
Synthesis of Different Autonomous Vehicles Test Approaches

Zhiyuan Huang1, Mansur Arief2, Henry Lam3, and Ding Zhao2

Abstract— Currently, the most prevalent way to evaluate an
autonomous vehicle is to directly test it on the public road.
However, because of recent accidents caused by autonomous
vehicles, it becomes controversial about whether on-road tests
should be the best approach. Alternatively, people use test
tracks or simulation to assess the safety of autonomous vehicles.
These approaches are time-efficient and less costly, however,
their credibility varies. In this paper, we propose to use
a co-Kriging model to synthesize the results from different
evaluation approaches, which allows us to fully utilize the
information and provides an accurate, affordable, and safe way
to assess a design of an autonomous vehicle.

I. INTRODUCTION

Recently, a pedestrian was killed by a self-driving car in a
crash in Arizona [1]. This accident has brought up a hot
debate on whether it is safe to test autonomous vehicles
(AVs) on public roads. People argue that it is not responsible
to test self-driving cars in public areas, because of the safety
concern. On the other hand, AVs are designed to operate on
public roads. To claim an AV has a high safety level without
on-road tests is not fully convincing.

Besides the safety issue, on-road tests are also time-
consuming and expensive to implement. People have already
considered alternatives to on-road tests. For instance, Waymo
developed computer simulation platform for self-driving cars
training and testing [2]. Studies also consider how to smartly
utilize test tracks, e.g. combining with Augmented Reality
(AR) technique, which generates virtual cars and pedestrians
on a test track.

These test approaches provides plenty of choices, however,
it is hard to claim either one is the “best” option. The pros
and cons of these approaches make it unclear that what test
should be implemented if only one of them can be chosen.
The on-road tests are expensive and risky, but it is the most
credible. The AR on-track test is less risky, but it might
overlook factors in naturalistic driving environment and
is still relatively time-consuming and expensive. Computer
simulation is cheap and quick, however, it is less credible
than physical tests. On the other hand, test results from
different resources cannot be naively combined because of
the different credibility.
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The nature of autonomous and intelligent systems also
brings difficulties in evaluating AVs from historical perfor-
mance. AVs are based on algorithms that might be updated
after a while, which makes it illegitimate to directly utilize
historical test results and data that is collected before the
update. Consider that these data contains some information
about the current version of algorithms and is relatively
plenty in general, the evaluation procedure will be more
efficient if we have a way to link them with the current
algorithm.

In this paper, we are targeting this problem in AV testing:
how to synthesize “independent” test results from different
test approaches and historical data from outdated models
into the safety evaluation of an AV. We discuss an AV
evaluation approach that is capable of synthesizing and
integrating test results from different resources and historical
data. This approach is based on co-Kriging models, in which
we consider each type of tests as models with an assigned
fidelity level (we take historical data as a type of test). The
model provides a response surface for the test performance
function of interest. The model allows us to analyze the
performance of a test AV using a combination of different
types of test results (and historical test data). Furthermore,
the proposed model can potentially be used to design new
experiments, i.e, determine what test to implement based on
current information for improving the model with regards to
evaluation accuracy.

To link the proposed model with AV testing, we follow the
test framework in the accelerated evaluation method, which
is first proposed in [3]. We decompose naturalistic driving
environment into different test scenarios and use statistical
models to represent the environment in the scenarios. For
each test scenario, we use the probability of safety-critical
events to evaluate the safety level of an AV. [4] discussed an
approach that uses response surface model in the accelerated
evaluation context, and used a single type test results. This
paper extends the use of response surface model in [4].
Besides results of on-road tests, the proposed approach
also obtains information from other test resources, which
improves the accuracy of the response surface.

The framework we proposed is related to multi-fidelity
models (for review, see [5]). The co-Kriging model we adopt
is originally considered in [6], which was proposed in an
optimization context. This model utilizes Kriging model or
Gaussian process in constructing the response surface. We
also discuss the extension of the design of experiments
scheme in [4] to multi-source tests. The scheme can help us
smartly select design points and therefore avoid unnecessary
experiments in the model constructing procedure. We will



further illustrate the difference between these two approaches
using several numerical examples. We use the proposed
methods to study the lane change scenario, which has been
studied in [3], [7], [8].

