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We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly
improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six
lattice spacings ranging from a ≈ 0.15 to 0.03 fm and with both physical and unphysical values of the two
light and the strange sea-quark masses. We use a new method based on heavy-quark effective theory
(HQET) to extract quark masses from heavy-light pseudoscalar meson masses. Combining our analysis
with our separate determination of ratios of light-quark masses we present masses of the up, down,
strange, charm, and bottom quarks. Our results for the MS-renormalized masses are muð2 GeVÞ ¼
2.130ð41Þ MeV, mdð2 GeVÞ ¼ 4.675ð56Þ MeV, msð2 GeVÞ ¼ 92.47ð69Þ MeV, mcð3 GeVÞ ¼
983.7ð5.6Þ MeV, and mcðmcÞ¼1273ð10ÞMeV, with four active flavors; and mbðmbÞ¼4195ð14ÞMeV
with five active flavors. We also obtain ratios of quark massesmc=ms ¼ 11.783ð25Þ,mb=ms ¼ 53.94ð12Þ,
andmb=mc ¼ 4.578ð8Þ. The result formc matches the precision of the most precise calculation to date, and
the other masses and all quoted ratios are the most precise to date. Moreover, these results are the first with a
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perturbative accuracy of α4s . As byproducts of our method, we obtain the matrix elements of HQET
operators with dimension 4 and 5: Λ̄MRS ¼ 555ð31Þ MeV in the minimal renormalon-subtracted (MRS)
scheme, μ2π ¼ 0.05ð22Þ GeV2, and μ2GðmbÞ ¼ 0.38ð2Þ GeV2. The MRS scheme [Phys. Rev. D 97, 034503
(2018)] is the key new aspect of our method.

DOI: 10.1103/PhysRevD.98.054517

I. INTRODUCTION

Quark masses are fundamental parameters of QCD. They
must be known accurately for precise theoretical calcu-
lations within the Standard Model, especially for testing
whether quarks receive mass via Yukawa couplings to the
Higgs field. Because of confinement, the quark masses can
be defined only as renormalized parameters of the QCD
Lagrangian. Thus, they must be determined by comparing
theoretical calculations of an appropriate set of observables
to experimental measurements of those observables. Lattice
QCD makes it possible to calculate in a nonperturbative
way simple observables, such as hadron masses. To
determine the quark masses in lattice QCD, one needs to
tune the bare lattice quark masses such that a suitable set of
hadron masses coincide with their experimental values.
The resulting bare masses must be renormalized, pref-

erably to a regularization-independent scheme, such as the
recently introduced minimal renormalon-subtracted (MRS)
mass [1]. One approach is to use lattice perturbation theory,
but multiloop calculations are difficult so, in practice,
nothing more than two-loop matching [2–4] is available
in the literature. Another is to use nonperturbative renorm-
alization to, e.g., momentum-subtraction [5,6] or finite-
volume [7,8] schemes. Finally, one can use lattice gauge
theory to obtain quantities in continuum QCD and apply
multiloop continuum perturbative QCD to extract the quark
masses. An example of the latter is the analysis of
quarkonium correlators [9]. In practice, no regularization-
independent scheme is in such common use as the modified
minimal subtraction (MS) scheme [10] of dimensional
regularization, so we shall use MS to quote results.
Our method studies how a heavy-light meson mass

depends on the mass of its heavy valence (anti)quark
[11–13]. Like the quarkonium correlators, our approach
requires only continuum perturbation theory. On the other
hand, the binding energy of a heavy-light meson is of order
ΛQCD, so it is necessary to use heavy-quark effective theory
(HQET) to separate long- and short-distance scales. In this
way, we can obtain the masses of the charm and bottom
quarks and, at the same time, HQET matrix elements [13].
Because this analysis uses as inputs the bare masses of the
up, down, and strange quarks—tuned to reproduce the pion
and kaon masses [14]—it also yields the renormalized
masses of these quarks.
Following Ref. [13], our analysis is based on the HQET

formula for the heavy-light meson mass [15]

MHð�Þ ¼ mh þ Λ̄þ μ2π
2mh

− dHð�Þ
μ2GðmhÞ
2mh

þ Oðm−2
h Þ; ð1:1Þ

whereMHð�Þ is the pseudoscalar (vector) meson mass,mh is
the heavy-quark mass, and Λ̄, μ2π , and μ2GðmhÞ are matrix
elements of HQET operators with dimension 4 and 5. The
last three correspond to the energy of the light quarks and
gluons, the heavy quark’s kinetic energy, and the spin-
dependent chromomagnetic energy, with coefficient dH ¼
1 for pseudoscalar mesons and dH� ¼ − 1

3
for vector

mesons. The chromomagnetic operator has an anomalous
dimension, known to three loops [16], so μ2GðmhÞ depends
logarithmically on the mass mh. The strategy is to use

lattice QCD to compute Mð�Þ
H as a function of mh and fit

Eq. (1.1) to distinguish the terms on the right-hand side
including, in principle, higher orders in 1=mh [13].
The utility of Eq. (1.1) rests on the definition of the quark

mass mh. In HQET, the natural definition is the pole mass
(also known as the on-shell mass). Although the pole mass
is infrared finite [17] and gauge independent [17,18] at
every order in perturbation theory, its value is ambiguous
when all orders are considered [19,20]. At large orders, the
coefficients of the self-energy grow factorially, and a
possible interpretation via Borel summation is obstructed
by a series of renormalon singularities [19,20]. This
behavior is a manifestation of the strongly coupled long-
range gluon field that, remarkably, appears in perturbation
theory. Note that because MH is unambiguous, the ambi-
guity inmh must be canceled by those in Λ̄, μ2π , and higher-
dimension terms.1

To address this problem, some of us introduced the MRS
mass in a companion paper [1]. It is defined by Eq. (2.24)
of Ref. [1],

mMRS¼m̄

�
1þ

X∞
n¼0

½rn−Rn�αnþ1
s ðm̄ÞþJMRSðm̄Þ

�
; ð1:2Þ

where m̄ ¼ mMSðmMSÞ, the rn are the coefficients relating
the MS mass to the pole mass, Rn denote their asymptotic
behavior, and JMRSðm̄Þ, which is defined in Eqs. (2.25) and
(2.26) of Ref. [1], is the unambiguous part of the Borel sum
of

P
Rnα

nþ1
s . To compute mMRS one uses the known

1By forming the spin average, 1
4
ðMH þ 3MH� Þ, and spin

difference, MH� −MH , it is easy to see that spin-independent
and spin-dependent ambiguities are distinct.
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behavior of the Rn [21–23], including their overall nor-
malization [23]. In deriving Eq. (1.2), the authors of
Ref. [1] put the leading renormalon ambiguity into a
specific quantity of order ΛMS, denoted δm, and transferred
it from mh to Λ̄. Below we write mh;MRS and Λ̄MRS to
denote the unambiguous definitions of mh and Λ̄ in the
MRS scheme.
A second feature of our technique may seem almost

trivial. In Eq. (4.7), the authors of Ref. [1] rewrote
mh;MRS as

mh;MRS ¼
mr;MSðμÞamh

mh;MSðμÞamr
mh;MRS ð1:3aÞ

¼ mr;MSðμÞ
m̄h

mh;MSðμÞ
mh;MRS

m̄h

amh

amr
; ð1:3bÞ

where amr is the bare mass (in lattice units) of staggered
fermions, and the subscript r labels a reference mass; see
Sec. III. Owing to the remnant chiral symmetry of
staggered fermions, the first factor in Eq. (1.3a) is
1þ Oða2Þ. In Eq. (1.3b), the factors are, respectively, a
convenient fit parameter, the factor to run from scale μ to
m̄h, the quantity in the big parentheses in Eq. (1.2), and the
ratio of the freely chosen heavy-quark lattice mass to the
reference mass. Equation (1.3) plays a key role: with rn for
MS in Eq. (1.2), the first factor in Eq. (1.3b) is in the MS
scheme; with JMRS removing the leading renormalon
ambiguity, the product on the right-hand side of
Eq. (1.3b) is indeed the MRS mass. By taking mr ¼
0.4ms (the so-called p4s approach), the analysis yields
ms as well as the heavy-quark masses mc and mb.
The third important feature of our work is a data set with

a wide range of lattice spacing, heavy-quark mass, and light
valence and sea masses. These data, which were generated
in a companion project to compute the B- and D-meson
decay constants [14], are very precise, with statistical errors
of 0.005–0.12%. It is very challenging to take advantage of
the statistical power and parameter range of the data set. In
this paper, we use heavy-meson rooted all-staggered chiral
perturbation theory [24] (HMrASχPT) to describe the
dependence of the heavy-light pseudoscalar meson masses
on the light mesons. To make possible a fit to lattice data,
the authors of Ref. [1] combined the next-to-leading-order
HMrASχPT with theMRSmass to write heavy-light meson
masses as a function of lattice spacing and heavy- and light-
quark masses. The fit function, by construction, has the
correct nonanalytic form in the chiral and HQET limits.
Here, it is extended with enough analytic terms to mimic
higher-order corrections and obtain a good fit.
We use 20 ensembles generated by the MILC

Collaboration [25–27] with four flavors of sea quarks
using the highly improved staggered quark (HISQ)
action [28] and a one-loop [29] tadpole-improved [30]

Symanzik-improved gauge action [31–35]. The algorithm
for the quark determinant uses the fourth-root procedure to
remove the unwanted taste degrees of freedom [36–49]. A
thorough description of the simulation program can be
found in Ref. [26]. Since then, the simulations have been
extended to smaller lattice spacings; up-to-date details are
in Ref. [14]. Our procedures for calculating pseudoscalar
meson correlators and for finding masses and amplitudes
from these correlators are described in Refs. [14,50]. The
amplitudes were used in Ref. [14] to calculate the decay
constants of B andDmesons, and the corresponding meson
masses are used here.
A preliminary report of this analysis can be found in

