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Abstract—In this paper, a modeling method is proposed to
predict the thermal effect of implantable medical devices (IMD).
The method generates an accurate temperature prediction within
a time window in an online fashion, while constantly updating
model parameters to improve its accuracy. The performance of
the proposed method is validated using an in vitro experimental
system that emulates the thermal effect of IMDs. The experi-
mental results indicate that the proposed method can accurately
predict the thermal dynamics of the system with an average error
of 0.131 ◦C for Gaussian input and 0.024

◦C for filtered Gaussian
input.

Index Terms—Implantable medical device, thermal effect,
predictive modeling

I. INTRODUCTION

The overheating in the surrounding tissue caused by the

operation of implantable device has drawn growing concern,

as a temperature of a few degree Celsius above the normal

body temperature could cause detrimental effect to the body.

It is reported that a patient with an implanted deep brain stim-

ulator (DBS) suffered significant brain damage after diathermy

treatment, and subsequently died [1], [2]. Postmortem exami-

nations indicated that the tissue near the lead electrodes of the

DBS deteriorated due to overheating. Researchers have shown

that a temperature increase greater than 1 ◦C could have long-

term damage to the brain tissue [3].

In practice, for implantable devices with very limited power

consumption and limited communication with external world

or being in the sleep mode most of the time, the thermal effect

is rarely an issue. However, when the implantable devices

are required to constantly stimulate the body and its neural

tissues with a large number of electrodes and are in continuous

communication with external devices, the generated heat can

be a vital issue. One such application is the neuroprothesis,

whose thermal effect has become more and more significant

with the incorporation of high-density, functional electronic

components and as the number of stimulation channels in-

creases. For such devices, real-time thermal management is

needed to maintain thermal safety while satisfying the appli-

cation requirements.

To support real-time thermal management of a bioimplant,

online prediction of the thermal effect of device operation
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is critical. Various origins of temperature increase and the

possible methods to compute or measure them are studied in

[4] for a dual-unit retinal prosthesis. It is shown that the power

dissipated by implanted microchip, telemetry coil and the

stimulating electrodes contribute to the temperature increase

in the surrounding tissue. In addition to the power dissipation

of the electronics, if the implantable device uses a teleme-

try system to transmit power and data, the electromagnetic

fields induced in the body could also lead to temperature

increase. The temperature increase can be modeled by the

Pennes bioheat equation [5], which can be solved via various

numerical methods like finite element analysis (FEA) and

finite difference time domain (FDTD) [6]. In the work of

Kim et. al. [7], the numerical solution is compared with the

experimental measurement for an integrated 3-D Utah elec-

trode array (UEA) and they are in good agreement. However,

the aforementioned numerical methods rely on sampling the

temperature value in the whole simulation domain as they

evolve in time. Their time complexity and space complexity

make them unsuitable for real-time thermal management [8].

Herein, we investigate the online prediction of thermal effect

of an implantable device, with a focus on neural prosthesis.

As indicated above, the existing methods like FEA, FDTD

and Hybird ADI [9] all have high computational cost and

are not suitable for real-time thermal management. In this

paper, a computationally efficient method is developed based

on our previous work [10] to predict the thermal dynamics

online, which employs a linear model and an iterative updating

scheme to update the model parameters online according to

recent input-output data within a time window. The generated

parameters are then used to predict the temperature within a

future time window. At the next time instance, when the new

temperature measurement is recorded, the time window shifts

one step.

II. PREDICTIVE THERMAL MODELING

We use the OE model to predict the thermal dynamics. The

proposed thermal model can be represented as

ŷ(t|θ) = Ĝ(q, θ)u(t), (1)



where ŷ(t|θ) is the predicted temperature, u(t) is the control-

lable system working status, and

Ĝ(q, θ) =
N̂G(q)

D̂G(q)
=

b1q
−1 + · · ·+ bnb

q−nb

1 + a1q−1 + · · ·+ ana
q−na

. (2)

The criterion of prediction can be defined as

JN
MP =

1

k

k
∑

j=1

JN
P (j), (3)

where

JN
P (j) =

1

N − nb − j + 1

N
∑

t=nb+j

[y(t)− ŷ(t|t− j)]2

+ γθTP−1θ.

(4)

In which, ŷ(t|t − j) denotes the prediction of temperature

output y(t) given the output data up to t − j and input data

up to t. Prior information of the system parameters are taken

into account by introducing a regularization term θTP−1θ into

(4) with P−1 representing the covariance information of the

parameter prior distribution. γ denotes the relative weight of

the regularization term.

