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ABSTRACT: Techniques to calculate the free energy changes of a system are
very useful in the study of biophysical and biochemical properties. In practice,
free energy changes can be described with thermodynamic cycles, and the free
energy change of an individual process can be computed by sufficiently sampling
the corresponding configurations. However, this is still time-consuming especially
for large biomolecular systems. Previously, we have shown that by utilizing
precomputed solute−solvent correlations, so-called proximal distribution
functions (pDF), we are capable of reconstructing the solvent environment
near solute atoms, thus estimating the solute−solvent interactions and solvation
free energies of molecules. In this contribution, we apply the technique of pDF-
reconstructions to calculate chemical potentials and use this information in
thermodynamic cycles. This illustrates how free energy changes of nontrivial
chemical processes in aqueous solution systems can be rapidly estimated.

1. INTRODUCTION

The calculation of free energies has long been of interest for
computational drug design as is the recognition of ligands by
their receptors and interpreting the consequences of protein
mutation and binding.1 There is considerable literature
developing methodologies for free energy calculations utilizing
the property of state functions: the free energy difference
between two state points in configuration space is independent
of the selection of the pathway.2 Thus, by using thermodynamic
cycles we can calculate the free energy changes for convenient
nonphysical processes to circumvent the complicated or
computationally infeasible physical processes.3

The free energy difference associated with mutating a protein
can be formulated as the difference in solvation free energy
(ΔGsolv) of the initial and final states.

1,4−7 Consider the pathway
of creating a neutral/nonpolar cavity in a liquid solution prior to
adding charges. This is an old problem in liquid state theory. We
can decompose ΔGsolv into van der Waals (ΔGvdW)

8 and
electrostatic (ΔGelec) components. We note here that such
components of a free energy are defined by the process and are
not state functions even though the sum of the components is. In
practice, ΔGelec has often been approximated using dielectric
continuum theory based techniques8−11 such as the generalized
Born model,12,13 or the Poisson−Boltzmann equation,14,15

while the more general Linear Response theory (LRT) can
use more atomic detail.16−18

The cavity or nonpolar ΔGvdW component of the solvation
free energy has a long history in the literature.19−21 An often
used rough approximation is to assume this component is a
linear function of the solvent accessible surface area
(SASA).22−25 However, the justification of such simple models

to estimate ΔGvdW remains a challenge due to multibody
interactions between neighboring atoms,26−28 and the complex
geometry of the solute−solvent interface.29−32 Thus, explicit
solvent models which give rise to nontrivial correlations in
packing structure must be coupled with techniques such as
thermodynamic integration and free energy perturbation for
accurate calculations of ΔGvdW.

28,33,34

Despite the rather straightforward theory behind free energy
calculations, the implementation of numerical calculations is not
trivial. One requires a force field that correctly reproduces
conformational properties, and solvation interactions including
partitioning behavior between different environments. Classical
force fields continue to advance sometimes at the expense of
adding complexity.35−37 In addition, sampling a representative
number of configurations within the given ensemble is also
required for converged thermodynamic quantities, which leads
to computational expense.38−40 Methods relying on precom-
puted quantities from explicit simulations of small solutes to
estimate ΔGvdW of large solutes41−46 are therefore being
developed to circumvent expensive free energy simulations.
In this contribution, we explore the use of precomputed

perpendicular/proximal distribution functions (pDFs) to
rapidly calculate ΔGsolv and associated free energy differences
with appropriate thermodynamic cycles. pDFs approximate
solute−solvent pair correlation functions to describe the local
solvent structure around a solute47−51 and thus can be used to
predict the solvent structures around complex biological
macromolecules that are composed of chemically similar
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components.52−54 Average solute−solvent interaction energies,
and subsequently solvation free energies, can then be calculated
from these reconstructed solvent structures.We have shown that
LRT electrostatic contributions to the free energy can be
calculated with pDFs and compare well to explicit simulations
with a substantial computational savings compared to not only
simulation but Poisson−Boltzmann calculations.43,44 When
coupled with the van der Waals components of the excess
chemical potentials from pDF-reconstructions the total
solvation free energy difference for small molecules is reasonably
approximated (within kcal/mol accuracy).43,44,55,56 In this
contribution, we extend the method to challenging thermody-
namic chemical processes, including the length dependence of a
polypeptide,57 mutating a residue on a polypeptide, and finally,
association between two alanine peptides.

