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Abstract: Parameter estimation is an important problem because in many instance uncertain pa-

rameters cannot be measured accurately, especially in real-time applications. Information about them

is commonly inferred via parameter estimation techniques from available measurements of different

aspects of the system response. In this work, we consider the reduction of the uncertain topography

parameters of 2D shallow water equations to be inconsistency with the physical observations. This is

often quite challenging due to its ill-posed nature of the inverse problem, particularly for the present

nonlinear case in high-dimensional random space. We have explored an efficient computational strat-

egy for the solution of the problem in the framework of the polynomial chaos (PC)-based ensemble

Kalman filter (PC-EnKF for short). The main idea pursued in this methodology is to introduce a

determination of the potential optimal observation location followed by the update of the input to-

pography parameters to be retrieved through the PC-EnKF, wherein the identification of the optimal

observation locations is accomplished sequentially via the predictive uncertainty controlled by stan-

dard deviation, and then places the corresponding measurement for data assimilation purpose. This

is not only to provide more informative measurements but also to improve the topography parame-

ters estimation. The numerical experiments indicate that the optimal observations-based PC-EnKF

algorithm is effective in dealing with the current retrieval of topography parameters. It is worth

mentioning that an iterative PC-basis rotation technique is particularly useful when attempting to

enhance the sparsity and the resulting accuracy. The solution strategy is well suited in the current

high-dimensional nonlinear inverse modeling and has shown its appealing potential in the real-world

application of complex systems.
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1. Introduction

Uncertainty Quantification (UQ) is now an interdisciplinary field of research that has seen

rapid growth in the last decades [1, 2]. UQ focuses mainly on understanding, quantifying and

mitigating uncertainty in computational simulations. Within UQ, a fundamental task is to develop

computationally efficient statistical methods by the use of limited and noisy measurement data to

make an inference of the input parameters of numerical models of physical systems, reduce the

corresponding uncertainty and lead to improved models [3, 4]. For this reason, the inverse problem

has received increased attention.

A rigorous framework for inferring the uncertain input parameters is the Bayesian approach [5],

where probability density functions are considered to represent uncertainty. The Bayesian method

has been widely used [6]. Different methods to estimate parameters in a Bayesian framework

are possible. For example, Maximum likelihood parameter estimation can be formulated as an

optimization problem, which can be numerically solved by gradient methods or global optimization

methods [7]. Another Bayesian parameter estimation method is the Kalman filter [3].

The Kalman filter is widely used as a data assimilation method. Due to the variety of potential

applications of the Kalman filter, there have been several variants of the Kalman filter developed

so far. Among them, polynomial chaos based ensemble Kalman filter (PC-EnKF) has recently

developed [8, 9, 10]. This method overcomes some of the drawbacks of the ensemble Kalman filter

(EnKF) [9], and allows representation of non-Gaussian measurement and parameter uncertainties

in a simpler, less taxing way without the necessity of managing a large ensemble owing to the use

of polynomial chaos.

The PC-EnKF developed by Matthies et al. [10, 11] can also be applied to the nonlinear

inverse problems. In this method, the random process of interest is represented by the PC bases

which are the orthogonal polynomials with respect to a set of independent random variables with

known distributions [12, 13]. Once the PC representation is obtained, the statistical moments of

our interest (i.e. mean and covariance of the random quantities) can be easily computed from

the PC coefficients. The PC-EnKF resembles the traditional EnKF in every aspect except that

it represents and propagates model uncertainty by PC expansion instead of an ensemble of model

realizations. This method turns out to be a more efficient alternative to EnKF for many data

assimilation problems [9, 14].

In order to determine the unknown PC expansion coefficients of the solution, there commonly
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exist two types of methods to be resorted to, the intrusive [15, 16, 17, 18] and the non-intrusive

ones [19, 20, 21]. Historically, the intrusive Stochastic Galerkin (SG) method was used in [22].

However, it must solve a system of coupled equations which require robust and efficient solvers

and the modification of existing deterministic codes. Often, the form of equations or code used to

solve the deterministic equations is complex, which makes the implementation of the intrusive SG

method difficult, if not impossible. Compared with the ‘intrusive’ method, the advantage of ‘non-

intrusive’ method is that there is no need to modify the deterministic solvers for the quantities

of interest (QoI). The fundamental idea behind the ‘non-intrusive’ approach is essentially the

repeated application of the existing or legacy deterministic solver. We consider non-intrusive

sampling methods in our current study. However, the trade-off is frequently encountered, that is,

keeping more PC basis functions in PC decomposition helps to capture uncertainty more accurately,

but it increases the computational cost. An ideal PC expansion should accurately represent the

model uncertainty but keep the number of basis functions as small as possible. It is challenging

to identify such a subset of PC bases that have the strongest impact on the model uncertainty.

Recent attempts at extracting only a subset of desired PC bases rely on the compressive sampling

[23, 24, 25, 26] and the formulation of convex optimization. In this paper, we are more interested

in developing a sparsity-promoting PC-EnKF, where a l1-solver is introduced to determine the

coefficients of PC expansion in the prediction step of ensemble Kalman filter.

The l1-solver essentially combines tools and ideas from convex optimization with compressive

sensing. Among the most popular l1 solvers, the Lasso (least absolute shrinkage and selection

operator) [27] has been widely used in compressed sensing and image processing, where many

regression coefficients are expected to be zero, and only a small subset of coefficients to be non-zero.

The Lasso sparse solution is therefore obtained via a l1 penalized least-squares criterion. Currently,

there are many methods that can be implemented for solving this l1 optimization problem. For

instance, the least angle regression algorithm [28] (achieve the same time complexity as ordinary

least-squares regression) and the even more efficient coordinate descent algorithm [29].

However, there are still some of the weaknesses in Lasso estimation, e.g. the Lasso procedure

is not stable enough when there exist high correlations among the variables, and Lasso tends to

arbitrarily choose some important variables and ignore the other important variables when they

have relatively high correlation or group structures [30]. All these often preclude the use and

potential advantage of Lasso.