Ref. [51]. Instead of the MRSmass, at that time we used the
renormalon-subtracted (RS) mass [22], which also sub-
tracts the leading renormalon ambiguity but at the same
time introduces a factorization scale νf. In principle, the
MS masses emerging from Eqs. (1.3) and (1.1) should not
depend on νf, but we found more dependence than one
would like. Moreover, it turns out to be necessary to
introduce three scales in all, νf < μ < mh, with μ being
used for αs [51]. For that reason, we prefer the MRS over
the RS mass.
This paper is organized as follows. Section II contains a

description of the lattice-QCD simulations, focusing on the
way we eliminate the lattice scale in favor of physical units.
In Sec. III, we present our function of quark masses
and lattice spacing that describes masses of heavy-light
pseudoscalar mesons. In Sec. IV, we perform a combined-
correlated fit to the meson masses; the fit is then extrapo-
lated to the continuum and interpolated to physical values
of the light-quark masses. In Sec. V, we present our final
results for the masses of the strange, charm and bottom
quarks as well as quark-mass ratios mc=ms, mb=ms, and
mb=mc. Combining our results with our separate determi-
nation of the quark-mass ratios mu=md and ms=ml, where
ml ≡ 1

2
ðmu þmdÞ, we also report the up- and down-quark

masses. In addition, we present our lattice-QCD determi-
nations of Λ̄MRS, μ2π , and μ2GðmbÞ as well as flavor splittings
and low-energy constants of heavy-meson chiral perturba-
tion theory. Section VI compares our main results with
work in the literature and offers some remarks on further
work. An Appendix gives the correlation matrices of the
MRS masses of the charm and bottom quarks with HQET
matrix elements, and of the charm-quark mass and quark-
mass ratios.

II. SIMULATIONS SUMMARIZED

The lattice data used in this work come from the same
correlation functions used to determine leptonic decay
constants of charmed and b-flavored mesons in a
companion paper [14]. For a full description of the
simulation, the reader should consult Ref. [14]. Here we
provide a brief summary.
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We employ a data set that includes ensembles with five
values of lattice spacings ranging from approximately 0.12
to 0.03 fm, enabling good control over the continuum
extrapolation. Ensembles at a sixth lattice spacing, approx-
imately 0.15 fm, are used only to estimate the continuum
extrapolation error. The data set includes ensembles with
the light (up-down), strange, and charm sea masses close to
their physical values (“physical-mass ensembles”) at all but
the smallest lattice spacing, 0.03 fm. The data set also
includes ensembles where either the mass of light sea
quarks is heavier than in nature, or the mass of the strange
sea quark is lighter than in nature, or both. As in Ref. [14],
we set the scale of the lattice spacing a with a two-step
procedure that uses the value of fπ from the Particle Data
Group (PDG), fπ;PDG ¼ 130.50ð13Þ MeV [52], combined
with the so-called p4s method.
The first step in the scale-setting procedure takes fπ;PDG

to set the overall scale on each physical-mass ensemble. On
these ensembles, we tune the valence light, strange, and
charmed quark masses to reproduce the pion, kaon, andDs-
meson masses. Then we calculateMp4s and fp4s, which are
the mass and decay constant of a pseudoscalar meson with
both valence-quark masses set equal to mp4s ≡ 0.4ms. We
then form the ratio Rp4s ≡ fp4s=Mp4s and take the con-
tinuum limit of fp4s and Rp4s. These values and those of the
quark-mass ratios are then used as inputs to the second step
of the procedure, which we call the p4s method. In the p4s
method, the values of amp4s and afp4s are calculated on a
given physical-mass ensemble, with a ≠ 0, by adjusting the
valence-quark mass until afp4s=aMp4s equals the physical-
mass continuum limit of Rp4s:

Rp4s

�
mp4s;

�
1

2
ðmu þmdÞ; ms; mc

�
; a

�

¼ Rp4s

�
0.4ms;

�
1

2
ðmu þmdÞ; ms; mc

�
; 0

�
: ð2:1Þ

In the p4s method, all ensembles at the same bare gauge
coupling, β ¼ 10=g20, as a given physical-mass ensemble
are chosen to have the same lattice spacing a and the same
amp4s. This choice is known as a mass-independent scale-
setting scheme.
At a ≈ 0.03 fm, we have only a 0.2ms ensemble, so this

procedure cannot be carried out. In this case, we rely on the
derivatives with respect to a, which are given in Ref. [50].

III. CONSTRUCTION OF THE FIT FUNCTION

In this section, we discuss in detail how to construct a
function of quark masses and lattice spacing that describes
masses of heavy-light pseudoscalar mesons. To this end, we

use three effective field theories (EFTs), HQET, and
HMrASχPT, as mentioned already, and the Symanzik
effective theory of cutoff effects [34,53,54]. We start with
the merger of HQET and HMrASχPT [1] and incorporate
generic lattice-spacing dependence, as well as higher-order
terms in HQET and HMrASχPT. Putting everything
together, we obtain an EFT fit function for masses of
heavy-light pseudoscalar mesons.

A. Leading-order χPT

Let us start with fixing our notation for quark masses
associated with lattice ensembles with 2þ 1þ 1 flavors of
quarks. We use m0

l, m
0
s, and m0

c to denote the simulation
masses of the light (up-down), strange, and charm quarks,
respectively; without the primes, we useml ¼ 1

2
ðmu þmdÞ,

ms, and mc to denote the correctly tuned masses of the
corresponding quarks; last, we use mq to denote a generic

light-quark mass. Further, we use Hð�Þ
x to denote a generic

heavy-light pseudoscalar (vector) meson composed of a light
valence quark x and a heavy valence antiquark h̄.We also use
mh;MRS, mh;MS, and amh to denote the MRS, MS, and bare

masses of antiquark h̄, respectively. The relations between
mh;MRS, mh;MS, and amh are discussed in Sec. III C.
In HMrASχPT, the mass of Hð�Þ

x meson is described by
Eq. (4.2) of Ref. [1]

M
Hð�Þ

x
ðmx; fm0

l; m
0
l; m

0
sg; aÞ

¼ mh;MRS þ Λ̄MRS þ
μ2π − dHð�Þμ2GðmhÞ

2mh;MRS
þ 2λ1B0mx

þ 2λ01B0ð2m0
l þm0

sÞ
þ δM

Hð�Þ
x
ðmx; fm0

l; m
0
l; m

0
sg; aÞ − Cð�Þ; ð3:1Þ

where B0 is the low-energy constant (LEC) in the relation
m2

π ¼ B0ðmu þmdÞ between the pion mass and the quark
mass; dHð�Þ ¼ 1 (− 1

3
) for pseudoscalar (vector) mesons; λ1

and λ01 are LECs that appear in (continuum) heavy-meson
chiral perturbation theory (HMχPT) [55]; and δM

Hð�Þ
x
is the

one-loop corrections to the mass of the Hð�Þ
x meson in

HMrASχPT [1]. The arguments of M
Hð�Þ

x
and δM

Hð�Þ
x

in

Eq. (3.1) correspond to the light valence-quark mass, the set
of three light sea-quark masses, which are not necessarily
tuned to their physical values, and the lattice spacing a. As
usual for a one-loop χPT result, δMHx

contains a term
nonanalytic as m2

π → 0 (a “chiral log”). For the pseudo-
scalar mesons with (2þ 1) light flavors in the sea,
we have
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δMHx
¼ −

3g2π
16π2f2

�
1

16

X
S;Ξ0

K1ðmSxΞ0 ;Δ
� þ δSxÞ þ

1

3

X
j∈Mð2;xÞ

I

∂
∂m2

XI

½R½2;2�
j ðMð2;xÞ

I ; μð2ÞI ÞK1ðmj;Δ�Þ�

þ
�
a2δ0V

X
j∈M̂ð3;xÞ

V

∂
∂m2

XV

½R½3;2�
j ðM̂ð3;xÞ

V ; μð2ÞV ÞK1ðmj;Δ�Þ� þ ½V → A�
��

þ a2
3g2π

16π2f2

�
λ0a2Δ̄

X
S

δSx þ λa2Δ�
�
3Δ̄ −

1

3
ΔI þ δ0V þ δ0A

��
ð3:2Þ

where the indices S and Ξ run over light sea-quark flavors
and meson tastes, respectively; MSx;Ξ is the mass of the
pseudoscalar meson with taste Ξ and flavors S and x; Δ� is
the lowest-order hyperfine splitting; δSx is the flavor
splitting between a heavy-light meson with light quark
of flavor S and one of flavor x; gπ is the H −H� − π
coupling; δ0A and δ0V are the taste-breaking hairpin para-
meters; a2Δ̄ is the mean-squared pion taste splitting; and
λa2 and λ

0
a2 are parameters in SχPT related to taste breaking

in meson masses. Definitions of the residue functions R½n;k�
j ,

the sets of masses in the residues, and the chiral-log
function K1 at infinite and finite volumes are given in
Ref. [1] and references therein. The expression for δMH�

x
is

also given in Ref. [1], but because we have lattice data only
for pseudoscalar mesons, it is not needed here.
In Eq. (3.1), we set

Cð�Þ ¼ 2λ1B0mq þ 2λ01B0ð2ml þmsÞ
þ δM

Hð�Þ
q
ðmq; fml;ml; msg; 0Þ ð3:3Þ

so that in the continuum limit the usual expression

M
Hð�Þ

q
ðmq; fml;ml; msg; 0Þ

¼ mh;MRS þ Λ̄MRS þ
μ2π − dHð�Þμ2GðmhÞ

2mh;MRS
ð3:4Þ

is recovered for physical values of sea-quark masses and
mx ¼ mq.With this choice for C, thevalues thatwe obtain for
Λ̄MRS, μ2π and μ2GðmhÞ are readily applicable for calculations
in HQET.2 In this work, we set mq ¼ 1

2
ðmu þmdÞ, and we

report Λ̄MRS, μ2π and μ2GðmhÞ for this choice.
At this stage, the fit parameters are mr;MSðμ ¼ 2 GeVÞ

via Eq. (1.3), Λ̄MRS, the kinetic energy μ2π, the chromo-
magnetic energy μ2GðmbÞ from which we obtain μ2GðmhÞ as
in Eq. (3.6) below, and the LECs λ1, λ01, λa2 , and λ