2. THEORY
In this section, we present the thermodynamic cycles used in this
study and the method of calculating free energy differences.
Next, we briefly review the definition of pDFs and how they are
used to reconstruct solvent environment around a given solute
and solute−solvent (free) energetics. More details can be found
from the literature references.44,47,49,55,56

2.1. Thermodynamic Cycle. We present three studies in
this contribution: extending a polypeptide (Gly2 → Gly3 →
Gly4), mutating a residue on tripeptide (alanine−tyrosine−
alanine [AYA] → Ala3 [AAA], or alanine−histidine−alanine
[AHA] → Ala3 [AAA]), and finally, association between two
alanine peptides (2 × Ala1 → Ala1·Ala1). The thermodynamic
cycles of these processes are illustrated in Figures 1 to 3. The

definition of each ΔGi term is marked next to each process. For
each thermodynamic cycle the sum of the free energies around
any loop must be zero. Using the example in Figure 2 and given
the sign of each contribution, we have

ΔΔ = Δ − Δ

= Δ − Δ

→ →G G G

G G

(aq),X A (g),X A

solv,AAA solv,AXA (1)

The horizontal terms can usually be approached by
constructing intermediate states with single or dual topology
methods.58 The former method considers changes of atom types
and atomic interactions during simulations, while the latter
method includes dummy atoms to avoid the changes of atom
types. The dual topology method requires more computing
power particularly when simulations are run with Hamiltonian
exchange or expanded ensembles. In practice, the path of
calculating solvation free energy differences is more efficient.
There are theories using implicit models to rapidly estimate the
solvation free energies regardless the solvation details in the
vicinity of the solute. Thus, we introduce the use of
precomputed pDFs for the calculations of solvation free
energies, providing the solvation detail via solvent density
reconstructions.

2.2. Distribution Functions and Density Reconstruc-
tion. pDFs, or g⊥(r), are average density distributions calculated
from solvent molecules to a nearest solute atom.47,59,60 The
solvent probability distribution is most nearly perpendicular to
the kth solute atom g⊥

k (r) and can be written as

∑ ∑
δ

δτ
=

[| |] −
⊥

= =

=r
r t r

r t k
g ( )

(Inf ( ) )

( ( ), )
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(2)

where r t( )ij
÷ ◊÷ represents the position vector from the ith solute

atom to the jth solvent atom at time t, m is the number of solute
atoms, and n is the total number of solvent molecules in the
system. [| |] =r tInf ( )ij i m1,

÷◊÷ returns the distance between a particular
solvent atom and the nearest solute atom k; that is, k is the
assigned solute atom with the closest distance to the jth solvent
atom. The underlying concept is to divide the solvent space into
Voronoi polyhedra61 such that the resulting distribution
functions are defined essentially perpendicularly to the exposed
surface of the respective solute atoms.43 δτ r t k( ( ), )j

÷◊ is the
volume element around the jth solvent molecule, which is
defined by all r ⃗ vectors, where | − |⃗ ≤ | ⃗ − |⃗r r r rk i

÷◊÷ . In practice, a
pDF can be computed from aMD simulationmapped to a three-
dimensional grid where each individual grid point along with its
corresponding time-averaged solvent density is assigned to the
closest solute atom for g⊥

k (r) calculations.
A variety of solute atom sets or groupings can be used to

define the pDFs. Previous work shows that the pDFs classified
by the chemical identity (carbon, nitrogen, etc.) of solute atoms
are good enough for some purposes and using the force field

Figure 1. The thermodynamic cycle of growing polyglycine. The
vertical terms represent the solvation free energies of solutes, while
horizontal terms represent the free energies of growing an additional
glycine in the (g) gas phase or (aq) aqueous phase.

Figure 2. Thermodynamic cycle of mutating the central residue of a
tripeptide. The vertical terms represent the solvation free energies of
solutes, while horizontal terms represent the free energies of mutating
the central residue into alanine, in the (g) gas phase or (aq) aqueous
phase.