To improve the limitations of the Lasso, we adopt the Bayesian compressed sensing (BCS)
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method [31]. This method was originated from the area of machine learning and introduced

by Tipping for obtaining sparse solutions to regression and classification tasks that use models

which are linear in the parameters, coined as relevance vector machine (RVM) [32] or sparse

Bayesian learning (SBL). SBL is built upon a statistical perspective where the sparsity information

is exploited by assuming a sparsity-inducing prior to the signal of interest that is then estimated

via Bayesian inference. Its theoretical performance is analyzed by Wipf and Rao [33]. After being

introduced into CS by Ji et al. [31], this technique has become a popular approach to compressed

sensing (CS) and other sparsity-related problems. In this paper, we solve the polynomial chaos

expansion coefficients with the help of BCS due to its attractive computational efficiency. In

contrast to solving the CS problem with l1 regularization (or l1 solver), the BCS can, as a significant

competitive candidate method, avoid the need to perform the expensive the determination of

regularization parameter.

Recently, there are increasing interests in exploring potential observations (future possible ob-

servations to be collected). It is desirable to use the smallest set of potential observations to make

optimal placement in order to significantly reduce the effort and cost of measurements. There are

many methods appear in these areas of optimal measure location. The adjoint sensitivity analysis

technique has proven to be an essential tool for developing optimal observation strategies and will

be used to help identify the areas where the uncertainties in models are rapidly growing and will

mostly influence the forecast. A Bayesian optimization is a powerful tool for the joint optimiza-

tion of design choices that is gaining great popularity in recent years [34]. Bayesian optimization

has two ingredients that need to be specified: building the prior by adopting the Gaussian pro-

cess (GP) and searching for the high potential observation location by optimizing the acquisition

function. Bayesian optimization methods differ in their choice of prior and their choice of this ac-

quisition function. As an optimization methodology, Bayesian optimization techniques have been

successfully applied to environmental monitoring [35], information extraction [36], combinatorial

optimization [37], automatic machine learning [38, 39, 40], sensor networks [41], adaptive Monte

Carlo [42], experimental design [43] and reinforcement learning [44]. Despite many success stories,

the GP-based Bayesian optimization approach is beset with potential difficulties and significant

challenges, such as high-dimensionality problem [38], and nonlinearity operator [45], which are still

the most pressing open question remaining to be dealt with. Based on this consideration, and mo-

tivated by the Bayesian optimization we develop the current method in the framework of PC-EnKF

and attempt to cope with the retrieval of the topography in 2D shallow water equations. The main
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idea pursued in this method is to introduce a determination of the potential optimal observation

location followed by the update of the input parameters to be retrieved via the PC-EnKF. More

details of the description of the algorithm will be seen later in Section 2. We would like to stress

that PC-EnKF-based optimal determination for the observation data was rarely studied.

In determining the optimal observation, the main problem is to quantify the impacts of the

information content of observed data to be planned on parameter estimation. Different informa-

tion can be employed in the application. These include the D-optimality, Bayesian D-optimality,

Shannon entropy difference, and relative entropy et al. D-optimality maximizes the determinant

of the information matrix or equivalently minimizes the variance of estimators, which has been

widely used in optimal experimental design theory since late 1950’s Kiefer (1959) [46]. As one

of the commonly used standard criteria, D-optimality and its main idea have been followed by

many researchers [47]. For the current study, we adopted the variance or standard deviation as

the control function due to its simplicity and efficiency in computation [45].

The main task of the current work is to explore the feasibility of combining the PC-EnKF with

the determination of optimal observation locations when solving the high-dimensional nonlinear

inverse problem. And the final purpose is to pursue the desired retrieval effectiveness of the

model parameters with a relatively low number of samples and a small number of observations,

due to the usage of polynomial chaos and the determination of optimal observation, respectively.

Wherein the fast computation of the Kalman gain matrix at the analysis step of EnKF can be

guaranteed by the introduction of the Bayesian compressed sensing method that can provide sparse

and fast solution results for the polynomial chaos expansion coefficients. For demonstrating the

current algorithm, we solve an inverse problem from the 2D shallow water equations and attempt

to recover the representation of accurate bed topography that is still a challenge [48, 49] due to

its ill-posed essence. Such a problem arises frequently in the field of hydraulic modeling of open

channel flows in which the topography shape is an important parameter that needs to be identified

prior to numerical modeling and flow simulation. So far, various methods have been developed

for addressing this issue, please see [50] for details. To the best of our knowledge, the present

study is the first development and application of the optimal determination of observation in the

theoretical framework of PC-EnKF to deal with the high-dimensional nonlinear inverse problem.

The rest of this paper is organized as follows. First, in Section 2 we provide a formulation of

the current algorithm in the framework of the PC-EnKF method; Secondly, in Section 3, numer-

ical simulation experiments are carried out, and the recovery of topography in 2D shallow water
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equations is allowed to demonstrate the potential benefits and usefulness of the present algorithm,

and then some conclusions and ideas in future research are provided in Section 4.

2. A formulation of the current optimal observation algo-

rithm in the framework of the PC-EnKF method

In this section, we give the technical background and the basic approach for the proposed

algorithm to find the optimal observation for implementing the desired retrieval of parameters.

2.1. Problem description

The model uncertainty prediction can be described using the following relation:

d = g(m), (2.1.1)

where m denotes the parametric input variable or input parameter, and d is the output model

uncertainty. Generally, g represents a predictive model. Given a priori knowledge of m, then

the corresponding model prediction d has huge uncertainty. For the purpose of reducing this

kind of uncertainty as small as possible, we resort to the observation data from the physical

field. Considering the practical measurement error, the observation data dobs can be written as

dobs = d + ε. Here the ε satisfies a certain probability distribution, which is uncorrelated with the

prior distribution. So the posterior distribution of m when considering observation data becomes

P (m|dobs). Thus, the mean value and variance of m are derived theoretically. In the current

study, we will apply the polynomial chaos to express the uncertainties to numerically accomplish

the retrieval of the input parameters in the framework of EnKF.