A. Regularized Batch Pre-processing

Before the online prediction, a batch of data is used to

determine the hyperparameters of the regularization term and

choose a good starting point for searching the minimum

of the prediction criterion. This batch of data is called

the pre-processing data and can be represented as Lo =
{uo(1), yo(1), . . . , uo(N0), y

o(N0)}. In real applications, the

procedure helps to provide a reliable model estimation during

the initial phase. Here, we present the batch pre-processing

procedure.

First, let’s reformulate (1) intio a linear regression form as

ŷ(t|θ) = φ(t)T θ. (5)

The one-step prediction result can be concatenated into the

vector form as

Y = Φθ, (6)

in which

Y =







ŷ(1|θ)
...

ŷ(N0|θ)






,Φ =







φ(1)T

...

φ(N0)
T






. (7)

Let the kernel matrix P be parameterized by hyperparameter

η. Then it can be calculated with maximization of the negative

log likelihood function as

η̂ = argmin
η

Y TZ(η)−1Y + log ‖Z(η)‖, (8)

Z(η) = ΦP (η)ΦT + γ2IN0
. (9)

Then, let’s derive the iterative procedure of minimizing the

prediction criterion for the pre-processing data. The output

value predicted by iterating j times the one-step predictor (5)

can be represented as

ŷ(t+ j|t) = Rj(q)y(t) + Ej(q)N̂G(q)u(t+ j), (10)

where Rj(q) and Ej(q) can be calculated as

Rj(q) = CAj







q−na+1

...

1






, (11)

and

Ej(q) = C

j−1
∑

i=0

AiBq−i. (12)

In which,

A =











0 1 . . . 0
...

...
. . .

0 0 . . . 1
−ana
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







, (13)

B = CT , (14)

and

C =
[

0 0 . . . 1
]

. (15)

The j-step-ahead predictor can be converted into:

ŷ(t+ j|t) = φj(t)
TΘj(θ). (16)

Θj(θ) is the j-step-ahead mapping of the predictor parameter

θ.

For the batch pre-processing data, define

Y
j
N0

=







yo(nb + j)
...

yo(N0)






,Φj =







φj(nb)
T

...

φj(N0 − j)T






. (17)

Let R0
j = ΦT

j Φj and K0
j = ΦT

j Y
j
N0

.

The cost function of batch pre-processing is

JN0

MP (k) =
1

k

k
∑

j=1

JN0

P (j), (18)

in which

JN0

P (j) =
1

N0 − nb − j + 1
‖Y j

N0
− ΦjΘj(θ)‖

2 + γθTP−1θ.

(19)

This cost function can be minimized by iteratively executing

the Gaussian Newton method with the gradient and Hessian

matrix as in (20) and (21). The calculated θ, along with R0
s

and K0
s for s = 1, . . . , k are used to initialize the Bayesian

Recursive MSPEM, which will be presented later.

∇θJ
N0

P (s) =
2

N0 − nb − s+ 1
∇θΘs(θ)(R

0
sΘs(θ)−K0

s )

+ γ(P−1 + P−T )θ.
(20)

∂2

∂θ2
JN0

P (s) ≈
2

N0 − nb − s+ 1
∇θΘs(θ)R

0
s∇θΘs(θ)

T

+ γ(P−1 + P−T ).

(21)
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Fig. 1. The diagram of the proposed Bayesian RMSPEM method.

B. Bayesian Recursive MSPEM

Assume the test data is represented as L =
{u(1), y(1), . . . , u(N), y(N), . . . } and the current time

instant is N with the new available data being the input u(N)
and output y(N), the Bayesian Recursive MSPEM method

updates the model parameters iteratively using the Gaussian

Newton method based on the prediction error of y(N). The

diagram of the proposed method is shown in Figure 1.

More specifically, at each time instant, the R matrix and K

matrix are updated for j = 1, . . . , k as

RN
j = RN−1

j + φj(N − j)φj(N − j)T , (22)

and

KN
j = KN−1

j + φj(N − j)y(N). (23)

In which, it only requires the input and output data within

a finite time window to determine φj(N − j) and update the

value of R and K matrices. The output measurements involved

in the update are from time N −k−na+1 to time N −1 and

input values necessary for the update is from time N − k −
nb + 1 to time N − 1. So, in practice, the input output data

needed for the update of Bayesian RMSPEM can be saved in a

FIFO queue of fixed size. Each time when a new temperature

measurement and the corresponding input are available, the

queue is updated and the Bayesian RMSPEM algorithm is

executed to update the parameter estimation θ.