Figure 3. Thermodynamic cycle of the association between two Ala1. X
and X2 represent the monomer and dimer states, respectively. The
vertical terms represent the solvation free energies of solutes, while the
horizontal terms represent the dimerization free energies in the (g) gas
phase or (aq) aqueous phase.
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atom types for proteins and nucleic acids yields nearly universal
functions which are thus transferable to chemically similar solute
molecules.49,53,62 In this contribution, we construct pDFs for
each force field atom type. We refer to a particular grouping or
atom set by χ and refer to a particular pDF defined by this
grouping with χk.
We can reconstruct the solvation density around a given

solute configuration with a three-dimensional grid and assign
solvent density to the grid point (x,y,z) with the precomputed
g⊥
χk(r′):

= ′χ
⊥x y z rg( , , ) g ( )k (3)

where ′ = | ⃗ − |r r x y z( , , )i is the minimum distance between the
grid point and all solute atoms i, χk is the assigned atom type set
of the closest solute atom and (x, y, z) denotes the center of the
grid volume. In this framework, the solvent density at grid point
(x, y, z) is therefore

ρ ρ= ′χ
⊥x y z r( , , ) g ( )k (4)

where ρ is the bulk solvent number density. In our pDF
calculations (both pDF-collections and solvent density
reconstructions), we used 0.2 and 0.01 Å as the reconstruction
grid space resolution and g⊥(r) collection resolution,
respectively. The selection of g⊥(r) resolution is more important
in the van der Waals reconstruction process and a resolution of
0.01 Å is suggested.55

In practice, any solute atommay exclude solvent from any grid
point due to overlap, or volume exclusion. A two-step-process
was implemented to ensure grid points are assigned with the
appropriate solvent density during reconstruction. Details are
addressed in Supporting Information and the references.55,56

2.3. Thermodynamic Integration for Solvation Free
Energetics. Once the solvent density is reconstructed around
the solute, the average solute−solvent interaction energy can
then be written as

∫
∑ ∑

ρ

ρ

⟨ ⟩ =

≈ Δ | − |⃗

−

=

U g x y z U x y z x y z

v x y z U x y z r

( , , ) ( , , ) d d d

( , , ) ( ( , , ) )
x y z

i

m

ij i

solu solv

, ,

1
(5)

whereU(x, y, z) is the total solute−solvent interaction energy at
(x, y, z),Δv is the unit volume which depends on the spatial grid
resolution and the outer sum is taken over all grid points.
Depending on the potential energy function, U(x, y, z) may be
decomposed into the sum of electrostatic and van der Waals
interaction energies. The average electrostatic and van derWaals
solute−solvent interaction energies can then be calculated using
eq 5.
We have previously shown that the solute−solvent electro-

static interaction energy and electrostatic solvation free energy
(ΔGelec) can be reasonably approximated from the pDF-
reconstructed solvent densities with Linear Response
Theory.44,55 To calculate the free energy of cavity formation
(ΔGvdW), we applied a soft-core van der Waals potential and
thermodynamic integration (TI) approach. The pathway
between the initial gas phase and final solvated state by means
of a coupling parameter, λ, which varies between 0 and 1 such
that when λ = 0 the interaction energy (Uij) between solute atom
i and solvent atom j is zero and when λ = 1, Uij = Uij

vdW, or the
typical van der Waals potential energy function. To avoid
singularities and numerical instabilities at the λ = 0 end-point, a

soft-core potential is commonly used to scale Uij
vdW along the

pathway63,64 with a radius-shifting coefficient δ. The total
solute−solvent van der Waals interaction energy (UvdW) is the
sum of Uij

vdW over all solute−solvent atom pairs. The van der
Waals solvation free energy is calculated as the integral of the
average derivative of UvdW with respect to λ. One can calculate
ΔGvdW using approximate numerical integration methods with
the ensemble averages of ∂UvdW/∂λ at various values of λ.
In our pDF approach, we first construct g⊥

χk for the atom type
set of a small representative chemical group (e.g., a peptide
substituent) from MD simulations performed at regularly
spaced values of λ. For each λ, we obtain unique g⊥

