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Abstract— In this paper, the power management method of
supercapacitor powered systems is developed for a complex
sensor network system wherein the sensor footprint depends
on the available energy of supercapacitor. With a radar sensor
network as an example, it is proved that the event detection
probability of the sensor network can be decoupled as the
quality of service of each node. Accordingly, the problem of
maintaining the event detection probability is formulated as a
problem of tracking a reference quality of service value for each
sensor node. In this problem formulation, the supercapacitor
model and the in-network processing model are used as two
of the constraints of the optimization problem, wherein the
supercapacitor model captures both the self-discharge and
charge-redistribution phenomena to achieve the full potential of
the stored energy. Model predictive control is employed to solve
the optimization problem with particle swarm optimization, and
the simulation results demonstrate that the developed method
can track the required quality of service while satisfying the
system constraints and ensuring the terminal voltage of the
supercapacitor to be within the normal working range.

I. INTRODUCTION

Today, technologies like smart homes and smart grid are
playing a more and more important role in civilian, commer-
cial, and military applications. Behind the development of
such systems, the concept of internet of things (IoT) is often
considered a critical part. IoT devices connect the physical
world to the information and communication infrastructure.
Intelligent monitoring and management can be achieved via
the wirelessly connected sensor networks, which usually
consist of a large number of sensor nodes. Each node has
limited sensing, communication and processing capabilities.
But together they can achieve purposes like earthquake
sensing, weather monitoring or wildlife monitoring [1].

Sensor nodes are equipped with various sensors to monitor
the area of interest. Surveillance systems have used infrared,
acoustic, and magnetic sensors for passive sensing, and
optical and ultrasonic sensors for active sensing. Radar based

*This work was supported in part by the National Science Foundation
within the Division of Computer and Network Systems under Grant CNS-
1253390, by the National Science Foundation within the Division of Elec-
trical, Communications and Cyber Systems under Grant ECCS-1711447,
and by the National Science Foundation of China - Joint Research Fund for
Overseas Chinese Scholars and Scholars in Hong Kong and Macao under
Grant No. 61628303.

1Ruizhi Chai and Ying Zhang are with the School of Electrical and Com-
puter Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW,
Atlanta, GA rchai3@gatech.edu, yzhang@gatech.edu

2Geng Sun is with the College of Computer Science and Technol-
ogy, Jilin University, Guilin Road, Changchun, Jilin Province, China
sungeng207@foxmail.com

3Hongsheng Li is with the School of Instrument Science and Engineering,
Southeast University, 2 Dongnandaxue Road, Nanjing, Jiangsu Province,
China hsli@seu.edu.cn

sensors have also become an emerging solution with the
radars becoming more efficient and compact. Compared with
low data-rate sensors such as those for temperature and
humidity, radar based sensors usually generate raw data at
hundreds of kilobits or tens of megabits per second [2].
However, the per-node bandwidth of a wireless network
is limited, thus imposing new challenges to the network
operation. An efficient way to reduce bandwidth usage is via
in-network data processing, wherein data is preprocessed at
the node level. This also improves the efficiency and quality
of overall data analytic by data filtering and dimensionality
reduction. Therefore, it is important to balance the in-
network processing and communication.

Moreover, the performance of the radar based sensors is
known to be correlated with the energy level of the sensor
node. Specifically, the sensor footprint area may be shrinking
with the dropping of the energy level [3]. This coupling
between available power and performance also exists in other
types of sensors. For example, the maximum available frame
rate is affected by the energy level of the storage device
of the vision-based sensors. The performance of the radar
sensor also depends on the probability of the radar being
on. Due to the high power consumption of the sensor and
the correlation of its performance with the available energy
level, it is not efficient to keep the sensor on continuously.
But if the radar is turned off when the critical event happens,
then the event can’t be detected. Thus, balancing the sensing
ratio and the energy level is also critical to the performance
of the sensor network.

These new challenges have brought forward new require-
ments for the power management of radar based sensor
networks. Many research efforts have focused on developing
energy saving methods for sensor networks. Pantazis et
al. [4] presented a comprehensive survey of the passive
and active power conserving mechanisms in wireless sensor
networks. Anatasi et al. [5] summarized the main approaches
to energy conservation of wireless sensor networks with a
focus on reducing the power consumption on the sensor level.
The existing research works typically assume the energy
consumption of the communication to be much higher than
the energy consumption due to sensing or processing. Many
radio sensor network applications, however, have demonstrat-
ed that the power consumption of the sensor is comparable
to that of the radio.