2.2. PC representation of the uncertainty

To characterize uncertainty, we model the uncertain inputs as an n-dimensional vector of

independent random variables ξ := (ξ1, ξ2, · · · , ξn), with probability density function ρ(ξ). The

QoI that we seek to approximate is d(ξ). Supposed that its variance is finite, then we can utilize

PC expansions ψj(ξ) to approximate d(ξ), which is of the form:

d(ξ) =
P∑
j=0

cjψj(ξ) + εt(ξ), (2.2.1)
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where cj, j = 1, 2, · · · , are the corresponding PC expansion coefficients. Denote the maximum

order of the truncated polynomials by l, the total number of terms P + 1 is given by (n+l)!
n!l!

. εt

is truncation error associated with retaining P + 1 terms of PC bases. With the growth of the

polynomial order and the number of random variables, the total number of terms in the expansion

increases rapidly. We assume that ψj(ξ) are normalized such that E(ψ2
j (ξ)) = 1, where the

operator E denotes the mathematical expectation. In this work, the parametric input variables are

assumed to be Gaussian, and therefore Hermite polynomials are chosen according to the Wiener-

Askey scheme. The Hermite polynomials are normalized and the weight function is: w(x) =

1√
2π

exp(−x
2

2
). To identify PC expansion coefficients, we consider non-intrusive sampling methods,

in which deterministic solvers for the QoI are not modified. Such methods include Monte Carlo

simulation [51], pseudo-spectral stochastic collocation [52], least squares regression [53], and l1-

minimization [54, 55, 56, 57]. The l1-minimization, as given by the following optimization problem:

c̃ = arg min
c
{‖d−Ψc‖22 + ρ ‖c‖1}, (2.2.2)

has attracted a revived interest and considerable amount of attention in the signal processing liter-

ature [58, 59, 60] for its sparsity-seeking property, where ρ is the sparse regularization parameter.

The problem (2.2.2) can be solved by some heuristic greedy algorithms, e.g. orthogonal matching

pursuit (OMP) [61] and least angle regression (LARS) [62]. In light of the high interest in finding

more efficient algorithms to solve this problem, many new algorithms have been proposed like

the gradient projection (GP) [63], iterative shrinkage-thresholding (IST) [64, 65], etc. However,

an unavoidable step needs to be introduced at each iteration when solving the problem (2.2.2),

that is, determining regularization parameter ρ by adopting the suitable method. Undoubtedly,

this will weaken to some extent the computational advantage of the problem (2.2.2) that works

for the sparse solution. For this reason, we resort to the Bayesian compressed sensing (BCS)[31]

method to approach the polynomial chaos expansion coefficients c. In a Bayesian setting, a full

posterior density function is provided, which yields not only the point estimate for the coefficients

c as done by the problem (2.2.2), but also the corresponding uncertainty. More importantly, the

BCS becomes a popular approach to compressed sensing (CS) and other sparsity-related problems

via the exploitation of an efficient and fast algorithm for its implementation.

Once we have the coefficients of the expansion, we can compute approximate statistics of the

output variable d with the formulas

E[d] = c0, (2.2.3)
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Var[d] =
P∑
j=1

c2j ‖ψj(ξ)‖
2 , or Std[d] =

√
Var[d]. (2.2.4)

where the E[·], Var[·], and Std[·] denote the expectation (or mean), variance and standard devi-

ation, respectively. In the present study, the variance or standard deviation is interesting, which

can be used to guide the determination of the optimal observation locations, implemented with

the goal of retrieving the topography in the 2D shallow water equations.

2.3. Solving l1-minimization using BCS

To solve the coefficients c of the polynomial chaos expansion we will begin with the following

relation:

d = Ψc + n, (2.3.1)

where d represents the model output, and Ψ the basis matrix. n denotes an error term with the

measurement error and truncation error included, which generally satisfies n ∼ N (0, σ2
0). In the

framework of BCS, we aim to find a full posterior density function for c. The BCS is advantageous

owing to its seeking-sparsity property and high efficient computation. A brief review is necessary

in order to have a fast understanding of the basic idea behind the BCS. For more details, please

refer to the literature [31].

(1) The formulation of hierarchical sparseness prior

For coefficient c to be solved, the following prior is evaluated

p(c|a, b) =
P∏
i=0

∫ ∞
0

N (ci|0, α−1i )Γ (αi|a, b) dαi. (2.3.2)

here the α = (α0, α1, ..., αP ) can be considered as Gamma prior:

p(α|a, b) =
P∏
i=0

Γ (αi|a, b) . (2.3.3)

where a and b are the shape and scale parameters of Gamma distribution, respectively. An ap-

propriate choice of the hyperparameters a and b will lead to a sparseness prior as interpreted in

[31].

(2) Fast implementation of seeking the hyperparameters

Having the sparseness prior for c in hand, its posterior can be solved by the relevance vector

machine (RVM)[32] with mean and covariance:

µ= α̃ΣΨTd, (2.3.4)
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Σ = (Λ + α̃ΨTΨ)−1. (2.3.5)

where α̃ = 1/σ2
0, and Λ = diag(α). The appropriate treatment of α will play a key role in

designing a fast and highly efficient algorithm for coefficients c, which can be formed directly by

analyzing the properties of the marginal likelihood function of α, α̃ as follows:

L(α, α̃) = −1
2
[K log 2π + log |C|+ dTC−1d]

= L(α−i, α̃) + l(αi, α̃),
, (2.3.6)

where C = σ2
0I + ΨΛ−1ΨT , K is the number of rows of the matrix Ψ, and l(αi, α̃) = 1

2
[logαi −

log(αi + si) +
q2i

αi+si
]. While si = ψTi C

−1
−i ψi, qi = ψTi C

−1
−i d, and C−i is C with the contribution of

basis function ψi removed. α−i is the same as α except αi is removed. Obviously, by the l(αi, α̃),

a unique maximum associated with αi of L(α, α̃) can be found :

αi =
s2i

q2i − si
, q2i − si > 0, (2.3.7)

αi =∞ , q2i − si ≤ 0. (2.3.8)

If αi =∞ then coefficient ci = 0. Controlling in this way the addition and deletion of particular

ψi from the uncertainty representation guarantees the sparsity of the resulting coefficients, and

hence a highly efficient learning algorithm is realized.

