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Abstract

Mathematical modelers have attempted to capture the dynamics of Ebola transmission and to evaluate

the effectiveness of control measures, as well as to make predictions about ongoing outbreaks. Many

of their models consider only infections with typical symptoms, but Ebola presents clinically in a more

complicated way. Even the most common symptom, fever, is not experienced by 13% of patients. This

suggests that infected individuals could be asymptomatic or have moderately symptomatic infections as

reported during previous Ebola outbreaks. To account crudely for the spectrum of clinical symptoms

that characterizes Ebola infection, we developed a model including moderate and severe symptoms. Our

model captures the dynamics of the recent outbreak of Ebola in Liberia. Our estimate of the basic

reproduction number is 1.83 (CI: 1.72, 1.86), consistent with the WHO response team’s estimate using

early outbreak case data. We also estimate the effectiveness of interventions using observations before

and after their introduction. As the final epidemic size is linked to the timing of interventions in an

exponential fashion, a simple empirical formula is provided to guide policy-making. It suggests that

early implementation could significantly decrease final size. We also compare our model to one with

typical symptoms by excluding moderate ones. The model with only typical symptoms overestimates the

basic reproduction number and effectiveness of control measures, and exaggerates changes in peak size

attributable to the timing of interventions. In addition, uncertainty about how moderate symptoms affect

the basic reproduction number is considered, and PRCC (Partial rank correlation coefficient) is used to

analyze the global sensitivity of relevant parameters. Possible control strategies are evaluated through

numerical simulations and sensitivity analysis, indicating that simultaneously strengthening contact-

tracing and effectiveness of isolation in hospital would be most effective. In this study, we show that

asymptomatic Ebola infections may have implications for policy-making.
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1 Introduction

The 2014-15 Ebola outbreak in West Africa, which presented a serious threat to global public health, was

declared a “public health emergency of international concern” by the WHO on August 8, 2014 [3]. The

Ebola virus is transmitted among humans through close contact with bodily fluids of infected ill and dead

persons, including blood, secretions, etc. [30]. Symptoms of Ebola infection vary widely, but commonly

include fever, fatigue, loss of appetite, vomiting, diarrhea, and headache, as well as hemorrhagic symptoms

[30]. For the 2014-15 West African Ebola outbreak, 87% of infected individuals exhibited fever, the most

commonly reported symptom. And some hemorrhagic symptoms are rarely reported (<5.7%) [30]. This

suggests that infected individuals experience a range of symptoms from mild to severe. Asymptomatic

infections are quite possible, as shown in previous Ebola outbreaks [15, 18].

In the past year, two studies analyzed minimally symptomatic and asymptomatic ebola in the 2014-15

outbreak. Bower et al. tested 933 people in Kerry town, Sierra Leone, and found evidence of asymp-

tomatic ebola in roughly 2.6% of the population studied. Additionally, 12% reported some symptoms

and although they were undiagnosed, tested positive for Ebola antibodies [9]. A slightly smaller survey

by Richardson et al. on minimally symptomatic Ebola reported that up to 25% of Ebola infections may

have been minimally symptomatic [22], which is consistent with previous outbreaks estimates [15, 18].

Some of the spectrum of Ebola symptoms might be explained by immunological responses to infec-

tion [6, 31, 32]. Following the infection of some naive individuals, Ebola virus could evade the innate

immune response by interfering with or disabling the detection and signaling functions of immune cells,

for instance, dendritic cells and macrophages. This evasion could lead to systemic viral replication and

increase the chance of disease-induced death due to multiple organ failure. For infected people whose

innate responses to infection are successful, however, the initial replication of Ebola virus may be limited

or even contained, resulting in few or mild symptoms [18]. The difference in immunological responses

may be related to host genetics and/or partial immunity due to previous infection with a related virus.

Host genetic studies [11] show that genetic background determines susceptibility and resistance to many

infectious diseases, including the strain Ebola virus recently circulating in West Africa [21]. Thus, host

genetics may determine if individuals are resistant or susceptible to severe hemorrhagic fever [25].

Many mathematical models have been applied to the 2014-15 Ebola outbreak in West Africa to esti-

mate the basic reproduction number and evaluate control measures [5, 7, 10, 16, 17, 19, 23, 28]. However,

with few exceptions [8, 20], these studies do not consider asymptomatic or moderately symptomatic in-

fections. Using a simple model without post-mortem or nosocomial transmission, Bellan et al. [8] showed

that models without asymptomatic infection overestimate epidemic size. Pandey et al. [20] included

asymptomatic infection in their model, but studied only its influence on epidemic sizes with different

possible control measures. In addition, those authors did not study moderately symptomatic individuals,

who might have reduced infectivity. The consequences of including moderately symptomatic individuals

in the model warrants detailed study.

To account crudely for the spectrum of clinical symptoms that characterizes Ebola infection, we model

moderate and severe infections. We augment Model II in [13] by adding moderately symptomatic to

susceptible, exposed, infectious, hospitalized and deceased (not buried yet) and recovered compartments.

In this model, the underlying transitions of infectious persons to hospitalization and disease progression

are assumed to be independent stochastic processes (see Section 2 for a more detailed description). A
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Gamma distribution is adopted for a more realistic, yet mathematically tractable, infectious period. If

Ebola virus replicates, but is contained by a strong innate immune response, the resulting moderate

symptoms are captured by moving people from the exposed compartment to the moderately infectious

compartment. Based on their viral load, those moderately symptomatic individuals from the exposed

class probably are infectious, but less so than those with severe symptoms.