0
a2 . Ideally,

one would have data for both pseudoscalar- and vector-
meson masses, and then one could set up separate fits for

spin-independent and spin-dependent terms. In this work,
however, only the pseudoscalar masses are available. The
experimental masses of the B� and Bmesons can be used to
estimate

μ2GðmbÞ ≈
3

4
ðM2

B� −M2
BÞ ¼ 0.36 GeV2; ð3:5Þ

which neglects contributions to the hyperfine splitting
suppressed by a power of 1=mb. The chromomagnetic
operator has an anomalous dimension, however, so we
obtain μ2GðmhÞ in Eq. (3.1) with

μ2GðmhÞ ¼
CcmðmhÞ
CcmðmbÞ

μ2GðmbÞ; ð3:6Þ

using the three-loop relation [16] for the Wilson coefficient
CcmðmhÞ. For four active flavors,

CcmðmhÞ ¼ α9=25s ð1þ 0.672355αs þ 1.284α2sÞ; ð3:7Þ

where αs ¼ αMSðm̄hÞ.
As discussed in Sec. I and Ref. [1], the matrix elements

of HQET suffer in general from ambiguities related to
renormalon singularities, although the ambiguities cancel
in observables such as the meson mass. For instance,
the ambiguity in Λ̄ cancels the leading-renormalon ambi-
guity in the pole mass. By construction, only the leading
renormalon is removed to define the MRS mass. In
principle, renormalon ambiguities in μ2π and μ2GðmhÞ
remain. In practice, numerical investigation indicates that
the subleading infrared renormalon of the pole mass is
small [1], which implies that the corresponding renormalon
ambiguity in μ2π is not large. Moreover, the leading spin-
dependent renormalon in μ2G is suppressed by a further
power of 1=mh.

B. Higher-order terms in χPT

Because we have very precise data with statistical errors
of 0.005–0.12%, we can anticipate that next-to-leading-
order (NLO) χPT is not enough to fully describe the quark-
mass dependence, especially for data with mx near ms. We
therefore extend the function given in Eq. (3.1) by adding

2Note that in the context of Eq. (3.4), the matrix elements
Λ̄MRS, μ2π and μ2GðmhÞ depend on the light-quark masses.
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higher-order analytic corrections in powers of light-quark
masses and in inverse powers of the heavy-quark mass. For
the expansion in inverse powers of the heavy-quark mass,
we introduce the dimensionless variable

wh ¼
ΛHQET

mh;MRS
; ð3:8Þ

with ΛHQET ¼ 600 MeV. Then the natural size of coef-
ficients of the 1=mh corrections is of order 1. For expansion
in light-quark masses, following Refs. [14,50], we define
dimensionless quark masses, which are natural expansion
parameters in χPT:

xq ≡ B0

4π2f2π
mq; ð3:9Þ

where q can be either the valence or sea light quarks. For
simplicity, we drop the primes on the simulation xqs. The
quark masses in the formula for δMHx

can also be
expressed in terms of fxx; xl; xsg.
We include all mass-dependent analytic terms at order x2q

by adding

fπ½q1x2x þ q2xxð2xl þ xsÞ þ q3ð2xl þ xsÞ2 þ q4ð2x2l þ x2sÞ�
ð3:10Þ

to the expression for MHx
in Eq. (3.1). With fπ to set the

overall scale of these higher-order terms, the coefficients qi
become of order 1 or less. We also include all mass-
dependent analytic terms at order x3q, namely

x3x; x2xð2xlþxsÞ; xxð2xlþxsÞ2; xxð2x2l þx2sÞ;
ð2xlþxsÞ3; ð2xlþxsÞð2x2l þx2sÞ; 2x3l þx3s : ð3:11Þ

In practice, one can expect the terms without xx to be less
important, but we keep all of them for consistent power
counting.
To improve the expansion in inverse powers of the heavy

quark, we add

ΛHQETðρ1w2
h þ ρ2w3

h þ ρ3w4
hÞ ð3:12Þ

with three fit parameters ρi to the right-hand side of
Eq. (3.1). We also add wh and w2

h corrections to the
LECs λ1, λ01 and gπ , and wh corrections to the fit parameters
qi in Eq. (3.10).
The heavy-quark mass also affects the hyperfine splitting

Δ� and the flavor splitting δSx in Eq. (3.2). Although we
could express these quantities in terms of μ2GðmhÞ and λ1,
we exploit the experimental values for the hyperfine
splittings and flavor splittings in the D and B systems to
calculate Δ� and δSx for different quark masses. See our
companion paper on decay constants [14] for details.

We now discuss the effects of mistuning in the sea
charm-quark mass m0

c. The effects can be divided into two
parts: the effects on the pole mass (and, hence, the MRS
mass) and the effects on the effective theory after the charm
quark is integrated out. The former effects are taken into
account in calculating the MRS mass from the MS mass;
cf. Eq. (3.24). We treat the latter effects as in Ref. [14]. We
use ΛQCD

ð3Þðm0
cÞ to denote the effective value of ΛQCD

when the charm quark with mass m0
c is integrated out. At

leading order in weak-coupling perturbation theory, one
obtains [see Eq. (1.114) of Ref. [56]]

Λð3Þ
QCDðm0

cÞ
Λð3Þ
QCDðmcÞ

¼
�
m0

c

mc

�
2=27

; ð3:13Þ

where mc is the correctly tuned value of the charm-quark
mass. Assuming m0

c ≈mc, we take the effects of the
mistuned mass m0

c into account by multiplying Λ̄MRS with

�
m0

c

mc

�
2=27

�
1þ 2k01

27

m0
c −mc

m0
c

�
; ð3:14Þ

where the extra fit parameter k01 describes higher-order
corrections to Eq. (3.13).
We must also include generic lattice artifacts in our

analysis. Taste-breaking discretization errors from stag-
gered fermions are already included in Eq. (3.2). In addition
to these effects, various discretization errors, from gluons
e.g., must be taken into account. We include the leading
lattice artifacts for Λ̄MRS by replacing

Λ̄MRS → Λ̄MRS½1þ c̄1αsðaΛÞ2 þ c̄2ðaΛÞ4�; ð3:15Þ

where Λ is the scale of generic discretization effects, set to
600 MeV in this analysis. The factor of αs in the second-
order term arises because the HISQ action is tree-level
improved to order a2. Note that Λ̄MRS is not affected by
heavy-quark discretization errors. As discussed in the
Appendices of Ref. [14], at leading order (LO) in
HQET, heavy-quark discretization errors only affect the
normalization of the heavy-quark state. Thus, Λ̄MRS and
also λ1, λ01 and gπ at leading order in 1=mh are free of heavy-
quark discretization errors. For λ1 we replace

λ1 → λ1½1þ c1αsðaΛÞ2 þ c2ðaΛÞ4 þ c3whαsðamhÞ2�;
ð3:16Þ

where the c3 term is added to incorporate effects of heavy-
quark discretization errors. We incorporate similar correc-
tions for λ01 and gπ . Finally, we add αsðaΛÞ2 and αsðamhÞ2
corrections to μ2π and μ2GðmbÞ, and αsðaΛÞ2 corrections to
the parameters qi in Eq. (3.10).
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C. Heavy-quark mass

Although the MRS mass is the key to our interpretation
of the HQET mass formula, as indicated in Eq. (1.3) we
arrange the fit to yield the MS mass. For am ≪ 1, the
relation between the MS and bare masses is

mMSðμÞ¼
am
a

f1þαs½−ð2=πÞ logðaμÞþk0þk1ðamÞ2þ����
þOðα2sÞg; ð3:17Þ

where a in the denominator is set from the scale setting
quantity (here fp4s, as described in Sec. II). With staggered
fermions, there is no additive mass renormalization, and to
eliminate tree-level discretization errors from Eq. (3.17),
we take the mass am to be the tree-level pole mass.3 Taking
the ratio between two masses4

mh;MSðμÞ
mr;MSðμÞ
¼ amh

amr
ð1þ αMSðμÞfk1½ðamhÞ2 − ðamrÞ2� þ � � �g þ � � �Þ;

ð3:18Þ

where the dots stand for higher-order terms in a2 and αs. In
fact, each higher order inαs is alsomultiplied by a quantity of
order a2, as stated in the Introduction. In this analysis, we set
the reference-quark mass mr to mp4s ≡ 0.4ms and the scale
of theMS scheme to μ ¼ 2 GeV. Thus,mp4s;MSð2 GeVÞ is a
free parameter left to be determined in the fit to lattice data;
cf. Eq. (1.3b).
To incorporate further heavy-quark discretization

effects into Eq. (3.18), we multiply the right-hand side
of Eq. (1.3b) by

�
1þ αMSð2 GeVÞ

X4
n¼1

knxnh

�
; ð3:19Þ

where the dimensionless coefficients kn are free fit param-
eters, and

xh ¼ ð2amh=πÞ2 − ð2amp4s=πÞ2 ≈ ð2amh=πÞ2: ð3:20Þ

We multiply amh by a factor of 2=π so that the parameters
kn become of order 1, based on the radius of convergence
of various tree-level formulas for the HISQ action; see
Appendix A of Ref. [14]. Because ðamp4s=amcÞ2 ≈
0.001, the effects of a nonzero value of amp4s are negligible

compared with the heavy-quark discretization effects. To
incorporate generic lattice-spacing dependence into our
analysis, we additionally multiply the right-hand side of
Eq. (1.3b) by

½1þ c̃1αsðaΛÞ2 þ c̃2ðaΛÞ4 þ c̃3ðaΛÞ6�: ð3:21Þ

To complete our approach to introducingmp4s;MSð2 GeVÞ
via mh;MRS, we must describe the calculation of the second
and third factors in Eq. (1.3b). The second factor simply uses
the anomalous dimension to run from μ ¼ 2 GeV to the self-
consistent scale m̄h ≡mh;MSðm̄hÞ

m̄h

mh;MSðμÞ
¼ CðαMSðm̄hÞÞ

CðαMSðμÞÞ
; ð3:22Þ

where with four active flavors [57]