2.4. PC-EnKF inverse modeling

Let us go back again to the problem proposed in Section 2.1, where the output variable d will

produce large uncertainty due to the prior distribution of the input parameter m. We want to

seek to reduce this uncertainty using the PC-EnKF with the help of the observation data dobs.

The input and output random vectors m and d are expressed as two truncated series below:

m ≈
P∑
i=0

cm
i Ψi(ξ), (2.4.1)

d ≈
P∑
i=0

cd
i Ψi(ξ), (2.4.2)

where ξ, as stated in Section 2.1, is a random vector comprising a set of independent random

variables with given normal distribution. Correspondingly, the Ψi(ξ) is the column vector of Ψ

that consists of the Hermite PC basis function. PC expansion representation of input parameters

(2.4.1) is set according to the prior distribution of m, whereas the coefficients in equation (2.4.2)
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are obtained by the process mentioned in Section 2.3. For more details about equations (2.4.1)

and (2.4.2), please refer to reference [1]. It is also noted that when the correlated input parameters

are encountered, the Karhunen-Loève expansion (KLE) can be employed to represent them with

uncorrelated random variables. This technique is also known as proper orthogonal decomposition

(POD) or, in finite-dimensional setting, principal component analysis (PCA). This situation can

be seen later in numerical experiments.

Implementation of PC-ensemble Kalman filter (PC-EnKF) has two steps: the prediction step

and update step.

(1) Prediction step

The key idea in the PC expansion technique is to build a polynomial approximation of the

forward model response in a same way as in equation (2.4.2). And the PC expansion is used in the

PC-EnKF in place of the forward propagation model (2.1.1). Thus, the PC-EnKF prediction step

can be performed with the predicted mean µd and covariance matrices cdd and cdm as follows:

µd =
P∑
i=0

cd
i E(Ψi(ξ)) = cd

0 , (2.4.3)

Cdd = E((d− µd)(d− µd)T ) = E((
P∑
i=1

cd
i Ψi(ξ))(

P∑
j=1

cd
j Ψj(ξ))

T ) =
P∑
i=1

cd
i c

dT
i , (2.4.4)

Cdm = E((d− µd)(m− µm)T ) = E((
P∑
i=1

cd
i Ψi(ξ))(

P∑
j=1

cm
j Ψj(ξ))

T ) =
P∑
i=1

cd
i c

mT
i , (2.4.5)

From these above relations, we see that seeking the sparsity of expansion coefficients indeed facili-

tates the calculation of statistical moments. Once the prediction stage is finished, then the update

step is therefore followed.

(2) Update step

The update step is essentially to correct the PC expansion representation of the parameter

vector m using the Kalman filter once the observations as well as the observation-error covariance

matrix R are given. This can be realized through adopting different Kalman gain matrix that can

be fully determined by the statistical moments obtained in the prediction step. When the first

coefficient, i.e., the posterior mean of m, is updated, the expression is of the form:

µm|dobs := cmu
0 = cm

0 + K(dobs − cd
0 ), (2.4.6)

where the superscript ’u’ denotes “updated”, and the Kalman gain K is provided by the relations:

K = Cmd(Cdd + R)−1. (2.4.7)
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While for the coefficients other than the mean (first) term, the update equation becomes:

cmu
j = cm

j − K̃cd
j , (2.4.8)

The corresponding formulation of the Kalman gain is selected as K̃ in order to guarantee the

computational stability[1]:

K̃ = Cmd((Cdd + R)−1)T (
√

Cdd + R +
√

R)−1, (2.4.9)

Finally, the posterior covariance of the parameters is formed as the following:

Cmm|dobs :=
P∑
j=1

(cmu
j )(cmu

j )T . (2.4.10)

from which the uncertainty of the resulting input parameters m can be derived.

2.5. Determination of the optimal observation

Besides immediate access of the gain matrix involved in the ensemble Kalman filter (EnKF),

the computation of the coefficients of polynomial chaos expansion, as can be seen from the Section

2.3 to 2.4, will significantly facilitate the determination of the optimal observation. The optimal

observations are important as they will allow the most effective use of potential observation re-

sources, which implies a determination where best to place monitoring devices, hence the reduction

of inverse solution error as well as assimilation of the fewer observational resource. This approach

initially involves the definition of an overall goal (criteria), which is a measure of what is considered

important in a physical problem. As mentioned in [45], we adopt variance (or standard deviation)

as a criterion, with which an algorithm of determining optimal observation is thus developed here

for improving the eventual PC-EnKF result. So the process to identify the optimal observation

can be formulated as follows:

(x
(k+1)
i , y

(k+1)
i ) = arg max

Dxy

Var(k)(x, y), (2.5.1)

where k denotes the k-th PC-EnKF iteration, (x
(k+1)
i , y

(k+1)
i ) is the potential observation location

where the corresponding observation data will be placed for the assimilation calculation of (k+1)-

th PC-EnKF iteration, and Var(x, y) is the predictive variance for a certain output state variable

over the numerical computational domain Dxy.
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Here the predictive variance Vark+1(x, y) is straightforward to calculate through the equation

(2.2.4) once the k-th PC-EnKF is completed. This can be accomplished by envolving the k-

th updated input parameters using equation (2.1.1) to the final time of assimilation, and then

collecting the relevant coefficients of polynomial chaos expansion. The main steps to perform the

current algorithm include:

(1) Stage of preparatory work

a). Generating random vectors ξ := (ξ1, ξ2, · · · , ξn) ∼ N(0, σ2In×n), where In×n is the identity

matrix, and σ2 is a variance;

b). A set of random observation locations, denoted by A, includes no elements, and the obser-

vation data are correspondingly placed on, represented by dobsg . It is assumed that the observation

error vector ε follows the Gaussian distribution: ε ∼ N(0, σ2
oIno×no), where σ2

0 is referred to as the

observation-error variance;

c). According to the Gaussian prior information, the input parameter m can be written as:

m =
P∑
i=0

cm
i Ψi(ξ)

with the column vector Ψi(ξ) of the basis matrix Ψ and its coefficient cm
i ;

