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Abstract—The temperature increase in the surrounding tissue
caused by the operation of neural prosthesis has raised growing
concern as the device becomes more powerful. In this paper, a
real-time adaptive thermal management method is developed for
implantable devices to optimize their operation while maintaining
a safe operating temperature. The method adopts a simplified
thermal model for supporting real-time control and updates
the model parameters online using a proposed recursive multi-
step prediction error minimization method (RMSPEM). The
performance of the developed thermal management method is
evaluated using simulation studies, and the results show that it
can achieve longer operation time and better overall performance
while maintaining the safe operating temperature. In addition, the
developed thermal model is validated using both the COMSOL
simulation and an in vifro experiment.

Keywords—Implantable device, thermal management, neuropros-
thetics.

I. INTRODUCTION

With the increase of functionality and complexities of im-
plantable medical devices, the temperature rise in the tissue
around the implants has become a new challenge due to
the detrimental effects of exposing tissue to a temperature a
few degree Celsius above the normal body temperature. For
example, it is shown that a temperature increase greater than
1 °C could cause damage to the brain tissue [1].

Many studies have been conducted to investigate the ther-
mal effect of implantable devices. In [2], various origins of
temperature increase and the possible methods to model them
are studied for a dual-unit retinal prosthesis. The results show
that, in addition to the power dissipation of the implanted
microchip, the telemetry coil, the stimulating electrodes, and
the electromagnetic fields induced in the body could also
contribute to the temperature increase, which can be modeled
based on the Pennes bioheat equation [3]. The thermal effect of
an integrated 3-D Utah electrode array (UEA) device implanted
in the brain is investigated in [4] by experiments and numerical
simulations that uses finite element analysis (FEA) to solve
the Pennes bioheat equation. The results indicate that the
numerical simulation and experimental measurements are in
good agreement. Henry et al. [5] study the thermal effect of
brain implants with a focus on light-emitting diode.

The commonly used method to guarantee thermal safety of
the implantable device is combining numerical method with
in vivo experiments during the design phase [6], [7], [8].
The maximum power dissipation is determined based on the
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maximum tolerable temperature, which is then specified as a
design constraint. However, the performance of the device is
often limited due to the fact that an over-conservative design
is chosen in many cases to account for the uncertainties of the
actual operation.

Several researchers have conducted research related to
the online thermal management. Communication scheduling
methods are developed for biosensor network applications to
prevent the temperature from increasing above the safe limit
[9], [10], [11]. For example, a method for selecting the network
leader that communicates with the base station is developed by
Tang et al. [12] based on the leadership rotation history and
the location of the next leader. These work only consider the
overheating caused by communication and focuses on reducing
overheating by communication scheduling. Wentz et al. [13]
developed a wireless supercapacitor-based headborne device,
which stimulates brain cells with an LED array. To solve the
overheating issue, the LEDs are shutdown when the temper-
atures reach a predefined threshold. As a primitive method
of thermal management, this method can not optimize the
operation of the device. A similar approach is also employed
in Luo et al. [14]. But instead of a temperature sensor, a
thermoresponsive micro circuit breaker is used to protect the
device from overheating. Moreover, Krishna et al. [15] pro-
vides a comprehensive survey of the thermal management of
cyber-physical systems. However, to the authors’ knowledge,
there have been few studies addressing the dynamic thermal
management problem of the implantable device.

In the previous work [16], a joint power and thermal
management method was developed to achieve three goals:
sustainable operation, performance maximization, and thermal
safety. However, the method was developed for a device
exposed to air and the thermal effect of the body was not
considered.

Herein, we investigate the dynamic thermal management
problem of implantable devices, with a focus on neural pros-
thesis. Neural prosthesis are implantable devices that interact
with the central nervous system or the peripheral nervous
system and help to restore motor, sensory, or cognitive func-
tionality that may have been damaged as a result of an injury
or disease. This particular example is representative since it
includes most of the potential causes of thermal dissipation:
a microchip that could dissipate relatively large power, a
telemetry system, and a potentially large number of stimu-
lating electrodes. For this device, consuming power as low as
possible is of importance from two standpoints. First, power
budget for the implantable device operation is limited, whether
they are battery operated or telemetry operated. Second, from
the biological point of view, the heat generated by the circuits
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could potentially cause damage to the surrounding tissue.
However, the requirement for high performance generally leads
to large power consumption. As a result, there exists a trade-
off between the performance of the device and its power
consumption.

