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Abstract—In this paper, a modeling method is proposed to
predict the thermal effect of implantable medical devices (IMD).
The method generates an accurate temperature prediction within
a time window in an online fashion, while constantly updating
model parameters to improve its accuracy. The performance of
the proposed method is validated using an in vitro experimental
system that emulates the thermal effect of IMDs. The experi-
mental results indicate that the proposed method can accurately
predict the thermal dynamics of the system with an average error
of 0.131 °C for Gaussian input and 0.024 °C for filtered Gaussian
input.

Index Terms—Implantable medical device, thermal effect,
predictive modeling

I. INTRODUCTION

The overheating in the surrounding tissue caused by the
operation of implantable device has drawn growing concern,
as a temperature of a few degree Celsius above the normal
body temperature could cause detrimental effect to the body.
It is reported that a patient with an implanted deep brain stim-
ulator (DBS) suffered significant brain damage after diathermy
treatment, and subsequently died [1], [2]. Postmortem exami-
nations indicated that the tissue near the lead electrodes of the
DBS deteriorated due to overheating. Researchers have shown
that a temperature increase greater than 1 °C could have long-
term damage to the brain tissue [3].

In practice, for implantable devices with very limited power
consumption and limited communication with external world
or being in the sleep mode most of the time, the thermal effect
is rarely an issue. However, when the implantable devices
are required to constantly stimulate the body and its neural
tissues with a large number of electrodes and are in continuous
communication with external devices, the generated heat can
be a vital issue. One such application is the neuroprothesis,
whose thermal effect has become more and more significant
with the incorporation of high-density, functional electronic
components and as the number of stimulation channels in-
creases. For such devices, real-time thermal management is
needed to maintain thermal safety while satisfying the appli-
cation requirements.

To support real-time thermal management of a bioimplant,
online prediction of the thermal effect of device operation
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is critical. Various origins of temperature increase and the
possible methods to compute or measure them are studied in
[4] for a dual-unit retinal prosthesis. It is shown that the power
dissipated by implanted microchip, telemetry coil and the
stimulating electrodes contribute to the temperature increase
in the surrounding tissue. In addition to the power dissipation
of the electronics, if the implantable device uses a teleme-
try system to transmit power and data, the electromagnetic
fields induced in the body could also lead to temperature
increase. The temperature increase can be modeled by the
Pennes bioheat equation [5], which can be solved via various
numerical methods like finite element analysis (FEA) and
finite difference time domain (FDTD) [6]. In the work of
Kim et. al. [7], the numerical solution is compared with the
experimental measurement for an integrated 3-D Utah elec-
trode array (UEA) and they are in good agreement. However,
the aforementioned numerical methods rely on sampling the
temperature value in the whole simulation domain as they
evolve in time. Their time complexity and space complexity
make them unsuitable for real-time thermal management [8].

Herein, we investigate the online prediction of thermal effect
of an implantable device, with a focus on neural prosthesis.
As indicated above, the existing methods like FEA, FDTD
and Hybird ADI [9] all have high computational cost and
are not suitable for real-time thermal management. In this
paper, a computationally efficient method is developed based
on our previous work [10] to predict the thermal dynamics
online, which employs a linear model and an iterative updating
scheme to update the model parameters online according to
recent input-output data within a time window. The generated
parameters are then used to predict the temperature within a
future time window. At the next time instance, when the new
temperature measurement is recorded, the time window shifts
one step.

II. PREDICTIVE THERMAL MODELING

We use the OE model to predict the thermal dynamics. The
proposed thermal model can be represented as

§(tl0) = G(q,0)u(t), ()



where §(t]0) is the predicted temperature, u(¢) is the control-
lable system working status, and
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In which, §(t|t — j) denotes the prediction of temperature
output y(t) given the output data up to ¢t — j and input data
up to t. Prior information of the system parameters are taken
into account by introducing a regularization term §7 P16 into
(4) with P~! representing the covariance information of the
parameter prior distribution. v denotes the relative weight of
the regularization term.

A. Regularized Batch Pre-processing

Before the online prediction, a batch of data is used to
determine the hyperparameters of the regularization term and
choose a good starting point for searching the minimum
of the prediction criterion. This batch of data is called
the pre-processing data and can be represented as L° =
{u°(1),y°(1),...,u’(No),y°(No)}. In real applications, the
procedure helps to provide a reliable model estimation during
the initial phase. Here, we present the batch pre-processing
procedure.

First, let’s reformulate (1) intio a linear regression form as

9(tl0) = o(t)"0. (5)

The one-step prediction result can be concatenated into the
vector form as
Y = &0, 6)

in which
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Let the kernel matrix P be parameterized by hyperparameter
7n. Then it can be calculated with maximization of the negative
log likelihood function as
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Then, let’s derive the iterative procedure of minimizing the
prediction criterion for the pre-processing data. The output

value predicted by iterating j times the one-step predictor (5)
can be represented as

gt +jlt) = Ri(9)y(t) + Ej(@)Ne(g)u(t + ), (10)
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The j-step-ahead predictor can be converted into:
gt + lt) = 6;(1)76;(0). (16)

©,(0) is the j-step-ahead mapping of the predictor parameter
0.
For the batch pre-processing data, define
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The cost functlon of batch pre- processmg is
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in which
1 ,

Tp(j) = YR, = @;0;(O)* + 6" P~0.

N 0o— Np — ] + 1

(19)
This cost function can be minimized by iteratively executing
the Gaussian Newton method with the gradient and Hessian
matrix as in (20) and (21). The calculated 6, along with RO
and K? for s = 1,...,k are used to initialize the Bayesian
Recursive MSPEM, which will be presented later.
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Fig. 1. The diagram of the proposed Bayesian RMSPEM method.

