by

ℓi(τ) =

N+1
∏

j=1

j 6=i

τ − τj

τi − τj
, i = 1, . . . , N + 1.

The jth component of x(τ) and v(τ) are then approximated
in terms of the Lagrange polynomial basis as

xj(τ) ≈ Xj(τ) =
∑N+1

i=1 Xijℓi(τ),

vj(τ) ≈ Vj(τ) =
∑N+1

i=1 Vijℓi(τ),
(5)

Differentiating xj(τ) and vj(τ) in Eq. (5) and evaluating the
result at τ = τk gives

ẋj(τ) ≈ Ẋj(τ) =
∑N+1

i=1 Xij ℓ̇i(τk) =
∑N+1

i=1 DikXij ,

v̇j(τ) ≈ V̇j(τ) =
∑N+1

i=1 Vij ℓ̇i(τk) =
∑N+1

i=1 DikVij .
(6)

The coefficients Dik, (i = 1, . . . , N ; k = 1, . . . , N + 1) form
the N×(N+1) matrix D called the LGR differentiation matrix.
For convenience D is partitioned as

D =
[

D1 D2 · · · DN+1

]

=
[

D1:N DN+1

]

, (7)

where Di denotes the ith column of D, D1:N ∈ R
N×N is

an N × N matrix formed from the first N columns of D,
and DN+1 is the last column of D [4], [5], [6]. Thus, unlike
the state and control, which are treated as row vectors at an
instant of time, in this exposition the differentiation matrix
is dealt with column-wise. Using the row vector convention
for the state and control. the notation, the matrices X ∈
R

(N+1)×n and V ∈ R
(N+1)×n correspond row-wise to the

state approximations at times (τ1, . . . , τN+1), while the matrix
U ∈ R

N×m corresponds row-wise to the approximations of
the control at times (τ1, . . . , τN ). Therefore, the matrices X,
V, and U are given respectively

X =







X1

...
XN+1






≡ X1:N+1,

V =







V1

...
VN+1






≡ V1:N+1,

U =







U1

...
UN






≡ U1:N ,

(8)

where the notation Yi:j denotes generically rows i through
j of the matrix Y. Also, the derivative approximations Ẋ(τ)
and V̇(τ) at the kth LGR point τk are then given as row
vectors, respectively, as

Ẋ(τk) = [DX]k , V̇(τk) = [DV]k . (9)

It is noted that the state approximation is exact if the state is
a polynomial of degree at most N . The LGR approximation
of the state leads to the following nonlinear programming
problem (NLP) that approximates the optimal control prob-
lem given in Eqs. (1)–(3):

minimize J = M(X1,V1,XN+1,VN+1)

+

N
∑

i=1

wiL(Xi,Vi,Ui),
(10)
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subject to
DX−V1:N = 0,

DV − f(X1:N ,V1:N ,U1:N ) = 0,

b(X1,V1,XN+1,VN+1) ≤ 0,

(11)

where wi, (i = 1, . . . , N) are the LGR quadrature weights
(and produce an exact integral if the integrand is a polyno-
mial of degree at most 2N − 2). Equations (10) and (11) will
be referred to as the standard Legendre-Gauss-Radau collocation
method.

In this paper, a modification of the standard LGR colloca-
tion method [25] is employed the case where the solution
of the optimal control problem may be nonsmooth. The
modified LGR collocation method includes an additional
variable that defines the location of the nonsmoothness along
with collocation conditions at the end of a mesh interval that
identifies the nonsmoothness in the solution. Note that, as
described in Ref. [25], collocation conditions are added only
to those differential equations that are a function of the con-
trol along with a constraint that enforces all state and control
bounds at the end of the mesh interval that corresponds to the
location of the nonsmoothness. The modified LGR collocation
method employs the modified LGR differentiation matrix

D̃ =

[

D1:N DN+1

E E0

]