An adaptive thermal management method for neural pros-
thesis is proposed in this paper to maintain safe operating
temperature and maximize system performance. To support the
investigation, a COMSOL model of the UEA is first built to
study the heating effect of the device on the surrounding tissue
based on the Pennes bioheat equation. A simplified thermal
model is then developed to facilitate real-time control. The
model parameters are updated online with the proposed multi-
step temperature prediction method (RMSPEM) given the real-
time temperature measurement. Based on the analysis of the
potential heat sources of neural prosthesis, the system model
in terms of power consumption of each heat source is devel-
oped for thermal management using model predictive control
(MPC). By adjusting the working status of all the components,
the MPC controller maximizes the device performance while
maintaining safe operation. The safe operation is guaranteed by
enforcing the maximum allowable temperature with respect to
the body temperature. The system performance is formulated
as the objective function of the MPC problem. The proposed
method is then extended to achieve joint thermal and power
management by incorporating the energy storage model.

The remainder of the paper is organized as follows. Fol-
lowing the introduction, Section II presents the system model
of implantable device with neural prosthesis as an example.
The multi-step thermal effect prediction method is proposed in
Section III. The adaptive thermal management method based
on MPC is formulated in Section IV. Section V presents the
simulation studies of the proposed method. At last, the paper
is concluded in Section VI.

II. SYSTEM DESCRIPTION AND MODEL

In the work of Wentz et al. [13], the system compo-
nents of a neural prosthesis are presented, which is relatively
representative and therefore adopted for investigation in this
paper. The neural prosthesis consists of optics module, radio
module, power module, and motherboard module. The optics
module holds up to 16 LEDs and is surgically affixed to the
skull of a rat, while the remainder of the device is attached
to the optics module via a low insertion force connector.
Microelectrode array is another widely used tool for deep
brain stimulation. In this paper, we focus on the implanted
3-D micro-electrodes, specifically, the UEA, since its thermal
effect has been studied in previous literature [4] through
experiment. The radio module mediates control command from
a computer or laptop. The motherboard module contains the
microcontroller and the power circuitry. The power module
includes a supercapacitor and an antenna for power reception.
Some neural prosthesis don’t have energy storage devices, but
for applications with large current requirement, energy storage
device is often adopted. The system diagram employed in this
paper is shown in Figure 1, with the energy storage device
taken into consideration.
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Since the temperature increase is caused by the power
dissipated in the circuitry, the thermal effect can be investigated
via modeling the power flow of the system shown in Figure
1. The whole hardware/software system is powered by the
power received via the wireless interface. Here we use wireless
interface to model the power antenna and radio chipset, both
of which could potentially contribute to the heating of sur-
rounding tissue. Energy storage device, such as battery [17] or
supercapacitor [18], is used to store the extra energy received
by the system with some efficiency 7. The direct usage of
the received power is free of energy losses. The software
system and the controller are running on the microprocessor,
which resides on the motherboard. We also assume that there
is a temperature sensor connected to the motherboard. The
temperature sensor can be placed at the surface of the electrode
array and is used to provide the feedback information for the
thermal management method. The electrode array is implanted
at the surface of the brain tissue. Depending on the placement
of each component, microprocessor, wireless interface, and
electrode array may contribute to the temperature increase in
the surrounding tissue.

We assume the power consumption of the microprocessor
and electrode array can be adapted online. For the micro-
processor, this can often be achieved by using various dy-
namic power management (DPM) techniques like DVS, or
by adjusting the ratio of active and inactive time for some
microprocessors with only rudimentary DPM capabilities [19].
The power consumption of the electrode array can be adjusted
by controlling the number of stimulation channels and the
stimulation pulse train [4][13]. The stimulation is, in many
cases, achieved through current-mode stimulation pulse. The
current intensity, the phase and interphase durations, as well
as the stimulation frequency are the parameters related to the
power consumption. Furthermore, the performance of each
component is proportional to its power consumption. For
the micro-electrode array, the number of channels and the
pulse train impact the device performance, such as the visual
characteristics (diameter, depth, brightness, and duration) in
the case of retinal prosthesis [20]. The power consumption of
the components must also be greater than certain threshold
to guarantee minimum operation. The transmitted power is
also assumed to be adjustable. The designed controller adapts
the working status of each component to optimize the device
operation based on the information like task requirement,
temperature readings and the energy level of the storage device.