χk values.
Then using these precomputed pDFs, we reconstruct the
average, λ-dependent solvent density distributions on a 3D grid
around a given solute configuration (e.g., a polypeptide) for each
λ value. We directly estimate ⟨∂UvdW/∂λ⟩λ using a form like eq 5
but with Uij replaced by ∂Uij

vdW/∂λ. Finally, numerically
integrating ⟨∂UvdW/∂λ⟩λ along λ yields ΔGvdW. Note that the
λ-dependent pDFs only need to be constructed once but may be
used to predict ΔGvdW of more complex solutes that are
composed of similar atom type sets for which the pDFs were
generated.

3. METHOD
3.1. Simulations for Calculating Solvation Free

Energies. The solvation free energies of Gly2, Gly3, Gly4,
Ala1, Ala3 (AAA), alanine−tyrosine−alanine (AYA), alanine−
histidine−alanine (AHA, with H representing neutral histidine
with a protonated δ nitrogen), and the doubly blocked Ala1
dimer (or Ala1-Ala1) were computed in this study. Molecular
dynamics simulations were performed with NAMD 2.1065,66

with the CHARMM 36 force field parameters67 to generate
pDFs and calculate free energy benchmarks. Each solute was
solvated with TIP3P water68 in a volume with at least 10 Å from
each boundary to the solute atoms. Peptide terminals were
capped with neutral acetyl (ACE) and N-methyl amide (NME)
chemical groups. Initial structures of these peptides are
presented in the Supporting Information. Three-dimensional
periodic boundary conditions were applied. A rigid water
geometry is enforced using SHAKE.69 Particle Mesh Ewald
(PME)70 was used to treat electrostatic interactions using a grid
of 1.0 Å resolution. The Lennard-Jones (L-J) interactions were
gradually switched off over the range 10 Å to 11 Å. The
temperature was fixed at 300 K via a Langevin thermostat with
damping coefficient of 5 ps−1. A time step of 2.0 fs was used to
integrate the equations of motion.
Throughout the simulations, the solute molecules were fixed.

The simulations were initially equilibrated in theNVT ensemble
for 1 ns. The final configuration was then used as the starting
condition for NPT production simulations at 1 atm pressure,
with the first 1 ns excluded as further equilibration.
A soft-core van der Waals potential function introduced from

refs 63 and 64 with a radius-shifting coefficient δ = 5.0 was used.
The simulated ⟨∂UvdW/∂λ⟩ were calculated from more than 10
ns production simulations at each λ. The convergence of
⟨∂UvdW/∂λ⟩ at each λ window was discussed in our previous
work.56 Trajectory snapshots were saved every 0.2 ps for
analyses. For each λ window, the uncertainty of ⟨∂UvdW/∂λ⟩ is
estimated as the block standard error.71 The final uncertainty of
ΔGvdW is calculated by the propagation of errors across all λ
values.
The transferable pDFs in this study were from our previous

work55,56 and examples are presented in Supporting Informa-
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tion. For each solvation free energy calculation, there are 11
windows with a λ-spacing of 0.1 from 0 to 1. Solvent
reconstruction and calculations of ΔGvdW were performed
with these same λ values. pDFs are used to reproduce simulated
⟨∂UvdW/∂λ⟩ at all λ-windows, which are subsequently integrated
to estimate ΔGvdW. One may wish to sample a more fine grid in
certain λ ranges depending on the chosen soft-core potential
function (near end points in our case) to better capture the
repulsive van der Waals forces when inserting the solute into the
system.4 The ΔGelec term is approximated as half of solute−
solvent electrostatic interaction energy based on Linear
Response theory, which can be estimated via simulations with
full electrostatic interactions or via solvent reconstruction with
pDFs.44 For the electrostatic components the simulation details
are the same as the above free energy simulations except for
having charges on solute atoms and a total sampling time for
each system of 100 ns with a 2 ps save frequency.
Throughout this manuscript, we applied Simpson’s rule for

numerical integrations.
3.2. Potential of Mean Force for the Dimerization of

Ala1. A stringent test of the pDF theory is the calculation of a
coordinate dependent free energy surface or a potential of mean
force (PMF). The dimerization/association between two Ala1
was studied via the thermodynamic cycle in Figure 3 and
calculations of the solvent-induced PMF, with X and X2
representing the monomer and dimer. The solvation contribu-
tion to the free energy of dimerization can be written as72