CðπuÞ ¼ u12=25½1þ 1.01413uþ 1.38921u2

þ 1.09054u3 þ 5.8304u4 þ Oðu5Þ�: ð3:23Þ

The coefficient ofu4 is obtained from the five-loop results for
the quark-mass anomalous dimension [57] and beta function
[58]. Finally, the third factor in Eq. (1.3b) is simply the
relation derived in Ref. [1], which at the four-loop level reads

mh;MRS

m̄h
¼ 1þ

X3
n¼0

½rn − Rn�αnþ1
s ðm̄hÞ þ JMRSðm̄hÞ

þ ΔmðcÞ
m̄h

þ Oðα5sÞ; ð3:24Þ

where the rn are known through order α4s [59,60]; the Rn
depend only on the coefficients of the beta function [21,23]
up to an overall normalization, which is given in Ref. [23];
the function m̄JMRSðm̄Þ ¼ JMRSðm̄Þ appears in the defini-
tion of the MRS mass [1]; and ΔmðcÞ contains the contri-
bution from the charm sea quark. Because the nonzero mass
of the charmed sea quark cuts off the infrared region that is
the origin of factorial growth in the rn [61], we subtract the
renormalon with three massless active quarks and lump the
charmed loops’ contributions into ΔmðcÞ [62].
The detailed formulas for JMRSðm̄Þ and ΔmðcÞ can be

found in Ref. [1]. The crucial aspects of Eq. (3.24)
for the fits of the next section is that the renormalon-
subtracted perturbative coefficients are small: rn − Rn ¼
ð−0.1106;−0.0340; 0.0966; 0.0162Þ for n ¼ ð0; 1; 2; 3Þ
and three active flavors. The Borel-resummed renormalon
is computed from a function with a convergent expansion in
1=αs. (In fact, our implementation of one of the factors in
JMRS uses the convergent expansion until it saturates to
numerical precision.)

3The exact relation between m0 and m can be found in
Appendix A of Ref. [14].

4For Wilson fermions with order-a improvement, the follow-
ing arguments hold for the mass defined through the axial Ward
identity, apart from details about the lattice artifacts.
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D. Summary formulas

In summary, we fit our data for aMðmh;mx;
fm0

l; m
0
l; m

0
sg; aÞ to

aM
afp4s

����
data

fp4s ¼ F ; ð3:25Þ

where F is the fit function and fp4s is in the continuum
limit. From the preceding subsections:

F ¼ m̆h;MRSþ ˘̄ΛMRSþ
μ̆2π

2mh;MRS
−
μ̆2GðmbÞ
2mh;MRS

CcmðmhÞ
CcmðmbÞ

þ2λ̆1B0ðmx−mlÞþ2λ̆01B0ð2m0
lþm0

s−2ml−msÞ
þδMHx

ðmx;fm0
l;m

0
l;m

0
sg;aÞ−δMHl

ðml;fml;ml;msg;0Þ
þΛHQET½ρ1w2

hþρ2w3
hþρ3w4

h�

þfπ

�X4
i¼1

qið1þq0iwhþ q̃iαsy2Þx2i þ
X11
j¼5

qjx3j

�
; ð3:26Þ

where y¼ðaΛÞ2 andwh¼ΛHQET=mh;MRS. The HMrASχPT
self-energy δMHx

depends on f, λa2 , λ
0
a2 , ğπ , δ

0
V , and δ0A, as

well as Δ� and taste-independent δSx. The breved quantities
are

˘̄ΛMRS ¼ Λ̄MRSð1þ c̄1αsyþ c̄2y2Þ
�
m0

c

mc

�
2=27

�
1þ k01

δm0
c

mc

�
;

ð3:27aÞ

λ̆1¼λ1ð1þc1αsyþc2y2þc3w̄hαsyþc4w̄hþc5w̄2
hþc6w̄3

hÞ;
ð3:27bÞ

λ̆01¼λ01ð1þc01αsyþc02y
2þc03w̄hαsyþc04w̄hþc05w̄

2
hþc06w̄

3
hÞ;

ð3:27cÞ

ğπ¼gπð1þg1αsyþg2y2þg3w̄hαsyþg4w̄hþg5w̄2
hþg5w̄3

hÞ;
ð3:27dÞ

μ̆2π ¼ μ2πð1þ pπαsyþ rπαsx2hÞ; ð3:27eÞ

μ̆2GðmbÞ ¼ μ2GðmbÞð1þ pGαsyþ rGαsx2hÞ; ð3:27fÞ

where w̄h ¼ wh − ΛHQET=mc;MRS; further

m̆h;MRS ¼ mp4s;MSð2 GeVÞ
�

CðαMSðm̄hÞÞ
CðαMSð2 GeVÞÞ

�
Eq: ð3.23Þ

×

�
mh;MRS

m̄h

�
Ref: ½1�

�
am0h

am0;p4s

�
sim

×

�
1þ αMSð2 GeVÞ

X4
n¼1

knxnh

�

× ð1þ c̃1αsyþ c̃2y2 þ c̃3y3Þ: ð3:28Þ

Thus, there are 61 free parameters, four parameters [f, gπ ,
μ2GðmbÞ, and, in mh;MRS=m̄h, R0] with external priors, and
two hairpin parameters (δ0V and δ0A) from light-meson χPT.
Δ� and δSx introduce two parameters each that are, however,
frozen to reproduce PDGhyperfine and flavor splittings. The
total number of fit parameters is 67 (comparedwith 60 for the
decay-constant fit [14]).
In Eq. (3.28), m̄h is given self-consistently by using the

formula

m̄h ¼ mp4s;MSð2 GeVÞ

×

�
CðαMSðm̄hÞÞ

CðαMSð2 GeVÞÞ
�
Eq: ð3.23Þ

�
am0h

am0;p4s

�
sim

×

�
1þ αMSð2 GeVÞ

X4
n¼1

knxnh

�

× ð1þ c̃1αsyþ c̃2y2 þ c̃3y3Þ; ð3:29Þ

to readjust the argument of CðαMSðm̄hÞÞ. These parameters
are not new but rather the same as those in Eq. (3.28).

IV. EFT FIT TO DETERMINE
THE QUARK MASSES

In Sec. III, we have constructed a function with 67 fit
parameters that is motivated by EFTs. Here, we use this
function to perform a correlated fit to partially quenched
data at five lattice spacings, from a ≈ 0.12 to≈0.03 fm, and
at several values of the light sea-quark masses. A sixth
lattice spacing, a ≈ 0.15 fm, is used to check discretization
errors but is not included in the base fit. At the coarsest
lattice spacings, we only have data with two different
values for valence heavy-quark mass: mh ¼ m0

c and
mh ¼ 0.9m0

c, where m0
c is the simulation value of sea

charm-quark mass in each ensemble. It is close to but not
precisely equal to the physical charm mass mc because of
tuning errors. We include data with 0.9m0

c ≤ mh ≤ 5m0
c

subject to the condition amh < 0.9, which is chosen to
avoid large lattice artifacts. For every valence heavy quark,
we use several light valence quarks with masses
ml ≲mx ≲ms; on ensembles with the mass of the strange
sea quark close to its physical value, mx=m0

s takes values in
a subset of f0.036; 0.1; 0.2; 0.4; 0.6; 1.0g (in several cases
the whole set). In the base fit, we obtain the meson masses
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from fits to two-point correlators with three pseudoscalar
states and two opposite-parity states, which we denote
“3þ 2” below. To investigate the error arising from excited
state contamination, we also use meson-mass data from
(2þ 1)-state fits.

The values of the bare masses corresponding to the light
and strange quarks are taken from combinations of the
physical pion and kaon masses, as discussed in
Refs. [14,50]. Similarly, the physical charmed and bottom
quarks are defined so that the Ds- and Bs-meson masses
take their physical values. Because the gauge-field ensem-
bles omit electromagnetism, we need to subtract electro-
magnetic effects from the experimentally measured masses,
which means introducing a specific scheme to do so. We
identify MQCD

π0
¼ Mexpt

π0
and adjust ml accordingly. Values

of the charged and neutral kaon masses in pure QCD, are
obtained by subtracting the electromagnetic effects via the
quantities ðM2

K0Þγ and ϵ0. Here ðM2
K0Þγ is the electromag-

netic contribution to the squared mass of the neutral kaon.
The quantity ϵ0 parametrizes higher-order corrections to
Dashen’s theorem:

ϵ0 ≡ ðM2
K� −M2

K0Þγ − ðM2
π� −M2

π0
Þexpt

ðM2
π� −M2

π0
Þexpt : ð4:1Þ

In this paper, we use the most recent values from the
MILC Collaboration [63]:

ϵ0 ¼ 0.74ð1Þstatð þ8
−11Þsyst; ð4:2Þ

ðM2
K0Þγ ¼ 44ð3Þstatð25Þsyst MeV2: ð4:3Þ

Our scheme is the one introduced for u and d quarks in
Refs. [64,65]. It defines the isospin limit in the presence of
electromagnetism to be the point at which the masses of
both the uū and dd̄ pseudoscalar mesons (neglecting quark-
line-disconnected contributions) are equal to MQCD

π0
. The

scheme is extended naturally to the s quark using the fact
that mass renormalization for staggered quarks is multi-
plicative [63]. Numerically, the scheme dependence pre-
dominantly affects ðM2

K0Þγ and has relatively little influence
on the value of ϵ0.
Using Eqs. (4.2) and (4.3), ms is tuned to obtain

ðM2
Kþ þM2

K0 −M2
π0
ÞQCD

¼ ðM2
Kþ þM2

K0 −M2
π0
Þexpt − 2ðM2

K0Þγ
− ð1þ ϵ0ÞðM2

πþ −M2
π0
Þexpt: ð4:4Þ

As in Ref. [14], we tune mc and mb with the phenom-
enological formula [66–68]

Mexpt
Hx

¼ MQCD
Hx

þ Aexeh þ Be2x; ð4:5Þ

where A ¼ 4.44 MeV, B ¼ 2.4 MeV [14] and ex and eh
are charges of the valence light quark and heavy antiquark,
respectively.5 Using these quantities, the quark charges, and
the experimental meson masses Mexpt

