
A new bi-fidelity model reduction method for Bayesian
inverse problems

Na Ou∗ Lijian Jiang† Guang Lin‡

ABSTRACT

This work presents a new bi-fidelity model reduction approach to the inverse problem under the
framework of Bayesian inference. A low-rank approximation is introduced to the solution of the
corresponding forward problem and admits a variable separation form in terms of stochastic basis
functions and physical basis functions. The calculation of stochastic basis functions is compu-
tationally predominant for the low-rank expression. To significantly improve the efficiency of
constructing the low-rank approximation, we propose a bi-fidelity model reduction based on a
novel variable separation method, where a low-fidelity model is used to compute the stochastic
basis functions and a high-fidelity model is used to compute the physical basis functions. The low-
fidelity model has lower accuracy but efficient to evaluate compared with the high-fidelity model,
it accelerates the derivative of recursive formulation for the stochastic basis functions. The high-
fidelity model is computed in parallel for a few samples scattered in the stochastic space when
we construct the high-fidelity physical basis functions. The required number of forward model
simulations in constructing the basis functions is very limited. The bi-fidelity model can be con-
structed efficiently while retaining good accuracy simultaneously. In the proposed approach, both
the stochastic basis functions and physical basis functions are calculated using the model infor-
mation. This implies that a few basis functions may accurately represent the model solution in
high-dimensional stochastic spaces. The bi-fidelity model reduction is applied to Bayesian inverse
problems to accelerate posterior exploration. A few numerical examples in time-fractional deriva-
tive diffusion models are carried out to identify the smooth field and channel structured field in
porous media in the framework of Bayesian inverse problems.
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1 Introduction
Uncertainties exist inherently in mathematical and physical models, which comes from the

models inputs and parameters. The uncertainties can propagate through the model and greatly
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affect the prediction of the model. To better predict the models outputs, we need to estimate the
model inputs and parameters based on some limited measurements [1, 2]. This comes down to
solve the inverse problems, which arise frequently in assorted scientific and engineering applica-
tions.

The Bayesian approach [3, 4, 5] is one of the methods in solving inverse problems, it incorpo-
rates uncertainties in observations and prior information by Bayesian rule and gives the posterior
density of the unknowns, which enables us to characterize the parameters and quantify the uncer-
tainties of the system. The appropriate prior density imposed often works as the penalty functional
regularization in addressing the ill-posed problems, which may be resulted by the sparse and in-
direct observation. Although the posterior density can be expressed explicitly by the likelihood
function and prior, the nonlinearity of the parameter-to-observation map and lack of analytical
form of the forward model make it difficult to utilize the expression straightforwardly. Many nu-
merical approaches such as Markov chain Monte Carlo (MCMC) methods [6, 7] are used to sample
the posterior distribution, some efficient MCMC techniques [8, 9, 10, 11, 12] have been developed
to deal with the degeneration of the standard MCMC algorithms. The major challenge of applying
this method is that hundreds of thousands or even millions of large-scale PDE-based simulations
may be required to characterize the posterior distribution, which leads the Bayesian approach to
be computationally prohibitive.

One attempt to accelerate Bayesian inference in computationally intensive inverse problems
is to construct surrogates [13] of the stochastic forward model. The surrogate may be obtained by
the generalized polynomial chaos (gPC)-based stochastic method [14, 15, 16, 17, 18, 19], Gaussian
process [20, 21, 22] or projection-type reduced order models [23, 24], etc. We note that the number
of polynomial basis functions grows with an exponential rate as the dimension of the unknowns
increases, though the number of forward model simulation required is less than the number of
polynomial basis functions for sparsity constricted stochastic collocation methods, it increases as
increasing the dimension of the unknowns, to pursue the accuracy. The novel variable-separation
(NVS) method proposed in [25] provide a variable-separated form approximation of the functions
dependent with the stochastic inputs, where the stochastic basis functions can be expressed explic-
itly, escaping from the limitation of polynomial basis functions. Though recursive formulations
can be derived for stochastic functions, it would be extremely time-consuming when the degree
of freedom for the model or the number of the separated term is large. The multi-fidelity model
[26, 27, 28] technique aims for reducing the computational time. It is widely used in uncertainty
propagation, inference, and optimization [29] to improve efficiency. The work proposed in [30, 8]
proposes a two-stage delayed acceptance MCMC sampling in solving Bayesian inverse problems,
where the candidate sample has to be accepted with the low-fidelity model approximated posterior
first before it passes on to be accepted or not with the posterior approximated by the high-fidelity
model. The term fidelity can refer to the accuracy of the computer code or simulator compared to
the exact function it approximates [31]. Generally, large numbers of the forward model runs are
simulated by the low-fidelity models for the sake of speedup, the high-fidelity models are used to
guarantee accuracy and/or convergence.

We provide a new bi-fidelity model reduction method in this paper. We run a low-fidelity
model to obtain the expression of stochastic basis functions, which is the predominant computa-
tional capacity in obtaining the variable separation form of the solution. The iterative method we
use requires a limited number of forward model simulations. The low-fidelity model is computa-
tionally cheaper to evaluate but not necessarily as accurate as the high-fidelity one. It reduces the
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calculation complexity and storage of the residual and matrices involved in obtaining the stochastic
recursive formulations. The high-fidelity model can then run in parallel since the corresponding
samples have been selected out, the bases in physical space are updated basing on stochastic basis
functions. The proposed method can deal with high stochastic dimensional problems efficiently
due to the speedup of the low-fidelity model. It provides a global approximation of the states,
the observation can be extracted out easily from the form of the bi-fidelity model, i.e. the surro-
gate model can be invoked conveniently and efficiently. Besides, the credible/prediction intervals
of states at time or location that are not observed can also be obtained once posterior samplers
provided.

To demonstrate the proposed model reduction method, we apply it to time-dependent stochas-
tic systems, e.g., fractional-differential equation, and study the involved inverse problems. The
fractional-differential equation is an effective mathematical model in describing many physical
phenomenons, such as fluid mechanics, earthquakes and contaminant transport in aquifers [32],
the parameter identification inverse problems have also been intensively studied [33, 34]. We suc-
cessively obtain the separated representations of the solution when inputs come from the fractional
order, source location and the permeability field. The surrogate models are used to approximate
the forward model in nonlinear inverse problems, numerical examples show that the performance
of the surrogate strongly depends on the number of the separated terms and the low-fidelity model.

In particular, the bi-fidelity model is constructed with a channel structured permeability field,
we use the discrete cosine transformation (DCT) [35] to parameterize the field, which can abstract
the essential part of data and therefore reduce the dimension of parameters. TV-Gaussian (TG)
prior proposed in [36] is imposed as the penalty term here, where TV (total variation) term detects
the edges and Gaussian distributions guarantee the well-poseness of the posterior. We take advan-
tage of the efficiency surrogate model construction and use the proposed approach flexibly for the
400-dimensional inverse problem. A computational cheaper low-fidelity model based bi-fidelity
model is constructed first, which is used for Bayesian inference, the global structure property of
permeability field can be captured roughly with high dimensional unknowns. Informed by the ob-
served data, we sort the posterior variance of parameters and reduce its dimension according to
this order. Then we do inference to the new parameter with reduced dimension, the correspond-
ing surrogate bi-fidelity model is built based on a more accurate low-fidelity than the one used
before. We find the local structure, e.g., jumps and edges can be recovered better with the new
dimension-reduced parameters.

The outline of this paper is as follows. Section 2 introduces the Bayesian inference and the
pCN-MCMC algorithm. Section 3 describes the proposed model reduction method, the application
of NVS method to time-dependent equation and the new bi-fidelity model reduction method. Some
numerical examples are presented in Section 4, the proposed approach is applied to 40 and 400-
dimensional inverse problems. Some conclusions and comments are made finally.