ΔΔ = Δ − Δ

= Δ − Δ

→ →G G G

G G2

(aq),2X X (g),2X X

solv,X solv,X

2 2

2 (6)

Figure 4 shows the geometry of the system, which is adopted
from the previous study.72 Two Ala1 monomers were placed in

parallel, with the Cα−Cα vector along the x-direction. The
reaction coordinate for obtaining the PMF is defined as the Cα−
Cα separation distance (d). In this study we considered 45
separations/windows between 6.3 (associated/dimerized state)
and 15.1 Å (dissociated state), with the positions of all solute
atoms being fixed at each separation window di throughout the
simulations and pDF calculations. We calculate the reversible
work at separation di using the free energy perturbation (FEP)
formula:

δ βΔ = + − = − ⟨ − Δ ⟩+G G d d G d kT U( ) ( ) ln exp( )i i i i i i1,

(7)

where ΔUi = U(di + δd) − U(di) is the variation of potential
energy due to changing of separation distance from di to di + δd.

⟨···⟩i indicates an ensemble average in state i. The solute−solute
interactions are fixed at each simulation window. Thus, we focus
only on the solute−solvent potential energy for eq 7. The
solute−solute PMF is presented in the Supporting Information.
If we define i = 0 as the associated state and i = N as the
dissociated state, the free energy of dimerization is then obtained
as

∑ βΔΔ = − ⟨ − Δ ⟩
=

−

G kT Uln exp( )
i

N

i i
0

1

(8)

The control simulation is prepared by placing the dimer (d =
6.3 Å) at the center of a box of dimensions 60 × 60 × 60 Å with
6814 TIP3P water molecules. The simulation setup remains the
same for each window with a 10 ns production run with a 2 ps
save frequency. Throughout the simulation the dimer atoms are
fixed. The final configuration was then used to generate the next
simulation window by translating one monomer 0.2 Å along the
x-axis. This process was repeated until d = 15.1 Å. We calculate
ΔΔG along the reaction coordinate d. Since the process is
reversible, in the results section for the dimerization process, we
use the dissociated state as the reference point (zero) for
discussion and better visualization.
In the pDF-reconstruction algorithm, the van der Waals and

electrostatic interactions were treated separately. Thus, we have
one set of full solute−solvent interactions simulations, while the
other set of simulations removed all solute atomic charges.

4. RESULTS
4.1. Growth of Polyglycine. The simulated and pDF-

reconstructedΔG values are listed in Table 1. The uncertainties

ofΔGelec are calculated as the block standard errors
71 of solute−

solvent electrostatic interaction energies. The uncertainties of
ΔGvdW are calculated from the error propagation of the
uncertainties of ⟨∂UvdW/∂λ⟩λ, which are usually larger at small
λ. Thus, uncertainties of simulated ΔGvdW in general are larger
than uncertainties of ΔGelec. The differences between simulated
and pDF-reconstructedΔGvdW are 0.42, 0.26, and 0.16 kcal/mol

Figure 4. Geometry of the dimerization of Ala1.

Table 1. Comparison of Solvation Free Energies of Gly2, Gly3,
and Gly4 Using Thermodynamic Integration with
Simulations and pDF-Reconstructionsa

ΔG simulated T.I. pDF T.I.