This paper is structured as follows: Section II introduce
the basics of Kriging, co-Kriging and the multi-fidelity
models. Section III discusses the properties of the proposed
multi-fidelity model, the design of experiment scheme and
the application in AV testing. Section IV shows numerical
experiments using the proposed method.

II. KRIGING-BASED SURROGATE MODELS

In this section, we introduce the Kriging-based surrogate
models that we propose to use for AV testing. We first review
the basics of Kriging model. Then we introduce the idea
of co-Kriging and show how to turn this idea into a multi-
fidelity model. The model is extended from [6].

A. Basics of Kriging Model

Kriging, a model named after the developer Krige, was
originally used in geostatistics [9]. The model has been
extensively used in engineering fields since it is studied and
introduced under the design of experiments context in [10].
For a wider scope of Kriging application, one can refer to
[11].

Suppose we want to study a performance function g(x) on
the design space x ∈ X ⊆ Rd. The performance function is
only available through experiments (or observations). The
Kriging model allows us to construct a response surface
based on experiment results, (xi, g(xi)) for i = 1, ..., n,
where n is the number of experiments we have collected.

Here we consider a Bayesian view of Kriging model. The
key idea of Kriging is to consider the response surface of
g(x) as a posterior of a Gaussian random field (or Gaussian
process) [12], [13]. A Gaussian random field y(x) for x ∈
Rd is specified by a mean function, µ(x), and a covariance
function, σ2(x, x′). We denote such a Gaussian random field
as

y ∼ GRF (µ, σ2). (1)

For any x ∈ X , y(x) is Gaussian random variable with
mean µ(x) and variance σ2(x, x). For x, x′ ∈ Rd, the
covariance between y(x) and y(x′) is σ2(x, x′). We assume
the following structure for the mean and covariance function
µ(x) = b(x)β and σ2(x, x′) = τ2r(x, x′; θ), where β,
τ2 and θ are tunable parameters. Note that the covariance
function indicates that the variance τ2 is stationary over x .

We consider the above functions as the prior mean and
covariance of the Gaussian random field y(x). Let X denotes
the experiments at {x1, ..., xn} and Y denotes the corre-
sponding observations{y1, ..., yn}. We use X to construct a
matrix Σ, where Σij = σ2(xi, xj). And let R = Σ/τ2. Note
that Rij = r(xi, xj ; θ). Given observations (X,Y ), for any
x ∈ Rd we have the posterior mean and covariance function
as

E(y(x)|X,Y ) = µ(x) + r(x)′R−1(Y − µ(x)) (2)

and

V ar(y(x)|X,Y ) = τ2(1− r(x)′R−1r(x)), (3)

where r(x) returns a vector with r(x, xi) as the ith element.
This posterior Gaussian random field y(x)|X,Y is the

Kriging model for g(x). In this paper, we use µ(x) =
β, β ∈ R. We denote µ(x|X,Y ) = E(y(x)|X,Y ) and
σ2(x|X,Y ) = V ar(y(x)|X,Y ) for simplification.

For choosing the tunable parameters, β, τ2 and θ, in the
prior, one can use maximum likelihood estimation (MLE)
using data, i.e:

β̂ =

∑n
i=1 yi
n

, (4)

and we maximize the log likelihood function

l(τ2, θ) = −1

2

(
n log(2π) + log(|Σ|) + (Y − β)′Σ−1(Y − β)

)
(5)

for τ̂2 and θ̂. For more details about the MLE estimator, see,
e.g., [14].

B. Co-Kriging and Multi-fidelity Model

1) Co-Kriging: Here we discuss the co-Kriging model
that is studied in [6] and show how to extend it to fit for
AV testing. The idea of co-Kriging is to use the summation
of two Kriging models as the response surface. Because of a
nice property for Gaussian random variables (the summation
of two Gaussian random variables is still Gaussian), the co-
Kriging model is still a Gaussian random field.

Now we consider that the performance function g(x)
is a summation of two factor functions g1(x) and g2(x),
i.e. g(x) = g1(x) + g2(x). And the factor functions are
only available through experiments. We use (X1, Y1) to
denote the data set for the factor function g1(x), where
X1 contains experiments {x1, ..., xn1} and Y1 contains the
corresponding observations {g1(x1), ..., g1(xn1)}. Similarly,
(X2, Y2) denotes the data set for factor function g2(x) with
n2 observations. We use (X,Y ) to denote the whole data set
(including (X1, Y1) and (X2, Y2)).