III. THERMAL EFFECT MODELING

A. Thermal Dynamics Analysis

Heat transfer from the implantable device to its surround-
ing tissue can be modeled using the famous Pennes bioheat
equation [3], by

T (x,t)

T

=V (kVT(X, t)) + AO — Bo(T(X, f,) — Tb)

+ ,OSAR + Pelectronics,
(H
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Fig. 2. Tllustration of the developed COMSOL model (a) cylinderical human
brain model with height and radius being 50 mm. The thickness of the scalp
and skull are 3 and 5 mm respectively. (b) the UEA model with 10 x 10
micro-electrodes and a 7.88 mm X 7.53 mm chip.

where T denotes the temperature in the tissue, x is the spatial
coordinates, t represents the time, p and C are the tissue
density and specific heat, respectively. V- (kVT(x, t)) models
the thermal diffusion with k representing the thermal conduc-
tivity of tissue. Bo(T'(x,t) — Tp) models the effect of blood
perfusion and Ty is the temperature of blood. Ay is the rate of
the heat generation per unit volume of tissue by metabolism.
pS AR represents the heating effect due to the electromagnetic
field and SAR is the abbreviation of specific absorption rate.
Peiectronics 18 the power density of the implanted electronics.

The computational software COMSOL (Comsol Inc.,
Burlington, MA) that implements the FEA method can be
used to solve the Pennes bioheat equation. The model of a
UEA presented in [4] is implemented using the COMSOL
Multiphysics software as shown in Figure 2. All the model
parameters are adopted from [4]. According to [4], the sim-
ulation results based on the numerical solution of the Pennes
bioheat equation and the experimental measurements are in
good agreement. In this paper, we use this experimentally
validated numerical model to demonstrate the effectiveness of
the proposed thermal management method.

Numerous methods have been proposed to solve (1) more
efficiently, including Finite Difference Time Domain (FDTD)
methods [21], fourier transform based methods [22], [23],
hybrid alternating-direction implicit (ADI) approach [24], and
a method of superposition from separate sources combined
with model simplification [25]. However, all these methods
rely on sampling the temperature value in the simulation
domain as they evolve in time. Their time complexity and
space complexity make them unsuitable for real-time thermal

Temperature

———, Reading

Illustration of the system diagram (the picture of UEA is taken from [4])

management.

B. Simplified Thermal Model

A simplified thermal model is developed in this paper to
facilitate the real-time management. To simplify the thermal
model, the effect of SAR, blood perfusion and metabolism
can be neglected from (1) and modeled as disturbance. For
an implantable device like the one in [13] with power transfer
frequency being 120 kH z and a low power UEA [4] with peak
power consumption being 65 mW, the modeling error caused
by this simplification is not very significant [26]. Moreover, the
term V - (kVT(x,t)) in (1) can be replaced by kV2T(x,t))
for homogeneous materials. This resulting in a second order
parabolic partial differential equation:

OT(xt) |, OT(x,t) OT(x,t) &T(x.1)
P Mz T T o

+ Pelect?“om’cs-

) 2

The heat flow described by this differential equation has a
similar form as that for electrical current, and there is a well
known duality between them. More specifically, the heat flow
(W) passing through a thermal resistor (°C/W) is equivalent
to the electrical current (A) through an electrical resistance
(Ohm), and the temperature difference (°C) corresponds to
voltage difference (V). The heat absorbtion phenomenon can
be denoted as the thermal equivalent capacitance (J/°C). The
thermal conduction phenomenon can be represented as thermal
equivalent resistance (K-m?2/W). The simplified thermal model
is shown in [27].

Let P represent the power dissipation of the implantable
device and Ty represents the tissue temperature. R; is the
equivalent thermal resistance and C} is the equivalent thermal
capacitance. Then the temperature 7' of the tissue that has
direct contact with the implantable device corresponds to the
voltage of C}, which can be calculated as

ar T,-T
— = P. 3
Cdt R ©)
The temperature can be solved numerically as
At At At
T)=(1—- Tt—-1 To+ —P(t—1). (4
()=~ 5 )T~ 1) + ey + G PE=1). @

In which, At is the step size.
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Let AT(t) = T(t) — To, then

At
RtCt

Therefore, the complex thermal dynamics of the implantable
device can be approximated by a first order linear function.
The effect of the metabolism, blood perfusion and electromag-
netic field are considered as disturbance to the system. With
the following online multistep prediction method, this linear
function can capture the fundamental dynamics of thermal
effect. If, for some cases, the metabolism, blood perfusion
and electromagnetic field have more significant impact on the
temperature increase in the body, a linear model with higher
order could be used to model the thermal effect.

AT(t) = (1— JAT(t — 1) + %P(t —1). )

C. Online Multistep Prediction Method

A suitable model for generating accurate output predic-
tions within a horizon is crucial to achieve high performance
closed-loop control. The methods to obtain such models are
often referred to as MPC relevant identification methods [28].
Compared to standard prediction error methods (PEM), MPC
relevant identification methods often have better long term
prediction performance.