These moderately symptomatic people are important in estimating basic reproduction number and

evaluating control effectiveness. For example, early outbreak data from Liberia are used to estimate the

basic reproduction number (there were limited effects of control measures before the middle of Septem-

ber, 2014 [20, 30]) as 1.83 from the model with 30% moderate infections, which is consistent with the

WHO estimate via a different approach. If moderate symptoms are disabled, however, the estimated

reproduction number is 1.94, which is 6% higher. This shows that models without considering moderate

infections might overestimate the basic reproduction number. In addition, the model without moderately

symptomatic infections overestimates the reduction in transmission rates in the community, hospitals and

after death due to international interventions. This implies that credit given to control measures may

actually be due to moderately symptomatic infections.

This paper is organized as follows: Section 2 elaborates the model, in which infections with moderate

symptoms are explicitly incorporated, and the stage durations for both severe and moderate infections

follow gamma distributions. The basic and control reproduction numbers are derived in Section 3. Model

calibration to the Liberia outbreak and parameter estimation are presented in Section 4. In Section 5,

various control strategies are evaluated and models with and without considering minimally symptomatic

individuals are compared. Section 6 is devoted to sensitivity and uncertainty analyses for several outcomes

including the reproduction number, peak incidence, and final epidemic size. Discussion of the results is

included in Section 7.

2 A new model with severe and moderate infections

The objective of this paper is to enhance our understanding of the effects of including minimally symp-

tomatic individuals on Ebola modeling. A compartmental model is developed by including a compartment

for infected individuals with moderate symptoms. One of the important control measures for Ebola is

isolation, which will be considered in our model as well. It has been demonstrated that, when control

measures such as isolation are included in epidemiological models, one must consider disease sojourns that

are more realistic than exponential distributions to avoid biased evaluations of disease control and preven-

tion programs [14]. It has also been pointed out in [13] that, depending on the underlying assumptions on

the epidemiological processes (e.g., recovery, hospitalization, disease induced death, etc.), the transition

diagram between epidemiological classes can be very different, leading to significantly different model

equations (see Models I, II and III and the corresponding transition diagrams in [13]). In this paper,

we adopt the same underlying assumption as for Model II in [13], which assumes that, from individuals

with severe infections, the transitions to hospitalization and disease progression (recovery or death) are

independent. Intuitively, the waiting times of these transitions are measured by two independent clocks.

If the hospitalization clock rings before recovery or death, the clock of disease progression continues to run

until either recovery or death. If the disease progression clock rings before hospitalization, the individual

dies with probability f and recovers with probability 1− f . More detailed explanations can be found in

3



[13] including the reduction of this model from a system of integro-differential equations (with arbitrary

stage durations) to a system of ordinary differential equations (ODEs) when waiting times follow Gamma

distributions. When disease progression follows a Gamma distribution with shape parameter n ≥ 1 and

rate parameter γ, the hospitalization process follows an exponential distribution with parameter χ (a

gamma distribution with shape parameter equal to 1) and disease progression for the moderate infections

follows a Gamma distribution with shape parameter m ≥ 1 and rate parameter γa; the transition diagram

is depicted in Figure 1.

The total population is divided into the following epidemiological classes: susceptible S, latent (ex-

posed) E, infectious with severe symptoms Ij , j = 1, 2, . . . , n, infectious with moderate symptoms Jk,

j = 1, 2, · · · ,m, hospitalized Hj , j = 1, 2, · · · , n, disease-induced death and not safely buried D, and re-

covered R. The total population is N = S+E+I+J+H+R, where I =
∑n
j=1 Ij(t), and H =

∑n
j=1Hj(t),

and J =
∑m
k=1 Jk(t). A diagram for transitions between classes is shown in Figure 1.
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Figure 1: Transition diagram between epidemiological classes under the assumption of Gamma distributed
infectious stages for severe infections (Ij , j = 1, 2, · · · , n) and moderate infections (Jk, k = 1, 2, · · · ,m)
with shape parameters n and m, respectively. The mean infectious periods of these two types of infections
are 1/γ and 1/γa, and the mean duration from the time of death to burial is 1/γd. The per-capita rate
of hospitalization for individuals with severe infections is χ; this is the rate at which individuals in the
Ij compartment enter the Hj compartment. The proportion of deaths for severe infections is f .

For new infections, depending on the outcome of viral replication and host immunological response,

individuals could be mildly infectious with moderate symptoms (with a fraction δ) or fully infectious with

severe symptoms (with a fraction 1− δ). The force of infection, denoted by λ(t), is given by

λ(t) =
βI
[
I(t) + εJ(t)

]
+ βHH(t) + βDD(t)

N(t)
,

where βI , βH , and βD are transmission rates in the community, hospital and at funerals (deceased but

not yet safely buried), respectively, and ε is a factor (0 ≤ ε ≤ 0.2) representing the reduced infectivity of

individuals with moderate symptoms (or the ratio of infectivities of moderate to severe infections). The

infectious periods of moderate and severe symptoms are assumed to follow Gamma distributions with
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shape parameters being m and n, and mean infectious periods being 1/γa and 1/γ, respectively. This is

equivalent to considering m and n sub-stages with transition rates from each sub-stage to the next equal

to mγa and nγ (see Figure 1). Individuals with severe infections may be hospitalized at rate χ while

being at each of the n sub-stages. Deaths due to infection only occurs at the last sub-stage of severe

infections. Because this is an epidemic model for a single outbreak, demographic processes (births and

natural deaths) are ignored.