A duty cycle scheduling scheme is proposed to maintain a
constant event detection probability for radar sensor networks
[3]. In the paper, the decrease of effective sensor footprint
caused by energy consumption is modeled and based on



which the duty cycle scheduling method is developed. How-
ever, the authors only consider the sensing operation of the
network and use a simple battery model to emulate the
decline of energy level. For general radar sensor network
applications, communication and in-network processing are
also important factors. Moser et al. [9] proposed an adaptive
power management framework based on the multiparametric
programming techniques, which is capable of solving more
general problems. The proposed method is developed to
account for the unreliable nature of environmental energy and
optimize the system performance while respecting the energy
neutral operation condition. However, the simple battery
model used in the paper can’t capture the dynamic behavior
of the other energy storage devices like supercapacitors.
Moreover, the application performance model used in the
paper doesn’t account for more complex cases such as the
radar sensor network, wherein the performance depends not
only on the duty cycle but also on the available energy.

In this paper, we extend the previous work and propose
a power management method for supercapacitor powered
embedded systems to optimize the system operation while
respecting the energy limitation and system constraints. In
particular, a radar sensor network is investigated as an
example. The radar sensor network is optimized to maintain
a satisfactory event detection probability. The decrease of
the radar sensor footprint due to power decay is analyzed
and the in-network processing is employed to reduce the
communication overhead. The event detection probability of
the sensor network is controlled with the developed method
by first decomposing it as the quality of service of each
sensor node, and then formulating an optimization problem
for the sensor node, which can be solved with model predic-
tive control (MPC) based on Particle Swarm Optimization
(PSO). By adjusting the sensing, receiving/transmitting, and
processing rates, the quality of service of the sensor node is
controlled to track a reference value, throughout the lifetime.
This ensures that the overall event detection probability of
the sensor network is around or greater than the reference
value.

The next section presents the system model of the radar
sensor network. The probability of event detection is ana-
lyzed in Section III. Section IV proposes the adaptive power
management method based on model predictive control. The
simulation results are discussed in Section V and the paper
is concluded in Section VI.

II. SYSTEM DESCRIPTION AND MODEL

Consider a radar sensor network randomly deployed with-
in a domain D ⊂ R2 such that the location of each sensor is
independent of all the other sensors’ locations. The sensors’
locations can be modeled as a spatial Poisson point process.
The sensor network operates in a finite-horizon consisting
of discrete time slots t ∈ {0, 1, 2, . . . , tend}, tend < ∞
and is used to detect events in D. Each radar sensor has
a considerable processing power to perform the following
five operations: collecting raw sensor readings, performing
pre-processing on the data in the data queue, transmitting

or receiving data packets over wireless links and performing
online calculation of the optimal operation status.

A. Energy Storage Model

Supercapacitor is employed as the energy storage de-
vice. Such devices have the benefit of very long charging-
discharging cycles and are therefore able to achieve much
longer operation time when being fed by harvested power
sources [6]. Additional advantages of supercapacitor are
its high power density, simple charging requirement and
robustness to temperature changes, shock, and vibration. In
this paper, we use a fully charged supercapacitor to power
the sensor node. Energy harvester is often incorporated into
this kind of system as power source, but we neglect it for
the purpose of simplification. Besides the self-discharge phe-
nomenon of supercapacitor, charge redistribution could also
have a significant impact on power management. As such, to
take full potential of the stored energy, both self-discharge
and charge redistribution of the supercapacitor have to be
taken into consideration. The two branch equivalent circuit
model [7] provides a way to model the effect of both self-
discharge and charge redistribution. Based on which, the
model proposed by Chai et al. [10] is used to predict the
terminal behavior of supercapacitor.