Based on the iterative single step prediction error method
(ISSPEM) proposed by Farina et al. [29], a recursive multi-step
prediction error method (RMSPEM) is developed to generate
the optimal prediction model for temperature increase within
a horizon of k time steps. The method takes the power
consumption and temperature measurements as input, then
calculates the coefficients of the following linear temperature
model (6) that minimizes the prediction error.

AT(t) =aAT(t—1)+bP(t —1). ©6)

The discrete time transfer function corresponding to (6) is
bzt

G(z) = ——. 7

(2) 1—az"1 M

The numerator is denoted as N¢(z) = bz~1. The denominator
is denoted as Dg(z) = 1 —az"'. § = (a,b)” represent the
vector of model parameters.

1) batch MSPEM: Let’s first derive the multi-step prediction
error (MSPEM) cost function and its optimization procedure
for a batch of data. The MSPEM cost function represents the
average prediction error within a horizon of k time steps.

Let AT(t + k|t) be the value of temperature increase
predicted by iterating k times the recursive equation of (6),
as a function of AT'(-) up to time ¢ and P(-) up to time ¢+ k.
It can be represented as [30]:

AT(t + k|t) = Ri(2)AT(t) + Ex(2)Na(2)P(t + k) (8)
where Rj(z) and Fj(z) can be calculated as:
Ry (2) = a* ©)

and

Zal -, (10
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4
Let
AT(t)
P(t+k—1)
Dr(t) = : : (11
P(t)
and
ak
b
one)=| b |. (12)
ak;lb
The k-step ahead predictor can be reformulated as:
AT(t+ k[t) = ¢x(t)" Ok(6). (13)

For a batch of N measurements of temperature increase and
power consumption values, define

AT(1+k)
Yy = : : (14)
AT(N)
and -
or(1)
d, = ; . (15)
ok(N — k)T
The cost function of MSPEM is defined as
k
N 1 Ny
Jyip(k) = E;JP (4), (16)
in which
TP() = —— Z AT(t) — AT(¢]t - 7))
t=j+1 (17
1 )
= Ni_j(va - ®;0,;(0))" (Y — ©;0;(0)).

This cost function can be minimized using the standard
Newton method [30]. The optimal model parameters can be
estimated iteratively as:

?* N . ‘

Oj1=0; = (552 Iap(J) )71V9JJ\A§PU)‘ eL)

0=0,
k—1.

=Y
i=1,...,

The Hessian of J} »(j) can be calculated as:

% N J
@JMP ‘a 0; z‘; 002 P (19

and

d? 2
52 I (s) ~ N_SVQQS(Q)@Zq)SVg@S(H)T. (20)

For the sake of convenience, we define

Q% = Vo0, (0)2Td,V,0,(0)T. 1)
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The gradient of J3; 5(j) can be expressed as follows:

VQJJV[P ‘9 *ZV@JP (22)
- J

and

2
VoI5 (s) = 37— VoOs(0)(250,0,(0) — 27YR). (23)
In (20) and (23), ©; and its gradient V4O; can be updated
iteratively over j:

Oj+1 = W;96;, 24)

V0,11 = VeO,;W;T + ([1 0114410, H;". (25)

a 01,51
W; = 01 , I , (26)
b 01,511
_ L 0j4+1,2
() (%))

And the initial value can be chosen as ©1 = 0, Ay©O1 = I5.

2) RMSPEM: Let’s now reformulate the optimization pro-
cedure of MSPEM into a recursive form so that each time
when a new temperature measurement and power consumption
value are recorded, the prediction model could be updated
accordingly.

Suppose the temperature measurements and the power con-
sumption data are recorded sequentially. The Nth tuple con-
tains the measurement of temperature increase and the power
consumption at Nth discrete time instant.

in which,

and

Let N
RY =@]®; =" 6;(s)¢;(s)", (28)
and N:I
KN =Y} @, = 3 AT(s + )os(s)". (29)
=

R;»V can be calculated recursively as
Rj' =R+ ¢;(N = j)6;(N=5)".  (0)

On the right hand side of (30), R;V ~! can be determined
with all the data up to N — 1th discrete time instant, and
¢j(IN —j) contains all the data up to Nth discrete time instant.

Similarly, K7 N can be calculated recursively as

K = KN~ + AT(N)g; (N — )" (31)

In which, K JN ~! can be determined with all the data up to
N — 1th discrete time instant. AT(N) is the measurement
available at N'th discrete time instant. ¢;(N — j) requires the
data up to Nth discrete time instant.