We construct Kriging models that is described in Section
II-A for both factor functions g1(x) and g2(x) independently.
(Here we assume the two factors are independent, which
means that the value of g1(x) does not contain any infor-
mation for g2(x).) We denote the Kriging model for g1(x)
as y1(x) and the Kriging model for g2(x) as y2(x). The co-
Kriging model for the performance function g(x) is given
by y(x) = y1(x) + y2(x).

As we mentioned, the co-Kriging model y(x) is still
a Gaussian random field. For any x ∈ X , y(x) is the
summation of two Gaussian random variable y1(x)
and y2(x). Therefore, y(x) has mean µ(x|(X,Y )) =
µ1(x|(X1, Y1)) + µ2(x|(X2, Y2)) and variance
σ2(x, x|(X,Y )) = σ2

1(x, x|(X1, Y1)) + σ2
2(x, x|(X2, Y2))

(because y1 and y2 are independent), where µ1, µ2 denotes
the mean function for y1 and y2 respectively , and σ2

1 , σ
2
2

denotes the covariance function for y1 and y2 respectively.



2) Multi-fidelity Model: To extend the general co-Kriging
model shown above as a multi-fidelity model, we consider
the following settings. We consider that we have T models
with different fidelity for the performance function g(x),
which are denoted as ht(x), t = 1, ..., T , where t is the
fidelity level. We assume that a larger t indicates a better
fidelity. In this case, h1(x) is the model with lowest fidelity
and hT (x) is the model with the highest fidelity. Usually,
we consider hT (x) = g(x), which means that the original
performance function is the highest fidelity model.

For each fidelity t, we have a data set (Xt, Yt), where
Xt contains nt experiments on {x1, ..., xnt} and Yt contains
the corresponding observations {ht(x1), ..., ht(x

nt)}. Here
we adopt the assumption in [6], that is XT ⊆ XT−1 ⊆ ... ⊆
X1. This assumption is not necessary for the construction of
the multi-fidelity model, however, it allows the multi-fidelity
model to maintain a nice property of single Kriging model
(further discussed in Section II-C). We use (X,Y ) to denote
all data sets for simplicity.

The procedure of constructing the multi-fidelity model is
as follows. We first construct a Kriging model for the lowest
fidelity model h1(x) using data set (X1, Y1) and we denote
the model as y1(x). We have y1(x) as a Gaussian random
field with mean

µ1(x|X1, Y1) = µ1(x) + r1(x)′R−11 (Y1 − µ1(x)) (6)

and variance

σ2
1(x|X1, Y1) = τ21 (1− r1(x)′R−11 r1(x)). (7)

Note that the notation for parameters and functions follows
(2) and (3) in Section II-A.

Then we construct response surface for other fidelities
layer by layer. Starting from the fidelity t = 2, we consider
to build a Kriging model for the difference between two
adjacent fidelities, i.e. ht(x) − ht−1(x). We create a data
set (Xt, Dt) using (Xt−1, Yt−1) and (Xt, Yt), such that
Dt = {ht(x1) − ht−1(x1), ..., ht(x

nt) − ht−1(xnt)}. (For
any x ∈ Xt, we have ht−1(x) because Xt ⊆ Xt−1.) Now
we use the created data set (Xt, Dt) to construct a Kriging
model, that we denote as dt(x). Note that dt(x) is a Gaussian
random field with mean (for simplicity we still use (Xt, Yt)
to denote the data set we use)

µt(x|Xt, Yt) = µt(x) + rt(x)′R−1t (Yt − µt(x)) (8)

and variance

σ2
t (x|Xt, Yt) = τ2t (1− rt(x)′R−1t rt(x)). (9)

Then we have the response surface model yt(x) for ht(x),
which is given by yt(x) = yt−1(x)+dt(x). For convenience,
we have define d1(x) = y1(x). Now for the model with
fidelity t, we have

yt(x) =

t∑
i=1

di(x). (10)

Note that each di(x) is a Gaussian random field, and there-
fore yt(x) is still a Gaussian random field.