B. Bayesian Recursive MSPEM

Assume the test data is represented as L =
{u(1),y(1),...,u(N),y(N),...} and the current time
instant is N with the new available data being the input u(N)
and output y(N), the Bayesian Recursive MSPEM method
updates the model parameters iteratively using the Gaussian
Newton method based on the prediction error of y(N). The
diagram of the proposed method is shown in Figure 1.

More specifically, at each time instant, the R matrix and K
matrix are updated for j =1,...,k as

RY =RN"'+6;(N —j);(N — j)7, (22)

and
KN =K'+ ¢;(N — j)y(N). (23)

In which, it only requires the input and output data within
a finite time window to determine ¢, (N — j) and update the
value of R and K matrices. The output measurements involved
in the update are from time N —k —n,+1 to time N — 1 and
input values necessary for the update is from time N — k —
np + 1 to time N — 1. So, in practice, the input output data
needed for the update of Bayesian RMSPEM can be saved in a
FIFO queue of fixed size. Each time when a new temperature
measurement and the corresponding input are available, the
queue is updated and the Bayesian RMSPEM algorithm is
executed to update the parameter estimation 6.

A forgetting factor is also incorporated into the prediction
criterion as

1
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where Ag\, is the matrix of forgetting factor. This ensures that
the past data become less relevant for the current estimation
and it can capture the dynamics of the time-varying system.
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Fig. 2. (a)The developed hardware testing system. (b) Hardware diagram. (c)
The developed TMTV system.

III. EXPERIMENTAL VALIDATION

A. Experiment System Description

To evaluate the performance of the proposed method, a
hardware testing system is built to emulate the thermal effect
of neural prosthesis. The system consists of three major
components. The first one is a temperature monitoring and
management test vehicle (TMTV) developed in the lab that
has heat source and temperature sensors (TT LMT70) soldered
on, which is used to emulate the implanted electronics. The
temperature sensors have an accuracy around 0.1 °C and are
also small in size. The second component is a water circulation
system that uses a marine pump to control the flow rate and
it is used to emulate the blood perfusion effect. Lastly, a
monitor and control system is built with TI MSP430G2 board
and Labview front end. The Labview front end on the PC
is used to display and save the temperature measurements,
it can also call the Matlab program which implements the
thermal management algorithm. The TI MSP430G2 acts as
the middleware between the TMTV and PC. It sends the
control signal to the heat source on the TMTV and sends the
temperature readings back to PC.

Figure 2 shows the developed hardware testing system. The
container in the middle are filled with water and a marine
pump is placed at the bottom to create water circulation in
the container. Note that the sponge material is also glued in
the container to ensure a uniform water flow in the upper



portion of the container where the TMTV is placed. To
simulate the heat diffusion effect of blood perfusion, the water
flow generated by the pump is adjusted to be similar to the
blood perfusion rate in the human brain by choosing a pre-
determined supply voltage.

This system provides accurate temperature measurements by
calibrating each temperature sensor beforehand and applying
Kalman filter to filter out the measurement noise. It can be
used to evaluate the impact of different factors on the ther-
mal dynamics and evaluate the performance of the proposed
algorithm before conducting animal testing.

B. Experimental Results and Analysis

To evaluate the performance of the predictive modeling
method , two experiments are designed. In the first experiment,
we generate 2000 random PWM signals within the range
of [0,1000] using Gaussian distribution and apply the PWM
signals to the TMTV with a step size of 10 seconds. The
temperature is measured via each of the onboard temperature
sensors, which is used to compare with the temperature
predicted online by the proposed Bayesian RMSPEM method
and to provide real-time feedback signal for model updating.
The Bayesian RMSPEM method implements a 20th order OE
model and predicts the temperature measurement of 10 steps
ahead. The result of this experiment is shown in Figure 3(a). It
demonstrated that the Bayesian RMSPEM accurately predicts
the temperature variation despite the varying PWM signal and
achieves an overall prediction mean square error of 0.131 °C.

In the second experiment, a random second order low pass
filter is generated and applied to 2000 random PWM signals.
Then the filtered PWM signal is applied to the TMTV. This
is used to emulate the output of a real thermal management
system, where the computed control signal is usually a low
frequency signal that depends on various inputs. In this
experiment, it is shown in Figure 3(b) that the temperature
output can be predicted with an 5th order OE model, which
is much simpler than the 20th order OE model used in the
first experiment. By taking advantage of this low order model,
the computational cost of the proposed method can be greatly
reduced. The overall prediction mean square error is about
0.024 °C.

IV. CONCLUSION

With the emerging of more high power and complex im-
plantable devices, the issue of thermal safety has raised grow-
ing concern. Accurate long-term prediction of the temperature
increase caused by device operation is critical for achieving
safe operation. The existing thermal modeling methods are
based on solving Pennes’ bioheat equation in the domain of
interest, which is not suitable for realtime applications. In this
paper, a Bayesian RMSPEM method is developed to support
the real-time thermal management. The proposed method
predicts the temperature increase in a future time window and
iteratively updates the prediction model according to the recent
input output data. An experiment system is built to validate
the proposed method, which emulates the thermal effect of
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Fig. 3. Experiment results (a) Gaussian input. (b) Filtered Gaussian input.

neural prosthesis. The experimental results demonstrate that
the predictive thermal modeling method is able to generate
accurate and robust temperature prediction, which provides an
important tool for realtime thermal management.
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