Gly2
ΔGvdW −0.33 (0.39) −0.75
ΔGelec −23.96 (0.05) −23.14
ΔGsolv −24.29 (0.39) −23.89

Gly3
ΔGvdW −1.01 (0.41) −1.27
ΔGelec −29.96 (0.06) −28.65
ΔGsolv −30.97 (0.41) −29.92

Gly4
ΔGvdW −1.75 (0.46) −1.91
ΔGelec −36.61 (0.07) −35.16
ΔGsolv −38.36 (0.47) −37.07

aΔGvdW is obtained using thermodynamic integration of ⟨∂UvdW/∂λ⟩λ.
ΔGelec is approximated as half of electrostatic solute-solvent
interaction energy using linear response theory. Uncertainties
obtained as the block standard errors71 are denoted in parentheses.
Uncertainties for ΔGvdW and ΔGsolv are calculated using error
propagation. The units are kcal/mol.
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for Gly2, Gly3, and Gly4, which are generally within the
uncertainties of ΔGvdW (∼0.4 kcal/mol). Differences between
simulated and pDF-reconstructed ΔGelec are 0.82, 1.31, 1.45
kcal/mol. Although these differences are larger than the
uncertainties of the simulated ΔGelec (∼0.06 kcal/mol), they
are still within ±4% of the simulated values. The largest
difference between simulated and pDF-reconstructed ΔGsolv is
1.29 kcal/mol.
Figure 5 shows the dependence of ΔGvdW, ΔGelec, and ΔGsolv

on peptide chain length. The simulated and pDF-reconstructed
yield a similar near linear dependence between all ΔG terms
versus chain length. On the basis of the thermodynamic cycle in
Figure 1, we have

ΔΔ = Δ − Δ→G G G2 3 solv,3 solv,2 (9)

ΔΔ = Δ − Δ→G G G3 4 solv,4 solv,3 (10)

The simulated and pDF-reconstructed ΔΔG2→3 are −6.68
(±0.57 using error propagation) and −6.03 kcal/mol, while the
simulated and pDF-reconstructed ΔΔG3→4 are −7.39 (±0.62)
and −7.15 kcal/mol, respectively. These values are comparable
with other similar studies (ca. −5.5 kcal/mol57,73,74). The
particular values are affected by the λ resolution for the FEP, the
force field, the numerical method for doing integrals, and the
linear response approximation we used for ΔGelec. As a control,
the consistency between simulated and pDF-reconstructed
ΔΔG under the same conditions demonstrates that densities
reconstructed via pDFs are not only sufficient for solute−solvent
interaction energies (⟨U⟩) or solvation free energies (∫ ⟨∂U/
∂λ⟩λ dλ), but also sufficient to recapitulate the features of free
energy differences (ΔΔG).
4.2. Mutation of a Tripeptide. We now present results

which can be thought of as a computational alanine scan in a
tripeptide. The simulated and pDF-reconstructedΔG values are
listed in Table 2. The differences between simulated control and
pDF-reconstructed ΔGvdW are −0.37, −1.11, and −1.04 kcal/
mol for AAA, AHA, and AYA, while the differences forΔGelec are
0.6, 1.12, 0.54. Thus, overall the ΔGsolv are consistent with
previous quality measures. With the thermodynamic cycle in
Figure 2, the free energy differences are

ΔΔ = Δ − Δ→G G GAYA AAA solv,AAA solv,AYA (11)

ΔΔ = Δ − Δ→G G GAHA AAA solv,AAA solv,AHA (12)

and from Table 2 we can derive ΔΔG values listed in Table 3
along with the corresponding hydration free energy differences
between amino acid side chains using the same force fields from
ref 75 and side chain analogues from ref 76−78.

In general, all of our simulated and pDF-reconstructed ΔΔG
terms are within 1 kcal/mol difference from the reference values.
We note that all of the calculated ΔΔGsolv are smaller than the
experimental values. Although the experimental ΔGsolv of these
tripeptides are not reported in this study, there seems to be
common over estimations of ΔGsolv for nonpolarizable force
fields.75,79,80 These deviations between computations and
experiments are usually larger than relative solvation free
energies (i.e., ΔΔGsolv).

81 We have shown that by using solvent
density reconstructions via pDFs, the free energy differences of
residue mutations are well-reproduced for a given force field.