A forgetting factor is also incorporated into the prediction

criterion as

JN
P (j) =

1

N − nb − j + 1
‖Λj

N (Y j
N − ΦjΘj(θ))‖

2

+ γθTP−1θ,

(24)

where Λj
N is the matrix of forgetting factor. This ensures that

the past data become less relevant for the current estimation

and it can capture the dynamics of the time-varying system.

(a)

(b)

(c)

Fig. 2. (a)The developed hardware testing system. (b) Hardware diagram. (c)
The developed TMTV system.

III. EXPERIMENTAL VALIDATION

A. Experiment System Description

To evaluate the performance of the proposed method, a

hardware testing system is built to emulate the thermal effect

of neural prosthesis. The system consists of three major

components. The first one is a temperature monitoring and

management test vehicle (TMTV) developed in the lab that

has heat source and temperature sensors (TI LMT70) soldered

on, which is used to emulate the implanted electronics. The

temperature sensors have an accuracy around 0.1 ◦C and are

also small in size. The second component is a water circulation

system that uses a marine pump to control the flow rate and

it is used to emulate the blood perfusion effect. Lastly, a

monitor and control system is built with TI MSP430G2 board

and Labview front end. The Labview front end on the PC

is used to display and save the temperature measurements,

it can also call the Matlab program which implements the

thermal management algorithm. The TI MSP430G2 acts as

the middleware between the TMTV and PC. It sends the

control signal to the heat source on the TMTV and sends the

temperature readings back to PC.

Figure 2 shows the developed hardware testing system. The

container in the middle are filled with water and a marine

pump is placed at the bottom to create water circulation in

the container. Note that the sponge material is also glued in

the container to ensure a uniform water flow in the upper



portion of the container where the TMTV is placed. To

simulate the heat diffusion effect of blood perfusion, the water

flow generated by the pump is adjusted to be similar to the

blood perfusion rate in the human brain by choosing a pre-

determined supply voltage.

This system provides accurate temperature measurements by

calibrating each temperature sensor beforehand and applying

Kalman filter to filter out the measurement noise. It can be

used to evaluate the impact of different factors on the ther-

mal dynamics and evaluate the performance of the proposed

algorithm before conducting animal testing.

B. Experimental Results and Analysis

To evaluate the performance of the predictive modeling

method , two experiments are designed. In the first experiment,

we generate 2000 random PWM signals within the range

of [0, 1000] using Gaussian distribution and apply the PWM

signals to the TMTV with a step size of 10 seconds. The

temperature is measured via each of the onboard temperature

sensors, which is used to compare with the temperature

predicted online by the proposed Bayesian RMSPEM method

and to provide real-time feedback signal for model updating.

The Bayesian RMSPEM method implements a 20th order OE

model and predicts the temperature measurement of 10 steps

ahead. The result of this experiment is shown in Figure 3(a). It

demonstrated that the Bayesian RMSPEM accurately predicts

the temperature variation despite the varying PWM signal and

achieves an overall prediction mean square error of 0.131 ◦C.

In the second experiment, a random second order low pass

filter is generated and applied to 2000 random PWM signals.

Then the filtered PWM signal is applied to the TMTV. This

is used to emulate the output of a real thermal management

system, where the computed control signal is usually a low

frequency signal that depends on various inputs. In this

experiment, it is shown in Figure 3(b) that the temperature

output can be predicted with an 5th order OE model, which

is much simpler than the 20th order OE model used in the

first experiment. By taking advantage of this low order model,

the computational cost of the proposed method can be greatly

reduced. The overall prediction mean square error is about

0.024 ◦C.

IV. CONCLUSION

With the emerging of more high power and complex im-

plantable devices, the issue of thermal safety has raised grow-

ing concern. Accurate long-term prediction of the temperature

increase caused by device operation is critical for achieving

safe operation. The existing thermal modeling methods are

based on solving Pennes’ bioheat equation in the domain of

interest, which is not suitable for realtime applications. In this

paper, a Bayesian RMSPEM method is developed to support

the real-time thermal management. The proposed method

predicts the temperature increase in a future time window and

iteratively updates the prediction model according to the recent

input output data. An experiment system is built to validate

the proposed method, which emulates the thermal effect of
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Fig. 3. Experiment results (a) Gaussian input. (b) Filtered Gaussian input.

neural prosthesis. The experimental results demonstrate that

the predictive thermal modeling method is able to generate

accurate and robust temperature prediction, which provides an

important tool for realtime thermal management.
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