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ADDENDUM

Application of the pathogen Trojan horse approach in maize (Zea mays)
Karina van der Linde a, Rachel L. Egger b,*, Ljudmilla Timofejeva c,‡, and Virginia Walbot b

aDepartment of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany; bDepartment of Biology, Stanford University,
Stanford, CA, USA; cDepartment of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia

ABSTRACT
Maize, Zea mays, the second-most-widely-grown crop, yields 20 % of all consumed calories worldwide.1

Despite its agronomic importance, research progress is limited by costly transformation. We recently
described the Trojan horse method as a useful tool to study maize proteins in situ that circumvents time-
and space-consuming whole plant transformation. The Trojan horse approach uses the protein-folding
and secretory properties of the corn smut fungus Ustilago maydis to secrete maize proteins from fungal
cells into the maize apoplast. Here, we discuss the timing and location of U. maydis during infection and
the protein secretion site in relation to anther anatomy. This spatiotemporal analysis enables the study
of apoplastic anther proteins in various premeiotic anther developmental stages, and could be adapted
for larger screens.
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In the 2017–2018 harvest, 1,033 million tons of corn were
produced worldwide,2 making corn the most-grown cereal
crop. People are highly dependent on this renewable food
and energy source, motivating researchers to investigate new
ways to increase yield.

Recent advances inmaize genetic-editing using CRISPR-Cas9
technology3 make modern reverse genetics much easier than
classical transposon insertion lines. Another milestone in stable
maize transformation was achieved more recently with precise
expression of maize BABYBOOM and WUSCHEL2 proteins
enabling genotype-independent embryo transformation without
time-consuming callus regeneration.4,5 Even so, the processes of
vector construction and transformation are laborious, and con-
sume greenhouse space. To overcome these drawbacks, we
developed an alternative, the Trojan horse method.6,7

The biotrophic corn smut fungus U. maydis infects all
aerial plant organs. During infection the hyphae never contact
the plant cytoplasm; instead the plant plasma membrane
invaginates resulting in a narrow apoplastic space between
hyphae and plant cells. All interaction between the plant and
fungus must traverse this tiny space, the biotrophic interac-
tion zone.8,9 Upon infection U. maydis secretes diverse effec-
tor proteins to suppress the plant´s immune response.
Sequences encoding signal peptides for classical secretion of
these effectors have been defined.10 Unconventional secretion
of proteins has been reported and can be hijacked by
researchers to secrete non-post-translationally modified pro-
teins in U. maydis liquid culture.11–13 The underlying
mechanism is still poorly understood and has not yet been
tested in a biotechnology setting in planta.13–15 Compared to
its host, U. maydis has a small genome and is readily

transformed.10 After decades of work with this genetic
model organism, an array of cloning vectors with a variety
of epitope tags and promoters is available. U. maydis has also
become a protein expression tool in biotechnology because of
its folding and post-transcriptional modification
abilities.13,15,16 Collectively, these features facilitate exploiting
U. maydis to express and secrete maize proteins in situ. This
approach permits single-cell resolution by tracking the Trojan
horse hyphae during plant infection and allows comparison of
maize cells receiving secreted protein to non-receiving cells in
the same tissue.7 Expression of foreign proteins by Trojan
horse strains is driven by a strong in planta active
promoter.6,7,17 This allows protein delivery to all infected
tissue layers. To permit expression at specific time points or
locations, alternative promoters may be used in the future.
Even though U. maydis is known for its protein folding and
secretion capabilities, secretion of foreign proteins of interest
needs to be carefully monitored.17 Also, the protein size limit
for secretion is not yet known. The U. maydis effector Cmu1
(Chorismate mutase1) at nearly 300 amino acids long plus an
mCherry-tag successfully complemented the cmu1 deletion
mutant.18

To implement the Trojan horse method and achieve the
highest possible spatiotemporal resolution, detailed growth
timelines for both the host and the pathogen are required.
For maize, detailed analyses of premeiotic anther develop-
ment have been performed.19–22 Premeiotic anthers double
in length approximately once per day. During early stages,
at least one new lobe tissue layer is formed each day over the
course of four days of growth (Figure 1). Correlations of tassel
size and anther stages in different zones of the tassel (for
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maize inbred W23) showed that a tassel of 5–7 cm contains all
stages of premeiotic anthers.25 Consequently, the impact of
infection by a Trojan horse strain can be assessed in all anther
lobe cell types with just one tassel infection.