Furthermore, given the saved RN ! and K; N=1 to calculate
RY and K jN only the temperature measurements from time

N] k to time N and the power consumption values from
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time N — k to IV — 1 are needed. In practice, the temperature
measurements and power consumption values could be saved
in a FIFO queue of length k£ 4+ 1 and £ respectively.

What is to be noticed is that, for j = 1,..., k, the corre-
sponding R matrix and /K matrix have to be saved seperately.
Each time, when a new tuple is recorded, R matrix and K
matrix are updated using (30) and (31) for each j.

By using the recursive update of (30) and (31), the estima-
tion of -2 S5z J P (s) and VP (s) can be reformulated as:

0? 2
52 P (5) 7 VeOs (ORI Ve0,(0)",  (32)
VoI (s) = —— V40, (0)(R¥O,(0) - KY).  (33)

N —s

Again, ©; and its gradient V4O, can be updated using (24)
and (25).
The algorithm is summarized in Algorithm 1.

Algorithm 1 RMSPEM method

Require: Previously obtained parameter vector 6., Input
Queue U, Output Queue Y, R, K
0= ep're;
0= apre;
VO = Iy;
Set u; {Set learning rate}
Qn =0;
Py =0;
1: for j=1:k do
2:  Initialize ¢;; {Usmg input-output data from U and Y'}
s R[] = R+ 6,07
4 K[j] = K[j] +&;) / end]:
5: Qn = i= 1QN + Ve@R[ }Ve@T
6
7
8

Py == 1P + Ve@( 4] = R[419));
0 =06+ MQ N PN, {Parameter updating}
. Calculate W;, H T7
9: VeO = Ve@W
10: ©=W,;0;
11: end for

([1 OlX]]G)HT

3) Preprocessing: Note that the Newton method is only
valid if matrix Q% is nonsingular, j = 1,..., k. This can
be interpreted as a generalized identifiability condition.

For matrix @ to be full rank, it requires that

(a) V4O is full column rank (FCR),
(b) RY is non-singular.

The first condition is investigated by Farian et al. [29].
As for the second condition, this requires the system input
meets the excitation condition. This means, in practice, a
preprocessing using the batch MSPEM is necessary before
implementing the recursive MSPEM. The batch MSPEM is
used to obtain the nonsingular matrix R;V for each j and the
matrix K JN . These matrices along with the initial estimate of
model parameter are then passed to the recursive MSPEM for
online identification. The mechanism of the proposed method
is shown in Fig 3.
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Fig. 3. Tllustration of the proposed method
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Fig. 4. Comparison between results of the developed prediction model and
that of the COMSOL simulation model

4) Algorithm validation: To demonstrate the effectiveness
of the proposed thermal modeling techniques, the prediction
model (6) with the RMSPEM updating procedure is compared
with the COMSOL model described in Section III-A. A probe
for measuring the temperature is placed at (x, y, z) =
(0, 0, 0.042), which is the position below the heat source.
The COMSOL simulation is conducted for 1000 seconds. The
power dissipation value of the UEA at each second is generated
randomly following a Gaussian distribution in order to satisfy
the identifiability condition. The generated power dissipation
values are then constrained within [0,0.02] mW. The tem-
perature measurements are recorded and converted into the
temperature increase values with respect to body temperature,
then stored along with the generated power dissipation value
at the same time instant.

For the RMSPEM, the prediction window is set to be 10
steps with step size being 1 second. The first 100 seconds
is used for the preprocessing. After the input and output
queue are filled up at 110 seconds, the RMSPEM updates
the parameters of the simplified thermal model according to
the temperature increase values obtained by COMSOL. Then
the updated model is used to predict the temperatures at 10
seconds later via the k-step ahead predictor (8). This prediction
is compared with the results obtained from COMSOL. The
comparison results are shown in Figure 4.

This comparison indicates that the thermal dynamics can
be predicted by the simplified linear model and RMSPEM
with relatively high accuracy. The Mean Square Error is about
8.04 x 10~* °C. Thus we use this thermal modeling method
to generate an accurate thermal model for the MPC.

Moreover, P in (6) represents the power consumption of
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Fig. 5. (a)The developed hardware testing system. (b) Hardware diagram.
(c) The developed TMTV system. [31]

the implantable devices, instead of the power dissipation.
Generally, only part of the consumed power is dissipated as
heat. This ratio can be determined by many factors. In practical
applications, it may be difficult to track how much power is
dissipated. One advantage of the proposed method is that this
ratio can be learned adaptively according to the temperature
feedback. Therefore, we can use the power consumption in (6)
and regard the ratio as being already represented by coefficient
b. Furthermore, the power consumption of embedded system is
often controlled by adjusting the working mode of the device.
Therefore, we can even use the controllable working mode
to replace the power consumption P in (6) and the relation
between the working mode and the power consumption can be
learned online during the operation of the device. In general,
by employing the simplified linear model and RMSPEM, more
robust temperature control can be achieved, therefore enabling
safe operation of implantable devices.