(2) The update for both the input parameter m and the observation data dobsg

d). Run the numerical model d = g(m) forward in the framework of the non-intrusive method,

and then determine the coefficients cd
i of the following expression:

d =
P∑
i=0

cd
i Ψi(ξ)

cd
i consists of two parts: one part is cdA

i that is calculated over the existing observation locations

A with BCS for the sake of the sparsity of matrix involved in the Kalman data assimilation; the

other part is denoted by c
dDxy\A
i that can be explored by the least square method when considering

the fast calculation of the variance or standard deviation over the other grids Dxy\A;

e). Calculate the variance at each grid using the equation: Var =
P∑
i=1

(cdi )
2 ‖Ψi(ξ)‖2. If the

maximum of variance over the grid domain is lesser than the predefined tolerance δ, then the

computational process will be terminated, say after k-th loop, and hence the input parameters m(k)

are just our desired; otherwise placing an observation dobsv on the position of maximum variance,

and add it to the current observation data and form new observation data dobsk+1 = [dobsk , dobsv ] to

prepare for the (k + 1)-th data assimilation loop. Meanwhile, proceed to perform the update of

the input parameter m(k) with the observation dobsk ;
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Figure 1: Flow-chart of the algorithm involved in this paper.

f). Use the equations (2.4.3)-(2.4.5) to construct the covariance matrix Cdd, Cdm. After the

Kalman gain K and K̃ are computed as stated by the equations (2.4.7) and (2.4.9), the mean

and variance of parameters m(k) can be thus updated using the observation information from dobsk

according to the equations (2.4.6), (2.4.8) and (2.4.10);

g). Return to the step c) and repeat the above process until the maximum variance of output

variable is less than δ. Thus, the input parameters m are retrieved with the selected observation

data dobs.

For the more details, please see Figure 1. Obviously, this direct evaluation of the standard

deviation allows us to avoid any other available optimization algorithm for solving the problem

(2.5.1), thus saving the huge computational cost. Var(x, y) plays an important role in the current

study, which acts as not only a tool to measure uncertainty but also a termination criterion for

PC-EnKF iteration. This study provides the first application of the algorithm for determining

optimal observation in the context of the PC-EnKF for the sake of improving the eventual inverse

results.

Remark 2.5.1. For the current study, we adopted the variance or standard deviation as the

control function due to the motivation of discrete empirical interpolation method (DEIM) [66],
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where the selection of indices (spatial locations) is performed according to the largest error found

in iteration k and then the next iteration k + 1 will make the interpolation become as exact as

possible at this index (spatial location). This process has something in common with that of the

Gaussian process in searching for a measurement helps the most in experimental settings where

the model response (or interpolation function) contains the largest uncertainty. In fact, using the

location of maximum variance has already been a standard approach in Gaussian process modeling,

and has been widely applied in the theoretical study [45].

Remark 2.5.2. When performing the current algorithm, the optimal observation data in-

cluded in the dobs are fully replaced with those from the traditional Gaussian process. However,

we find from the numerical experiments that the PC-EnKF with the observation data derived by

Gaussian process (PC-EnKF-GP) does not gain too many advantages in computational cost over

the PC-EnKF with the present observation data derived by the forecast variance (PC-EnKF-FV),

on the contrary, provide the lower the retrieval accuracy of the input parameter m than that using

the PC-EnKF-FV. In addition, when a very small number of random observation locations are

given from the beginning, the Gaussian process can frequently suffer from the choice of the param-

eters associated with kernel functions, particularly in the higher-dimensionality problem. How to

address these issues remains a challenge. Here we completely bypass this hurdle by utilizing the

current algorithm developed in this manuscript.

Remark 2.5.3. The alternative advantage of the current algorithm allows the embedment of

iterative rotation algorithm [67] to further improve the resulting accuracy, which can be illustrated

later in the Section 3.

2.6. Numerical test: the inverse solution of the 2D elliptic PDE with

random coefficients

We demonstrate in this subsection the performance (efficiency) of both the PC-EnKF-FV and

-GP for the inverse solution of the 2D elliptic PDE with random coefficients. −∇ · (a(x, ξ)∇u(x, ξ)) = 1, x ∈ D,D = [0, 1]2

u(x, ξ) = 0, x ∈ ∂D
, (2.6.1)

where a(x, ξ) represents random coefficient, and x = (x, y). This equation is of particular interest

for studies on uncertainty quantification (UQ) methods.
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Assume that a(x, ξ) is unknown beforehand, and can not be directly observed, our objective

is to solve it with the help of the observation data of u(x, ξ) so as to reduce resulting uncertainty.

Due to the advantages discussed by Xiu and Karniadakis (2002)[68], Powell and Elman (2008)[69],

we use the Karhunen-Loève(KL) type expansion to approximate a(x, ξ) as follows:

a(x, ξ) = µ(x) +
N∑
i=1

√
γiφi(x)ξi, (2.6.2)

where the ξi(i = 1, 2, · · · , N) are independent, identically distributed standard normal random

variables, the mean µ(x) is specified to be zero at each space grid. And N is set to be 10.

These leading terms in the KL expansion are retained only by depending on those that have large

variances quantified by the eigenvalues and thus the remaining terms can be dropped from the

expansion to yield a reasonable reduced rank approximation of the process. The {√γi, φi} are the

eigenpairs of the covariance function:

Cov[a(x1), a(x2)] = σ2
a exp(−|x1 − x2|

2

l2x
− |y1 − y2|

2

l2y
), (2.6.3)

where σa = 1 is standard deviation, and the lx = 0.3, ly = 0.7 stand for the correlation length

in the x and y direction, respectively. Particularly, one only needs to make an evaluation of the

natural exponential function (i.e. nonlinear transform) for the equation (2.6.2) if the lognormal

distribution of the random coefficient a(x, ξ) are used on the unit square D = [0, 1]2 in R2.

Given a reference value a(x, ξr) over the special domain D, see Figure 2(a), the field simulation

u(x, ξr) can be obtained for the same random variable ξr := (ξr1, ξ
r
2, · · · , ξrN) using the standard

finite element numerical method, see Figure 2(b), where we first partition the spatial domain

D into squares with mesh size ∆x = ∆y = 1
30

, and then further partition them into triangular

meshes, please see Figure 3.
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(a) Reference a(x, ξr) (b) Simulation field of u(x, ξr)

Figure 2: The reference of the random coefficient and the corresponding simulation field.