2 Bayesian inference for inverse problems
Let (Ω,F,P) be a complete probability space, where Ω is the event space, F the σ -algebra,

and P the probability measure. Consider the following stochastic differential equation:

D
αξ

t u(x, t;ξ (ω))−div
(

κ(x;ξ (ω))∇u(x, t;ξ (ω))

)
= f (x, t;ξ (ω)), x ∈ O, t ∈ [0,T ], (2.1)
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where f (x, t;ξ (ω)) is the source term. ξ (ω) : Ω→ Rnξ is the vector of uncertainties, it may be
used to describe the coefficient properties, initial/boundary conditions, or source locations. The
fractional derivative αξ with the subscript ξ represents that it is also part of the uncertainties. D

αξ

t
may be a Riemann-Liouville type or Caputo type fractional derivative operator with respect to time,
where the Caputo time-fractional derivative of the given function u(x, t) with order αξ is defined
as [37]

cD
αξ

t u =
1

Γ(m−αξ )

∫ t

0

∂ mu(x,s)
∂ s

ds

(t− s)αξ+1−m ,

and Riemann-Liouville time-fractional derivative of u(x, t) is given by

RLD
αξ

t u =
1

Γ(m−αξ )

dm

dtm

∫ t

0

ds

(t− s)αξ+1−m .

where Γ(·) is the Γ function and m is a positive integer satisfying m− 1 ≤ αξ < m. For practical
models, we need to quantify the uncertainties of model (2.1) by some observations or measure-
ments.

In the paper, we use Bayesian inference to estimate the unknown inputs, e.g., αξ and ξ . We
consider the case of additive noise ζ with probability density function π(ζ ), the measurement data
can then be expressed by

d = G(ξ )+ζ ,

where ξ is a vector of the model parameters or inputs and G(ξ ) = g◦u(x, t;ξ ) ∈ Rnd is the model
response measured, g is the observation operator and nd is the dimension of the observations. We
assume that ζ is independent of ξ , then the conditional probability density for the measurement
data d given the unknown ξ , i.e., the likelihood function is given by

π(d|ξ ) = π
(
d−G(ξ )

)
. (2.2)

We use Bayesian inference to solve the inverse problem. This approach gives not only a point
estimation but also a probability distribution. This is an advantage of the Bayesian methods over
the standard regularization methods. In the framework of Bayesian inference, both ξ and d are
random variables. Then the posterior probability density of ξ can be derived by the Bayesian rule,

π(ξ |d) ∝ π(d|ξ )π(ξ ), (2.3)

where π(ξ ) is the prior distribution with available prior information before the data is observed, it
can be hybrid, e.g., π(ξ ) can be the hybrid of Gaussian density and total variation (TV) penalty,
which has been proved to be well-posed in [36]. The data is embodied by the likelihood function
π(d|ξ ) in the Bayesian formulation. For the convenience of notation, we will use πd(ξ ) to denote
the posterior density π(ξ |d) and L(ξ ) to denote the likelihood function π(d|ξ ). Then (2.3) can be
written as

π
d(ξ ) ∝ L(ξ )π(ξ ). (2.4)

The vector ζ is assumed to be independent and identically distributed (i.i.d.) Gaussian random
vector with mean zero and standard deviation σ ,

ζ ∼N (0,σ2I),
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where I is the identity matrix of size nd×nd . Then the likelihood L(ξ ) defined in (2.2) is given by

L(ξ ) = (2πσ
2)−

nd
2 exp

(
−
‖d−G(ξ )‖2

2
2σ2

)
, (2.5)

where ‖·‖2 refers to the Euclidean norm. We note that it is not necessary to compute the normalized
term in (2.4) under regular circumstance.

We use pCN-MCMC algorithm to explore the posterior distribution, which is listed in Al-
gorithm 1. The credible interval and the prediction interval for the quantities of interests can be
calculated based on the posterior samples. The building of the Markov chain requires repeated
evaluations of PDE (2.1), which leads to expensive computational cost for large-scale systems. In
order to accelerate the MCMC sampling process, we use a new bi-fidelity model reduction method
to solve the forward problem. Denote the corresponding reduced forward observation operator as
GN, where N represents factors that control the accuracy of the surrogate model, e.g. it can be the
low-fidelity model and number of separated terms in our paper. We then have the approximated
posterior

π
d
N(ξ ) ∝ exp

(
−
‖d−GN(ξ )‖2

2
2σ2

)
π(ξ ).

The Kullback-Leibler (KL) divergence [38] is used to measure the difference between the approx-
imated posterior and the reference one. For probability density functions πd

N(ξ ) and πd(ξ ), KL
divergence is defined by

DKL(π
d
N||πd) =

∫
π

d
N(ξ ) log

πd
N(ξ )

πd(ξ )
dξ .

DKL measures the difference between the two probability distributions and is non-negative. It
vanishes if and only if πd

N = πd . Theorem 2.1 gives an estimate of the KL divergence, we will
confirm the performance of our proposed method by some numerical examples, and study the
effects of the low-fidelity model and the number of separated terms on the convergence of the
approximated posterior.

Theorem 2.1. (Theorem 3.1 of [39].)Suppose the functions G and GN are under some assumption,
and the observational error has an i.i.d. Gaussian distribution. Then the approximation posterior
πd

N and the true posterior density πd are close with respect to the Kullback-Leibler distance, there
is a constant C independent of N, such that

DKL(π
d
N‖πd)≤ C

σ4‖G(ξ )−GN(ξ )‖2
L2

π

.

Remark 2.1. The assumptions functions G and GN satisfied in Theorem 2.1 are: the forward
operator G satisfies supξ ‖G(ξ )‖2 < ∞, which is true in many applications. The surrogate GN
satisfies supξ ‖G(ξ )−GN(ξ )‖2 → 0 as N→ ∞. Since N represents the low-fidelity model we
used in constructing surrogates and the number of separated terms in the variable separation
form, N→ ∞ means the increase of separated terms and the improvement of the accuracy of the
low-fidelity model in this paper.
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Algorithm 1 pCN-MCMC method

Initial: Generate ξ (0) from N (ξ̄ ,Σ), set β ∈ (0,1), chain length Nc.
qdata = cell(1,Nc);
Run the forward model for input ξ (0) and set Y (0) = G(ξ (0));
for i=1:Nc
pCN proposal, generate ξ from

ξ =
√

1−β 2ξ
(0)+(1−

√
1−β 2)ξ̄ +βε, with ε ∼N (0,Σ)

Run the forward model and set Y = G(ξ );
Calculate the acceptance probability

α(ξ ,ξ (0)) = min
{

1,
L(ξ )

L(ξ (0))

}
.

if rand(1)< α

ξ (0) = ξ ;
Y (0) = Y ;
end if
qdata(i) = ξ (0);
end for

3 Proposed approach
We use the new bi-fidelity model reduction method to construct surrogates for Eq. (2.1), and

the solution is approximated as the form

u(x, t;ξ )≈ ũN(x, t;ξ ) =
N

∑
i=1

UH
i (x, t)ηL

i (ξ ), (3.6)

where stochastic basis functions {ηL
i (ξ )}N

i=1 with respect to the stochastic inputs are obtained by
low-fidelity models, the physical basis {UH

i (x, t)N
i=1} are calculated by high-fidelity model, the

superscript ’L’ and ’H’ represent the low and high fidelity models, respectively. The application
of low-fidelity model makes the relevant matrix during the NVS iterations calculated faster. The
high-fidelity basis is updated based on the selected samples, which can be carried on in parallel.
The new bi-fidelity model reduction method demands significantly less computational cost and
is accuracy preserving simultaneously compared with the original forward model. The surrogate
model constructed efficiently is applied to the nonlinear inverse problems involved with Eq. (2.1)
in the framework of the Bayesian inference.