A hardware testing system [31] is also built to emulate the
thermal effect of neural prosthesis. The system uses a custom
designed temperature monitoring and management test vehicle
(TMTYV) with heat sources and temperature sensors to emulate
the implanted electronics and a water circulation system to
emulate the blood perfusion effect. A TI MSP430G2 board acts
as the middleware between the TMTV and PC. It controls the
operation of TMTV and sends the temperature measurements
to PC, which is then processed by the LabView front end.
Figure 5 demonstrates the developed hardware testing system.

We use this testing system to evaluate the prediction accu-
racy of the simplified thermal model. More specifically, we
generate 2000 staircase PWM signals and apply the PWM
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Fig. 6. Experiment result of the simplified thermal model.

signals to the heat sources on TMTV with a step size of 10
seconds. The first 500 temperature measurements are used for
preprocessing and the rest are compared with the temperature
predicted 10 steps ahead by the simplified thermal model. The
comparison results are shown in Figure 6. It is shown that when
the input PWM signal has a similar form of what produced by
the MPC, the simplified thermal model is able to capture the
temperature variation.

IV. THERMAL MANAGEMENT WITH MPC

Based on the thermal model developed in the previous
section, system state space model can be built according to the
application requirements. The system state variables often in-
clude all the factors that are related to the system performance.
For example, as in [16], the system state variables can include
the temperature increase with respect to body temperature and
the energy level of the storage device. In this paper, we assume
that the battery is adopted as the storage device and the model
in [33] is modified to obtain the battery state space model.

Based on [33], let the battery state variables be * = x; and
y = xo + 1, the discrete-time state space equation can be
modified as

i(t—1),

z(t)\ [ 1-XAt 0 [=(t—1) N

y(t)) \ —MAt 1) \y(t-1)

(34
in which i(t — 1) = ‘Z ((15;11)) represents the current input, V;
is the terminal voltage of the battery and P represents the
output power. y(t) is defined to be 0 when the battery is at
full capacity and 1 when the battery is dead. In practice, the
terminal voltage of the battery can be measured using an ADC
pin of the microprocessor. The reason for this modification is
that the the extended quadratic programming problem with
the state variables in the whole horizon can be solved very
efficiently according to [34].

The control input of the system are the power consumption
of the UEA and the microcontroller, and the received power
of wireless interface. They are represented as Pyeq, Pricus
and P,,; respectively. By adjusting the control input, the
state of charge of the battery can be controlled. From the
thermal perspective, the power consumption of UEA is the
only factor directly related to the heating of the implantable

Q|wR v
~__
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device as shown in the COMSOL model in Figure 2. In
practical applications, the control input can be chosen as the
adaptable system parameters that have direct relation to the
power consumption of the components.

According to the system behavior predicted by the predic-
tion model, the online controller computes the future control
input that optimizes the system behavior in the future. In
order to keep the control problem computationally tractable,
the optimization is conducted for a finite horizon, leading to
the concept of receding horizon optimization.

The objective function of neural prosthesis operation can be
defined based on the application requirements. For example,
the objective can be maintaining an optimal energy level r.
We argue that, if the energy level is maintained at the optimal
value, it achieves both continuous operation and maximum
task performance, since the device has consumed all the
energy received from the outside source. In general, it is not
practical for a neural prosthesis to adjust its power budget to
exactly maintain the optimal level during the operation. But
the difference between the actual battery level and the optimal
level can be minimized by adding Zi\]: L(y(t) — r)? into the
objective function. By minimizing the objective function, the
neural prosthesis operates around the optimal level.

Furthermore, in a system composed of several functioning
units, the performance of a specific component can be max-
imized by adding its corresponding power consumption into
the objective function. Assume the optimal working mode of
a component has a power consumption of P, and its power
consumption at time ¢ is P(¢), then Zivzl(P(t) — P,)? can be
added to the objective function.

One of the most important advantage of MPC is its ability
to handle system constraints in a straight forward manner. The
system state space model is specified as the constraint of the
optimization problem. So is the thermal safety constraint. A
maximum allowable temperature AT}, can be added as a
constraint to prevent the hot spot from heating too much. The
power consumption of the microprocessor and the UEA must
not exceed the maximum allowable value. The received power
must be less than a certain threshold, which ensures there is
no safety issues.