yT (x) is our multi-fidelity model for the performance
function g(x), which is a Gaussian random field with mean
function

µT (x|X,Y ) =

T∑
i=1

µi(x|Xi, Yi) (11)

and variance function

σ2
T (x|X,Y ) =

T∑
i=1

σ2
i (x|Xi, Yi). (12)

C. Remarks

Compared to Kriging model that only uses observations
of the performance function g(x) (or the highest fidelity
model), the proposed multi-fidelity model integrates infor-
mation from models with lower fidelities, while it maintains
an important property of the Kriging model. In Kriging, the
prediction on x is exact if you have already observed x. With
the assumption on data set structure, the proposed multi-
fidelity model maintains this good property. This means that
the prediction accuracy of the proposed multi-fidelity model
will increase in a similar way as the Kriging model and
observations of g(x) increases.

Since the proposed multi-fidelity model provides a linkage
between the performance function and the lower fidelity
models, we are able to study how much information an
experiment in lower fidelity can bring. This linkage allows
us to design experiments and choose the fidelity level that is
economic with regard to the information it brings in.

As a side product, the proposed multi-fidelity model
provides a response surface model for each fidelity model.
This side product allows us to develop experiment design
scheme that uses lower fidelity information. We will further
discuss this in Section III.

The response surface models for different fidelity levels
have a property as follows. For any fidelity parameters t > t′

and at x, we always have V ar(yt(x)) ≥ V ar(yt′(x)) be-
cause V ar(yt(x)) =

∑t
i=1 σ

2
i (x|Xi, Yi) and σ2

i (x|Xi, Yi) ≥
0. This property is intuitively reasonable, since we have less
information about a higher fidelity model.

III. SYNTHESIZING TESTS IN ACCELERATED
EVALUATION

In this section, we discuss applying the proposed model
to AV testing. More specifically, we consider applying the
proposed model in the context of test scenario based AV
evaluation that has been studied by [3], [4]. We first review
the problem setting in test scenario based AV evaluation. We
then show how this model is applied to synthesize data from
different test sources.

A. Problem Setting in AV Evaluation

Accelerated evaluation [3] is an approach to efficiently
evaluate the safety level of an AV. This approach evaluates
AV based on the test AV’s performance in different traffic
scenarios. The traffic scenarios are decomposed from natu-
ralistic driving and are considered to be safety-critical since
a very high percentage of crashes occurred in these scenarios



Fig. 1. The lane change test scenario.

[15]. Examples of there scenarios are discussed in [7], [16],
[17].

For each of these traffic scenarios, the uncertainty in the
driving environment is modeled as stochastic (follows some
statistical model). The probability of safety-critical events
(e.g. crash) is used as the criterion for determining the safety
level. Therefore, the task of this approach is to estimate the
probability of safety critical events in each test scenarios.

The problem is mathematically defined as follows. Let
us use x ∈ R to denote the variable that represents the
uncertainty in the driving environment and x is modeled as
a distribution f(x). We use g(x) to represent a performance
function that the safety-critical events depend on and use γ
to denote the threshold for g(x) to trigger the safety-critical
events (this means that g(x) ≥ γ indicates that a safety-
critical event occurs at x).

For instance, if we want to estimate the probability of
crash in the lane change scenario (refer to Fig. 1). In this
test scenario, a frontal human-driving vehicle cuts into the
lane of a test AV. The environment uncertainty, x, consists of
the following variables: the velocity of the frontal car, v, the
relative speed between the frontal car and the test AV, Ṙ, and
the range between these two cars, R. The uncertainty of these
variables is modeled as probability distribution f(x). We
define the performance function g(x) as the minimum range
between the test AV and the frontal vehicle. We estimate
P ({x : g(x) <= 0}), which represents the probability of
crash in this scenario, to evaluate the safety level of an AV
under this test scenario.

B. Synthesizing Tests

When we want to evaluate an AV in a certain test scenario,
we have several resources to select. Here we consider these
different test resources as models with different fidelities.
We rank the fidelity level of the test resources in an arbitrary
way (the rank is unnecessary to be “correct” for the model to
work, but will affect the accuracy). For example, we consider
the on-road test as the highest fidelity model, since this is the
“true” test in the evaluation. Then we consider an AR test has
lower fidelity, because the AR test maintains the check on
the physical part of the test AV. A pure computer simulation
of the vehicle algorithm is considered to have lower fidelity
than AR test, since physical parts are not considered in this
case. Lastly, we consider the historical data or test results
for similar designed AVs as the lowest fidelity model.