3.1 NVS method for time-dependent equation

We focus on the fractional derivative operator D
αξ

t with αξ ∈ (0,1)∪ (1,2) since the frac-
tional order is separable when we treat the fractional order as part of our stochastic inputs. The
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separated form can be derived approximately based on their definitions, i.e., the discretization of
the fractional derivative can be written as

D
αξ

tn u(x, t;ξ ) =
n

∑
j=1

c j(ξ )u(x, t j), (3.7)

where 0 = t1 < t2 · · · < tnT = T , tnT = (nT − 1)∆t, and n = 1, · · · ,nT . We denote the dependence
of c j on the fractional order αξ as c j(ξ ) for clarity, e.g., when D

αξ

t is the Caputo type fractional
derivative operator, and αξ ∈ (0,1), c j’s have the following expression

c j(ξ ) :=


−∆t

−α
ξ [(n−1)

1−α
ξ−(n−2)

1−α
ξ ]

Γ(2−αξ )
, j = 1,

−∆t
−α

ξ [2(n− j)
1−α

ξ−(n−1− j)
1−α

ξ−(n+1− j)
1−α

ξ ]
Γ(2−αξ )

, j = 2, · · · ,n−1,
∆t
−α

ξ

Γ(2−αξ )
, j = n,

more details about the expression of c j(ξ ) can be referred in [40] (chapter 2.2).
We will show the application of the NVS method to the time-dependent equation. A weak

formulation of Eq. (2.1) can be written as: find u such that

(D
αξ

t u(ξ ),v;ξ )+a(u(ξ ),v;ξ ) = b(v;ξ ), for ∀v ∈ V ,

where the Hilbert space V := H1(O), a(·, ·;ξ ) and b(·;ξ ) are a bilinear form and a linear form on
V , respectively. The inner product (·, ·;ξ ) is defined as

(w,v;ξ ) = (w(ξ ),v(ξ ))L2(O).

We assume the coefficient κ(x;ξ ) and the source term f (x, t;ξ ) have the variable separated form,
then the bilinear form a(·, ·;ξ ) and the associated linear form b(·; t,ξ ) are affine with respect to ξ

i.e., {
a(w,v;ξ ) = ∑

ma
p=1 κp(ξ )ap(w,v), ∀v,w ∈ V , ∀ξ ∈Ω,

b(v; t,ξ ) = ∑
mb
q=1 fq(ξ )bq(v; t), ∀v ∈ V , ∀ξ ∈Ω,

(3.8)

where κp(ξ ) and fq(ξ ) are stochastic functions with respect to ξ , ap : V ×V −→R is a symmetric
bilinear form, and bq : V −→R is continuous functional, they are independent of ξ . If κ(x;ξ ) and
f (x, t;ξ ) are not affine with respect to ξ , the Empirical Interpolation Method (EIM)[41, 42] can be
used, the NVS method [25] can also be used to obtain their affine forms.

Let Vh ⊂ V be given finite dimensional approximation space. Then the fully discretized
approximation for Eq. (2.1) is given by

n

∑
j=1

c j(ξ )(u j(ξ ),v;ξ )+a(un(ξ ),v;ξ ) = bn(v;ξ ), ∀v ∈ Vh, for n = 1, · · · ,nT .

where u j(ξ ) = u(x, t j;ξ ), j = 1, · · · ,n, and bn(v;ξ ) = b(v; tn,ξ ). We seek for the numerical so-
lution of Eq. (2.1) under the form (3.6) where Ui(x, t) ∈ Vh are deterministic basis functions and
ηi(ξ ) are stochastic functions, for i = 1, · · · ,N. Let the residual for the NVS procedure be

e j(ξ ) := u j(ξ )−u j
k−1(ξ ), for j = 1, · · · ,n, and n = 1, · · · ,nT .
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we then have for ∀v ∈ Vh,

n

∑
j=1

c j(ξ )(e j(ξ ),v;ξ )+a(en(ξ ),v;ξ ) = bn(v;ξ )−
n

∑
j=1

c j(ξ )(u
j
k−1(ξ ),v;ξ )−a(un

k−1(ξ ),v;ξ ).

Let rn(v;ξ ) ∈ V ∗h (the dual space of Vh) be the residual

rn(v;ξ ) =

{
bn(v;ξ ), k = 1,
bn(v;ξ )−∑

n
j=1 c j(ξ )(u

j
k−1(ξ ),v;ξ )−a(un

k−1(ξ ),v;ξ )), k ≥ 2,
(3.9)

we then have
n

∑
j=1

c j(ξ )(e j(ξ ),v;ξ )+a(en(ξ ),v;ξ ) = rn(v;ξ ), ∀v ∈ Vh. (3.10)

By Riesz representation theory, there exists ên(ξ ) ∈ Vh such that(
ên(ξ ),v

)
V
= rn(v;ξ ), ∀v ∈ Vh. (3.11)

Then we can rewrite the error residual Eq. (3.10) as

n

∑
j=1

c j(ξ )(e j(ξ ),v;ξ )+a(en(ξ ),v;ξ ) =
(
ên(ξ ),v

)
V
, ∀v ∈ Vh.

Consequently, the dual norm of the residual rn(v;ξ ) can be evaluated through the Riesz represen-
tation

‖rn(v;ξ )‖V ∗h := sup
v∈Vh

rn(v;ξ )

‖v‖V
= ‖ên(ξ )‖V , (3.12)

the computation of the residual is crucial to the novel NVS procedure.
We define the error estimator for the solution by

∆k(ξ ) :=
nT

∑
n=1
‖ên(ξ )‖V ∆t, (3.13)

we note that ên(ξ ) ∈ V is related to rn(v;ξ ) through Eq. (3.12), for n = 1, · · · ,nT .
By (3.8) and (3.9), the residual can be expressed by

rn(v;ξ ) =
mb

∑
q=1

fq(ξ )bq(v; tn)−
n

∑
j=1

c j(ξ )
k−1

∑
i=1

ηi(ξ )(U
j

i ,v)−
k−1

∑
i=1

ηi(ξ )
ma

∑
p=1

κp(ξ )ap(Un
i ,v). (3.14)

where U j
i =Ui(x, t j), j = 1, · · · ,nT . By (3.14) and (3.11), we have

(
ên(ξ ),v

)
V
=

mb

∑
q=1

fq(ξ )bq(v; tn)−
n

∑
j=1

c j(ξ )
k−1

∑
i=1

ηi(ξ )(U
j

i ,v)−
k−1

∑
i=1

ηi(ξ )
ma

∑
p=1

κp(ξ )ap(Un
i ,v).
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This implies that

ên(ξ ) =
mb

∑
q=1

fq(ξ )C
n
q +

n

∑
j=1

c j(ξ )
k−1

∑
i=1

ηi(ξ )I
j

i +
k−1

∑
i=1

ηi(ξ )
ma

∑
p=1

κp(ξ )L
p,n

i , (3.15)

where C n
q is the Riesz representation of bq(v, tn), i.e., (C n

q ,v)V = bq(v, tn) for any v ∈ V , 1≤ q≤
mb, 1 ≤ n ≤ nT . Similarly, I j

i is the Riesz representation of (U j
i ,v), i.e., (I j

i ,v)V = −(U j
i ,v)

for any v ∈ V , where 1 ≤ i ≤ k− 1, 1 ≤ j ≤ n, 1 ≤ n ≤ nT . L p,n
i is the Riesz representation of

ap(Un
i ,v), i.e., (L p,n

i ,v)V =−ap(Un
i ,v) for any v ∈ V and 1≤ p≤ma, 1≤ i≤ k−1, 1≤ n≤ nT .

The Eq. (3.15) gives rise to

‖ên(ξ )‖2
V =

mb

∑
q=1

mb

∑
q′=1

fq(ξ ) f ′q(ξ )(C
n
q ,C

n
q′)V +

n

∑
j=1

c j(ξ )
k−1

∑
i=1

ηi(ξ )

×
{

2
mb

∑
q=1

fq(ξ )(C
n
q ,I

j
i )V +

n

∑
j′=1

c j′(ξ )
k−1

∑
i′=1

ηi′(ξ )(I
j

i ,I
j′

i′ )V

}

+
k−1

∑
i=1

ηi(ξ )
ma

∑
p=1

κp(ξ )×
{

2
mb

∑
q=1

fq(ξ )(C
n
q ,L

p,n
i )V

+2
n

∑
j′=1

c j′(ξ )
k−1

∑
i′=1

ηi′(ξ )(I
j′

i′ ,L
p,n

i )V +
k−1

∑
i′=1

ηi′(ξ )
ma

∑
p′=1

κp′(ξ )(L
p,n

i ,L p′,n
i′ )V

}
.