(a) (b) (c)

Figure 3: The observation locations selected (a) randomly (RD) (denoted by the black circles),

(b) by the Gaussian process (GP) (denoted by the blue solid circles) and (c) by forecast variance

(FV) (denoted by the red squares). Note that the first location appearing in (b) and (c) is given

randomly ( see the black circle), respectively.
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Figure 4: The initial guess a(x, ξg) of random coefficient.
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Figure 3(a), (b) and (c) show us the selected observation locations that are obtained using

the random selection, the Gaussian process, and the forecast variance, respectively. Starting with

an initial guess a(x, ξg) of the random coefficient (see Figure 4). We perform the inverse solution

by the PC-EnKF with the observations at the locations as shown in Figure 3. The process of

inverse solution is called the PC-EnKF-RD (PC-EnKF with random locations), the PC-EnKF-GP

(PC-EnKF with locations determined by the Gaussian process) and the PC-EnKF-FV (PC-EnKF

with locations determined by forecast variance), respectively. The inverse results are as follows,

see Figure 5(a)(b)(c).
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Figure 5: The inverse results of a(x, ξg) using (a) PC-EnKF-RD, (b) PC-EnKF-GP and (c) PC-

EnKF-FV.

We can see from the Figure 5 that the PC-EnKF works well, no matter which kind of the

selected observation data is used. All the results have a close approximation to the reference of

a(x, ξr), and the substantial improvements are observed. However, for further demonstrating the

advantage of the current algorithm, we provide the iterative process of reducing the uncertainty

of a(x, ξg) at x = 12∆x with the selected observation when performing the PC-EnKF-RD, -GP

and -FV data assimilation process, respectively. The corresponding computational results can be

shown in Figure 6. Comparing their final assimilation results (i.e. the fifteenth computational

result ) we find that the accuracy of the inverse solution of the PC-EnKF-FV is superior to that

of other two processes. In fact, in the case of the PC-EnKF-FV, the inverse result that use the

thirteen observation data to obtain ( i.e., the thirteenth assimilation result) has approached or

outperformed the final computational quality for the cases of the PC-EnKF-GP and -RD. In other

words, with respect to the same number of observation data the PC-EnKF-FV exhibits a higher

convergence order than the PC-EnKF-GP and -RD, which leads us to the retrieval of topography

in 2D shallow water equations in Section 3. This is perhaps a more realistic scenario for real world
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applications, where we will keep the same computational process as in the case of the elliptic

equation with random coefficient. However, a more thorough treatment on details that contribute

to a better understanding of our algorithm can also be referred there.

(a)

(b)

(c)
True value a(x, ξr) at x = 12∆x.

Mean value of a(x, ξg) at x = 12∆x.

Standard deviation of a(x, ξg).

Figure 6: The reduction process of uncertainty of a(x, ξg) at x = 12∆x with the increase of

observation data in the case of (a) PC-EnKF-RD , (b) PC-EnKF-GP, (c) PC-EnKF-FV. Note

that the number over each subfigure implies the number of observation data used for the current

assimilation computation.
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3. The recovery of topography in 2D shallow water equa-

tions

3.1. Numerical scheme

Numerical experiments will be carried out to demonstrate the efficiency and exactness of the

current algorithm, and 2D shallow water equations are selected for this purpose. The shallow water

models are extensively used in numerical studies of large-scale atmospheric and oceanic motions.

The shallow water equations are a nonlinear hyperbolic system of partial differential equations

(conservation laws for depth and momentum) that describe a fluid layer of constant density in

which the horizontal scale of the flow is much greater than the layer depth. The dynamics of the

single layer model is of course less general than three-dimensional models, but is often preferred

because of its mathematical and computational simplicity. The 2D shallow water equations can

be written in conservative form as follows:

∂w

∂t
+
∂(uw + U)

∂x
+
∂(vw + V )

∂y
= W, (3.1.1)

where w = (h, uh, vh)T is a vector function, h(x, y, t) is the fluid depth, u(x, y, t) and v(x, y, t) are

velocity components in the x and y directions, respectively. U = (0, gh2/2, 0)T , V = (0, 0, gh2/2)T ,

W = (0,−gh∂H
∂x
,−gh∂H

∂y
)T . “T” denotes transpose. g is the gravitational constant, and H(x, y)

is the topography. We assume that the spatial domain Ω = [−L,L] × [−D,D] is equipped with

periodic boundary conditions in the x-direction (h, u, v)|x=−L = (h, u, v)|x=L, while in the y-

direction, ∂u
∂y
|y=−D = ∂u

∂y
|y=D = 0, v|y=−D = v|y=D = 0. Initially, (h, u, v)|t=0 = (0.05 exp(− (x+12)2

15
−

y2

12
) + 0.2, 0, 0).

Now let us introduce a mesh of Dxy = Nx ·Ny equidistant points on Ω, with4x = 2L/(Nx−1),

4y = 2D/(Ny−1). As for the time interval [0, tf ], we discrete it using Nt equally distributed points

and4t = tf/(Nt−1). Note that it is possible to use adaptive mesh refinement to compute accurate

solutions. However, only the uniform mesh is used in this work to avoid coding complications that

might be caused by adaptive meshes. Future work will consider an adaptive mesh. Various types of

numerical methods have been designed to approximate the solution of the shallow water equations.

Methods such as finite volume, finite difference, and discontinuous Galerkin finite element schemes

are widely used [70, 71]. While in this present study we use the following Lax-Wendroff scheme
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[72] to integrate the shallow water equation (3.1.1) forward in time

wn+1
i,j = wni,j +4t[−

(uw + U)
n+1/2
i+1/2,j − (uw + U)

n+1/2
i−1/2,j

4x

−
(vw + V )

n+1/2
i,j+1/2 − (vw + V )

n+1/2
i,j−1/2

4y
+W n

i,j], (3.1.2)

here wni,j := w(xi, yj, tn), and i = 1, 2 . . . , Nx, j = 1, 2, . . . , Ny, n = 1, 2, . . . , Nt. The scheme is

second-order accurate with respect to both space and time. Unlike the Euler methods which

calculate each step of a function, the Lax-Wendroff method involves first calculating a half step

and then using the results from the half step to produce the full step (3.1.2). The advantage is

that it does not need any artificial diffusion in time or space to keep it stable.