V1[n] = V1[n− 1] + T ∗ Vest[n− 1]− V1[n− 1]

R1C0 +R1KV V1[n− 1]
, (1)
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In which, n is used to represent the predicted future time
step and V1[n], V2[n] represent the predicted supercapacitor
internal state at nth step. Vest[n] is the predicted terminal
voltage at time n. R1, C0, Kv are the first branch parameters
that represent the fast charging/discharging characteristics
and R2, C2 are the second branch parameters that repre-
sent the delayed characteristics. P [n] is the future charg-
ing/discharging power. RM can be calculated as

RM =
R2R3

R2R3 +R1R2 +R1R3
. (4)

Thus, given the current supercapacitor state V1[0], V2[0],
and the future charging/discharging power P , the terminal
voltage of the supercapacitor can be predicted recursively.

The current internal state V1[0] = V1(t), V2[0] = V2(t)
can be updated at each time step according to the terminal
voltage measured at previous step Vt(t− 1) [11].

V1(t) = V1(t− 1) + T ∗ Vt(t− 1)− V1(t− 1)

R1C0 +R1KV V1(t− 1)
, (5)

V2(t) = V2(t− 1) +
T

R2C2
(Vt(t− 1)− V2(t− 1)). (6)



Here, t represents the current time slot. (5) and (6) essentially
serve as the state observer for the supercapacitor system.

Based on the calculated V1, we can estimate the quickly
available energy in the supercapacitor via

EQA(t) =
1

2
C0V

2
1 (t) +

1

3
KV V

3
1 (t). (7)

Unlike the battery, the supercapacitor has a more signif-
icant voltage variation. Thus an interface circuit is usually
used to provide a stable supply voltage to the embedded
system. The interface circuit requires the output voltage of
the supercapacitor to be within a certain range, which is
normally set to be from 1 V olt to 2.7 V olts. Therefore,
to guarantee efficient operation, the terminal voltage of the
supercapacitor has to be modeled. Moreover, as what will
be stated in the following context, the supercapacitor voltage
also has a direct connection with the performance of the radar
sensor.

B. Sensing and Communication Model

At each time slot t, each node collects raw sensor data
readings at a rate of rs(t) ≥ 0. The maximum sensing rate
is represented as rmax. We denote the per packet energy cost
for sensing operation as ps(t).

For radar or RF type sensors, the size of sensor footprint is
proportional to the available energy of the sensor node. The
footprint of sensor node i located at xi can be represented as
a close ball centered at xi with a radius of r(t). The footprint
of a sensor is the region in which an event can be detected.
The event is detected with a boolean model, i.e. events are
only detected if they are in the footprint and the sensor is
turned on. It is shown that if the sensor range model is based
on the RF power density function for an isotropic antenna,
the sensor footprint is proportional to the available energy
of the sensor node [12], i.e.

r2(t) = ζE(t), (8)

where ζ is the coefficient of proportionality. Hence, the area
of the sensor footprint at time t is

A(t) = πr(t)2 = αE(t), (9)

where α = ζπ is a constant. According to Hsin et al.
[13], for sensors that are randomly deployed with uniform
distribution within a large region, the probability of an event
being detected is given by

Pd = 1− exp(−λπr2q), (10)

as the number of sensors goes to infinity. In (10), q represents
the expected value of sensor being on.

The communication scheduling within a network is con-
ducted by computing the contention free link with maximum
aggregated weights

µ∗(t) = argmax
µ(t)∈Lf

∑
(x,y)∈µ(t)

wx,y(t), (11)

where L ∈ 2L is the set of all contention-free links. For
general interference relations, the optimal solution of the

scheduling problem is centralized and NP-hard, which is
therefore intractable in practice. Fully distributed suboptimal
scheduler is often used to solve the problem in practice. For
example, the lightweight Longest Queue First (LQF), which
have the potential to achieve a near-optimal performance in
practice. After the communication links are scheduled, the
data forwarding rate rate fx,y(t) over each link (x, y) ∈ L
is set between 0 and link capacity cx,y(t), i.e. the maximum
number of data packets that can be successfully transmitted
from x to y during slot t.

In this paper, we simplify this process by assuming all
data coming from a single virtual node and all data are send
to another single virtual node. Thus the details of communi-
cation scheduling are abstracted. Moreover, we assume we
can control the data rate of sending ft(t) and receiving fr(t).
This simplifies the details of data forwarding mechanism. In
a real sensor network, where there are multiple sender and
receiver, this method developed in this paper can be used to
calculate the average number of data packets to be sent or
received after the communication link is scheduled. At the
next time slot, when the communication link is rescheduled,
we can modify the link capacity cr(t) and ct(t) accordingly
and apply the power management method again with the
updated constraints. The node throughput cr(t) and ct(t)
generally don’t have abrupt changes, therefore the method
developed in this paper can be utilized to obtain better
performance.