Ds
¼1968.27ð10ÞMeV

and Mexpt
Bs

¼ 5366.82ð22Þ MeV [52], we compute the

pure QCD masses MQCD
Ds

¼1967.01MeV and MQCD
Bs

¼
5367.04 MeV. This choice for defining MQCD

Hx
amounts

to a specific QED renormalization scheme for the heavy-
quark mass. Another choice, e.g., would be to subtract
the leading QED contribution to the self-energy of the
heavy quark, which is proportional to e2h. Finally, we set
ðaMHs

=afp4sÞsim ¼ MQCD
Hs

=fp4s to find the physical amc

and amb on each ensemble.
In the one-loop χPT result, Eq. (3.2), finite-volume effects

enter through the function K1. Because the numerical
evaluation of those effects is time consuming, our base fit,
as well as various alternative fits that we employ to estimate
or check statistical and systematic errors, use the infinite-
volume version of K1. The finite-volume correction is
determined only in a single fit at the end of the analysis.
Cross terms between finite-volume and other systematic
errors are missed with this approach, but they are negligible.
We use a constrained fitting procedure [69] with priors

set as follows. For the main objectives of the analysis, we
choose extremely wide priors: 0� 6 GeV for both
mp4s;MSð2 GeVÞ and Λ̄MRS, and ð0� 1ÞΛHQET

2 for μ2π.
Several other parameters are set from external consider-
ations. As discussed in Sec. III A, the value of μ2GðmbÞ
should be close to the B� − B hyperfine splitting; following
Ref. [70], we set the prior distribution of μ2GðmbÞ to
ð0.35� 0.07Þ GeV2. For the LECs that appear at LO in
HMrASχPT and are common for both decay constants and
meson masses, we use the same prior constraints as in our
work on decay constants [14]:

gπ ∼ 0.53� 0.08; ð4:6aÞ

1

f2
∼
1

2

�
1

f2π
þ 1

f2K

�
�
�
1

f2π
−

1

f2K

�
; ð4:6bÞ

δ0V=Δ̄ ∼ −0.88� 0.09; ð4:6cÞ

δ0A=Δ̄ ∼þ0.46� 0.23; ð4:6dÞ

where a2Δ̄ is related to the differences in squared pion
masses, as discussed in Ref. [14]. For the LECs λ1 and λ01,

5In Eq. (4.5), our scheme is defined by the dropping of any
term proportional to e2hmh, which could arise from electromag-
netic mass renormalization of the heavy quark. However, our
simple model also omits some physical effects, such as a term
proportional to e2=mh, which would come from electromagnetic
corrections to the quark-gluon vertex.
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we use wide priors of ð0� 2Þ GeV−1, which are 10 times
larger than what can be extracted from the flavor splittings
of B or D mesons, namely λ1 ≈ 0.2 GeV−1 (see, e.g.,
Ref. [71]). Similarly, for the dimensionless LECs λa2 and
λ0a2 , we use priors of 0� 10, which are much wider than the
expected size of order 1.
For the overall normalization of Rn, which was denoted

by Nm in Ref. [22] and N in Refs. [21,23], we use

R0 ¼ 0.535� 0.010 ð4:7Þ

for a theory with three massless active quarks [23]. In the
fits reported in this section, we use Eq. (4.7) to provide a
prior for R0.
Finally, the remaining parameters, which are dimension-

less, are given the prior 0� 1.
The calculation of the MRS mass relies on having a

precise estimate for the strong coupling. In this paper, we
use

αMSð5GeV;nf ¼ 4Þ¼ 0.2128ð25Þ; ð4:8Þ

which has been obtained by the HPQCDCollaboration [72]
for four active flavors. This value corresponds to
αMSðmZ; nf ¼ 5Þ ¼ 0.11822ð74Þ, whereas the PDG quotes
αMSðmZ; nf ¼ 5Þ ¼ 0.1181ð11Þ with a somewhat larger
uncertainty. The advantage of Eq. (4.8) is that it has been
determined on a subset of the same ensembles used here, so
it is consistent to use it with our lattice-QCD data. We use
the mean value in our base fit, and we introduce an
uncertainty associated with αMS by varying its value by
1σ. To run the coupling constant to the scale μ, we use the
QCD beta function at five-loop order accuracy [58] and

integrate the differential equation numerically. In Sec. V,
we comment on how the results would change using the
PDG’s estimate of the uncertainty in αMS.
In general, our data for the meson masses are more

precise than the data for scale-setting quantities. We
incorporate the latter uncertainties as follows. Let us use
afp4s and amp4s to denote the p4s quantities computed
from light mesons at each lattice spacing and Σp4s to denote
their covariance matrix. We introduce two fit parameters at
each lattice spacing, afp4s;opt and amp4s;opt, to represent
optimized values for the p4s quantities under the influence
of the heavy-light data. We then employ the so-called
penalty trick [73] to take into account the uncertainties in
afp4s and amp4s. Thus, we add

δχ2 ¼
X

½afp4s − afp4s;opt amp4s − amp4s;opt �ðΣp4sÞ−1

×

�
afp4s − afp4s;opt
amp4s − amp4s;opt

�
ð4:9Þ

to our χ2 function, where the sum is over all lattice
spacings. Because data at five different lattice spacings
enter the base fit, ten additional parameters are required.
The optimized values for the scale-setting quantities are
then obtained simultaneously in the EFT fit. Given the size
of errors in our data, the bias discussed in Ref. [73] is
negligible.
Altogether we have 384 lattice data points and

77 parameters in our base fit: 67 parameters in the
EFT fit function and ten parameters for optimized values
of scale-setting quantities. The fit returns a correlated
χ2data=d:o:f: ¼ 320=307, giving a p value of p ¼ 0.3.
Figures 1 and 2 illustrate the base fit at the four (five)

FIG. 1. A snapshot of the base fit (to data for all light-quark masses) and the lattice data for heavy-strange meson masses. Only
ensembles with physical light sea mass are shown, thereby leaving out the finest lattice spacing, a ≈ 0.03 fm. Left: Heavy-strange
meson mass vs heavy-quark MRS mass. Right: Difference of the heavy-strange meson mass and the heavy-quark MRS mass vs heavy-
quark MRS mass. The dashed vertical lines indicate the cut amh ¼ 0.9 for each lattice spacing. Data points with open symbols to the
right of the dashed vertical lines are omitted from the fit. Heremh;MRS is the continuum limit of the MRS mass of the heavy quark h. The
error bar for mh;MRS is suppressed for clarity.
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lattice spacings for the physical mass (0.2m0
s) ensembles

and in the continuum limit. The valence light mass mx is
tuned to ms: the graphs illustrate a snapshot for heavy-
strange meson masses. We plot the heavy-strange meson
mass or the difference of the meson mass and the h̄-
antiquark MRS mass versus the continuum limit of the h-
quark MRS mass (in Fig. 1) or its reciprocal (in Fig. 2).
Data points with open symbols to the right (left) of the
dashed vertical line of the corresponding color in Fig. 1
(Fig. 2) are omitted from the fit because they have
amh > 0.9. In the continuum extrapolation the masses
of sea quarks are set to the physical (correctly tuned)
quark masses ml, ms and mc, while at nonzero lattice
spacing the masses of the sea quarks take their simulation
values.
The width of the fit lines in Figs. 1 and 2 show the

statistical error coming from the fit, which is only part of
the total statistical error, since it does not include the
statistical errors in the inputs of the light quark masses and
the lattice scale. Furthermore, the statistical error reported
by the fit is sensitive to numerical errors in computing the
fit parameters’ covariance matrix. For a robust determi-
nation of the total statistical error of each output quantity,
we divide the full data set into 20 jackknife resamples. The
complete calculation, including the determination of the
inputs, is performed on each resample, and the error is
computed as usual from the variations over the resamples.
For convenience, we keep the covariance matrix fixed to
that of the full data set, rather than recomputing it for each
resample.
The physically interesting quantities mp4s;MSð2 GeVÞ,

Λ̄MRS, μ2π , and μ2GðmbÞ are now determined directly from
the fit to the lattice data. Moreover, the fit function
evaluated at zero lattice spacing and physical sea-quark
masses yields the meson masses as a function of the valence
heavy- and light-quark masses; see, e.g., Figs. 1 and 2.

Figure 3 shows the stability of our final results for MS
quark-mass ratios mb=mc, mc=ms and mb=mc; for masses
of strange, charm and bottom quarks; and for the HQET
matrix element Λ̄MRS. We test the systematic error in the
continuum extrapolation by repeating the fit after either
adding in the coarsest (a ≈ 0.15 fm) ensembles or omitting
the finest (a ≈ 0.03 fm) ensemble. These changes are
shown in Fig. 3 and seen to have no significant effect,
so we consider these tests to be cross-checks. The meson-
mass data in our base fit are obtained from the (3þ 2)-state
fits to two-point correlators. To investigate the error arising
from excited state contamination, we repeat the EFT fit
with meson-mass data from the (2þ 1)-state fits to two-
point correlators. As seen in Fig. 3, the effects from this
change are small too. Because we have no other handle on
systematic errors due to excited states, we take the differ-
ence between the results from the two types of correlator
fits as an estimate of this uncertainty.
We now turn to effects from truncating perturbative QCD

in the relation between quark-mass definitions and the beta
function. As explained with Eq. (1.3), the MRS mass
connects the MS mass of the h quark to the heavy-light-
meson mass Hx. By design, the fit yields mp4s;MSð2 GeVÞ,
and we use the continuum limit of amh=amp4s to convert to
mh;MSð2 GeVÞ. We then use Eqs. (3.22) and (3.23) to
calculate m̄h and Eq. (3.24) to calculate mh;MRS. The beta
function and quark-mass anomalous dimension are known
at five loops [57,58], and the pole mass at four
loops [59,60].
To monitor the errors from truncating perturbative QCD,

we rerun the analysis with fewer orders in Eqs. (3.23) and
(3.24) and in the beta function without, however, changing
Ccm, the Wilson coefficient for μ2G [Eq. (3.7)]. Figure 4
shows the stability of our results for MS quark-mass ratios
mb=mc, mc=ms and mb=mc; for masses of strange, charm
and bottom quarks; and for the HQET matrix element

FIG. 2. Similar to Fig. 1, but the horizontal axes are the inverse of the heavy-quark MRSmass, and the left panel shows ensembles with
light sea mass equal to 0.2m0

s, while the right panel shows physical-mass ensembles. Data points with open symbols to the left of the
dashed vertical lines are omitted from the fit.
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Λ̄MRS, as the order of perturbation theory is increased. In
Fig. 4, we denote by Oðαns Þ a fit that includes n orders
beyond the leading terms in Eqs. (3.23), (3.24), and the beta
function. The quark-mass ratios are not at all sensitive to
the truncations in the perturbative-QCD relations; essen-
tially, these ratios are the continuum limit of the corre-
sponding bare masses. For the quark masses and the HQET
matrix elements, one finds good convergence, within the
statistical errors, as the order of αs in the perturbative
expressions is increased. Based on this observation, we do
not introduce any additional systematic error associated
with truncation in perturbative-QCD results. Note that the
truncation effects are negligible because the renormalon-
subtracted perturbative coefficients in the MRS mass are all
very small. If one employs the RS mass [22], for instance,
the truncation error for the bottom quark mass would be
about 10 to 20 MeV, depending on the details.