The optimization problem is solved over a horizon of future
k time steps, which starts at current time ¢. But only the control
input corresponding to ¢ in the solution sequence is actually ap-
plied to the system. The remaining control inputs are discarded.
At the next time step, a new optimization problem based on the
new measured data is solved over a shifted prediction horizon.
At every time step, the control input applied to the system
depends on the most recent measurements.

Since the thermal model and the battery model are all linear
models, and all the constraints are linear. The resulting ex-
tended optimization problem with state variables in the whole
horizon is a quadratic programming (QP) problem, which can
be solved efficiently using methods like [32]. Moreover, the
developed prediction model shows little correlation between
different states and the objective function is composed of the
terms that are only related to one state variable or control input,
therefore methods proposed in [34] can be used to greatly
reduce the computational cost, and the optimization problem
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can be solved in real time.

To prevent the effect of external disturbance and model
deviation caused by the simplified thermal model, the linear
model (6) is updated at every time instance. The RMSPEM
algorithm calculates the optimal coefficient for (6) given the
temperature measurements and the control inputs in previous
time steps.

However, the model update doesn’t have to be executed at
each time step. A possible way to reduce the computational
cost is to call the RMSPEM only when the error of the
predicted temperature and the actual measurement becomes
larger than a certain threshold.

V. SIMULATION STUDIES

The developed thermal management method is investigated
with two simulation studies of the neural prosthesis. The
COMSOL model developed in Section III-A was used to
emulate the thermal effect of the neural prosthesis. It was
then used in conjunction with Matlab to perform real-time
simulation. We implemented MPC for exemplary case studies
using the CVX, a package for specifying and solving convex
programs [35].

A. Adaptive Thermal Management

The first simulation study was designed to emulate the ther-
mal effect of a wireless neural prosthesis that doesn’t have an
energy storage device. The inductive coil and microprocessor
are planted on the surface of the scalp. Only the UEA is
implanted in the brain tissue, which is connected to other parts
of the system through wire. The prosthesis stimulates different
layers of the brain using the UEA, whose performance is pro-
portional to its power consumption during normal operation.
The UEA has a power consumption within the range between
0.04 W and 0.065 W during active operation, and its power
consumption is assumed to be 0 W while being put into the
sleep mode. A ratio of 65% of the consumed power is assumed
to dissipate into the surrounding tissue and turned into heat.
The maximum allowable temperature of the surrounding tissue
is set to be 0.9 °C above the body temperature.

The following MPC is designed to maximize the device
performance and maintain safe operation via regulating the
power consumption of the UEA. In this example, the thermal
safety is achieved by adding a constraint that limits the maxi-
mum allowable temperature. The performance optimization is
achieved by maximizing the power consumption of UEA. The
quadratic program of the MPC can be formulated as

k
min Z(Pmaa:_uea - Puea)2
t=1
s.t. AT(t) = aAT(t — 1) + bPyeq(t) (335)

AT(t) < AT ax
O g Puea S Pmaz_uea
In which, P,., denotes the power consumption of the UEA

and Praz_yeq 18 its maximum value. AT'(t) represents the
temperature increase with respect to body temperature. AT}, 4.
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Fig. 7. (a) UEA power consumption of all three cases. (b) Temperature
measurement of all three cases. The blue curve represents the Case 1. The red
curve represents the Case 2. The magenta curve represents the Case 3.

is the maximum allowable temperature increase. The receding
horizon for the MPC is chosen to be 10 time steps. At each
time step, after the quadratic program is solved, P, is set
to be 0 if the calculated value is less than 0.04 W, since the
minimum operational power consumption of UEA is 0.04 W.

To investigate the performance of the developed method,
three different cases were designed. The first case uses a
method adopted in a previously published system [13] to
control the operation of the UEA. With the method, the UEA
is set to the maximum working mode at the beginning and
turned to the sleep mode once the temperature reaches 37.9
°C. After the temperature drops below 37.1 °C, the UEA
is then set back to the maximum working mode. It repeats
this process during the operation, so the UEA is either on or
off according to the temperature measurements. The second
case uses the batch MSPEM to identify the thermal model in
advance and then uses the MPC to calculate the desired power
consumption at run time. The third case combines the batch
MSPEM preprocessing with the RMSPEM and adjusts the
thermal model parameter based on the real-time temperature
measurements. The RMSPEM uses a prediction horizon of
10 time steps, which is the same as that of the receding
optimization horizon of MPC. Results of these cases are shown
in Figure 7, which indicates all three cases are able to maintain
safe operation.