(3.16)

‖ên(ξ )‖V and ∆k(ξ ) can be efficiently computed when offline-online procedure is applied. In
offline stage, we compute and storage the quantities independent with stochastic inputs. We store
(C n

q ,C
n
q′)V , (C n

q ,I
n

i )V , (I n
i ,I

n
i′ )V , (C n

q ,L
p,n

i )V , (I n
i′ ,L

p,n
i )V and (L p,n

i ,L p,n
i′ )V for online

stage, where 1 ≤ i, i′ ≤ k−1, 1 ≤ q,q′ ≤ mb, 1 ≤ p, p′ ≤ ma, 1 ≤ n ≤ nT . In the online stage, we
evaluate ‖ên(ξ )‖V and hence ∆k(ξ ) for any ξ using Eqs. (3.16) and (3.13).

Let Ξ be a small sample set taken from ξ (Ω). At step k, we choose

ξ
(k) :=

{
randomly chosen in Ξ, k = 1,
argmaxξ∈Ξ ∆k(ξ ), k ≥ 2.

Let e(ξ ) = eh(x, t)eξ (ξ ), and eh(x, t) be the solution of Eq. (3.10) with ξ = ξ (k), we take
Uk(x, t) = eh(x, t) in (3.6), then for n = 1, · · · ,nT ,

eξ (ξ )

[ n

∑
j=1

c j(ξ )(e
j
h,v)+

ma

∑
p=1

κp(ξ )ap(en
h,v)

]
= rn(v;ξ ), (3.17)

where e j
h = eh(x, t j), j = 1, · · · ,n. We take v = eJ

h in Eq. (3.17), where

J = arg max
n=1,··· ,nT

rn(en
h;ξ

(k)),

then it follows that

eξ (ξ ) =
bJ(eJ

h;ξ )−∑
k−1
i=1 ηi(ξ )Ri(ξ )

Rk(ξ )
, (3.18)
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where

bJ(eJ
h;ξ ) =

mb

∑
q=1

fq(ξ )bq(eJ
h, tJ),

Ri(ξ ) =
J

∑
j=1

c j(ξ )(U
j

i ,e
J
h)+

ma

∑
p=1

κp(ξ )ap(UJ
i ,e

J
h), i = 1, · · · ,k,

we take ηk(ξ ) = eξ (ξ ) in Eq. (3.6).

Proposition 3.1. Let the selected samples be {ξ (k)}N
k=1 during the NVS procedure, then for k =

1, · · · ,N.

ηk(ξ
( j)) :=

{
0, j < k,
1, j = k.

This proposition can be proved according to expressions of {ηi(ξ )}N
i=1 and {Ui(x, t)}N

i=1.

As can be seen from Eq. (3.18), ηk(ξ ) depends on {ηi(ξ )}k−1
i=1 computed previously while

they are stochastic functions with respect to ξ . Let bk := [b1(eJ
h, tJ), · · · ,bmb(e

J
h, tJ)], f(ξ ) :=

[ f1(ξ ), · · · , fmb(ξ )]
T , ck(ξ ) := [c1(ξ ), · · · ,cJ(ξ )]

T , κξ (ξ ) := [κ1(ξ ), · · · ,κma(ξ )]
T , and ηk(ξ ) :=

[η1(ξ ), · · · ,ηk−1(ξ )],

Zk :=

 (U1
1 ,U

J
k ) . . . (UJ

1 ,U
J
k )

... . . . ...
(U1

k ,U
J
k ) . . . (UJ

k ,U
J
k )

 . (3.19)

Ak :=

 a1(UJ
1 ,U

J
k ) . . . ama(U

J
1 ,U

J
k )

... . . . ...
a1(UJ

k ,U
J
k ) . . . ama(U

J
k ,U

J
k )

 . (3.20)

Then the matrix form of ηk(ξ ) can be written as

ηk(ξ ) =

bkf(ξ )−ηk(ξ )

[
Zk

1ck(ξ )+Ak
1κξ (ξ )

]
zkck(ξ )+akκξ (ξ )

.

where Zk
1, Ak

1 are the first k− 1 rows of matrix Zk, Ak, respectively. zk and ak are the last row of
matrix Zk and Ak. All the inner product in physical space can be computed and saved at each step,
the simulation for ξ is efficient due to the affine form. Algorithm 2 presents the pseudo-code for
the NVS procedure to approximate the solution to Eq. (2.1).
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Algorithm 2 The NVS method for time-dependent equation
Input: The fractional system, training sample set Ξ taken from the prior, and the error tolerance
∆ε

Output: The separated representation uN(x, t;ξ ) = ∑
N
i=1Ui(x, t)ηi(ξ )

k = 1;
ξ = ξ (k);
rn(v;ξ ) = bn(v;ξ ), for n = 1, · · · ,nT ;
while k < ∞

Calculate Uk(x, t) = eh(x, t) by solving (3.10) with ξ ;
Take v = eJ

h, where J = argmaxn=1,··· ,nT rn(en
h;ξ (k)),;

Calculate and storage inner product in physical space in matrix (3.19) and (3.20);
if ∆k(ξ )< ∆ε

N = k;
break;
end if
Update Ξ with Ξ\ξ (k);
Take ξ (k) = argmaxξ∈Ξ ∆k(ξ );
Set ξ = ξ (k);
Update the residual rn(v;ξ ) = bn(v;ξ )−∑

k
i=1Ui(x, tn)ηi(ξ ), for n = 1, · · · ,nT ;

k = k+1;
end while

3.2 High-fidelity approximation via basis update
Though the offline-online procedure can improve the efficiency of calculating Eq.(3.16), inner

products in physical space should be calculated and stored at each iteration. For example, when
we finish the k− 1th iteration and obtain the first k− 1 physical and stochastic basis functions,
we need to calculate the involved products between Uk−1(x, t) and {Ui(x, t)}k−1

i=1 , of which the
computational cost depends on the degree of freedom when solving the PDEs. For large-scale
systems, the computational time for the offline stage may be significant. For cases that the number
of the separated terms N required are large for model accuracy, iterations of the NVS method
would be time-consuming. i.e., these lead much burden to the calculation of the residual r, the
computation of matrix Zk and Ak, for k = 1, · · · ,N. Following [28, 43], we construct a bi-fidelity
model, of which stochastic basis functions are built from low-fidelity model, but physical basis is
calculated by the high-fidelity model.

We rearrange the NVS method for the time-dependent equation (2.1) before presenting our

proposed method. Let Ak :=(D
α

ξ (k)

t ·,v;ξ (k))−a(·,v;ξ (k)), where v is from the space V . {ξ (k)}N
k=1

11



are samples selected during the iteration of NVS, then we have

A1U1 = ( f ,v;ξ
(1))

A2(U2 +U1η1(ξ
(2))) = ( f ,v;ξ

(2))

...

AN(UN +
N−1

∑
i=1

Uiηi(ξ
(N))) = ( f ,v;ξ

(N)).

The equations above can be derived from the procedure of the NVS method, due to the property
concluded in Proposition 3.1, they can be written uniformly as

Ak(
k

∑
i=1

Uiηi(ξ
(k))) = ( f ,v;ξ

(k)),

for k = 1,2, · · · ,N, if we denote Ůk(x, t;ξ (k)) as the solution of the full model

AkŮk = ( f ,v;ξ
(k)), (3.21)

then the relationship between {Ui(x, t)}N
i=1 and {Ůi(x, t;ξ (i))}N

i=1 is

k

∑
i=1

Uiηi(ξ
(k)) = Ůk(x, t;ξ

(k)). (3.22)

Denote the approximate solution obtained from low-fidelity model as

uL
N(x, t;ξ ) =

N

∑
i=1

UL
i (x, t)η

L
i (ξ ),

where {ηL
i (ξ )}N

i=1 is stochastic basis functions learned from the low-fidelity model, the relevant
matrix Zk and Ak are computed by vectors with relative small size, which is corresponding to the
low-fidelity model. We then replace the basis vectors {UL

i (x, t)}N
i=1 with {UH

i (x, t)}N
i=1, which are

obtained from the high-fidelity model corresponding to the same selected samples {ξ (k)
L }N

k=1, i.e.,
we derive the high-fidelity basis vectors by equations

k

∑
i=1

UH
i η

L
i (ξ

(k)
L ) = ŮH

k (x, t;ξ
(k)
L ). for k = 1, · · · ,N, (3.23)

where {ŮH
i (x, t;ξ (i))}N

i=1 are full solutions of equations (3.21) with the corresponding high-fidelity
model, they can be solved in parallel since samples {ξ (k)