Our data prefer an overall coefficient of the one-loop
HMrASχPT contribution, δMHx

, namely g2π=f2, well below
the prior width of the product of g2π and 1=f2 in Eqs. (4.6a)
and (4.6b). In our base fit, the posterior for this product is
g2π=f2 ¼ 3.8 GeV−2 (for D systems) while the prior value
is ð14� 7Þ GeV−2. To investigate the effects of treating g2π
and 1=f2 as free parameters, we consider two alternative
fits. First, we fix gπ ¼ 0.45, one sigma below its nominal
value, and 1=f2 ¼ 1=f2K . Second, we fix gπ ¼ 0, which is
equivalent to fitting to a polynomial in the quark masses. In
Fig. 5, we label the first of these “gπ ¼ 0.45” and the
second “gπ ¼ 0”. As one can see, the quark-mass
ratios, quark masses themselves, and the HQET matrix
element Λ̄MRS do not change significantly under these
variations. Consequently, we do not introduce any addi-
tional systematic error associated with our treatment of gπ
and 1=f2.

base

with 0.15 fm

no 0.03 fm

(2+1)

FIG. 3. Stability plot showing the sensitivity under variations in the data set and the form of the fit function, as described in the text.
Here ms ¼ ms;M̄Sð2 GeVÞ, m̄c ¼ mc;M̄Sðmc;M̄SÞ, and m̄b ¼ mb;M̄Sðmb;M̄SÞ. The error bars show only the statistical errors, the gray error
bands correspond to the statistical error of the base fit, and the dashed green lines correspond to total errors.

base

FIG. 4. Stability plot showing the sensitivity to truncation error in perturbative-QCD relations that are used in our analysis. In the base
fit, the perturbative series are accurate through order α4s. In the fits labeled by Oðαns Þ, we keep n subleading orders. Here
ms ¼ ms;M̄Sð2 GeVÞ, m̄c ¼ mc;M̄Sðmc;M̄SÞ, and m̄b ¼ mb;M̄Sðmb;M̄SÞ. The error bars show only the statistical errors, the gray error
bands correspond to the statistical error of the base fit, and the dashed green lines correspond to total errors.
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Our full error budget for quark-mass ratios, quark
masses, and the HQET matrix element Λ̄MRS is given in
Table I. The row labeled “statistics and EFT fit” lists the
uncertainty reported by the Bayesian fit, which incorpo-
rates associated systematic effects of extrapolation. There
are further systematic effects not captured in the EFT fit.
The excited-state contamination in two-point correlator fits
is explained above. Our method of estimating the system-
atic error associated with the tuned quark masses and
scale setting quantities is similar to that in Ref. [14]. We
correct for (exponentially small) finite-volume effects using
the finite-volume version of the NLO χPT for the heavy-
light mesons, and using NLO or next-to-NLO χPT for the
light-quark and scale-setting inputs following Ref. [50].
Residual finite-volume effects from higher orders in
χPT are estimated, as in Ref. [14], as 0.3 times the
calculated finite-volume correction. The nonequilibration

of topological charge in our finest ensembles causes small
finite-volume effects that are not exponentially suppressed
[74]. Although this error is negligible for masses of heavy-
light mesons, even with our high statistics, we include the
shift expected from Ref. [74] as a systematic error. Note
that, despite the fact that we take the full topological shift as
the associated error, these errors all round to zero at the
precision shown in Table I. The uncertainties stemming
from the omission of electromagnetism are discussed in
detail below. Finally, our results have uncertainties from the
parametric inputs αs, given in Eq. (4.8), and fπ;PDG ¼
130.50ð13Þ MeV [52].
Table II shows a breakdown of the uncertainties from

matching a pure-QCD calculation such as this to
QCDþ QED. Briefly, “Kþ-K0 splitting” is the uncertainty
in connecting the Kþ-K0 splitting to that of πþ-π0,
stemming from ϵ0, and “K0 mass” refers to the uncertainty

base

FIG. 5. Stability plot showing the sensitivity to different choices for gπ. The error bars show only the statistical errors, the gray error
bands correspond to the statistical error of the base fit and the dashed green lines correspond to total errors.

TABLE I. Error budget for strange-, charm- and bottom-quark masses, their ratios, and the HQET matrix element
Λ̄MRS. See the text for the description.

Error (%) mb=mc mc=ms mb=ms ms;M̄Sð2 GeVÞ m̄c m̄b Λ̄MRS

Statistics and EFT fit 0.10 0.09 0.11 0.43 0.31 0.29 4.6
Two-point correlator fits 0.07 0.01 0.08 0.07 0.05 0.00 1.3
Scale setting and tuning 0.02 0.14 0.16 0.18 0.03 0.02 0.2
Finite-volume corrections 0.00 0.02 0.01 0.01 0.01 0.00 0.0
Topological charge distribution 0.01 0.00 0.00 0.01 0.01 0.01 0.2
Electromagnetic corrections 0.12 0.11 0.01 0.01 0.08 0.00 0.0
αs 0.01 0.00 0.01 0.56 0.75 0.18 2.9
fπ;PDG 0.03 0.07 0.10 0.12 0.04 0.02 0.2

TABLE II. Error contributions from electromagnetic effects to strange-, charm- and bottom-quark masses, their
ratios, and the HQET matrix element Λ̄MRS. The sources of uncertainty are described in the text.

Error (%) mb=mc mc=ms mb=ms ms;M̄Sð2 GeVÞ m̄c m̄b Λ̄MRS

Kþ-K0 splitting þ0.00 −0.01 −0.01 þ0.00 −0.00 −0.00 þ0.0
K0 mass −0.00 þ0.00 þ0.00 −0.01 −0.00 −0.00 þ0.0
Hx mass −0.12 þ0.11 −0.00 þ0.00 þ0.08 −0.00 −0.0
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in the electromagnetic contribution to the neutral kaon
mass, ðM2

K0Þγ . These two effects are negligible compared
with the other sources of uncertainty. In this work, we
choose a specific scheme [63,64] for the electromagnetic
contribution to the neutral kaon masses; other works, e.g.,
the FLAG report [75], chose other schemes. Changing
ðM2

K0Þγ from þ44 MeV2 to þ461 MeV2 reduces ms by
0.17% and, consequently, increases mc=ms and mb=ms by
0.17%. When using these ratios and the strange-quark mass
in a setting that ignores the subtleties of the QED scheme,
one may wish to incorporate an additional uncertainty
of �0.17%.
Another uncertainty comes from the estimates of the

electromagnetic correction to the heavy-light meson mass,
described above with Eq. (4.5). It is denoted “Hx mass” in
Table II. For the associated error, we take the difference
between results obtained with and without the electromag-
netic shift. Results for heavy-quark masses depend on the
chosen QED quark-mass scheme. As discussed above, we
do not subtract any part of the QED self-energy.
[Equation (4.5) contains no term proportional to e2h.]
When using other schemes, one should convert our results
accordingly: a shift of 1 MeV in the QCD part of the Ds
(Bs) mass leads to a 0.7 MeV (0.8 MeV) shift in m̄c (m̄b).
The scheme dependence on the meson masses may be
estimated as �αmhe2h ≈�4.2 MeV (average for Ds and
Bs). When using the heavy-quark masses in a setting that
ignores the subtleties of the QED scheme, one may
consequently wish to incorporate an additional uncertainty
of �3.1 MeV on m̄c and �3.5 MeV on m̄b.

V. RESULTS

In this section, we collect the results that stem from the
EFT fits described in the previous two sections. These fall
into four categories: quark masses themselves and their
ratios, HQETmatrix elements, flavor splittings in theD and
B systems, and LECs of HMχPT. We emphasize again that
our final results for quark masses depend on our prescrip-
tion for calculating QCD-only meson masses; cf. the
discussions around Eq. (4.5) and about Table II.