Denote pt(t) and pr(t) as energy prices for the transmis-
sion and reception at time slot t respectively. For a successful
transmission over node i at time slot t, the total energy costs
for transmitting and receiving are ft(t)pt(t) and fr(t)pr(t)
respectively.

C. Data Processing Model

For the radar sensor, each scan produce tens of Megabytes
of raw data, which is much higher than the bandwidth
available to each radar sensor in a multi-hop mesh network
[2]. Therefore, the raw data must be preprocessed prior to
transmission. After preprocessing, the number of reduced
data packets is represented as data change rate. It is important
to build a model that describes the relation between data
change rate and the energy consumption caused by data
processing.

Each sensor node x maintains a data queue Qx(t) to store
its own scanned data, the data packets preprocessed by itself,
and the data packets received from its neighbors, assuming
each data packet in the network has a unique identifier that
identifies its source ID, data attributes, etc. Let Qx(t) ≥ 0
be the length of queue Qx(t). Due to the limited RAM size
of the sensor node, the data queue Qx(t) has a limited size,
which can be represented as Qmax.

The data change rate is represented as fdp(t), and the
maximum amount of data can be reduced is denoted as
cdp(t). The energy consumption of data processing ECdp(t)
can be represented as a function of the data change rate as
ECdp(t) = g(fdp(t)).



Previous work [14] employs a simple averaging technique
to down-sample data, through which, neighboring readings
are averaged and replaced by their mean. The larger the
number of neighboring readings over which the mean is com-
puted, the greater the data change rate. Simple processing
operations such as aggregations that are required to compute
the maximal, minimal, and average data values normally
result in a linear g(·). Let e1 and e2 be the energy costs of the
atomic operations respectively, then the energy consumption
of average filtering can be easily obtained:

ECdp(t) = e1fdp(t) + e2. (12)

The function g(·) could also be a nonlinear function for more
complex processing operations such as Kalman-filter based
data fusion, and compression algorithms like SPIHT [2].

III. PROBABILITY OF EVENT DETECTION

In this section, we analyze the event detection probability
of the sensor network and its relation with the operation of
each sensor node.

Consider a domain D where sensors are randomly de-
ployed. The sensor deployment can be modeled as a sta-
tionary spatial Poisson point process with constant intensity
λ. Given a sub space in D with area A, the probability of
having n sensors in this area can be calculated as

Pn =
(λA)ne−λA

n!
. (13)

To analyze the event detection process, we assume the
total number of sensor nodes in D is very large. All the
sensor nodes are radar based. The footprint of each sensor i
is a closed ball of radius r(t), centered at xi, which is the
position of the sensor. The union of these footprints form
the germ-grain model of stochastic geometry. The sensor is
on with probability q. For an event to be detected, it should
happen within the footprint of at least one on sensor.

Let a non-persistent event happens at location xe ∈ D.
If the network is non-decaying, i.e. the sensor footprints A
does not change with time. The probabilities of on q is also a
constant. The probability of a non-persistent event not being
detected can be calculated as

Pun = exp(−λAq). (14)

With a decaying network, the sensor nodes’ energy is
consumed when they are on, resulting in a decrease in the
area of the sensor footprints. This decrease is proportional
to the energy decay. The area of a sensor footprint at time t
can be represented as (9). According to Jaleel et al. [15], the
probability of an event being detected by a decaying network
is given by

Pd(t) = 1− exp(−λÂ(t)q(t)), (15)

in which, Â(t) is the expected coverage of all the sensor
nodes.

To break down the event detection probability of the sensor
network, we first define the quality of service of each sensor
node.

Definition 3.1: The quality of service of sensor node x is
defined as

1− exp(−λAx(k)qx(k)). (16)
Then we show that the average quality of service of all

sensor nodes is the lower bound of the sensor network event
detection probability.

Theorem 3.1: The event detection probability of a decay-
ing network with M sensor nodes is greater than or equal
to

1

M

M∑
x=1

(
1− exp(−λAx(k)qx(k))

)
(17)

as M goes to infinity.
Proof: For a decaying sensor network, consider all the

sensors of footprint area Ai(k) and sensing ratio qj(k). Let’s
assume the ratio of such sensors is δij(k).