L }N
k=1 has been selected out by the low-

fidelity model. As {ŮH
i }N

i=1 and stochastic basis functions {ηL
i (ξ )}N

i=1 have been obtained before,
{UH

i (x, t)}N
i=1 can be easily calculated by the recursive formulation (3.23). The bi-fidelity model

can then be established as (3.6).
Hence, compared with the full high-fidelity model, the bi-fidelity model uses the low-fidelity

model to construct stochastic basis functions during the NVS iteration procedure, which can im-
prove the efficiency of calculating and storage of residual r. Besides, the offline stage in computing

12



‖ên(ξ )‖V and ∆k(ξ ) can also be accelerated due to the small size of the low-fidelity model, i.e.
the efficiency of selecting samples has been improved. The implementation of {ηL

i (ξ )}N
i=1 and

linearity of the time-dependent equation makes the update of the high-fidelity basis faster since
parallelization can be carried on. Algorithm 3 describes the procedure for construction of the
bi-fidelity surrogate model.

Algorithm 3 A new bi-fidelity model reduction method.
Input: The time-dependent system
Output: The bi-fidelity model ũN(x, t;ξ ) = ∑

N
i=1UH

i (x, t)ηL
i (ξ )

Run Algorithm 2 with low-fidelity time-dependent model, obtain stochastic basis functions
{ηL

i (ξ )}N
i=1 and the selected samples {ξ (k)

L }N
k=1;

Run high-fidelity time-dependent model with {ξ (k)
L }N

k=1 in parallel and obtain {ŮH
i }N

i=1 according
to Equation (3.21);
Calculate the high-fidelity basis {UH

i (x, t)}N
i=1 according to Equation (3.23);

Update the low-fidelity model with the high-fidelity basis and obtain the new bi-fidelity model.

For the choice of the low-fidelity model used in constructing the bi-fidelity model, we summa-
rize some helpful conclusions from paper [43]. Let {ξ i}n

i=1 be samples i.i.d taken from the prior,
we denote the corresponding realizations of the full high-fidelity and bi-fidelity models at the same
input samples as ŮH , ŨN ∈ RNH×n, where NH is the degree of freedom of the high-fidelity model.
The corresponding realizations of the full low-fidelity and NVS approximation for low-fidelity
models at the same input samples are denoted as ŮL,UL

N ∈RNL×n, respectively. NL is the degree of
freedom of the low-fidelity model. CL ∈ RN×n is the matrix of which the columns are realizations
of ηL, the stochastic functions learned from the low-fidelity model. CS

L ∈ RN×N represents the
realizations of ηL at the selected points {ξ (k)

L }N
k=1, with the corresponding order. According to

Proposition 3.1, we have that CS
L is an upper triangular matrix whose diagonal elements are 1. We

note {ξ (k)
L }N

k=1 is part of {ξ i}n
i=1, i.e., columns of CS

L are part of CL. Then as sought by the author
in [43], the condition ŮL (in relation to ŮH) should satisfy is:

Theorem 3.1. For a finite τ ≥ 0, define

ε(τ) := λmax

(
T(ŮH)ŮH− τT(ŮL)ŮL

)
,

where λmax(·) denotes the largest eigenvalue of a matrix, T(·) is the transformation of matrix. If
ε(τ) is small enough then there exists a matrix T with bounded ‖T‖ such that for a matrix E with
small ‖E‖, the error in the approximation can be represented as

ŮH = TŮL +E, (3.24)

and
‖ŮH− ŨN‖ ≤ (1+‖(CS

L)
−1‖‖CL‖)‖E‖+‖T‖‖ŮL−UL

N‖. (3.25)

where ‖ · ‖ denotes the matrix induced l2 norm.

13



The proof of the inequation is provided in the Appendix. ‖ŮL−UL
N‖ is small given that ŮL

is the realization of the full low-fidelity models, when ‖(CS
L)
−1‖‖CL‖ is bounded, (3.25) suggests

an accurate bi-fidelity error estimate. We will demonstrate the boundedness of ‖(CS
L)
−1‖‖CL‖ by

numerical experiments in our paper. As the approximation error can be expressed by Eq.(3.25),
the accuracy of the proposed method is effected by the accuracy of the variable separation approx-
imation of the low-fidelity model, i.e. the term ‖ŮL−UL

N‖. One can still use the error tolerance ∆ε

to determine the number of separated terms N when constructing stochastic functions {ηL
i (ξ )}N

i=1,
hence the bi-fidelity model.

Remark 3.1. We note that the bi-fidelity technology can also be used in separating variables
for random fields with explicit expression, e.g., when the coefficient or the source term is not
affine, using NVS method to get the affine form, the bi-fidelity technology can greatly improve the
efficiency of NVS procedure.

4 Numerical examples
In this section, we consider the Caputo time-fractional partial differential equations with frac-

tional order αξ ∈ (0,1)

cD
αξ

t u−div(κ(x)∇u) = f (x, t), x ∈Ω, t ∈ (0,T ], (4.26)

to present the performance of the proposed method. The equation is subjected to an appropriate
boundary condition and initial condition. Here κ(x) is a spatial varied diffusion coefficient, f (x, t)
is a source (or sink) term. For practical models, the model inputs such as κ(x) and αξ may be
unknown, in order to make better predictions, we need to estimate them by some measurements.
We focus on the inverse problems for the fractional diffusion model (4.26), the unknown order,
coefficient and the source location are estimated under the framework of Bayesian inference. The
space domain considered here is O := [0,1]× [0,1], and the initial condition is set as u(x,0) = 0.
Measurement data are generated by the using finite element method in a fine grid with time step
∆t = 0.001, and the measurement noise is set to be σ = 0.01.

4.1 Identify the source location and fractional derivative αξ

Consider the case when there is no flow on the boundaries, the coefficient is constant and
κ(x) = 1. For the first example, the fractional derivative is given by αξ = 0.5, and the end time is
set as T = 0.15. Assume the source term has the form

f (x, t;ξ ) = 10exp
(
− (x1−ξ1)

2 +(x2−ξ2)
2

2×0.12

)
[1−h(t−T1)],

where (ξ1,ξ2) denotes the location of the one point source, h is the heaviside function, here T1 is
prescribed as 0.05. We need to identify the source location (ξ1,ξ2), and we assume the uniform
distribution as its prior density, i.e., ξi ∼U (0,1), i = 1,2.

Firstly, we run a low-fidelity model with grid size 20×20 to obtain stochastic basis functions
{ηL

i (ξ )}N
i=1 and the corresponding samples {ξ (k)

L }N
k=1. Since the degree of freedom of the low-

fidelity model is small, we don’t apply the NVS method to approximate the stochastic source term
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Strategies N
Construction

Online per sample Re
low time high time

Bi-model
20 1.0406×101s 3.8163×101s 1.7196×10−4s 2.3173×10−2

30 1.1397×101s 5.5039×101s 1.9342×10−4s 9.4496×10−3

40 1.2849×101s 7.2316×101s 1.9442×10−4s 5.2028×10−3

High-vs-model
20 − 1.8213×102s 4.2435×10−3s 2.2508×10−2

30 − 2.8694×102s 4.4362×10−3s 9.1729×10−3

40 − 4.5455×102s 4.7051×10−3s 4.3759×10−3

Table 1: Comparison of the construction and online calling CPU time, relative mean error Re for
different model reduced methods, with different numbers of separated terms.

in separated form, but use the original expression and calculate the approximated solution for any
random realization by some low-dimensional products. Here the time step is set as ∆t = 0.002, and
there are 300 samples randomly draw from the prior in the training sample set Ξ. For each selected
samples, we then solve the forward models with grid size 100×100 and finer time step ∆t = 0.001,
which can be proceeded in parallel. The high-fidelity model bases are calculated according to Eq.
(3.23). By updating the low-fidelity surrogate model with the high-fidelity bases, The bi-fidelity
model can be established.