The model consists of the following differential equations:

dS

dt
= −λ(t)S,

dE

dt
= λ(t)S − αE,

dI1
dt

= (1− δ)αE − (nγ + χ)I1,

dIj
dt

= nγIj−1 − (nγ + χ)Ij , j = 2, . . . , n,

dH1

dt
= χI1 − nγH1,

dHj

dt
= χIj + nγHj−1 − nγHj , j = 2, . . . , n,

dJ1
dt

= δαE −mγaJ1,

dJk
dt

= mγaJk−1 −mγaJk, k = 2, . . . ,m,

dD

dt
= fnγIn + fnγHn − γdD,

dR

dt
= (1− f)nγIn + (1− f)nγHn +mγaJm,

(1)

where δ is the fraction of infections with moderate symptoms; 1/γ and 1/γa are the average infectious

periods for infections with severe and moderate symptoms; 1/α is the latent period; χ is rate at which

individuals with severe symptoms are hospitalized; and f is the fraction of severe infections resulting in

death. As discussed in [13], for this model the parameter γ can be chosen to be the weighted average of

the interval from disease onset to recovery, 1/γIR, and from onset to death, 1/γID, in the following form:

1

γ
= (1− f)

1

γIR
+ f

1

γID
. (2)

All parameters with their definitions and the ranges of their values are also listed in Table 1. The WHO

Ebola Response Team published estimates for the 2014-15 Ebola outbreak in West African [30]. Recent

studies estimated the reproduction number by fitting models to the symptom onset date during the initial

stage of this outbreak [5, 16], and estimated parameters and evaluated interventions by calibrating models

using this outbreak data [20, 23]. Similar studies for previous outbreaks include [12, 27] and [17] which

focused on estimates from the 1995 Congo and 2000 Uganda outbreaks, respectively.
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Table 1: Definition of the parameters in model (1), and the ranges of their values used in numerical
simulations and sensitivity analysis.

Symbol Definition Value (Range) References

βI Community transmission rate 0.319 (0.3, 0.33) estimated
βH Hospital transmission rate 0.6 (0.55, 0.65)βI [16]
βD Traditional burial transmission rate 1.2 (1, 1.25)βI [20, 24]
ε Ratio of infectivities of moderate to severe infections 0.1 (0, 0.2) assumed
1/χ Mean time from disease onset to hospitalization 4.9 (4.8, 5.3) days [17, 27, 30]
1/γID Mean time from disease onset to death 7.9 (7.5, 8.5)days [17, 27]
1/γIR Mean time from disease onset to recovery 9 (8.5, 9.5)days [20]

1/γ Mean of the Gamma distribution for severe infection = 1−f
γIR

+ f
γID

[13]

1/γa Mean of the Gamma distribution for moderate infection 3.1 (3, 7) days assumed
1/γd Mean time from deceased to buried 2.02 (1.5, 2.5) days [17, 20, 27]
1/α Latent period 9.5 (9, 12)days [12, 20, 30]
δ Proportion of infections with moderate symptoms 0.3 (0.1, 0.42) [8]
f Proportion of disease death for severe infections 0.6966 (0.69, 0.73) [12, 30]

3 Derivation of the basic and control reproduction numbers

The basic (control) reproduction number, denoted by R0 (Rc) are the average numbers of secondary

infections caused by an infected individual while infectious in a susceptible population in the absence

(presence) of disease control. Instead of using the usual method of next generation matrix to derive the

reproduction number, we use a more intuitive approach based on the underlying stochastic processes.

For an infectious person in the I compartment (i.e., with severe symptoms), let TP and TL denote

the stochastic waiting times for disease progression and hospitalization, respectively, and let E(TP ) and

E(TL) denote the expectations of TP and TL. Then E(min{TP , TL}) is the expected time before leaving

I due to either disease progression or hospitalization, and E(TP )−E(min{TP , TL}) is the expected time

in the H compartment. Moderately symptomatic individuals will not be hospitalized so have only a

waiting time for onset to recovery, which we denote by Ta, and the expected duration is E(Ta). Then

the control reproduction number is the weighted average of the reproduction numbers with severe and

moderate infections, which can be written as:

Rc = (1− δ)Rc1 + δRc2, (3)

whereRc1 andRc2 represent the secondary infections produced by an individual with severe and moderate

symptoms, respectively, given by

Rc1 = βIE(min{TP , TL}) + βH [E(TP )− E(min{TP , TL})] + βD
f
γd
,

Rc2 = εβIE(Ta).
(4)

It is clear that each term in Rci (i = 1, 2) is a product of transmission rate with the corresponding

expected durations.

To compute the expectations under Gamma distributed sojourns, note that the waiting times TP , TL
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and Ta have the following survival functions:

Gnnγ(t) =

n∑
j=1

(nγt)j−1e−nγt

(j − 1)!
, G1

χ = e−χt, Gmmγa(t) =

n∑
j=1

(mγat)
j−1e−mγat

(j − 1)!
.