Let N(k) be the total number of combinations of footprint
Ai(k) and sensing ratio qj(k) at time k. So

∑N(k)
i,j=1 δij(k) =

1 and δij(k)λ is the intensity of sensors with footprint area
Ai(k) and sensing ratio qj(k).

The probability of having n sensors with footprint area
Ai(k) and sensing ratio qj(k) in a given set with area Ai(k)
is

P ijn (k) =
(δij(k)λAi(k))

n exp(−δij(k)λAi(k))
n!

. (18)

The probability of an event going undetected by all the
sensors of footprint area Ai(k) and sensing ratio qj(k) can
be calculated as

P iju (k)

=

∞∑
n=0

(1− qj(k))n
(δij(k)λAi(k))

n exp(−δij(k)λAi(k))
n!

= exp(−qj(k)δij(k)λAi(k)).
(19)

The total probability of an event going undetected by all
the sensors is

Pu(k) = exp(−λ[
N(k)∑
i,j=1

qj(k)δij(k)Ai(k)]). (20)

Since

N(k)∑
i,j=1

qj(k)δij(k)Ai(k) =
1

M

M∑
x=1

Ax(k)qx(k)→ (qA),

(21)
we have

Pu(k) = exp(− λ

M

M∑
x=1

Ax(k)qx(k)). (22)

Therefore, the event detection probability of the sensor
network is

1− Pu(k) = 1− exp(− λ

M

M∑
x=1

Ax(k)qx(k)). (23)



The theorem is equivalent to

1− exp(− λ

M

M∑
x=1

Ax(k)qx(k))

≥ 1

M

M∑
x=1

(1− exp(−λAx(k)qx(k))).

(24)

To prove (24), we have to prove

exp(− λ

M

M∑
x=1

Ax(k)qx(k)) ≤
1

M

M∑
x=1

exp(−λAx(k)qx(k)).

(25)
Let

f(x) = e−λx. (26)

f(x) is convex function, since

f ′′ = (λ)2e−λx > 0. (27)

Then according to Jensen’s inequality, we have

exp(−λ
1
M

∑M
x=1Ax(k)qx(k)∑M

x=1
1
M

)

≤
1
M

∑M
x=1 exp(−λAx(k)qx(k))∑M

x=1
1
M

,

(28)

which is equivalent of (25). This completes our proof.
With the Theorem 3.1, the event detection probability of

the whole network can be decoupled as the quality of service
of single node.

IV. ADAPTIVE POWER MANAGEMENT BASED ON
MODEL PREDICTIVE CONTROL

A. System Dynamics

Based on the system models described above, the system
dynamics includes the dynamics of data queue and the
dynamics of energy storage device.

Consider the sensing, transmitting, receiving and data
processing operations, the data queue dynamics of a sensor
node can be described as

Q(t+ 1) =
∣∣Q(t)− ft(t)− fdp(t)

∣∣
+
+ rs(t) + fr(t). (29)

Moreover, the size of data queue is limited by the RAM size
Qmax.

The transmitting and receiving rate are limited by the link
capacity cr(t) and ct(t).

The data change rate fdp(t) is limited by the maximum
number of data change cdp(t) within a time slot.

The sensing, transmitting and receiving operations all
consume energy. Their energy prices are ps(t), pt(t), pr(t)
respectively. The energy consumption of the data processing
can be different for different applications. In this paper,
we take the liner model as in (12) as an example, which
corresponds to the average filtering process. Let EC(t) be
the amount of energy consumption at time slot t. It can be
represented by

EC(t) = ps(t)rs(t) + ECdp(t) + pt(t)ft(t) + pr(t)fr(t).
(30)

With the supercapacitor model depicted in (1), (2), and (3),
the supercapacitor terminal behavior can be estimated. What
is to be noted is that the terminal voltage of supercapacitor
has to be within [1, 2.7] V to guarantee continuous operation.

B. Objective Function

The objective of the proposed power management method
is to track a reference value of the quality of service r
via controlling the sensing, transmitting, receiving and data
processing operations of each sensor node. According to
Theorem 3.1, the average quality of service of all sensor
nodes in the network is the lower bound of the event detec-
tion probability of the sensor network. Therefore, forming
an optimization problem to track r ensures that the event
detection probability of the sensor network is around or
greater than r.