In Table 1, we compare the construction and online calling CPU time, relative mean error Re
for different model reduced methods, with different numbers of separated terms. The Bi-model
refers to the bi-fidelity model and the High-vs-model refers to the variable-separation approxima-
tion obtained by the high-fidelity model (with grid size 100×100 and time step 0.001) only. The
low-time represents the time cost of the low-fidelity model, the high time is the corresponding time
cost of the high-fidelity model, high-fidelity vectors are calculated in parallel with 2 cores for the
Bi-model. The relative mean error is defined as

Re =

√√√√√√√
∫

Ω

∫
[0,T ]

∫
O
(ůH(x, t;ξ )−ur(x, t;ξ ))2dxdtdξ∫

Ω

∫
[0,T ]

∫
O

ůH(x, t;ξ )2dxdtdξ

,

where ůH(x, t;ξ ) represents the full high-fidelity model solution and ur(x, t;ξ ) is obtained by the
reduced models, i.e. the Bi-model or High-vs-model. For the same number of separated terms,
the Bi-model can achieve almost the same relative mean error level as the High-vs-model, while it
costs less time in the reduced model construction stage than the High-vs-model as expected. Since
the force term is not affine, the Bi-model is more efficient in the online stage than the High-vs-
model.

We study the effect of the low-fidelity model and the number of the separated terms on the
approximation of the bi-fidelity model. The errors achieved by the low-fidelity model alone ‖ŮL−
UL

N‖ and the one achieved by the bi-fidelity model ‖ŮH− ŨN‖ against the number of the separated
terms are plotted in Figure 1, where columns of the involved matrices are calculated with respect
to the training sample set Ξ, i.e., n = 300. Stochastic basis functions are constructed by 20× 20
and 40× 40 low-fidelity models, respectively. All errors decrease as we increase the number of
separated terms. Though for the errors ‖ŮL−UL

N‖ low-fidelity models achieved alone, the 20×20
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Figure 1: Approximation of the model with respect to the number of the separated terms by dif-
ferent strategies: bi-fidelity model and low-fidelity model. Dashed line represents the bi-fidelity
model approximation error ‖ŮH − ŨN‖ (denoted by eBi); solid line shows the error ‖ŮL−UL

N‖
(denoted by eL).

model leads to error level lower than the 40× 40 one at the same number of the separated terms,
top curves show that the bi-fidelity model constructed with the 40×40 low-fidelity model is more
accurate than the one constructed by the 20×20 low-fidelity model in general.

As can be seen from Figure 2, the values of ‖(CS
L)
−1‖‖CL‖ are bounded for the two different

low-fidelity models. The values of ‖CL‖ are stable. The trend of ‖(CS
L)
−1‖‖CL‖ are almost the

same as the trend of ‖(CS
L)
−1‖. For the 40×40 low-fidelity model, the terms ‖(CS

L)
−1‖‖CL‖ and

‖ŮL−UL
N‖ are larger than the ones estimated by the 20× 20 low-fidelity model mostly, while

it reaches better bi-fidelity model approximation. This is resulted by the smaller ‖E‖ and ‖T‖,
which are determined by the relationship between the low-fidelity model and the high-fidelity
one. It verifies numerically that the bi-fidelity model approximation is effected by the low-fidelity
variable-separation approximation and the low-fidelity model used in constructing the bi-fidelity
model, which coincides with the result of Theorem 3.1.

The ground true parameter values is set as ξ = (0.25,0.75) in the example. Observation data
are generated by adding independent random noise N (0,σ2) to the solution at a uniform 6× 6
sensor network. At each sensor location, measurements are taken at time t = 0.05 and 0.1, which
correspond to a total of 72 measurements. Figure 3 shows the difference between the approximate
and the reference posterior distribution with different separated terms N = 5,20,50 and 75, where
the low-fidelity model used is 20× 20, the solid and dashed lines denote the reference and the
surrogate posterior, respectively. The better agreement between πd

N(ξ ) and πd(ξ ) is observed by
increasing the separated terms, the approximate posterior is almost the same as the reference on
when the surrogate bi-fidelity model is constructed with 75 separated terms.

The bi-fidelity model is used repeatedly to obtain samplers via pCN-MCMC algorithm, in
which parameter β is set as 0.01 and the length of the Markov chain is 3× 104, only the last
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Figure 2: Values of ‖(CS
L)
−1‖, ‖CL‖ and ‖(CS

L)
−1‖‖CL‖ with respect to the number of the sepa-

rated terms: line with marker ’diamond’ represents the values obtained by the 20×20 low-fidelity
model; line with marker ’pentagram’ represents the values obtained by the 40× 40 low-fidelity
model.
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Figure 3: Contours of the posterior with the separated terms N = 5,20,50 and 75. The solid lines
represent the reference posterior and the dashed lines show the approximated one.
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Figure 4: Approximation of the forward model and the posterior density with respect to the num-
ber of the separated terms. Dashed line represents the Kullback-Leibler divergence DKL(π

d
N||πd)

(denoted by DKL); solid line shows the L2
π error ‖G−GN‖2

L2
π

(denoted by EL2).

2×104 realizations are used to compute the relevant statistical quantities. The KL divergence DKL
between the approximated posterior and the reference posterior are discussed here to measure the
difference.

First, we consider the effect of the separated terms N on the performance. In Figure 4, the
approximation of the bi-fidelity surrogate model is plotted against the increasing numbers of sep-
arated terms when stochastic basis functions are constructed by 20× 20 and 40× 40 low-fidelity
model, respectively. From this figure, the model approximation error ‖G−GN‖2

L2
π

decreases as
the rank of approximation increases for both low-fidelity models. The top curve of the figure
shows that the posterior density of KL divergence DKL decreases as we increase the rank of ap-
proximation, this is consistent with the result shown in Theorem 2.1. Figure 4 also shows when
separated terms fixed, a surrogate model of which stochastic basis functions constructed by the
40× 40 low-fidelity model approximates the forward model better. The KL divergence presents
the same results. The more accurate the low-fidelity model is, the less the difference between the
approximate posterior and the reference one will be. The figures confirm that the accuracy of the
surrogate posterior depends both on the separated terms N and the low-fidelity model.

It would be interesting to recover the fractional order αξ in the model (4.26) simultaneously
with the point location. To this end, we keep the same conditions. But the unknown inputs are
ξ = [αξ ;ξ1,ξ2], and T = 0.2. We also set T1 = T , which implies that the source is always active
during the considered time interval [0,T ]. The ground true value of αξ is 0.3, measurements are
taken at the same locations and at time t = 0.05,0.1,0.15. We find that the NVS method is sensitive
to the training sample set when αξ is also unknown.

We use the 30×30 low-fidelity model to obtain the corresponding interpolation rule in con-
structing the bi-fidelity model. When the surrogate model with rank N = 120 is implemented to
approximate the likelihood, the approximate posterior is explored with β = 0.0033, and the ac-
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ceptance rate is 31.55%. Figure 5 shows the one- and two- dimensional posterior marginals of
ξ . The posterior of αξ centers around 0.3. The posterior support of location is relatively wider
than αξ ’s. The modes appear uncorrelated and mutually independent based on the shape of their
two-dimensional marginals.

The forward model approximation error and KL divergence are plotted against the number
of separated terms in Figure 6. For the first 160 separated terms, the difference in forward model
drops about 4 order of magnitude, with the corresponding 6 orders of magnitude decreasing in DKL
for both surrogate models. The 40× 40 low-fidelity model based surrogate performs little better
than 30×30 based one as the separated terms increases to 200. Generally, the posterior density of
Kullback-Leibler divergence DKL decreases twice as fast as ‖G−GN‖2

L2
π

.

Figure 5: one-dimensional and 2-dimensional posterior marginals of [αξ ;ξ1;ξ2].