, (12)

in the mesh intervals where the additional collocation con-
straints are included for those differential equations that
are a function of the control. It is noted in Eq. (12) that
[D1:N DN+1] ∈ R

N×(N+1) is the standard N × (N + 1) LGR
differentiation matrix [4], [5], [6]. Finally, the last row of the
D̃ matrix consists of E ∈ R

1×N and E0 ∈ R, where this
last row corresponds to the fact that a collocation point has
been added in the modified LGR method. With the inclusion
of the new collocation constraint, the collocation equations
given Eq. (11) are modified as

DX−V1:N = 0,

D̃V − f(X,V, Ũ) = 0,
(13)

where

Ũ =

[

U

UN+1

]

and UN+1 is the value of the control at τ = +1. The cost
function given in Eq. (10), together with the constraints in
Eq. (13), is referred to as the modified Legendre-Gauss-Radau
collocation method.

III. TRANSFORMED ADJOINT SYSTEM FOR LGR
COLLOCATION

This section derives the adjoint system for the modified
LGR collocation method based on the optimal control prob-
lem given in Eqs. (1)–(3) as described in Section II. The first-
order optimality conditions for the continuous time problem
described in Eqs. (1)–(3) are given as

λ̇ = −
∂L

∂x
− λ̃

[

∂f

∂x

]

T

, (14)

˙̃
λ = −

∂L

∂v
− λ− λ̃

[

∂f

∂v

]

T

, (15)

0 =
∂L

∂u
+ λ̃

∂f

∂u
, (16)

λ(−1) = −
∂M

∂x(−1)
+ψ

[

∂b

∂x(−1)

]

T

, (17)

λ̃(−1) = −
∂M

∂x(−1)
+ψ

[

∂b

∂v(−1)

]

T

. (18)

λ(+1) =
∂M

∂x(+1)
−ψ

[

∂b

∂x(+1)

]

T

, (19)

λ̃(+1) =
∂M

∂x(+1)
−ψ

[

∂b

∂v(+1)

]

T

, (20)

where the gradient of a scalar function f : Rn → R and the
Jacobian of a vector function of a vector g : Rn → R

m are
defined, respectively, as

∂f

∂x
=

[

∂f

∂x1
· · ·

∂f

∂xn

]

,

∂g

∂x
=













∂g

∂x1
...

∂gT

∂xn













.

The goal of this section is to derive the first-order optimality
conditions, also known as the Karush-Kuhn-Tucker (KKT)
conditions, of the modified LGR collocation method. Then,
using these first-order optimality conditions, a transformation
is derived that relates the dual variables of the modified
LGR collocation method to the costates of the continuous-
time optimal control problem.

Using the NLP associated with the modified LGR col-
location method as described in Section II, consider the
augmented cost function

minimize J = M(X1,V1,XN+1,VN+1) (21)

+

N
∑

i=1

wiL(Xi,Vi,Ui) (22)

subject to

DX−V1:N = 0 (23)

D̃V − f(X,V, Ũ) = 0 (24)

b(X1,V1,XN+1,VN+1) = 0 (25)

where D̃ is the modified LGR differentiation matrix as given
in Eq. (12). Now the first-order optimality conditions of the
discrete system described in Eqs. (21)–(25) are derived. First
the augmented cost function is written as

Ja =

N
∑

i=1

wiL(Xi,Vi,Ui)

−

N
∑

i=1

〈Λi,Di,1:NX−Vi〉

−

N+1
∑

i=1

〈

Λ̃i, D̃i,1:N+1Vi − f(Xi,Vi,Ui)
〉

−Ψb
T(X1,V1,XN+1,VN+1)

+M(X1,V1,XN+1,VN+1),

(26)

where Λ ∈ R
N×n, Λ̃ ∈ R

(N+1)×n, Ψ ∈ R
Nb and 〈·, ·〉 denotes

the standard inner product between two vectors. Equation
(26) is now rewritten to separate the final row of the state
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matrix from the first N rows