The quality of service of each sensor node could also
be maximized to achieve the maximum event detection
probability of the whole sensor network. However, it leads
to high sensing rate during the lifetime of the sensor node,
which is not efficient for energy conservation.

Therefore, in this paper we formulate the objective func-
tion of the optimization as

minimize
rs,fdp,ft,fr

∑
t

(1− exp(−λαEQA
rs(t)

rmax
)− r)2. (31)

C. Model Predictive Control

Based on the system dynamics and objective function
presented above, the power management problem can be
formulated as an optimization problem and solved with mod-
el predictive control. The model predictive control method
has the advantage of explicitly handling the constraints and
achieving optimal performance within a finite horizon. It
also prevents the performance degradation caused by the
uncertainty of communication scheduling.

The control inputs of the MPC are the sensing rate rs,
transmitting and receiving rates ft and fr and the data
processing rate fdp. The state variables are the data queue
length Q(t) and the internal states of supercapacitor V1(t)
and V2(t). By adjusting rs, ft, fr and fdp, the objective
function as in (31) can be minimized. The optimization
formulation can be represented as

minimize
rs,fdp,ft,fr

k∑
t=1

(1− exp(−λαEQA(t)
rs(t)

rmax
)− r)2

subject to supercapacitor dynamics (1)(2)(3)

data queue dynamics (29)

1 ≤ Vest(t) ≤ 2.7

0 ≤ Q(t) ≤ Qmax
0 ≤ rs(t) ≤ rmax
0 ≤ fdp(t) ≤ cdp(t)
0 ≤ ft(t) ≤ ct(t)
0 ≤ fr(t) ≤ cr(t)

(32)

In which, k represents the prediction horizon of the MPC.



This optimization problem is solved over a finite interval
of k future time slots, which starts at the current time slot.
Only the calculated control inputs corresponding to the first
predicted time slot are actually applied to the system. The
remaining control inputs are discarded. At the next time
slot, a new optimization problem with updated constraints is
solved over a shifted prediction horizon. At each time slot,
the control input applied to the system depends on the most
recent measurements and the model deviation is minimized.

Due to the nonlinear nature of the constraints and objective
function, particle swarm optimization (PSO) is employed to
solve the optimization problem at each time slot. PSO is a
population based stochastic approach for solving optimiza-
tion problems. The algorithm generates a group of random
particles in the search space representing the candidate solu-
tions to the optimization problem. Each particle searches for
better solutions in the search space by adjusting its velocity
based on two values. The first one is the best solution it has
achieved so far, which we represent as pbest. The second
one is the best solution that has been obtained so far by all
particles in the population, which we represent as gbest. The
PSO algorithm can be summarized as Algorithm 1. In which,
η1 and η2 represent the two random numbers.

Algorithm 1 Particle Swarm Optimization
Require: Number of particles Np, number of iterations Ni

1: for k=1:Np do
2: Initialize particle k;
3: end for
4: i← 1;
5: for i=1:Ni do
6: for k=1:Np do
7: Calculate fitness value of particle k;
8: if Current solution is better than pbest then
9: pbest ← current solution;

10: end if
11: end for
12: gbest ← best solution in the generation;
13: for k=1:Np do
14: vk = vk+c1∗η1∗(pbest−xk)+c2∗η2∗(gbest−xk);
15: xk = xk + vk;
16: end for
17: end for

The PSO algorithm has the benefit of global search,
parallel capabilities, limited memory consumption, and it
is easy to implement since there is no need to calculate
gradient. Xu et al. [16] solve the MPC of a fast dynamic
systems using the PSO implemented on a FPGA. For the
power management problem formulated as (32), the control
frequency can be much lower. Moreover, the trade-off of
solution performance and the computational time can be
explored to further reduce the computation time at each
step. More specifically, due to the fast convergence of PSO,
the generated solution could have satisfactory performance
after a few generations. Thus the number of generations to
be executed can be reduced depending on the remaining

time and energy. This won’t cause significant performance
degradation when system dynamics does not vary very fast,
since only solution corresponding to next time slot is actually
applied and the other solutions are discarded. Furthermore,
to accelerate the algorithm execution, each time when the
optimization problem is solved, the calculated solution can
be stored and used to initialize one of the particles for the
next run.