4.3. Dimerization of Ala1. The solvent contribution to Ala1
dimerization is given via eq 6. The solvation free energies of Ala1
monomer and dimer from simulations and pDF-reconstructions
are listed in Table 4. For the monomer, both ΔGvdW and ΔGelec
terms are given by pDF-reconstructions to within a difference of
0.4 kcal/mol. For the dimer, there is a slightly larger difference
between the simulated and pDF-reconstructed ΔGelec. Using eq
6 with the shift to allow the dissociated state as the reference
(zero), we get ΔΔGvdW = 2.48 ± 0.62, ΔΔGelec = 1.77 ± 0.10,
and ΔΔGsolv = 4.25 ± 0.63 kcal/mol from the solvation free
energy simulations. From the pDF-reconstructions we obtain
ΔΔGvdW = 1.57, ΔΔGelec = 2.15, and ΔΔGsolv = 3.72 kcal/mol.
From the solvation free energy difference calculations (i.e.,
vertical contributions from the thermodynamic cycle in Figure
3), the simulated and pDF-reconstructed results of solvent
contributions to dimerization are consistent.

Figure 5. Solvation free energies of polyglycine.

Table 2. Comparison of Solvation Free Energies of
Tripeptides (Ala-Ala-Ala, Ala-His-Ala, Ala-Tyr-Ala) Using
Thermodynamic Integration with Simulations and pDF-
Reconstructionsa

ΔG simulated T.I. pDF T.I.

AAA
ΔGvdW 0.33 (0.23) 0.70
ΔGelec −29.12 (0.03) −29.72
ΔGsolv −28.79 (0.23) −29.02

AHA
ΔGvdW 0.67 (0.25) 1.78
ΔGelec −41.38 (0.04) −42.50
ΔGsolv −40.71 (0.25) −40.72

AYA
ΔGvdW 0.77 (0.26) 1.81
ΔGelec −34.53 (0.03) −35.07
ΔGsolv −33.76 (0.27) −33.26

aUncertainties obtained as the block standard errors are denoted in
parentheses. The units are kcal/mol.
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We next calculate the solvent contribution to the PMF along a
simple separation path coordinate. The solvent-induced PMF
can be decomposed into van der Waals and electrostatic
components. We first consider the van der Waals component
from the set of simulations without charges on solute atoms, as
shown in Figure 6a. The simulated PMF (black solid line) shows
the expected barrier between the contact and solvent separated
states as expected from studies of nonpolar hydrophobic
assemblies.82−84 The shape of the pDF-reconstructed PMF
(red dashed line) shows a weaker feature, and the barrier is not
as structured compared with simulated PMF. However, the
barrier from simulation is less than 0.5 kcal/mol, which is
challenging since the accuracy of pDF-reconstructions is ∼1
kcal/mol. We find that the effective interaction near contact is
underestimated by the pDF procedure. This is to be expected
given the near neighbor approximation used. We would expect a
substantial correction from next near neighbor terms at close
distance between solutes. Between d = 6.3 and 15.1 Å the

ΔΔGvdW is 2.32 kcal/mol from simulated PMF and 1.64 kcal/
mol from the pDF-reconstructed PMF, as listed in Table 5.

These results are close to the results using solvation free energy
differences between associated/dissociated states, both from
control simulations and pDF-reconstructions individually.
The electrostatic component of the solvent-induced PMF

from simulation and pDF-reconstruction is shown in Figure 6b.
The minimum at short distance is well reproduced in depth and
position between the simulation and reconstruction. The first
barrier of the simulated PMF is qualitatively given via the pDF-
reconstructions with a barrier ∼1 kcal/mol but shifted a few
tenths of an Å compared to simulation. Again the corrections to
this feature at close proximity would be expected to come from
the next near neighbor contributions. The ΔΔGelec between d =
6.3 and 15.1 Å is 1.70 kcal/mol from simulation and 0.91 kcal/
mol from the pDF-reconstructed PMF, as itemized in Table 5.
The sum of van derWaals and electrostatic components yields

the total ΔΔGsolv shown in Figure 6c. The shape of the PMF is

Table 3. Comparison of ΔΔG Values for AXA → AAA Mutationsa

ΔΔG simulated T.I. pDF T.I. CHARMM 22b CHARMM 27c expd

AYA → AAA
ΔΔGvdW −0.44 (0.35) −1.11 −0.92
ΔΔGelec 5.41 (0.04) 5.35 6.04
ΔΔGsolv 4.97 (0.35) 4.24 5.12 4.9 8.05