Ja =

N
∑

i=1

wiL(Xi,Vi,Ui)

−

N
∑

i=1

〈Λi,Di,1:NX1:N +Di,N+1XN+1 −Vi〉

−

N
∑

i=1

〈

Λ̃i,Di,1:NV1:N +Di,N+1VN+1 − f(Xi,Vi,Ui)
〉

−
〈

Λ̃N+1,EV1:N + E0VN+1

〉

−
〈

Λ̃N+1, f(XN+1,VN+1,UN+1)
〉

−Ψb
T(X1,V1,XN+1,VN+1)

+M(X1,V1,XN+1,VN+1).
(27)

Now the following theorem is introduced which will allow
the f(XN+1, VN+1, UN+1), and E terms of Eq. (27) to be
written as a function of X1:N ,V1:N ,X1:N , and DN+1.

Theorem 1. Consider a polynomial f(τ) on the interval [−1, 1]
that is of degree at most N − 1. Let τ ∈ R

(N+1) such that
(τ1, . . . , τN ) are the Legendre-Gauss-Radau points on [−1, 1) and
τN+1 = +1. If the Lagrange basis polynomial associated with
τN+1 = +1 is given as

ℓN+1(τ) =
∏

1≤j≤N

τ − τj

τN+1 − τj
, (28)

then
∫ +1

−1

f(τ)ℓ̇N+1(τ)dτ = f(+1). (29)

Proof. Integrating the LHS of Eq. (29) by parts yields

f(τ)ℓN+1(τ)
∣

∣

∣

+1

−1
−

∫ +1

−1

ḟ(τ)ℓN+1. (30)

Because ḟ(τ) is a polynomial of degree at most N − 2 and
ℓN+1(τ) is a polynomial of at most degree N , then the
integrand in Eq. (30) is at most degree 2N−2 and the integral
can be evaluated using LGR quadrature as

∫ +1

−1

ḟ(τ)ℓ(τ)N+1dτ =

N
∑

i=1

wiḟ(τi)ℓN+1(τi), (31)

where wi is the ith LGR quadrature weight. Recall that
ℓi(τi) = 1 and ℓi(τj) = 0 when i 6= j, then Eq. (31) is zero
and Eq. (30) reduces to

f(τ)ℓN+1(τ)
∣

∣

∣

+1

−1
= f(+1)ℓN+1(+1)

− f(−1)ℓN+1(−1)

= f(+1),

(32)

which completes the proof.

Equation (29) allows the vector E of D̃ to be related to
DN+1 of D̃. The elements of E are defined as

Ej = ℓ̇j(+1), j = 1, . . . , Nk. (33)

From Eq. (29) we can write,

Ej =

∫ +1

−1

ℓ̇j(τ)ℓ̇N+1(τ)dτ j = 1, . . . , N. (34)

Equation (34) can be evaluated using Gaussian quadrature

Ej =
N
∑

i=1

wiℓ̇j(τi)ℓ̇N+1(τi), j = 1, . . . , N (35)

Note that ℓ̇N+1(τi) is the ith element of DN+1. Using the
definition of the D̃ matrix and the relationship from Eq. (29)
gives

D
T

N+1WD1:N = E, (36)

D
T

N+1Wf1:N = fN+1, (37)

where W ∈ R
N×N is defined as

W =











w1 0 . . . 0
0 w2 . . . 0
...

. . .
. . .

...
0 . . . 0 wn











, (38)

and wi, i = 1, . . . , N are the LGR quadature weights. Equa-
tions (36)–(37) allows us to rewrite Eq. (27) as

Ja =

N
∑

i=1

wiL(Xi,Vi,Ui)

−

N
∑

i=1

〈Λi,Di,1:NX1:N +Di,N+1XN+1 −Vi〉

−

N
∑

i=1

〈

Λ̃i,Di,1:NV1:N − f(Xi,Vi,Ui)
〉

−

N
∑

i=1

〈

Λ̃i, Di,N+1VN+1

〉

−
〈

Λ̃N+1,D
T

N+1WD1:NV1:N + E0VN+1

〉

−
〈

Λ̃N+1,D
T

N+1Wf(X1:N ,V1:N ,U1:N )
〉

−Ψb
T(X1,V1,XN+1,VN+1)

+M(X1,V1,XN+1,VN+1)

.