It follows that E(TP ) = 1/γ, E(TL) = 1/χ, E(Ta) = 1/γa,

E(min{TP , TL}) =

∫ ∞
0

n∑
j=1

(nγt)j−1e−nγt

(j − 1)!
e−χtdt =

n∑
j=1

∫ ∞
0

(nγt)j−1e−(nγ+χ)t

(j − 1)!
dt

=
1

nγ + χ

n∑
j=1

(
nγ

nγ + χ

)j−1
=

1

χ

[
1−

(
nγ

nγ + χ

)n]
,

and

E(TP )− E(min{TP , TL}) =
1

γ
− 1

χ

[
1−

(
nγ

nγ + χ

)n]
.

Therefore, from (3) and (4) we have

Rc = (1− δ)
{
βI

1

χ

[
1−

(
nγ

nγ + χ

)n]
+ βH

(
1

γ
− 1

χ

[
1−

(
nγ

nγ + χ

)n])
+ βD

f

γd

}
+
δεβI
γa

. (5)

It can be verified that the expression for Rc given in (5) is equivalent to that obtained using the

next generation matrix method. The effects of disease control measures are represented by reduced

transmission rates βi (i = I,H,D) and the duration from death to burial 1/γd, and an increased rate of

hospitalization χ. In the absence of changes of these parameter values, formula (5) provides an expression

for the basic reproduction number R0.

Denote the four components of Rc associated with I, H, D, and J by RIc , RHc , RDc , and RJc ,

respectively. Then the expression in (5) can also be written as

Rc = RIc +RHc +RDc +RJc ,

where

RIc = (1− δ)βI
1

χ

[
1−

(
nγ

nγ + χ

)n]
,

RHc = (1− δ)βH
(

1

γ
− 1

χ

[
1−

(
nγ

nγ + χ

)n])
,

RDc = (1− δ)βD
f

γd
,

RJc =
δεβI
γa

.

(6)

These expressions in (6) can be helpful for examining how various factors may affect Rc.

Remark: In the case when moderate infections are not considered, i.e., δ = 0, the reproduction number

given in (5) becomes Rc = Rc1 (see (4)), which is exactly the same as the reproduction number for Model

II in [13]. This allows us to compare the models with and without moderate infections.
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4 Data fitting and parameter estimation

We will use the situation in Liberia based on the WHO situation reports [2] to calibrate the model

equations in (1). For demonstration purposes, we consider the model for the case of n = 2 and m = 1.

The data corresponding to the initial phase of exponential growth is used to estimate the transmission

parameters βi (i = I,H,D), which are then used to determine R0 using formula (5). By fitting the model

to reports after control started we can estimate the reductions in the transmission rates and the control

reproduction number, Rc, which then allows us to evaluate alternative control scenarios.

4.1 Estimation of transmission rates and the reproduction number

Data from the Liberia outbreak were obtained through the CDC’s website [1], which are extracted from

WHO situation reports [2]. Though there were some local efforts to curtail the outbreak from the middle

of August 2014, their effects were not significant [20]. Observations before September 14, 2014 are suitable

for estimating the reproduction number because interventions had not yet altered the epidemic curve [30].

To have an accurate estimate, we used the data from June 5, 2014 to September 14, 2014 to calibrate

the models and estimate the reproduction number [20, 30].

The only parameters that we estimate are the transmission rates. For other parameters, we used the

estimates obtained by the WHO Ebola Response Team [30] and others. The reported cases from Liberia

are assumed to be Poisson samples from the model. We use R package bbmle for maximum likelihood

estimation and the package deSolve for solving ODEs similar to [5]. These parameter values are listed

in Table 1. This method firstly reassembles the data by combining predictions and residuals randomly.

Second, the model is refitted to the reassembled data. Then confidence intervals are based on estimates

of the refitted model.

We use the initial outbreak data (before September 14th) to estimate the transmission rates βi (i =

I,H,D), from which we can obtain the corresponding estimate of R0 using formula (5). Furthermore,

we fix βH and βD to be proportional to βI with the proportions in certain ranges (see Table 1) so that

the only transmission rate to be estimated is βI .

We noticed that the curve fitting is particularly sensitive to the choice of the initial and end points

of the selected time period for the exponential growth. To account for this issue, we performed an 8-fold

cross validation, which was chosen to have similarly sized sub-samples. The analysis was performed on

datasets with 25 points and 26 points, excluding and including the last point. The 25-point dataset with

the minimum average error (RMSE) was chosen. In addition, because the fitted values will depend on

the choice of the proportion of moderate infections δ, for which there is no commonly accepted value,

we obtain estimates for several values of δ including the case of no moderate infections (δ = 0). We use

Bower et al.’s [9] estimate that 12% of infections are moderately symptomatic as a lower bound for the

value δ and Bellan et al.’s [8] estimate of 40% as an upper bound. We considered four scenarios in this

section: (a) δ = 0; (b) δ = 0.15; (c) δ = 0.3; and (d) δ = 0.5. The corresponding estimates of R0 are

1.94, 1.89, 1.83, and 1.71 (these values and the confidence intervals are also listed in Table 2). For these

four cases (a)–(d), the fitted curves are illustrated in Figure 2. These fitted curves generates estimates

of βI values with corresponding confidence intervals equal to 0.244 (0.232,0.25), 0.275 (0.26, 0.28), 0.319

(0.309, 0.33), and 0.409 (0.39, 0.42), respectively. we used the Akaike information criterion (AIC) to
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compare the models and evaluate which value of δ returns the best fit. The AIC estimates the relative

quality of a statistical model for a given dataset by estimating the likelihood of a model to predict future

values. The four different values of δ are analyzed as different models, the best model is the one with the

minimum AIC (δ = 0.3) among the candidate models.