3.2. Uncertainty of input topography

We consider the shallow water equation (3.1.1) with a stochastic topography over the domain

Ω = [−25, 25] × [−25, 25], and the stochastic topography is unknown and denoted as H(x, y, ω),

(x, y) ∈ Ω and ω ∈ Ω̃, where Ω̃ is a sample space in a probability space (Ω̃, Ũ , P̃ ) with sigma

algebra Ũ over Ω̃, P̃ is a probability measure on Ũ . The two-point squared exponential correlation

function is commonly used to describe the stochastic fields, and the feasibility has been shown in

Subsection 2.6. We assume in the current problem that the stochastic topography field H(x, y, ω)

can be characterized by the following covariance function

Cov[H](x1, y1;x2, y2) = σ2 exp(−|x1 − x2|
2

λ2x
− |y1 − y2|

2

λ2y
), (3.2.1)

where (xi, yi)(i = 1, 2) is the spatial coordinate in 2D. Here σ = 0.1 is the variance and λx = λy = 12

are the correlation length in x and y directions. Thus an approximated random topography

HN(x, y, ω) through a Karhunen-Loève expansion (KLE) truncated at order N = 20 is derived,

that is,

HN(x, y, ω) = E[H] +
N∑
i=1

√
λibiξi(ω), (3.2.2)

where E[·] refers to the expectation (i.e., mean over all realizations). The λi and bi are the

eigenvalues and orthogonal eigenfunctions of the covariance function (3.2.1). The typical choice

of N = 20 is that the sum of the neglected terms is sufficiently small compared with the sum

of the first N terms. The random vector Θ := (ξ1(ω), ξ2(ω), · · · , ξN(ω)) is considered, where ξi

is mutually independent standard Gaussian random parameter. Thus, the KLE (3.2.2) helps to
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represent correlated parameters with uncorrelated random variables, which is important from the

perspective of dimension reduction of input variables.

Obviously, the input uncertainty in the topography will lead to the uncertainty in the solution

of shallow water equations. We will see that a more accurate prediction can be obtained by a less

uncertain estimation of the random parameters Θ. This can be done by gathering as more optimal

observe information of the output variables as possible to calibrate constantly the simulation

results. In this numerical computation, a realization of H as a reference, H0, is given in Figure

7(a). The objective of the current inverse problem is to update the input topography given the

limited number of observation data only for the fluid height, in the context of 2nd-order Hermite

PC expansion, with total P + 1 = (20+2)!
20!2!

= 231 terms. In order to estimate the PC expansion

coefficients for the output variable, a set of samples will be taken. According to the suggestions

[73], the number of sample points should be at least twice the number of terms in PCE. However,

in our example we conducted several experiments with different numbers of the standard Gaussian

sample ensemble members, namely, No = 60, 100, 200 and 300, respectively. It is eventually shown

that adopting only a total sample ensemble size of No = 60 members was sufficient to successfully

perform the current data assimilation algorithm and that using a higher number of ensemble

members seems to have no impact on the ensuing results.
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Figure 7: (a)Reference topography and (b)the initial guess of the topography.
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(a) (b)

(c) (d)

Figure 8: The height h(x, y, t, ξ) of modeling 2D shallow flow over the topography at time (a) t = 4

(top left), (b)t = 9 (top right), (c) t = 14 (bottom left), (d) t = 19 (bottom right), respectively.

In each panel, the yellow color is the flow height, and the blue color represents the topography as

depicted in Figure 7(a).

When performing the calculation of the PC expansion coefficients, the used BCS package is

available online at http://people.ee.duke.edu/˜lcarin/BCS.html, for which we make a necessary

modification so as to match the present study. Furthermore, if the spatial domain Ω is uniformly

discretized into 31× 31 grid points, while the time domain [0, tf ] is discretized into 2500 segments,

(tf = 25), a prediction result is then obtained at different times, see Figure 8.

We are concerned with the case in which the stochastic topography in 2D shallow water e-

quation is unknown a priori to be identified. At this time, an initial guess then needs to be

further designated. When the mean of H, according to the equation (3.2.2), is assumed to be

E[H] = 0.14, along with a realization of the independent standard Gaussian random variables,

ξi, (i = 1, 2, · · · , 20), an initial topography is therefore derived as in Figure 7(b). It is easy

to find that there is an obvious difference between the Figure 7(a) and Figure 7(b), and the
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uncertainty of initial guess is very large. Without a doubt, the model prediction will be led to have

a huge uncertainty. One path to uncertainty reduction of this initial topography is to calibrate the

simulation results to available observations on the corresponding quantities (e.g., flow height only

in this paper ) of the 2D shallow water equations. This task can be completed via the algorithm

developed in Section 2.

3.3. Reduce the uncertainty of topography using the data placed on the

optimal observation locations

It is known generally that the assimilation is required whenever significant flow behavior

changes occur. In order to test and sequentially execute our algorithm, a certain number of

observation data need to be predefined randomly, besides having an initial guess of topography

(see Figure 7(b)). For clarity, we begin with one observation data that is randomly placed on

the computational domain Dxy of the fluid height simulated at the final time in the current exper-

iment. Certainly, it can be observed that much more observations data that are randomly placed

before starting the PC-EnKF are commonly more favorable for speeding up the computation.

Notice that unless stated otherwise, the observation error in our experiment is always set to as

εo ∼ N (0, 0.001). In our test, the number of the optimal observation location is 23, which are

collected in sequential order as can be seen in Figure 9, where the total number of observation

points are up to 24, including the predefined random location.
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Figure 9: Observation points of fluid depth. The black circle represents the predefined random

observation location (or point), and the red square stands for the optimal observation locations

(or points).
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Intuitively, Figure 10 shows the behavior of determining the optimal observation location for

the next evaluation of the maximal standard deviation over the computational Dxy. In Figure

10, according to the requirement of our algorithm, first given a randomly selected observation

location,

and starting with the initial guess of topography to carry out the PC-EnKF method, an updated

topography is then derived, which can be used for the new evaluation of the maximal standard

deviation that implies an alternative potential observation location. Whenever an observation

location is determined, the simulated observation data will be rapidly placed at several different

time instances t = 4, 9, 14, 19, respectively, for the purpose of the PC-EnKF data assimilation. In

this way, there are altogether 23 optimal observation locations. Eventually, the desired topography

is retrieved. Please note that if an evaluation tolerance is predefined, e.g., δ = 0.001, the whole

performing process will be terminated automatically at the 20-th loop, see Figure 11.