(39)

To simplify the following derivation, the function arguments
will be removed from the equations. For instance, L(X,V,U)
will be expressed as L. The KKT conditions are derived by
taking the partial derivatives Ja with respect to X, V, U, Λ,
and Ψ and setting them equal to zero. Note that ∂Ja

∂Λ
and ∂Ja

∂Ψ

result in Eqs. (23)–(25), and

D
T

i Λ = ∇X1:N

(

wiLi +
〈

Λ̃i + Λ̃N+1Di,N+1wi, fi

〉)

− δ1i(−∇X1
M+∇X1

Ψb
T),

(40)

D
T

N+1Λ = ∇XN+1
M−∇XN+1

Ψb
T
, (41)

D
T

i

(

Λ̃1:N + Λ̃N+1Di,N+1wi

)

= ∇V1:N

(

wiLi +
〈

Λ̃i + Λ̃N+1Di,N+1wi, fi

〉)

+Λi − δ1i(−∇V1
M+∇V1

Ψb
T),

(42)

D
T

N+1Λ̃1:N + E0Λ̃N+1 = ∇VN+1
M−∇VN+1

Ψb
T
,

(43)

0 = ∇U1:N
wi

(

Li −
〈

Λ̃1:N + Λ̃N+1Di,N+1wi, f
〉)

,

(44)
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where i = 1, . . . , N and δij is the Kronecker delta function
defined as

δij =

{

1, i = j

0, i 6= j.
(45)

Now propose the change of variables

λi =
Λi

wi

, (46)

λN+1 = D
T

N+1Λ1:N , (47)

ψi = Ψi, (48)

λ̃i =
Λ̃i

wi

+ Λ̃N+1Di,N+1, (49)

λ̃N+1 = D
T

N+1Λ̃1:N + Λ̃N+1E0. (50)

Note that Eqs. (46)–(48) are the same transformations used
for the standard LGR method. Finally, define D† ∈ RN×N

such that

D
†
11 = −D11 −

1

w1
(51)

D
†
ij = −

wj

wi

Dji otherwise, (52)

for i = j = 1, 2, . . . , N . Note that D† is the same matrix
derived by Garg et al. [5] where it was shown that D† is the
differentiation matrix for the space of polynomials of degree
N − 1. Now the KKT conditions can be rewritten as

D
†
iλ1:N = −∇X1:N

(〈

λ̃i, fi

〉

+ Li

)

+
δ1i

w1

(

−∇X1

(

M−ψbT

)

− λ1

)

,
(53)

D
†
i λ̃1:N = −∇V1:N

(〈

λ̃i, fi

〉

+ Li

)

− λi

+
δ1i

w1

(

−∇V1

(

M−ψbT

)

− λ̃1

)

,
(54)

0 = ∇U1:N

(

Li −
〈

λ̃i, fi

〉)

. (55)

λN+1 = ∇XN+1

(

M−ψbT

)

, (56)

λ̃N+1 = ∇VN+1

(

M−ψbT

)

. (57)

Equations (17)-(18) allow the terms in the second lines of
Eqs. (53)–(54) to vanish which results in Eqs (53)–(57) becom-
ing discrete representations of the continuous time first-order
optimality conditions from Eqs. (14)–(20).