Although the estimates of R0 in all cases of (a)–(d) are in the range of existing estimates [12, 27],

the estimate in (c), i.e., R0 = 1.83 (95% CI, 1.76 to 1.88), is the most consistent with the estimate from

WHO response team (obtained using other statistical methods). In addition, for case (c), we estimate

that for community transmission, RI0 = 0.78 contributes the most to R0 at 42%. Contributions from

other transmissions are RH0 = 0.64, RD0 = 0.38, and RJ0 = 0.03, which consist of about 35%, 21%, and

1.6% of R0, respectively.

Data cases

a)

b)
c)

d)

Figure 2: Fitting of model (1) to the 2014 Ebola reports before control (i.e., from June 5th to September
8th). The line plots correspond to different proportions of moderate infections: (a) δ = 0, (b) δ = 0.15,
(c) δ = 0.3 (d) δ = 0.5. For the cases (a)–(d), the Akaike information criterion (AIC) are 325, 281, 267,
and 341, respectively.

4.2 Estimates of the control parameters

In the countries with widespread and intense spreading, containment of the West African Ebola outbreak

relied on non-pharmaceutical interventions due to the lack of effective medicines. These interventions

include social mobilization, use of personal protective equipment (PPE) in healthcare facilities, safe and

dignified burials, and contact-tracing and quarantine. Social mobilization activities include raising the

population’s awareness of mode of transmission, social distancing from infectious people, timely seeking of
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Table 2: Estimates of R0 corresponding to the model fitting presented in Figure 2 for four cases with
different proportions of moderate infections: (a) δ = 0, (b) δ = 0.15, (c) δ = 0.3, (d) δ = 0.5. Estimates
of the components Ri0 (i = I,H,D, J) of R0 are also provided.

Case R0 (95% CI) RI
0 (95% CI) RH

0 (95% CI) RD
0 (95% CI) RJ

0 (95% CI)

(a) 1.94 (1.84, 2.01) 0.84 (0.79, 0.86) 0.69 (0.66, 0.71) 0.41 (0.38, 0.43) 0

(b) 1.89 (1.79, 1.93) 0.81 (0.76, 0.82) 0.67 (0.63, 0.68) 0.4 (0.38, 0.42) 0.012 (0.012, 0.013)

(c) 1.83 (1.76, 1.88) 0.78 (0.74, 0.8) 0.64 (0.62, 0.66) 0.38 (0.36, 0.39) 0.03 (0.028, 0.031)

(d) 1.71 (1.62, 1.75) 0.71 (0.67, 0.73) 0.59 (0.56, 0.60) 0.35 (0.32, 0.36) 0.064 (0.06, 0.065)

CI: Confidence Interval.

medical care and proper handling of deceased persons. Widely used, personal protective equipment (PPE)

can lower infections in hospitals and other healthcare facilities. Safe and dignified burials conducted by

trained teams can reduce transmission from deceased people. Contact-tracing helps to promptly identify

and hospitalize suspected and isolate probable cases. All of these interventions are associated with one

or multiple parameters in the model. A natural question is whether considering moderate symptoms in

the model affects the estimated effectiveness of these interventions and to what extent ignoring this may

contribute to biased evaluations.

Let tc denote the time when intervention started in mid September, which for convenience is chosen

to be 100 days from June 5th, 2014. To estimate the effect of control measures, we assume that the

transmission rates for community (βI), hospital (βH), and funeral (βD) are reduced by factors zI , zH ,

and zD, respectively. That is, the transmission rates for t > tc will be βi(1−zi), i = I,H,D. This change

can be described by using piecewise-constant functions:

βi(t) =

{ βi for t < tc,

βi(1− zi) for t ≥ tc, i = I,H,D.

In addition, the time from onset to hospitalization (1/χ) is assumed to be reduced by 0.25, i.e., around

1.2 days earlier in hospitalization due to control [7].

The estimated values of reductions zi in the transmission rates are shown in Table 3 for (i) δ = 0

and (ii) δ = 0.3. We observe that the reductions in case (i) is larger than that in (ii), implying that

models that do not explicitly include moderate infections (case (i)) may overestimate the effectiveness of

the control measures considered here.

Figure 3 shows the comparison between fitted model curves and reports for both the period before

intervention (t < tc = 100), which is the same as the curves shown in Figure 2, and after (t > tc = 100).

We observe that, when moderate infections are considered (δ > 0), particularly for the case of δ = 0.3

(see (ii)), this model fits the data much better than the model without considering moderate infections

explicitly (see (i)). These results suggest again that considering moderate infections is necessary to

estimate the effects of interventions for policy-making.
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Figure 3: Fitting of the model (1) to the 2014 Ebola data for the period between June 5th, 2014 and
October 8th, 2015. For t < tc = 100, the fit is the same as in Figure 2, whereas the fit for t > tc = 100 is
used for estimating the control reduction parameters zi (i = I,H,D). The two cases are for δ values: (i)
δ = 0 and (ii) δ = 0.3. The jump in cases between day 100 and day 200 is due to a catch up in monitoring
and reporting in Liberia [4].