A. Quark masses

As discussed in Sec. IV, the main physical fit parameters
correspond to the terms in Eq. (1.1). For the masses, the fit
yields

mp4s;MSð2GeVÞ¼36.99ð16Þstatð07Þsystð21Þαsð04Þfπ;PDG MeV

ð5:1Þ

with four active flavors, from which it follows immediately
that

ms;MSð2GeVÞ¼ 92.47ð39Þstatð18Þsystð52Þαsð11Þfπ;PDG MeV:

ð5:2Þ

Having determined the strange-quark mass, we use the
quark-mass ratios ms=ml and mu=md, and their correla-
tions, to obtain the light-quark masses

ml;MSð2GeVÞ¼ 3.402ð15Þstatð05Þsystð19Þαsð04Þfπ;PDG MeV;

ð5:3Þ

mu;MSð2GeVÞ¼ 2.130ð18Þstatð35Þsystð12Þαsð03Þfπ;PDG MeV;

ð5:4Þ

md;MSð2GeVÞ¼ 4.675ð30Þstatð39Þsystð26Þαsð06Þfπ;PDG MeV;

ð5:5Þ

where ml is again the average of the up- and down-
quark masses. To obtain these results, we take the large side
of the asymmetric uncertainties reported in Ref. [14], namely,
ms=ml ¼ 27.178ð47Þstatð70Þsystð1Þfπ;PDG and mu=md ¼
0.4556ð55Þstatð114Þsystð0Þfπ;PDG .
Evaluating the fit function at the quark masses yielding

the Ds and Bs mesons yields the mass ratios

mc=ms ¼ 11.783ð11Þstatð21Þsystð00Þαsð08Þfπ;PDG ; ð5:6Þ

mb=ms ¼ 53.94ð6Þstatð10Þsystð1Þαsð5Þfπ;PDG ; ð5:7Þ

mb=mc ¼ 4.578ð5Þstatð6Þsystð0Þαsð1Þfπ;PDG ð5:8Þ

where the third line is the ratio of the first two, taking
correlations in the uncertainties into account. Inmc=ms and
mb=mc, the uncertainty stemming from αs rounds to zero.
As elsewhere in this paper, these quark-mass ratios are
given in our scheme for subtracting electromagnetic
contributions from the K0, Ds, and Bs meson masses.
With this proviso in mind, though, they hold for any mass-
independent renormalization scheme of QCD.
For the charm- and bottom-quark masses we then obtain

mc;MSð2 GeVÞ ¼ 1090ð5Þstatð2Þsystð6Þαsð1Þfπ;PDG MeV;

ð5:9Þ

mb;MSð2 GeVÞ ¼ 4988ð17Þstatð1Þsystð29Þαsð1Þfπ;PDG MeV;

ð5:10Þ

again for four active flavors. The relative systematic error is
larger for mc;MSð2 GeVÞ than for mb;MSð2 GeVÞ, because
much of it comes from additive parts of the two-point
correlator and electromagnetic uncertainties. The largest
uncertainty comes from the uncertainty in αs in Eq. (4.8),
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followed by the statistical error (after propagation through
the EFT fit). As one can see from Fig. 4 and Eq. (5.19),
below, this uncertainty does not come from order-by-order
changes in perturbative QCD: the αs uncertainty is
parametric.
The uncertainty stemming from αs becomes smaller at

higher renormalization points. For the charmed quark,

mc;MSð3 GeVÞ
¼ 983.7ð4.3Þstatð1.4Þsystð3.3Þαsð0.5Þfπ;PDG MeV; ð5:11Þ

or, adding all errors in quadrature, 983.7(5.6) MeV.
Running from one renormalization scale is carried out
with Eq. (3.23) and numerical integration of the differential
equation for αMS with the five-loop beta function. For
comparison to the literature (cf. Sec. VI), it is useful to have
m̄h ¼ mh;MSðmh;MSÞ; for charm and bottom

m̄c ¼ 1273ð4Þstatð1Þsystð10Þαsð0Þfπ;PDG MeV; ð5:12Þ

m̄b ¼ 4201ð12Þstatð1Þsystð8Þαsð1Þfπ;PDG MeV; ð5:13Þ

or, adding all errors in quadrature, m̄c ¼ 1273ð10Þ MeV
and m̄b ¼ 4201ð14Þ MeV.
The quark masses given above are for four active flavors.

The mass of the bottom quark with five active flavors can
be calculated from [76]

mðnlÞ
b ðμÞ ¼ m̄b

ðnfÞ
�
1þ 0.2060

�
α
ðnfÞ
s ðμÞ
π

�2

þ ð1.8476þ 0.0247nlÞ
�
α
ðnfÞ
s ðμÞ
π

�3

þ ð6.850 − 1.466nl þ 0.05616n2l Þ
�
α
ðnfÞ
s ðμÞ
π

�4

þ � � �
�
; ð5:14Þ

where nl ¼ nf − 1 and μ ¼ m̄b
ðnfÞ. Setting nf ¼ 5, we

obtain

m̄
ðnf¼5Þ
b ¼ 4195ð12Þstatð1Þsystð8Þαsð1Þfπ;PDG MeV; ð5:15Þ

or, adding all errors in quadrature, m̄b ¼ 4195ð14Þ MeV.

The five-flavor mass can be run from m̄
ðnf¼5Þ
b to higher

scales using the five-loop anomalous dimension [57] and
beta function [58] with nf ¼ 5. For completeness, we run
the b mass to 10 GeV, finding

mb;MSð10 GeV; nf ¼ 5Þ
¼ 3665ð11Þstatð1Þsystð1Þαsð1Þfπ;PDG MeV; ð5:16Þ

in which the αs uncertainty has become very small.
Using the above results and Eqs. (1.3a) and (3.24), we

obtain the charm and bottom masses in the MRS scheme:

mc;MRS ¼ 1392ð6Þstatð8Þsystð6Þαsð0Þfπ;PDG MeV; ð5:17Þ
mb;MRS ¼ 4749ð14Þstatð2Þsystð11Þαsð1Þfπ;PDG MeV; ð5:18Þ

or, adding all errors in quadrature,mc;MRS¼1392ð12ÞMeV
and mb;MRS ¼ 4749ð18Þ MeV. Similar to the stability
shown in Fig. 4, the ratio mMRS=m̄ is very stable. For
αs ¼ 0.22 and three flavors of massless quarks,

mMRS=m̄ ¼ ð1.133; 1.131; 1.132; 1.132Þ ð5:19Þ
at one through four loops, while

mpole=m̄ ¼ ð1.093; 1.143; 1.183; 1.224Þ; ð5:20Þ
omitting in both cases the charm sea-quark contribution
ΔmðcÞ for simplicity.
If we use the PDG’s estimate of the uncertainty in αMS

instead of that in Eq. (4.8), then each uncertainty associated
with αs increases by about 50% or so, namely to 0.78,
0.039, and 0.018 MeV, for the strange-, down-, and up-
quark masses; 6.0 and 14 MeV for mc;MSð3 GeVÞ and m̄c;
and 12 MeV for m̄b.

B. HQET matrix elements

The EFT fit directly yields results for the HQET matrix
elements. With the minimal renormalon subtraction, our
result

Λ̄MRS ¼ 555ð25Þstatð8Þsystð16Þαsð1Þfπ;PDG MeV; ð5:21Þ

is renormalon free. This value corresponds to light valence
mass 1

2
ðmu þmdÞ. The kinetic and chromomagnetic matrix

elements are

μ2π ¼ 0.05ð16Þstatð13Þsystð06Þαsð00Þfπ;PDG GeV2; ð5:22Þ

μ2GðmbÞ ¼ 0.38ð01Þstatð01Þsystð00Þαsð00Þfπ;PDG GeV2:

ð5:23Þ

This value for μ2GðmbÞ cannot be considered as a pure
lattice-QCD determination because, as discussed in
Sec. III A, the prior for μ2GðmbÞ ∼ 0.35ð7Þ GeV2 comes
from the B-meson hyperfine splitting. The definition of μ2π
used here still has a renormalon ambiguity of order ΛQCD

2,
although it is expected to be small [1,77]. In any case, the
result in Eq. (5.22) cannot be directly compared with results
in the “kinetic” scheme [78,79], where μ2π ≈ μ2G is expected
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[80] and roughly holds [12,81]. We checked whether our χ2

function could be consistent with such an outcome by
starting the fit at μ2π ¼ 0.35 MeV2, but found the same
minimum as in Eq. (5.22). We also have tried changing the
prior for μ2π from ð0� 0.36Þ to ð0.35� 0.36Þ GeV2, in
which case χ2 is minimized for μ2π ¼ 0.09ð16Þ GeV2 and
μ2GðmbÞ ¼ 0.39ð1Þ GeV2, where the errors are statistical
only here.
To compare Eq. (5.21) with the RS scheme at a given

factorization scale νf, one can use [1]

Λ̄RSðνfÞ ¼ Λ̄MRS þ JMRSðνfÞ; ð5:24Þ
with the function JMRS given in Eq. (2.37) of Ref. [1].
Setting νf ¼ 1 GeV, we find

Λ̄RSð1 GeVÞ ¼ 639ð25Þstatð8Þsystð24Þαsð1Þfπ;PDG MeV:

ð5:25Þ

The uncertainty associated with αs is larger here than for
Λ̄MRS, because JMRSðνfÞ in Eq. (5.24) depends on αsðνfÞ.
Our result for Λ̄RSð1 GeVÞ agrees with Λ̄RSð1 GeVÞ ¼
659 MeV (no error quoted) [22] and 623 MeV (after rough
conversion of a result in the “RS0” scheme) [82], which are
obtained from the B-meson mass and the RS mass for the
bottom quark.
For future phenomenological studies, Table III in the

Appendix provides the correlation matrix of the MRS
masses of the charm and bottom quarks with the HQET
matrix elements Λ̄MRS, μ2π and μ2GðmbÞ.