4.2 Identify the smooth permeability field
Consider the problem with the mixed boundary condition, where the homogeneous Dirichlet

boundary condition is imposed on x = 0 and x = 1, and there is no flow on the other lateral bound-
aries. The end time is T = 0.25, the fractional derivative is set as αξ = 0.5, and the source term is
set as f = 30. The random field is given by the truncated Karhunen-Loève expansion with the first
nξ terms,

κ(x;ξ ) = κ̄c +

nξ

∑
i=1

√
ςiϕi(x)ξi, ,

where (ςi,ϕi(x)) are eigenpairs of the Gaussian covariance kernel

Cov(x1,y1;x2,y2) = σ
2
ξ

exp
(
− |x1− x2|2

2l2
x
− |y1− y2|2

2l2
y

)
, (4.27)
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Figure 6: Approximation of the forward model and the posterior density with respect to the number
of separated terms. Dashed line represents the Kullback-Leibler divergence DKL(π

d
N||πd) (denoted

by DKL); solid line shows the L2
π error ‖G−GN‖2

L2
π

(denoted by EL2).

here lx = 0.2, ly = 0.3, σ2
ξ
= 1, κ̄c = 10 is the mean of the random field. And the number of

truncated terms is nξ = 40.
The ground true parameter ξ is randomly drawn from the standard multivariate normal distri-

bution. Measurements are taken from 0.02 to 0.21, with the time interval 0.01, and the locations
are distributed on a uniform 7×6 grid of the domain [0.1,0.85]× [0,0.9]. We use Gaussian distri-
bution N (0,λ I) as the prior. The parameter λ from the prior is treated as a hyperparameter here.
We choose inverse Gamma distribution as its hyperprior density, i.e., we have the joint posterior
density

π(ξ ,λ |d) ∝ exp
(
−
‖d−G(ξ )‖2

2
2σ2

)
exp
(
−
‖ξ‖2

2
2λ

)
λ
−

n
ξ

2 −a−1 exp
(
− b

λ

)
,

which yields an inverse Gamma full conditional distribution

π(λ |ξ ,d) = I G

(
a+

nξ

2
,b+

‖ξ‖2
2

2

)
.

pCN-MCMC method is used to obtain the samplers of ξ and Gibbs method is employed to update
the hyperparameter λ during the iteration. Here a = 0.01 and b = 0.01 for this example.

The bi-fidelity surrogate model is constructed based on a 20×20 low-fidelity and a 100×100
high-fidelity model. We note the upscaling technique [44] is used here when low-fidelity model
is constructed, since the Karhunen-Loève expansion is generated to match with the finer grid. For
each coarse domain K as shown in Figure 7, we solve the local problem

div(κ(x)∇φ j) = 0, (4.28)
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K

Figure 7: Schematic description of fine and coarse grids. Solid lines illustrate a coarse-scale
partitioning, while dashed lines show a fine-scale partitioning within coarse-grid cells.

with some coarse-scale boundary conditions. Here κ(x) denotes the fine-scale permeability field.
The boundary conditions are given by φ j = 1 and φ j = 0 on the opposite sides along the direction
e j and no-flow boundary conditions on the other lateral sides. The coarse-scale permeability tensor
is then given by

(κ∗(x)e j,ei) =
1
|K|

∫
K
(κ(x)∇φ j,ei)dx,

where φ j is the solution of (4.28) with prescribed boundary conditions. Once the upscaled absolute
permeability κ∗(x) is obtained, the original equation can be solved on the coarse grid without
changing the form of relative permeability curves.

When the approximation rank is set as N = 100, the corresponding surrogate model is im-
plemented to explore the approximate posterior. Parameter β is set as 0.075 and the length of the
Markov chain is 5×104. The last 2×104 realizations are retained. Figure 8 shows the reference
permeability field and some posterior realizations of it. The general shapes of the realizations
match the reference field, especially for spatial locations where the values are high. Though they
are not almost the same, each realization capture part characteristic of the target profile.

The 95% credible intervals for the model response at u
(
x= 0.55,y, t = 0.05

)
, u
(
x,y= 0.45, t =

0.1
)

and u
(
x = 0.25,y = 0.45, t

)
are constructed. This uncertainty is added to the estimated er-

ror variance to construct prediction intervals. As illustrated in Figure 9, the reference values are
located in the credible intervals in general, measurements are almost contained in the predictive
intervals. For u

(
x,y = 0.45, t = 0.1

)
, both the credible interval and prediction interval become

tight as x gets closer to the end points, which results from the deterministic Dirichlet boundary
condition at x = 0 and x = 1. For u

(
x = 0.25,y = 0.45, t

)
, the studied intervals get loose as time

moves on, which means that the uncertainty associated with the model fit and predictions grows,
as the uncertainty from the input ξ propagates.

The accuracy of the surrogate model is discussed here. As shown in Figure 10, the forward
model error drops dramatically during the first hundred separated terms for both low-fidelity based
surrogate model, the difference in forward model drops more than two orders of magnitude from
N = 10 to N = 50 and continues to fall towards N = 150. The 40×40 low-fidelity based surrogate
model decreases faster than the 20× 20 low-fidelity based one after 150 separated terms, the KL
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Figure 8: Reference and posterior realization of the permeability field, the left upper one is the
reference one and the others are posterior realizations.

Figure 9: Data, point estimates, and 95% credible and prediction intervals produced by the
Bayesian analysis for u

(
x = 0.55,y, t = 0.05

)
, u
(
x,y = 0.45, t = 0.1

)
and u

(
x = 0.25,y = 0.45, t

)
,

respectively.
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Figure 10: Approximation of the forward model and the posterior density with respect to the
number of separated terms. Dashed line shows the Kullback-Leibler divergence DKL(π
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divergence curves present the same trend with the forward model error in general. For the 100×
100 forward model with 40-dimensional unknown parameters, the DKL can achieve magnitude
10−3 accuracy with the bi-fidelity surrogate model, where the 40×40 low-fidelity model requires
to solve only for 300 times.

4.3 Identify the channel structured permeability field
Consider the problem with the same conditions as example 4.2, but the permeability field is

channel-structured as a priori and the source term is set as

f (x) = 15exp
(
− (x1−0.4)2 +(x2)

2

2×0.32

)
.

DCT is used to parameterize the unknown permeability field, which uses real cosine functions
and transforms information into coefficients of cosine functions, more details on DCT and Inverse
DCT can be found on [35].

The channeled coefficient is parameterised as

κ(x;ξ ) = κ̄c + κ̃(x;ξ ),

where κ̄c is a constant expected field, and κ(x;ξ ) is discretized as

κ̃(nx,ny) =
Nx

∑
i=1

Ny

∑
j=1

α(i)α( j)ξ (i, j)cos
[

π(2nx−1)(i−1)
2Nx

]
cos
[

π(2ny−1)( j−1)
2Ny

]
, (4.29)
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α(i) =


1√
Nx
, i = 1,√

2
Nx
, otherwise,

and α( j) =


1√
Ny
, j = 1,√

2
Ny
, otherwise,

where nx = 1, · · · ,Nx, ny = 1, · · · ,Ny, and Np = NxNy. Denote the 1-dimension DCT basis
matrix as Ix ∈ RNx×Nx with elements

[Ix]i,nx = α(i)cos
[

π(2nx−1)(i−1)
2Nx

]
,

and Iy ∈ RNy×Ny with elements

[Iy] j,ny = α( j)cos
[

π(2ny−1)( j−1)
2Ny

]
,

then 2-dimension DCT basis can be represented as

Φ = Ix
⊗

Iy,

where
⊗

means the Kronecker product. Due to the arrangement of the DCT’s cosine functions,
the lower frequency focus on the upper-left part, i.e., a set of nξ < Np DCT-weighting coefficients
can reproduce the original image, we use the truncated DCT basis functions to approximate κ̃ , the
equation (4.29) can be rewritten in vector form

κ̃ = Φ̃ξ ,

where Φ̃ ∈ RNp×nξ is the first nξ columns of matrix Φ, ξ ∈ Rnξ is the corresponding coefficient.
Before conducting the inference, we need to quantify the prior information of ξ . Firstly, since

κ̃ is spatial-dependent, we naturally choose Gaussian prior for it. Given that the permeability field
is channel structured, to describe the jump better, we impose TV norm penalty for this inverse
problem, i.e. the prior density for π(κ̃) is given by

π(κ̃) ∝ exp
(
− κ̃T Σ−1κ̃

2

)
exp(−γ‖κ̃‖TV ),

where Σ is the covariance matrix. The TV norm of a 2-D image κ̃ ∈ RNp is approximated by

‖κ̃‖TV =
2

∑
i=1
‖Riκ̃‖1,

‖ · ‖1 is l1 norm and Ri, i = 1,2 is a finite difference matrix in direction i. The second-order
finite-difference strategy is used here, e.g., in 1-D problem, Ri is defined as

Ri :=


−1 1
−1

2 0 1
2

. . . . . . . . .
−1

2 0 1
2

−1 1

 .
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Substitute equation (4.29) in, we have the hybrid prior for ξ

π(ξ ) ∝ exp
(
− ξ T Φ̃T Σ−1Φ̃ξ

2

)
exp(−γ‖Φ̃ξ‖TV ),

The covariance matrix Σ is generated by Eq. (4.27) with σξ = 0.1, lx = ly = 0.05, κ̄c is set as
1.5 in this example. The unknown permeability field is uniformly discretised into 40×40 pixels,
i.e., the dimension of the original coefficient is Np = 1600, when DCT applied, we set nξ = 400.
Measurements are taken the same as in example 4.2.