Table 3: Estimates of reductions (zi, i = I,H,D) in transmission rates for four cases based on the
proportion δ for moderate infections.

Estimates (95% CI)
Cases (i) δ = 0 (ii) δ = 0.3
zI 0.987 (0.738, 1) 0.83 (0.675, 0.945)

zH 0.514 (0.326, 0.652) 0.49 (0.263, 0.51)

zD 0.23 (0, 0.527) 0.217 (0, 0.259)

5 Evaluation of alternative control scenarios

Using the parameters estimated in the previous sections, we can experiment different scenarios for al-

ternative control strategies. For example, if the reduction factors zi (i = I,H,D) were higher or lower

than the estimated values, and/or if the time of control tc started earlier or was delayed, how much

that would have affected the disease outcomes in terms of final epidemic size, peak size, and duration.

Apparently these evaluation results will be depend on the choice of other parameter values. Thus, we

will also examine the sensitivity of the reproduction number Rc and other measures (final size, peak size,

etc.) to various model parameters.
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5.1 The effects of timing of interventions

The timing of interventions is critical for disease control. Let T denote the time of intervention, and

consider T = tc = 100 (days) as the baseline scenario. We first investigate earlier or delayed starting time

and examine how they may affect the results of the outbreak using measures including final epidemic

size, peak size, duration of outbreak, and total number of deaths.

In Figure 4, the epidemic curves and cumulative cases for various scenarios are plotted. Early inter-

vention corresponds to the starting time T = 86 and 93 while late intervention corresponds to T = 107

and 114. This is for the case of 30% moderate infections (i.e., δ = 0.3, the case (c) in Table 2). All other

parameter are fixed at the same values, and zi correspond to case (ii) in Table 3.

100 200 300 400 500
0

50

100

150

200

250

300

350

Time (Days)

N
u
m
b
er
o
f
In
fe
ct
io
n
s
×
10
2

(a) Epidemic curves

100 200 300 400 500
0

5

10

15

20

Time (Days)

N
u
m
b
er
o
f
in
fe
ct
io
n
s
×
10
3

(b) Cumulative infections

114

107

100

93

86

Figure 4: Plots of (a) epidemic curves and (b) cumulative infections for various times to intervention T :
The baseline scenario T = tc = 100 (thicker solid line), with one or two weeks early intervention T = 86
and 93 and one or two weeks delayed intervention T = 107 and 114.

We observe in Figure 4 that the difference in both peak sizes and final sizes are very large between

early and late interventions. For example, the peak and final size values of early intervention are a half

of the baseline scenario (the thick solid curve) values. Similarly, the peak and final sizes double when

control is applied two weeks later than the hundredth day.

We can also compare models with different proportions of moderate infections, including the case

when moderate infections are not explicitly considered (i.e., δ = 0). Figure 5 shows simulation results

corresponding to the same set of two δ values as before, to which we refer as two models. The cumulative

and epidemic curves are shown in the top and bottom rows, respectively. The three columns are for (a)

early intervention by one week (T = 93 days), (b) the baseline scenario T = tc = 100 days), and (c)

late intervention by one week (T = 107 days). It suggests again that the model with δ = 0 overestimate

the effects of early and delayed interventions. We observe in Figure 5 that, although the two models

produce similar cumulative curves, they produce very different peak sizes for all three intervention times.

Particularly, the peak size decreases with increasing δ, and the model without moderate infections (δ = 0)

produces the highest peak size, approximately 30% higher than the model with δ = 0.3.

These differences between the two models are more transparent in Figure 6. The bar chart for peak

sizes (a) shows that the reduction in peak sizes (PS) with one week early intervention are 70 for δ = 0

and 51 for δ = 0.3 and the increase in peak sizes with one week late intervention are 88 for δ = 0 and 62
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(b) Time to Intervention is 100 days
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Figure 5: Comparison of models with different proportions (δ) of moderate infections and timing T of
intervention: (a) T = 93 (one week early), (b) T = tc = 100, and (c) T = 107 (one week late). The
curves show cumulative infections for different δ values: δ = 0 and 0.3.

for δ = 0.3. The plot in (b) shows that changes in final sizes (FS) generated by the two models do not

differ significantly.
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Figure 6: Changes by one week earlier or later than the baseline scenario (i.e., T = tc = 100 days) in
(a) peak size PS and (b) final size FS for δ = 0 and δ = 0.3. All parameter values are the same as in
Figures 4 and 5.

It can be helpful to derive a functional relationship between the time to intervention and the final

epidemic size. By fitting the regression line

FS(t) = FS(t0)exp(k(t− t0))
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Figure 7: Percentage of change of final sizes as a function of time of intervention with respect to the
baseline scenario (T = tc = 100 days) corresponding to different fractions of moderate infections δ.

to the final size we obtained the values k=0.0488, 0.04375 for the cases of δ = 0 and δ = 0.3, respectively,

as shown in Figure 7 (a). Figure 7 (b) is obtained using the formula FS(t)−FS(tc)
FS(tc)

∗100. It shows the final

size percentage increase or decrease as control is applied for different values of t. If control is applied a

week early (t = tc − 7) where tc = 100, the percentage of cases per day is negative. That is, by applying

control earlier we have prevented roughly 27% of cases. Similarly, if we apply control measures a week

later than tc = 100, the percentage is positive, i.e. the percentage increase is roughly 37%. We observe

that the model without asymptomatic infections (δ = 0) predicts a lower or higher final size for earlier

or later interventions, respectively.