After we rank different test resource with fidelity lev-
els, given data set collected from these tests (Xt, Yt) for
t = 1, ..., T , we are able to use the proposed multi-fidelity

Fig. 2. The proposed multi-fidelity model on AV safety evaluation.

model to construct a response surface yT (x) for g(x). The
procedure follows the multi-fidelity model construction in
Section II-B and is illustrated in Fig. 2. Following [4], we
use the response surface to estimate the probability of safety
critical events. The estimation is given by

p̂ = P̂ (g(x) ≥ γ) = Ex [P (yT (x) ≥ γ)] , (13)

where the inner part P (yT (x) ≥ γ) denotes the probability
of yT (x) ≥ γ given the value of x and the outer expectation
is over the distribution f(x).

As we pointed out in Section II-C, besides the probability
estimation, the multi-fidelity model can be used to provide
a guideline for designing experiments. More specifically,
here we want to collect new data (Xnew, Y new) and use
(Xnew, Y new)∪(X,Y ) to construct a better model. We need
to decide the fidelity levels t’s and the value of x in Xnew,
so that we can do experiments on those t’s and x’s to collect
the response Ynew. In [4], [18], an experiment design scheme
for Kriging based on the information gain (IG) is discussed.
Here, we define IG at point x for model with fidelity t as

IG(x, t) = Ey∼yt(x)

[
(p̂n − p̂n+1(x, y))2|(X,Y )

]
, (14)

where p̂ denotes the probability estimation with n samples
in the samples set (X,Y ) and p̂n+1(x, y) denotes the prob-
ability estimation with sample set (X,Y ) and an additional
sample (x, y). Here we use the response surface for the
model with fidelity t to compute the IG, where we take
advantage of the “side product” of the multi-fidelity model.
Consider that the cost for implement an experiment at x for
model with fidelity t is C(x, t), similar to [19], we set our
design selection criterion to be

(x, t) = arg max
(x,t)

IG(x, t)

C(x, t)
. (15)

IV. NUMERICAL EXPERIMENTS

In this section, we consider two numerical experiments to
show the advantage of the proposed model. We first consider
a one-dimension problem to illustrate the proposed method.
Then we apply the proposed model to an AV test scenario.

A. Illustration Example

To illustrate how the proposed model integrates experi-
ment results from models with different fidelities, we set
up an one-dimensional problem as follows. Suppose we are
interested in the performance function g(x) and we have two
models h1(x) and h2(x) that are approximation of g(x). For
any design variable x, the response of g(x), h1(x), h2(x) are



Fig. 3. The response of the real performance function and two models
with different fidelity.

unknown and need to be observed from an experiment at x.
An experiment on the models h1(x), h2(x) has a lower cost
than an experiment on g(x), while h1(x) has a lower cost
but less accuracy (lower fidelity).

In this example we assume that the real performance
function of interest is

g(x) = exp {−
(x

2

)2
}. (16)

The model with higher fidelity is represented by

h2(x) = exp {−
(x

3

)2
} − 0.1 (17)

and the model with lower fidelity is given by

h1(x) = 0.7−
(x

6

)2
. (18)

We consider the design space as x ∈ [−5, 5]. Fig. 3 shows
the response of these three functions at different x. We
observe that the two models roughly capture the shape
of the performance function, and the high fidelity is a
better approximation to the performance function. Note that
according to the notations we used in this paper, we have
g(x) = h3(x).

With the above setting, let us consider that we have
some experiment results from these models and we use
these results to construct a response surface for the per-
formance function. For the performance function g(x), we
have experiment results at x = −5,−2, 1, 4. For the
higher fidelity model h2(x), we have experiment results
at x = −5,−3.5,−2,−0.5, 1, 2.5, 4. For the lower fi-
delity model h1(x), we have experiment results at x =
−5,−4.5,−4, ..., 4, 4.5, 5. (We have more experiment results
for lower fidelity models.)