C. Flavor splittings

We use the Ds- and Bs-meson masses as experimental
input to set the c- and b-quark masses. Comparing the
output of the fit at mx ¼ md with mx ¼ ms, we obtain the
flavor splittings

MDs
−MDþ ¼ 97.9ð0.2Þstatð0.2Þsystð0.0Þαsð0.1Þfπ;PDGð0.5Þgπ MeV; ð5:26Þ

MBs
−MB0 ¼ 87.1ð0.4Þstatð1.0Þsystð0.0Þαsð0.1Þfπ;PDGð0.5Þgπ MeV: ð5:27Þ

These results agree with the experimental values [52]

ðMDs
−MDþÞexpt ¼ 98.69ð5Þ MeV; ð5:28Þ

ðMBs
−MB0Þexpt ¼ 87.3ð2Þ MeV: ð5:29Þ

In these combinations of meson masses, the leading-
order electromagnetic contributions cancel. The last uncer-
tainty here stems from the significant changes found in the
alternate fits with gπ fixed to 0.45 or to 0 (the polynomial fit).
In a similar vein, we can set the quark masses to mx ¼

m0
l ¼ m0

s ¼ 0 to obtain the SU(3) chiral limit of charmed
and b-flavored mesons, or set mx ¼ m0

l ¼ 0 and leave
m0

s ¼ ms to obtain the SU(2) chiral limit. The results are

MSUð3Þ
D ¼ 1842.7ð2.2Þstatð1.4Þsystð0.1Þαsð0.1Þfπ;PDGð1.6Þgπ MeV; ð5:30Þ

MSUð2Þ
D ¼ 1862.3ð0.3Þstatð1.3Þsystð0.0Þαsð0.1Þfπ;PDGð0.1Þgπ MeV ð5:31Þ

for the D system, and

MSUð3Þ
B ¼ 5245.1ð3.2Þstatð2.7Þsystð0.1Þαsð0.1Þfπ;PDGð2.1Þgπ MeV; ð5:32Þ

MSUð2Þ
B ¼ 5272.9ð0.5Þstatð1.3Þsystð0.0Þαsð0.1Þfπ;PDGð0.1Þgπ MeV ð5:33Þ

for the B system. This information can be combined with
Table XII of Ref. [14], to derive decay constants from the
values of Φ ¼ ffiffiffiffiffi

M
p

f tabulated there.

D. Low-energy constants in HMχPT

The authors of Ref. [74] used the LECs λ1 and λ01 obtained
in this work. In particular, the values used are those for D

mesons, which come from the simple, polynomial analysis
without chiral expressions, i.e., gπ ¼ 0:

λ̆1;D ¼ 0.218ð2Þ GeV−1; ð5:34Þ
λ̆01;D ¼ 0.037ð13Þ GeV−1; ð5:35Þ

where the errors are statistical only, which sufficed for
Ref. [74]. Here, the breve is a reminder that finite-mass
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corrections to the LECs in the HMχPT Lagrangian are
included. From the experimental data for the flavor splittings
of D mesons, one finds λ̆1 ≈ 0.2 GeV−1 [71].

VI. SUMMARY, COMPARISONS,
AND OUTLOOK

The results presented in Sec. V show that the new HQET-
based method, developed here and in Ref. [1], is both
qualitatively and quantitatively successful. The qualitative
success relies on the clean separation of scales provided by
HQET with the MRS definition of the heavy-quark mass,
while the quantitative success relies on the high statistics of
the MILC Collaboration’s HISQ ensembles [25–27], all 24
of which have been employed here. Also relevant to the
success of the method is the availability of the order-α5s
perturbation theory for the running of the quark mass [57]
and strong coupling [58], and the order-α4s coefficient
linking the MS mass to the pole mass and, hence, the
MRS mass [59,60]. These features are not (yet) shared by
other determinations of quark masses using lattice QCD.
Although the HQET method separates the heavy-quark
scale from the QCD scale, mass ratios determined in the
course of this work and Ref. [14] yield results for all quarks
except the top quark.
Our results for heavy-quark masses m̄c and m̄b are

compared with other results in the literature in Fig. 6. Both
panels show the most recent lattice-QCD calculation with a
complete error budget from each combination of method
and collaboration. For nonlattice calculations, we also show

the most recent result from each method and/or collabo-
ration, but include only those with perturbative-QCD
accuracy of order-α3s matching and, if needed, order-α4s
running. As noted in Sec. V, the parametric uncertainty in
αs is one of our largest uncertainties, but, thanks to the
MRS mass, higher-order perturbative corrections are likely
to be negligible compared with this and our statistical
uncertainty; cf. Fig. 4 and Eq. (5.19).
For m̄c, the overall agreement is very good, and our

result’s uncertainty is about the same as those from
charmonium correlators and (continuum) perturbative
QCD, using either lattice [72] or experimental [90,94]
data as input. (References [90,94] differ in the moments
used.) The difference between our result for mc;MSð3 GeVÞ
and the recent update from Chetyrkin et al. [90] is 0.9σ. For
m̄b, the overall agreement is good. The difference between
our result and those of Narison [93], Bodenstein et al.
[102], Chetyrkin et al. [103], and Penin and Zerf [101] is
1.3σ, 1.6σ, 1.6σ, and 1.7σ, respectively. Such discrepancies
among 19 independent results, especially given the impor-
tance of systematic uncertainties in all determinations,
should not be seen as alarming.
It is noteworthy that for m̄c ¼ mc;MSðmc;MSÞ the result of

Ref. [90] is more precise than ours, while formc;MSð3 GeVÞ
ours is more precise. In both cases, the error bar runs as
dictated by the quark-mass anomalous dimension and beta
function. In addition, the order-αs coefficient is proportional
to ½lnð3 GeV=μÞ þ c�. For the relation between m̄ andmMRS,
c > 0, so the first-order αs error vanishes for some
μ > 3 GeV. On the other hand, for the relation between

FIG. 6. Comparison of m̄c (left) and m̄b (right) to other results from lattice QCD and from nonlattice methods. Our result is shown as a
magenta burst, with the gray band showing how it compares directly with the other results. The labels refer to Fermilab/MILC/
TUMQCD 18 (this work); HPQCD 14 (all HISQ) [72]; ETM 14 (baryons) [83]; ETM 14 (mesons) [84]; Maezawa and Petreczky 16
[85]; JLQCD 16 [86]; χQCD 14 [87]; HPQCD 10 (moments) [88]; Mateu et al. 17 [89]; Chetyrkin et al. 17 [90]; Kiyo et al. 15 [91];
Dehnadi et al. 15 [92]; Narison 11 [93]; Bodenstein et al. 11c [94]; Boughezal et al. 06 [95]; Gambino et al. 17 [12]; ETM 16 [96];
HPQCD 14 (NRQCD b) [97]; HPQCD 13 (Υ splittings) [98]; HPQCD 10 (moments) [88]; Ayala et al. 16 [99]; Beneke et al. 16 [100];
Penin et al. 14 [101]; Bodenstein et al. 11b [102]; Chetyrkin et al. 09 [103]; and Brambilla et al. 01 [104].
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m̄ and moments of the charmonium correlator, c < 0, so the
first-order αs error vanishes for some μ < 3 GeV. We
therefore also provide light, strange, and charm masses at
3 GeV:

ml;MSð3GeVÞ¼ 3.072ð13Þstatð04Þsystð10Þαsð04Þfπ;PDG MeV;

ð6:1Þ
mu;MSð3GeVÞ¼ 1.923ð16Þstatð32Þsystð06Þαsð02Þfπ;PDG MeV;

ð6:2Þ
md;MSð3GeVÞ¼ 4.221ð27Þstatð35Þsystð14Þαsð05Þfπ;PDG MeV;

ð6:3Þ
ms;MSð3GeVÞ¼ 83.49ð36Þstatð16Þsystð28Þαsð10Þfπ;PDG MeV;

ð6:4Þ
mc;MSð3GeVÞ¼983.7ð4.3Þstatð1.4Þsystð3.3Þαsð0.5Þfπ;PDG MeV:

ð6:5Þ
In contexts beyond the Standard Model, one needs the
masses—that is the Yukawa coupling to the Higgs field—at
scales of 100 GeV or higher. Table IV in the Appendix
provides the correlation matrix for our charm-quark mass at
3 GeV and quark-mass ratios.
Our results for light-quark masses are compared with

other results from lattice QCD in Fig. 7. As above, both
panels show the most recent lattice-QCD calculations with a
complete error budget fromeach combination ofmethod and
collaboration. As can be seen from the plots, and similar
comparisons ofmu andmd, ours are the most precise results
to date. Here the precision stems from very precise quark-
mass ratios from the pseudoscalar meson spectrum, together
with the overall scale of quark masses from the EFT fit.

Consequently, the results inherit an uncertainty due to αs,
which is largest except in the cases of md;MSð2 GeVÞ and
mu;MSð2 GeVÞ, which have larger statistical and electro-
magnetic systematic uncertainties from mu=md.
As compelling as these results are, they could be

improved in several ways. First, because the EFT fit
controls systematics, the statistical error (after propagation
through the fit) is often the second-largest source of
uncertainty, so, as usual, having more data would reduce
the error. The additional data need not be more precise
per se: the right panel of Fig. 2 suggests that finer lattice
spacings will be needed. Second, because the other
dominant uncertainty is the parametric error of αs, it would
be interesting to carry out a simultaneous determination of
αs and the quark masses, e.g., in a combined analysis of
heavy-light meson masses and quarkonium correlators.
Such an analysis would output m̄c, m̄b, and αs with their
correlations, which would be very convenient for deter-
mining the Higgs-boson branching ratio in the Standard
Model and extensions thereof. Third, QCDþ QED simu-
lations would eliminate the scheme dependence arising
from the matching of QCDþ QED to pure QCD. Finally,
the ideal determination of the matrix elements μ2π and μ2G,
and analogous quantities that enter at order 1=m2

Q and
higher, would require computing heavy-light vector mes-
ons on the lattice, in addition to the pseudoscalar mesons
studied here. In particular, this would make possible a pure
lattice result for μ2G, without making use of the experimental
information on the B-meson hyperfine splitting.
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APPENDIX: CORRELATION MATRICES

We report in Table III the correlation matrix of the MRS
masses of the charm and bottom quarks with the HQET
matrix elements, and in Table IV the correlation matrix for
our charm-quark mass and quark-mass ratios. Knowledge
of these correlations may be useful for future phenomeno-
logical studies.

TABLE III. Correlation matrix between the MRS masses of the charm and bottom quarks and HQET matrix
elements; entries are symmetric across the diagonal. The last row gives the central value and total uncertainty (added
in quadrature) of each quantity.

mc;MRS mb;MRS Λ̄MRS μ2π μ2GðmbÞ
mc;MRS 1
mb;MRS 0.72437434 1
Λ̄MRS 0.14207020 −0.26823406 1
μ2π −0.01634290 0.64044459 −0.60154065 1
μ2GðmbÞ −0.28580359 0.10674678 −0.12545531 0.57546979 1

1392(11) MeV 4749(18) MeV 555(31) MeV 0.05ð22Þ GeV2 0.38ð2Þ GeV2
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