The three cases are also evaluated in terms of operation
time and the square of difference between the calculated
power consumption and the maximum power consumption.
The operation time measures the total time when the power
consumption of the UEA is greater than 0.04 W. The operation
time of the three cases are 58 seconds, 130 seconds, and 130
seconds respectively. The square of difference with respect to
the maximum power consumption are 0.3042, 0.40475, and
0.0259 respectively. Moreover, to quantify the complexity of
the RMSPEM, the total execution time of RMSPEM for 130
seconds is recorded, which is 0.2593 seconds on a desktop
computer with an i7-3770 CPU and 16 GB of RAM.

It is shown that by dynamically adjusting the working
status of the UEA, the operation time can be significantly
prolonged. The cases of MPC with real-time updating and
the one with only batch pre-processing all maintain operation
during the entire simulation time. Case 1 that adopted the
On/Off approach has an operation time of less than half of the
total time. The overall device performance is improved with
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the adaptive management methods by exploring the acceptable
operational working status. Moreover, MPC with RMSPEM
updating (Case 3) shows better performance compared to
MPC with batch MSPEM pre-processing (Case 2). This is
because the accuracy of the prediction model is significantly
improved by adjusting model parameter based on the real-time
measurements. The RMSPEM provides feedback information
for the MPC and therefore achieves the closed-loop control,
which helps to prevent model deviation through time.

B. Joint Thermal and Power Management

The second simulation study adds the energy storage device
into the prediction model and studies the joint power and
thermal management of a battery powered neural prosthesis.
The neural prosthesis is assumed to have the same layout as
in the previous study. The battery has a charging efficiency of
0.8. The optimal energy level of the battery is assumed to be
0.5 for the task. The controller tracks the optimal energy level
of the battery by adjusting the received power of the inductive
coil P,,;;, the power consumption of the main board P,,,,;, and
the power consumption of the UEA P,.,. Moreover, noise is
added to the measured output. The noise of battery level and
temperature are generated with autoregressive autoregressive
with exogenous (ARARX) [36] noise model.

The goal of the joint thermal and power management is
to achieve sustainable operation, performance maximization,
and thermal safety. The sustainable operation and performance
maximization are guaranteed by designing the objective func-
tion of the quadratic programming. The thermal safety during
operation is ensured by adding a constraint that limits the
maximum temperature. The designed quadratic programming
can be formulated as

k
min Z[(y(t) - 7,)2 + '7(Pmaz_uea - Puea)Q]
t=1
s. t. Battery equation (34)
Temperature equation (6)

0<y(t)<1 (36)
AT(t) < ATas

Pmin_main S Pmain S Pmaw_main
Pmin_coil S Pcoil S Pmam_coil
0< Puea < Pmaz_uea

In which, r represents the optimal energy level and ~ is the
relative weight.

The receding horizon is chosen to be 10 time steps. As
previously stated, P, is set to be 0 when the solution is less
than 0.04 W. The battery terminal voltage is assumed to be a
constant value 3.3 V given the fact that it varies little when
there is no significant change in the state of charge. The battery
parameter « is set to be 2.8, and ) is set to be 0.04.

The results of the joint thermal and power management are
shown in Figure 8. The power consumption of the mainboard,
the UEA and the received power from inductive coil are all
within the specified range. The power consumption of the UEA
is maximized to improve the performance of neural prosthesis.
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The energy level of the battery tracks the reference value of 0.5
despite the noise. The temperature of the surrounding tissue is
below the safe threshold 37.9 °C during the entire simulation
time, so the thermal safety constraint is satisfied.

VI. CONCLUSION

With implantable devices becoming more and more pow-
erful, the heating caused by its operation has drawn growing
concern. It is reported that for a neural implant a temperature
increase of more than 1 °C could damage the surrounding
brain tissue. In this paper, an adaptive thermal management
method is developed to control the heating effect of the
implantable device, with a neural prosthesis as an example.
The developed method aims to fill in the gap of real time
thermal management as opposed to the methods adopted in
previous literatures that limit the working status of stimulating
electrodes in the design phase. More specifically, a simplified
thermal model is proposed to support the real time control
and an online model parameter estimation method (RMSPEM)
is developed to update the model parameters based on the
real time temperature measurements. This modeling method
is validated with a COMSOL Multiphysics thermal model
and an in vitro experimental system. Based on the thermal
model, the model predictive control is introduced to solve the
thermal management problem. Simulation results based on the
COMSOL model indicate that the developed method achieves
longer operation time while maintaining safe operating tem-
perature. Furthermore, based on the application requirements,
the developed framework can be extended to incorporate the
model of energy storage device and an example of joint thermal
and power management is demonstrated.
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