V. SIMULATION STUDIES

To demonstrate the effectiveness of the proposed power
management method, we simulate a radar based sensor net-
work that is powered by supercapacitor. Sensors are deployed
in the field according to a spatial stationary Poisson point
process with constant intensity per unit area of λ = 5. Events
are generated randomly at each time instant throughout the
area of interest. Each sensor is equipped with a 310 F
supercapacitor with parameters listed as in Table I.

TABLE I
MODEL PARAMETER OF A 310 F 2.7 V SUPERCAPACITOR

R1(Ohm) R2(Ohm) C0(Farad) KV C2(Farad)
0.00224 10 298.37960 29.994 12.077

The proportional coefficient α between the sensor footprint
and the available energy is 0.00077858. For the radar sens-
ing, the time varying sensing price was randomly generated
using a uniform distribution over the range of [0.008, 0.016]
(J per packet) for each sensor node at each time slot. The
maximum sensing rate of the radar sensor is set to be 20
packets. In the MPC formulation, we set ps(t) to be the
average 0.012 J per packet.

For the communication between sensor nodes, the channel
capacity cmax is set to be 40 packets. The energy prices of
transmitting and receiving over each wireless link have a
linear relation with a ratio of 0.6, according to the datasheet
of a IEEE 802.15.4 transceiver (AT86RF231). So the receiv-
ing energy price is set to be 0.025 J per packet and the
transmitting energy price is 0.015 J per packet. The details
of communication scheduling are simplified, we assume the
number of receiver nodes and transmitter nodes are randomly
generated using a uniform distribution over the range of
[1, 4]. In the optimization formulation, we set pt(t) and pr(t)
as the expectation of transmitting and receiving energy price,
which are 0.0375 and 0.0625 J per packet respectively. The
power management algorithm then calculates the average
number of packets sent to or received from the neighboring
nodes.

The data processing is assumed to be the simple averaging
process with e1 = 0.001 J per packet and e2 = 0.0005 J
per packet. The maximum data size change caused by data
processing is cdp = 30.

Initially, the supercapacitor is fully charged, i.e. the ter-
minal voltage is 2.7 V olts and V1 = V2 = 2.7 V olts. The
data queue is empty, so Q(0) = 0 packets. At each time
slot, the MPC controller calculates the sensing rate of the
radar sensor r′s(t), the transmitting and receiving rate ft(t)
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Fig. 1. (a) The terminal voltage of the supercapacitor, the length of data
queue, and the quality of service of each sensor node. (b) The sensing ratio
of rs/rmax.

and fr(t), and the data processing rate fdp. The solution is
searched within ±30% of the solution found in the previous
time step.

Figure 1(a) shows the terminal voltage of the supercapac-
itor, length of data queue, and the quality of service of the
sensor node. The event detection probability of the whole
sensor network is around or above the quality of service of
each single node, which is tracking a reference signal of 60%.
The supercapacitor voltage is within the range (1, 2.7] V olts.
The length of data queue is within the range [0, 100] packets.
Figure 1(b) shows the calculated sensing ratio rs/rmax of the
radar sensor. It can be seen that the sensing ratio gradually
increase to compensate for decrease of energy level. The
length of data queue also shows slow increase, which is due
to the decrease of transmitting rate as a result of energy
saving for sensing operation.

VI. CONCLUSIONS

Supercapacitor powered systems have the advantages of
very long charging/discharging cycles and high power den-
sity. The power management method, however, have to be de-
signed specifically to achieve the full potential of the stored
energy. The paper proposed a power management method
based on the model predictive control and the supercapacitor
model that captures no only the self-discharge but also the

charge redistribution phenomenon. Radar sensor network is
used as an example. The event detection probability of the
sensor network is decomposed as the quality of service of
each sensor node, which depends on the available energy
of the node and the sensing rate. The developed method
achieves the goal of tracking a reference event detection
probability while satisfying the constraint of continuous
operation. With the simulation study, it is demonstrated that
as the available energy decreases with the operation, the
sensor node has to increase the sensing rate in order to track
the reference quality of service, which ensures a satisfactory
event detection probability.
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