AHA → AAA
ΔΔGvdW −0.34 (0.34) −1.08 −0.63
ΔΔGelec 12.26 (0.05) 12.78 11.45
ΔΔGsolv 11.92 (0.34) 11.70 10.82 9.1 12.21

aAll units are in kcal/mol. Values in parentheses show the corresponding uncertainties calculated from error propagations. bValues are taken from
ref 75 using CHARMM 22 force field. cValues are taken from ref 80 using CHARMM 27 force field with pseudoglycine method. dΔΔG is
calculated as the ΔG difference between experimental solvation free energies of methane, p-Cresol, methylimidazole (with protonated δ nitrogen),
which are the side chain analogues of Ala, Tyr, and His. These values are taken from refs 76−78.

Table 4. Comparison of Solvation Free Energies of Using
Thermodynamic Integration with Simulations and pDF-
Reconstructions

ΔG simulated T.I. pDF T.I.

Ala1 (monomer)
ΔGvdW 1.08 (0.36) 1.48
ΔGelec −16.11 (0.03) −15.75
ΔGsolv −15.03 (0.36) −14.27

Ala1-Ala1 (dimer)
ΔGvdW 4.64 (0.51) 4.53
ΔGelec −30.45 (0.10) −29.35
ΔGsolv −25.81 (0.52) −24.82

Figure 6. Potential of mean force for Ala1 dimerization, from simulations and pDF-reconstructions.

Table 5. Comparison of ΔΔG Terms Using Different
Calculation Paths

ΔΔG simulated pDF

Via Differences of ΔGsolv

ΔΔGvdW 2.48(0.62) 1.57
ΔΔGelec 1.77(0.10) 2.15
ΔΔGsolv 4.25(0.63) 3.72

Via Sum of Intermediate States
ΔΔGvdW 2.32 1.64
ΔΔGelec 1.70 0.91
ΔΔGsolv 4.02 2.55
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reasonable at larger distances and shows the expected flaw near
contact. The final ΔΔGsolv values from simulated and pDF-
reconstructed PMF differ by about 1.5 kcal/mol.
We use the average solvent density maps (as presented in

Figure 7) to consider consequences of the near neighbor
approximation we use in pDF-reconstructions. We select the
separation distance of 7.1 Å and calculate the average solvent
densities from simulations and the pDF-reconstruced solvent
densities. Figure 7 panels a and b show the average solvent
densities on the x−y plane at z = 0. Some higher-density features
were found between the solutes via simulation, but they are not
evident from reconstructions. Solvent molecules within
intersolute regions are usually adjacent to both solutes and
thus multibody correlations play a more significant role in
determining the distributions of solvent. In the pDF-
reconstruction, solvent densities were determined by the nearest
solute atoms on one of the Ala1 peptides, which means the
effects from the next-nearest solute atom (whichmight be on the
other Ala1) are ignored. These differences in densities from
simulations and pDF-reconstructions, contribute to larger
differences in energetics and free energetics near contact in all
components of the PMF. When the solutes are sufficiently
separated, as shown in the case of Figure 7 panels c and d, the
solvation structures around each solute are not as affected.

5. CONCLUSION

In this contribution, we used precomputed solvent density
distributions with free energy methods including thermody-
namic integration and Linear Response Theory to calculate van
derWaals and electrostatic solvation free energies for a variety of
solutes. With appropriate free energy cycles, these solvation free
energies can be used for free energy differences in a variety of
chemical processes. Using this framework, we have shown by
comparing with free energy simulations on the same potential
surface that ΔΔG can be reproduced via pDF-reconstructions
within useful accuracy. The peptide case studies in this
contribution are relatively simple model compounds. The
trends explored should have implications for many applications
including protein engineering and drug design, etc. While the
properties of single molecule surfaces showed considerable
promise, we found details of the more stringent PMF
calculations near contact somewhat less accurate. In the future,
we will further extend the pDF-reconstruction algorithm to
terms including next near neighbor and other explicit three body
effects. Other obvious applications include protein pKa
calculations and catalytic site predictions, which are of great
interest in a variety of applications.
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