5.2 Effects of reducing transmission rates and stage durations

Evaluation of control strategies may also focus on the effect control measures on the control reproduction

number Rc. Joint effects of parameters on Rc can provide insights into the most effective factors in

reducing Rc. Some of these analyses are demonstrated in Figures 8 and 9.

Figure 8(a) shows that in the absence of reduction in βH (i.e., zH = 0), reducing Rc from 1.8 to 1.6

would require to reduce 1/χ (time from onset to hospitalization) from 4.6 days to 1.5 days, which would

be very difficult to do. On the other hand, if 1/χ remains at 4 days, the reduction of Rc from 1.8 to

1.6 can be achieved by the reduction level at zH = 0.275. Unless 1/χ can be reduced to below 3 (days),

it is impossible to reduce Rc to below 1 (see the thicker curve) by reducing βH . In general, Rc can be

effectively decreased by early hospitalization if the transmission rate in hospital is reduced. However,

without the reduction of this transmission rate (zH = 0), early hospitalization would not be effective

in reducing Rc. Early hospitalization might be achieved by contact-tracing, whereas the reduction in

transmission rate βH might be achieved by increasing the effectiveness of isolation in hospital and the

use of personal protective equipment (PPE). A similar comparison between zD and 1/γd (mean time

from death to burial) can be made from Figure 8(b). For example, from the point where zD = 0.1 and

1/γd = 2 (days), reducing 1/γd by 0.5 days (i.e., from 2 to 1.5) can produce a similar reduction in Rc
as improving the reduction level zD from 0.1 to 0.3. It also shows that it is impossible to reduce Rc to
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Figure 8: Contour plots of Rc in (a) the (zH , 1/χ) plane and (b) the (βD, 1/γd) plane. See the text for
detailed descriptions of the observations.

below 1 by only reducing 1/χ and increasing zD.

Figure 9 illustrates the comparisons of the effectiveness of combined reduction in transmission rates

βi (i = I,H,D) for decreasing Rc. The contour plots (a)–(d) illustrate the joint effect of reducing βH

and βD under different levels of reduction in the community transmission rate βI : zI = 0%, 10%, 20%,

and 30%, respectively. We observe that, in all four cases, Rc is more sensitive to zH than to zD. An

increase in zH (higher reduction in βH) is achievable by strictly implementing isolation and increasing

the use of personal protective equipment by healthcare workers. We also observe that reducing Rc to

below 1 is very difficult without reducing zI , and that reductions in βH and βD have similar effects on

reducing Rc. In Figure 9(a), the vertical and horizontal dashed lines indicate that, to achieve Rc < 1

(above the thick line) by reducing βH and βD alone (i.e., zI = 0), the reduction in βH must be higher

than 70% (zH > 0.7) and the reduction in βD must be higher than 55% (zD > 0.55). These threshold

values of zH and zD decreases with increasing zI , as illustrated in (b)–(d).

6 Uncertainty and sensitivity analyses

Uncertainty and sensitivity analyses are conducted for both the basic reproduction number R0 and

epidemic outcomes including peak and final epidemic sizes.

6.1 Sensitivity analysis of R0

A sensitivity analysis of R0 provides important information regarding how uncertainty and variability

of model parameters may affect model results and which parameters are most influential. The analysis

is based on the Latin hypercube sampling method with 1000 points selected from assigned parameter

ranges corresponding to the case of 30% moderate infections (see Table 1). The parameters consid-

ered in this analysis include transmission rates (βI , βH , βD), progression rates from onset to recovery or

hospitalization (γ, γa, γd, χ), and factors related to moderate infections (δ and ε), and death fraction

(f).
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Figure 9: Contour plots showing changes in Rc as a function of zH and zD (decreases in βH and βD) for
various levels of reduction zI in βI . The thick line in each plot corresponds to Rc=1.

A probability distribution (PDF) was assigned to each parameter which described the range of possible

values and the probability that they have of occurring. The PDFs were chosen based on the biology of the

disease and depending on whether the parameter was estimated or obtained from existing literature. ε

was fixed, as well as the proportions for βH and βD, since only βI was estimated and they are proportional

to βI . For all the parameters, except δ, a triangular distribution was used since it is recommended for

cases in which a most likely value and a range for each parameter was estimable [26]. In the case of

δ, a uniform distribution was used since studies provide a wide range for this parameter. Partial rank

relation coefficients (PRCC) were computed between the values of the seven parameters which identified

the independent effect of each parameter on R0. In this study, we assume statistical independence of the

input parameters.

The results are illustrated in Figure 10.
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Figure 10: Sensitivity and uncertainty analyses of the basic reproduction number Rc with respect to
model parameters. Values of the parameters are chosen using the Latin hypercube sampling method,
with the ranges around the values corresponding to the case of 30% moderate infections as listed in Table
1. The plots in the top row show the PRCC values of these parameters (left) and the distribution of Rc
(right). The bottom row shows the empirical CDF ofRc (left) and the contributions ofRic (i = I,H,D, J)
to Rc (right).