U. maydis infections were analyzed by various labs indicat-
ing reproducible patterns and timelines in all examined maize
tissues.8–10,24 This is true even though U. maydis deploys
divergent effectors for infection of different host tissues and
host tissue responses vary in turn.26 An infectious hypha with
an appressorium forms, and epidermal cell penetration starts
within 12 h after contact with the plant. In the following 12 h
infected epidermal cells are fully colonized (Figure 1). Two
days post infection (dpi) two subepidermal layers are infected.
After 3 dpi the entire organ is colonized.7–10,24 In seedling
leaves, U. maydis strain SG200-induced cell proliferation

occurs 4–5 dpi.27 In SG200-infected anthers, no significant
formation of additional cells was observed 3 dpi.
Subsequently, developmental studies using the Trojan horse
approach were performed 3–4 dpi.7

To analyze the impact of the small secreted maize pro-
tein ZmMAC1 on Layer2-derived and archesporial cells
present in 120–300 µm anthers, tassels with 50–125 µm
anthers were infected. Three dpi, anthers were now 400–-
700 µm and were harvested for confocal imaging.7 By
combining existing observations, a timeline for anther
Trojan horse experiments can be estimated (Figure 1).
Presumably, infection of 50 µm anthers should allow pro-
tein secretion to epidermal cells, primary parietal cells,
secondary parietal cells, and the endothecium before obser-
vation of cellular responses is performed 3 dpi. At this time
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Figure 1. Timeline for the Trojan horse approach in premeiotic maize anthers.
Schematic illustration of different developmental stages of premeiotic anther lobes. Maize anther lobe development is strongly linked to anther size, as exemplified
here for maize cultivar W23. New tissue layers form within the lobe, approximately one day apart.19,20,23 Anther development and cell fate specification is correlated
to days post infection (dpi) with U. maydis based on previous studies.7–10,24

e1547575-2 K. VAN DER LINDE ET AL.



point, epidermal cells should have received the secreted
protein for two days, while primary parietal cells, secondary
parietal cells, and the endothecium should have been trea-
ted for 1 day. To analyze the response of middle layer cells
to a secreted protein of interest, anthers 350–450 µm long
have to be infected.

In addition to developmental studies, the Trojan horse
approach is a tool for analysis of proteins in plant-pathogen
interactions.6 Here tumor formation is used as an easy measure
of plant susceptibility or resistance to the fungus after receiving
a secreted protein of interest. The study of the function of apo-
plastic maize peptide ZIP1 resulting from proteolytic cleavage of
PROZIP1 is one example of this. During compatible maize-
U. maydis interactions, release of ZIP1 is blocked. Secretion of
ZIP1 byU. maydis reduces tumor formation, and hence increases
resistance to U. maydis.6 Thus, proving that not only proteins of
interest but also individual protein domains can be functionally
analyzed by this approach.

The Trojan horse approach can be used to analyze protein or
protein-domain functions with high spatiotemporal resolution
in situwithout stable host transformation. Successful implementa-
tion relies on detailed knowledge of host developmental timelines
and pathogen infection strategies. Easy transformation, under-
standing of secretion mechanisms and good protein folding capa-
city on the pathogen side are indispensable. Fortunately, many
plant- and animal-pathosystems offer these features making the
Trojan horse approach widely generalizable in the future for
systems that lack easy host transformation technologies.
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