The retrieval result of input topography is presented in Figure 12(a), which are obtained

by the algorithm developed in Section 2. It is easy to see that the resulting recovery of the

topography resembles closely the reference topography (see Figure 7(a)). It can also be observed

from Figure7(b) that the uncertainty from the initial guess of the stochastic topography has

a significant reduction, which confirms in our test example that the optimal observations-based

PC-EnKF is feasible and effective.

If we want to assess how well our retrieval topography approximates the reference topography

and see the benefit of our algorithm. Some alternative tools are needed here, such as the root

mean square error (RMSE) and the correlation coefficients (Corr). The computational formulas

of the RMSE and Corr are defined at the assimilation loop k respectively as :

RMSEk =

√∑kxy
i=1(H

k
i −H0,i)2

kxy
, (3.3.1)

Corr(H,H0)k =
E((Hk − E(H))(H0 − E(H0)))

σHkσH0

. (3.3.2)

where σHk is the standard deviation at the k-th data assimilation loop, and kxy represents the

number of spatial grids. The variation of RMSE and Corr with assimilation loop k can be seen

from the Figure 13, and their eventual value approximate to 7.1636e−4 and 0.9978, respectively.

These results demonstrate that the accuracy of the inverse solution is satisfying, and illustrate the

effectiveness and ability of the current algorithm in dealing with the complex high-dimensional

nonlinear inverse problem.

24



Figure 10: Illustration of the process for selecting sequentially the optimal observation locations.

The first observation location (circle) is given randomly, and the other observation locations are

optimally determined (marked by the pink-filled circle). The k-th maximal predictive standard

deviation indicates a potential location (denoted as the red star) where the simulated measurement

data will be placed for the next update of the topography through the PC-EnKF method, hence

the search for the (k + 1)-th maximal standard deviation. Here k = 2, 3, ..., 24.

Remark 3.3.1. Despite its advantage in numerical implementation, the current algorithm has

still left significant room to further improve the resulting accuracy and performance. For this, we
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Figure 11: Evolution of the maximal standard deviation with loops.
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Figure 12: The retrieval result of topography derived by: a) the data placed on the optimal

observation locations; c) taking into account the iterative rotation technique based on the case a).

And the corresponding absolute error between the retrieval result and the reference topography

are b)and d), respectively.
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Figure 13: The variation of RMSE (a)and Corr (b) with assimilation loop.

may resort to the newly proposed iterative rotation approach to address this issue. The main idea

behind this approach [67] shows that when determining the coefficients of Hermite chaos expansion

for QoI of interest, a few of the newly derived coordinates from rotating the original random inputs

can have a significant impact on QoI, thereby increasing the sparsity of solution and in turn, the

accuracy of recovery. These excellent features exactly cater to the demand of the design algorithm

in the framework of PC-EnKF, therefore, are especially suitable for the current study. When we

attempt to consider the use of the PC-basis rotation method as is designed in Figure 1, the

resulting accuracy indeed has a considerable improvement, see Figure 12(c)(d). This can be

further found from the computation of RMSE and Corr, see Figure 13. This is a first attempt

to implement the iterative rotation approach in combination with the optimal observation-based

PC-EnKF algorithm when solving the inverse problem. However, the iterative rotation approach

is not simple to carry out because there are two key issues to be encountered, for example, the

construction of gradient matrix G (see Figure 1) and the selection of the rotation number etc.,

for which a more thorough treatment will be involved in another arrangement.

4. Conclusions

In order to retrieve the topography in 2D shallow water equations, we develop an optimal

observations-based PC-EnKF method. The main work focuses on the sequential selection of opti-

mal observation locations where the simulated data are placed on for the PC-EnKF data assimila-

tion. The predictive uncertainty controlled by the maximal standard deviation provides a tool to

identify the potential locations. A total number of 24 observation locations can meet the retrieval
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requirement. Besides, when the maximal standard deviation is less than a certain predefined tol-

erance, say, δ = 0.001, the PC-EnKF assimilation process can be terminated automatically. Thus

only 20 observation locations are sufficient for a desired retrieval of topography. In addition, other

components involved in designing algorithm also need to be carefully dealt with, for example,

adopting the BCS method to cope with the determination of the expansion coefficients of poly-

nomial chaos for the output uncertainty variable (fluid height). This is advantageous over the

l1-solver because there are no free regularization parameters to be set in sequential computation.

The current formulation of the developed algorithm is particularly attractive, for it allows efficient

computation via such techniques.

When applying the optimal observation-based PC-EnKF algorithm to reducing the uncertainty

of the initial guess of topography in 2D shallow water equations, the corresponding numerical

results show that our proposed method is feasible and effective. Meanwhile, the better computation

accuracy for the recovery of topography occurs in the case where the PC-EnKF method is coupled

with the iterative PC-basis rotation technique. This can be seen from the Figure 12(c)(d) and

Figure 13. To date, the method has only been developed and tested in the two-dimensional

computational models, but the results of this study are extremely positive, which may be viewed

as a first step towards solving practical inverse UQ problem by using more realistic observation

data and models in order to assess the practical utility of the current method.

In the process of implementing the present algorithm, the non-intrusive sampling method is

adopted, which leads to a repeated application of the existing or legacy deterministic solver. It

will spend much more time on the large-scale problem, in turn, enhance the computational cost.

This may not be an active factor for this method to make a further practical application. However,

with the fast development of the reduced-order techniques[66], it is also possible to use the current

method in the framework of the inverse problem of the reduced-order model. The associated

problem still needs to be further studied in depth as an interesting topic.
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