6.2 Sensitivity analysis of peak and final epidemic sizes

Under the control measures corresponding to the zi (i = I,H,D, χ) in case (ii) of Table 3, deterministic

simulations generate the peak and final sizes shown in Figure 4. When parameters are selected based on

LHS with 1000 simulated epidemics, the distributions of the peak and final sizes are illustrated in Figure

11. The parameter ranges correspond to the case (c) in Table 2 and (ii) in Table 3, and the time to

intervention is the baseline scenario (i.e., tc = 100 days). We observe that, although the means for both

the peak (a) and the final (b) sizes are consistent with those shown in Figure 4 (the thick solid curve),

the variances are large.

6.3 Control measures and their effects on the time course

To assess the importance of various control measures for future outbreaks, we conducted a time course

sensitivity analysis based on the 2014-15 Liberia outbreak. This is done again through Latin hypercube

sampling of the control parameters represented by zI , zH , and zD (reductions in βI , βH , and βD) and
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Figure 11: Similar to Figure 10(b) but results of the uncertainty analysis for the peak and final sizes. This
figure illustrates distributions of the peak and final sizes of 1000 simulated epidemics with parameters
selected using LHS from ranges corresponding to the case of 30% moderate infections.

the timing of intervention, denoted by T . The partial rank correlation coefficients (PRCC) are presented

in Figure 12. The ranges for zI , zH , and zD are same as the confidence intervals estimated in Table 3.

The range for T is chosen to be between 1 week before and 1 week after the baseline scenario tc = 100

(days), and the range for the reduction parameter zχ (time from onset to hospitalization) is (0, 0.3).
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Figure 12: Time course sensitivity with respect to control parameters.

We observe that the PRCC curves of control parameters are similar and close to zero before implemen-

tation of control measures. Once control measures are implemented, the PRCC curves of different control

parameters quickly approach relatively stable values. The first PRCC curve approaching 1 is the timing

of control measures, which is positively correlated with cumulative cases. This is consistent with the fact

that the later that control measures are implemented, the larger the outbreak. Early implementation of

control measures is very important in the exponential growth phase of any outbreak. As time increases,

the influence of time to intervention diminishes. All other control measures are negatively correlated,

which implies that implementing these control measures mitigates the outbreak. The most influential

measures are the reductions in community and hospital transmission (zI and zD), followed by zH and zχ.
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7 Discussion

To investigate the impact of a spectrum of symptoms of Ebola infection, we based assumptions on

biological findings about Ebola infections with moderate and severe symptoms. Those with moderately

symptomatic infections from the exposed class have some viral replication, which is controlled due to

strong innate immunity plus successful adaptive immunity. These individuals are not very infectious

despite moderately symptomatic infections, because they have few viruses circulating within their bodies.

Individuals with severe symptoms have higher viral load and therefore are more infectious than people

with moderately infections. Various levels of moderately symptomatic infections are considered in our

analysis based on estimates by Bower et al. [9], Bellan et al. [8] and Richardson et al.[22].

The model developed in this paper extends the Model II in [13] by explicitly including moderate

infections. The formulation and its underlying assumptions are demonstrated via integro-differential

equations and their reduction to ordinary differential equations in [13]. The merit of this model is that

it allows the infection history to pass over even after hospitalization. This is important in determining

times of recovery and death, especially when no treatment is available. The Gamma assumption also

provides a realistic infectious period, and infectious individuals recover or die in the later stage of the

infection, but not sooner.

The results in this paper illustrate the importance of considering infections with moderate symptoms.

First, the estimated basic reproduction number R0 for the model with 30% moderate infections (δ = 0.3)

is 1.83, which is the most consistent (among the models with different δ values) with WHO’s estimate

independent of compartmental modeling (see Table 2). It is worth noting that our reproduction numbers

are obtained by fitting our models directly to cases using maximum likelihood estimation. Alternatively,

one can estimate the exponential growth rate of early cases and connect the rate to reproduction number

by assuming a generation interval [29]. The estimate of R0 can be inflated when excluding moderate

infections in the model (δ = 0). However, uncertainty analysis of R0 of the model with 30% moderate

infections could lead to reproduction numbers from 1.2 to 2.4 (see Figure 10). We show that the sensitivity

of R0 to δ is higher than to most other parameters (see Figure 10(a)), and that the most influential

components of R0 is RI0 followed by RH0 (see Figure 10(d)).

Second, the effectiveness of interventions is over-estimated when ignoring the moderate infections.

For example, we demonstrate in Figures 4–6 that, although models with various δ values provide similar

evaluations of the effect of control measures on the final epidemic sizes, the model with δ = 0 predicts

a much higher effectiveness of early intervention than models with δ = 0.3. Thus, without considering

moderately symptomatic infections, extra credit is given to implemented control measures. The sensitivity

analysis also shows that the variances in the peak and final epidemic sizes are relatively large (Figure

11) and that the reduction in βI (among all βi’s, i = I,H,D, χ) is the most influential to the cumulative

number of cases over the entire time course, while the timing of interventions diminishes (see Figure 12).

In addition, the timing of interventions is of great importance to mitigate final epidemic size. Because

final size is an exponential function of the time of intervention, early interventions could significantly

reduce epidemic size. An empirical regression equation linking final size and timing of interventions could

be useful for policy-making.

It is necessary to stratify infections by severity of clinical symptoms in modeling. This permits reason-

able estimates of the reproduction number and effectiveness of control measures, especially when infected
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persons present with various symptoms. More epidemiological investigation of moderately symptomatic

infections of Ebola will be helpful to estimate their fractions of the total infection and infectivity. These

are crucial to more useful modeling of future outbreaks.
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