IV. EXAMPLE

In this section the costate estimation method for the modi-
fied LGR collocation method is demonstrated on an example
that contains a nonsmoothcontrol control. Consider the opti-
mal control problem

J (t) = tf , (58)

subject to the dynamic constraints

ẋ(t) =
tf
2
v(t) , v̇(t) =

tf
2
u(t), (59)

the inequality path constraints

(0,−10,−1) ≤ (x(t), v(t), u(t)) ≤ (∞, 10,+1) (60)

and the boundary conditions

(x(−1), x(+1), v(−1), v(+1)) = (10, 0, 0, 0) (61)

The Lagrange multipliers associated with the collocation con-
straints associated with the modified Legendre-Gauss-Radau

method are shown in Fig. 1a and 1b alongside the Lagrange
multiplers of the collocation constraints associated with the
standard Legendre-Gauss-Radau method. Using these multi-
pliers together with the costate estimation procedure given
in Eqs. (46)–(50), the estimates of the two components of
the costate, λ and λ̃, obtained from the modified Legendre-
Gauss-Radau method are shown in Figs. 1c and 1d. It is
seen that the Lagrange multipliers Λ and Λ̃ differ between
the standard and modified Legendre-Gauss-Radau methods,
but the costate estimates of the two methods are in excellent
agreement. In addition, the estimates of the two components
of the costate estimate are in excellent agreement with the
optimal costate. This results shows for this example that
the modified Legendre-Gauss-Radau method maintains the
accuracy of the costate estimate when compared with the
standard Legendre-Gauss-Radau collocation method. Finally,
Fig. 2 shows control obtained using the modified Legendre-
Gauss-Radau method. It is seen that the modified Legendre-
Gauss-Radau method finds an accurate approximation of
the switch time in the control. Moreover, this switch time
uses an extremely sparse mesh (two Legendre-Gauss-Radau
points in each of the two mesh intervals). In fact, the analytic
solution is known to be a piecewise quadratic. Therefore,
an accurate numerical approximation is obtained using the
fewest number collocation points possible (two Legendre-
Gauss-Radau points in each mesh interval) along with the
fewest number of mesh intervals (two).

τ

-1 -0.5 0 0.5 1

Λ

-1

-0.5

0

0.5

1

LGR
Modified LGR

(a) Dual variable, Λ, for example
problem using both the standard
and modified LGR collocation
methods.

τ

-1 -0.5 0 0.5 1
Λ̃

-1

-0.5

0

0.5

1

LGR
Modified LGR

(b) Dual variable, Λ̃, for exam-
ple problem using both the stan-
dard and modified LGR colloca-
tion methods.

τ

-1 -0.5 0 0.5 1

λ
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-0.5

0

0.5

1

LGR
Modified LGR
λ
∗(τ)

(c) Costate Estimate, λ(t), for Ex-
ample using both the standard
and modified LGR collocation
methods.

τ

-1 -0.5 0 0.5 1

λ̃

-1

-0.5

0

0.5

1

LGR
Modified LGR

λ̃
∗(τ)

(d) Costate Estimate, λ̃(t), for Ex-
ample using both the standard
and modified LGR collocation
methods.

Fig. 1: Dual variables and costate estimates for Example using
both the standard and modified LGR collocation methods.

V. CONCLUSIONS

A modified Legendre-Gauss-Radau collocation method has
been developed for solving optimal control problems whose
solutions contain a nonsmooth optimal control. The modified
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Fig. 2: Optimal Control for the Example Given by Eqs. (58)–
(61) Using the Modified LGR Method

method includes the additional constraint where collocation
conditions are enforced for each differential equation that is a
function of control and a control constraint at the endpoint of
the mesh interval that defines the location of nonsmoothness
in the solution. The focus of this paper has been on the
derivation of the transformed adjoint system associated with
the newly developed Legendre-Gauss-Radau method. Using
this transformed adjoint system, a transformation has been
derived that provides a relationship between the Lagrange
multipliers of the nonlinear programming problem and the
discrete approximation of the costate of the continuous-time
optimal control problem. The effectiveness of the method
developed in this paper has been demonstrated on a well
known optimal control problem.
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