We first construct a Kriging model with the experiment
results from the performance function. We use the Kriging
model as the baseline of response surface models. Fig. 4
shows the Kriging model we obtain. We observe that the
mean of the response surface (blue solid line) is not close to
the real function (green dash line) in most part of the region
(e.g. [−5, 1] and [4, 5]) and the 95% confidence interval (red
dot line) does not contain the real function in [−1, 3]. Note
that the Kriging model is built with only 4 data points (the

Fig. 4. Response surface constructed from the experiments from the
performance function g(x). The blue circles represent the experiment results
from g(x).

Fig. 5. Response surface constructed from the experiments from the
performance function g(x) and the higher fidelity model h2(x). The blue
circles represent the experiments from g(x), the orange squares represent
the experiments from h2(x).

blue circles in Fig. 4), the inaccuracy of the response surface
is expected.

Now we start to consider the experiment results from
the models h1, h2. We first consider the results from the
higher fidelity model h2 and use the proposed model to
construct a response surface as described in Section II-B.
Fig. 5 shows the response surface of the multi-fidelity model.
The data points from h2 are represented as orange squares.
The resulting response surface is closer to the real function
than the Kriging model (in Fig. 4), because the mean (blue
solid line) has a similar shape and the confidence interval
(red dot line) almost contains the real function everywhere in
the region. This improvement is also confirmed by the mean
squared error (MSE) of the mean of the response surfaces.
The MSE decreased from 0.0572 (the Kriging model in Fig
4) to 0.0093 (the multi-fidelity model in Fig 5). Because the
tail region [4, 5] does not have any experiments, the shape
of the true function is still not well captured (the confidence
interval still contains the real function in most part).

We then further take the experiments from the lower fi-
delity model into consideration. We construct a multi-fidelity
model with experiments from all models (from g, h1, h2).
The response surface is shown in Fig. 6, where we use yellow
asterisk to represent the experiments from h1. Compared
to the response surface in Fig 5, this response surface has



Fig. 6. Response surface constructed from the experiments from the
performance function g(x), the higher fidelity model h2(x), and the lower
fidelity model h1(x). The blue circles represent the experiments from
g(x), the orange squares represent the experiments from h2(x), the yellow
asterisks represent the experiments from h1(x).

better prediction in the region [4, 5], while it has a similar
response in rest of the design space. The improvement of the
tail region further decreased the MSE to 0.0087 (compare to
0.0093 in Fig 5).

The comparison of the three response surfaces shows
us how the proposed model improves our prediction with
lower fidelity models. In the region that experiments of
higher fidelity models is not available, the model utilizes the
information provided by the lower fidelity models. On the
other hand, involving lower fidelity model experiments does
not change the region with sufficient higher fidelity models.

B. Implementation to AV Test Scenario

Here we study the test scenario example we described in
Section III-A. In the test scenario, we want to study the
performance of a test AV in the driving environment. The
performance function of interest g(x) is the minimum range
of the test vehicle and the cut-in vehicle. Note that the input
of the function x is consisted of three variables x = [v, Ṙ, R].

To implement the proposed model, we use experiment
results from two models. We first select design points for
input x using a mesh grid design that has v from 5 m/s to
35 m/s with a 2 m/s interval, Ṙ from 0 m/s to 30 m/s with
a 2 m/s interval, 1/R from 0.1 m−1 to 1 m−1 with a 0.1
m−1 interval. Let us denote the design point set as X and X
contains 2,560 design points. We collect experiment results
on these design points X from the real performance function
g(x) and denote the experiment set as D = (X,Y ). We
then randomly split the set into two, D1 and Dt, where D1

contains 1000 samples. We further extract 500 samples from
D1, and denote the obtained set as D2. We then perturb the
experiment results in D1 by a uniform noise from [−0.5, 0.5].
Now we consider D1 as the data set from the lower fidelity
model and D2 as the data set from the higher fidelity model
(or real function).

Similar to Section IV-A, we first use the higher fidelity
data set D2 to construct a Kriging model and then use D1

and D2 to construct a multi-fidelity model. We compare the
two models to show the advantage of taking lower fidelity
experiments into consideration. In this case, we use Dt as

the test data set to compute the MSE of the response surface
mean of the two models. The result shows that the proposed
model reduces the MSE to 2.3836 from 3.3948 of the Kriging
model.
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