We construct the bi-fidelity model based on the 40× 40 low-fidelity model, the bases are
calculated by 120× 120 high-fidelity model. The surrogate model built with N = 100 separated
terms is used to approximate the likelihood function. The regularization parameter γ from the TV
prior is set as γ = 100, and the pCN-MCMC parameter β = 0.035 in this example. The length of
the Markov chain is 8×104, the last 3×104 realizations are retained. We compare MCMC mean
estimate with the reference one and present the posterior standard deviation in the Figure 11 (a)(c),
the region of high values has been captured, the curves of the channel have also been described
generally.
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Figure 11: The reference channel structured permeability field (the left), posterior mean (the first
row) and posterior standard deviation (the second row) of κ(x), the estimates (a) and (c) are based
on the posterior samplers of ξ , and (b) and (d) are based on the posterior samplers of ζ .

We sort the parameters in descending order according to var(ξi|d), the resorted parameter is
denoted as ξ̃ . As can be seen in Figure 12, posterior samplers of the parameters ξ̃i and its variance
are plotted with the new order, the red pentagram is var(ξ̃i|d)×10, we multiply the variance with
10 to make samplers ξ̃i and var(ξ̃i|d) under the same scale to be presented in the same figure. we
then do inference to the first nζ terms of ξ̃ , where

∑
nζ

i=1 var(ξ̃i|d)
∑

nξ

i=1 var(ξi|d)
= 0.95,
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Figure 12: Resorted posterior samplers of parameters ξ̃i and its variance, the pentagram is
var(ξ̃i|d)×10, black dot is the posterior samplers.

and nζ = 152 is estimated from the posterior samples in this example. We denote the dimension
reduction parameter as ζ , and construct bi-fidelity surrogate model with respect to it.

The low-fidelity model is then built with a 80× 80 grid, we build the surrogate model with
N = 100 separated terms, the regularization parameter and pCN-MCMC parameter (the β ) are set
to be the same. The MCMC mean estimate and posterior standard deviation are presented in Figure
11 (b)(d), ζ based mean estimates also capture the channel structure in general. Compared with ξ

based estimates, the deviation around the edges has been reduced.
Figure 13 shows the histogram of the reference, 0.25 quantile, mean and 0.95 quantile estimate

of the permeability. The reference has a bimodal distribution in the histogram, subfigures (a)(b)(c)
are estimated from the posterior samplers of ξ and (d)(e)(f) are from the posterior samplers of ζ .
The high frequency value concentrates around 1 and 3 for the estimates, this distribution property
is more obvious for ζ based estimates, which is lead by relative sufficient data information as
dimension of ζ is smaller than ξ .

We also discuss the influence of parameter reduction on interval estimates of responses. We
construct the 95% credible intervals for model response at u

(
x = 0.4,y, t = 0.05

)
, u
(
x,y = 0.6, t =

0.1
)

and u
(
x = 0.25,y = 0.3, t

)
. As shown in Figure 14, the true response are not totally contained

in credible intervals, this may be result from the DCT truncation. However, the measurement data
are almost contained in predictive intervals for both cases, they can both explain the data.

5 Conclusion
This paper presented a new bi-fidelity model reduction method and its application in Bayesian

inverse problems for the time-fractional equation. We obtain stochastic basis functions by the low-
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Figure 13: Permeability histogram: reference (left) and estimates based on the posterior samplers
of ξ (the first row) and ζ (the second row), (a) and (d) are 0.25 quantile, (b) and (e) are mean, (c)
and (f) are 0.95 quantile.

Figure 14: Data, point estimates, and 95% credible and prediction intervals produced by the
Bayesian analysis for u

(
x = 0.4,y, t = 0.05

)
, u
(
x,y = 0.6, t = 0.1

)
and u

(
x = 0.25,y = 0.3, t

)
.

The first row is estimated based on the posterior samplers of ξ and the second row is obtained
from the posterior samplers of ζ .

27



fidelity model, and the NVS method is used. The efficient of the low-fidelity model leads to the
reduction of time in calculating residual and matrices involved in the recursive formulation for
stochastic basis functions. The bases in the physical space are obtained by running the high-
fidelity model in parallel, which is due to the mechanism of the NVS method and the linearity of
the fractional equation. The presented strategy leads to an accurate approximation of the full-order
forward model and gives an approximated posterior density, which is easier to be evaluated than
the original posterior. The numerical examples confirm that the approximated posterior matches
the reference one very well by using the proposed method, the accuracy of the surrogate posterior
depends both on the separated terms N and the low-fidelity model.

We demonstrate our approach in the time-fractional equation inversion problems: estimating
the source location, the time-fractional order and inferring the permeability field with a different
structure. The new bi-fidelity model reduction method constructs the random space basis according
to the model itself, inheriting the advantage of the NVS method, i.e., it escapes from the limitation
of polynomial basis and can be used to high-dimensional stochastic problems. The implementation
of multi-fidelity models accelerates the construction of stochastic basis functions while the accu-
racy can still be preserved. When constructing the low-fidelity model for the unknown permeability
field, the upscaling technique is used, for the target profile with high oscillation, GMsFEM [24]
can be used to approximate the solutions better. We also plan to do some mathematical analysis on
the convergence of the proposed method in our future work.

Appendix

Proof: Denote ŮL
1:N = [ŮL

1 ,Ů
L
2 , · · · ,ŮL

N ] ∈ RNL×N , ŮH
1:N = [ŮH

1 ,ŮH
2 , · · · ,ŮH

N ] ∈ RNH×N the
set of full low- and high- fidelity model solution with respect to samples {ξ (k)

L }N
k=1, respectively.

According to Eq.(3.24), we have
ŮH

1:N = TŮL
1:N +ES, (5.30)

where ES is matrix of errors corresponding to samples {ξ (k)
L }N

k=1, of which columns are part of E.
Let UL

1:N = [UL
1 ,U

L
2 , · · · ,UL

N ] ∈ RNL×N , UH
1:N = [UH

1 ,UH
2 , · · · ,UH

N ] ∈ RNH×N be the set of low- and
high- fidelity basis vectors, respectively. Due to Eqs. (3.22) and (3.23), we have

ŮL
1:N = UL

1:NCS
L,

ŮH
1:N = UH

1:NCS
L.

Substitute them into Eq. (5.30), we obtain

UH
1:N−TUL

1:N = (CS
L)
−1ES,

finally, we have

‖ŮH− ŨN‖ ≤ ‖ŮH−TŮL‖+‖TŮL−TUL
N‖+‖TUL

N− ŨN‖
≤ ‖ŮH−TŮL‖+‖T‖‖ŮL−UL

N‖+‖TUL
1:NCL−UH

1:NCL‖
≤ ‖E‖+‖T‖‖ŮL−UL

N‖+‖(CS
L)
−1‖‖ES‖‖CL‖

≤ (1+‖(CS
L)
−1‖‖CL‖)‖E‖+‖T‖‖ŮL−UL

N‖.
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