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Abstract The seasonal and height dependencies of the orographic primary and larger‐scale secondary

gravity waves (GWs) have been studied using the temperature profiles measured by Sounding of the

Atmosphere using Broadband Emission Radiometry (SABER) from 2002 to 2017. At ~40°S and during

Southern Hemisphere winter, there is a strong GW peak over the Andes mountains that extend to z ~ 55 km.

Using wind and topographic data, we show that orographic GWs break above the peak height of the

stratospheric jet. At z ~ 55–65 km, GW breaking and momentum deposition create body forces that generate

larger‐scale secondary GWs; we show that these latter GWs form a wide peak above 65 km with a westward

tilt. At middle latitudes during summer in the respective hemisphere, orographic GW breaking also

generates larger‐scale secondary GWs that propagate to higher altitudes. Both orographic primary and

larger‐scale secondary GWs are likely responsible for most of the non‐equatorial peaks of the persistent

global distribution of GWs in SABER.

Plain Language It is important to characterize orographic primary gravity waves (GWs) and the

larger‐scale secondary GWs via both observations and numerical modeling because of their role in

dynamics of the atmosphere. We present the global distributions of GWs and the associated larger‐scale

secondary GWs in the middle atmosphere (z ~ 30–100 km) from temperature profiles measured by the

SABER instrument over the past 16 years (2002–2017). We show that the peaks of the primary and the

associated secondary GWs coincide with topographic peaks and that these associations depend on latitude

and season. The polar stratospheric jet and the lower stratospheric wind reversal cause the orographic GWs

break. The breaking GWs deposit their momentum and induce body forces that generate larger‐scale

secondary GWs; these secondary GWs are responsible for the GWs peaks observed above the mountain wave

breaking height.

1. Introduction

Gravity waves (GWs) can be generated through various sources, for example, flow over topography, wind jet

or shear, and convection (Fritts & Alexander, 2003). As GWs propagate upward, they are influenced by the

environment and modulate the atmospheric structure through transportation and deposition of momentum

and energy both vertically and horizontally (Alexander et al., 2010; Becker & Vadas, 2018; Ern et al., 2011,

2014; Ern & Preusse, 2012; Geller et al., 2013; Liu, 2000, 2016; Liu et al., 2008, 2018; Liu & Vadas, 2013;

Vadas et al., 2014). Due to the propagation of GWs and their interactions with the background atmosphere,

primary GWs can break, thereby creating some combination of small‐scale GWs and turbulence. These

small‐scale secondary GWs have horizontal wavelengths (λx) that are smaller than that of the primary

GWs and may dissipate into turbulence (Fritts & Alexander, 2003). They then deposit their momentum

and energy into the atmosphere on scales of order the primary GWs. The deposited momentum and energy

create local body forces and heat/coolings, which result in the radiation of larger‐scale secondary GWs

(LSW; Vadas, 2013; Vadas et al., 2003; Vadas & Fritts, 2002). These LSWs have λx of 4–10 times of the pri-

mary GW (depending on the size of the wave packet) and have larger vertical wavelengths (λz) and faster

phase speeds (Vadas et al., 2003, 2018). They propagate in all azimuths except perpendicular to the body

force direction. For those that propagate upward, their amplitudes increase exponentially with height,
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thereby enabling them to have important influences on the upper atmosphere and ionosphere (Becker &

Vadas, 2018; Bossert et al., 2017; Chu et al., 2018; de Wit et al., 2017; Fritts et al., 2016; Heale et al., 2017;

Liu & Vadas, 2013; Vadas et al., 2014; Vadas & Becker, 2018; Vadas & Liu, 2009, 2013; Watanabe &

Miyahara, 2009; Zhao et al., 2017). Thus, it is important to characterize both the primary GWs and LSWs

in both observations and model simulations.

Satellite observations reveal GW hot spots in the troposphere and stratosphere. These GW hot spots are

related to either orography or tropical convection and are dependent on the season. From November to

February, the GWs in the southern stratosphere have three peaks over South America, South Africa, and

North Australia, respectively. From March to October, GWs have peaks over the Andes and Antarctic

Peninsula. These GW peaks in the Southern Hemisphere are related to the topography and to the zonal

winds, as well as to deep convection. In the Northern Hemisphere (NH), the GW peaks are over North

America, Central Eurasia, and south of the Himalayas. The spatial distributions of these GWs have been

revealed by satellites observations: the Atmospheric Infrared Sounder (e.g., Alexander & Teitelbaum,

2007, 2011; Gong et al., 2012, 2015; Hoffmann et al., 2013; Hoffmann et al., 2016; Hoffmann & Alexander,

2010), the Microwave Limb Sounder (Jiang et al., 2004; Jiang et al., 2004; Wu & Jiang, 2002), the

Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (Eckermann & Preusse, 1999), the

Microwave Limb Sounder instrument and the High Resolution Dynamics Limb Sounder instrument

(Alexander et al., 2008; Ern & Preusse, 2012; Wu & Eckermann, 2008), and the Global Positioning System

radio occultation (Alexander et al., 2009; Baumgaertner & McDonald, 2007; Hindley et al., 2015).

Satellite observations also revealed the global distributions of GWs in the middle atmosphere, and their

implications on the GWs in the thermosphere (Bruinsma & Forbes, 2008; Ern et al., 2011; Forbes et al.,

2016; Liu et al., 2017; Park et al., 2014; Trinh et al., 2018). Using the temperature profiles measured by the

Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the

Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics satellite in January and July of 2006,

Ern et al. (2011) showed that the GW momentum flux had three peaks (around 70°W, 10°E, and 110°E) at

30, 50, and 70 km over the subtropical regions of the summer hemispheres (Figure 9 of their paper).

Using the thermospheric density and zonal wind measured by the Gravity Field and Steady‐State Ocean

Circulation Explorer satellite, Liu, Pedatella, and Hocke (2017) showed that the thermospheric GWs are

enhanced greatly over the Andes around June solstice, and that this is likely related to mountain wave

(MW) activity (although MWs cannot propagate directly into the thermosphere). Using the thermospheric

density measured by the Gravity Field and Steady‐State Ocean Circulation Explorer and CHAllenging

Minisatellite Payload satellites and the temperature measured by the SABER instrument, Trinh et al.

(2018) showed that the GWs in the thermosphere and middle atmosphere correlated well with the winter

polar vortex. They suggested that this might be due to primary GWs (generated by topography) breaking

at z ~ 60–80 km and then generating secondary GWs that would propagate further into the thermosphere.

Using a GW‐resolving general circulation model, Sato et al. (2009, 2012) showed that GWs were not uniform

in longitude and had peaks eastward of the Southern Andes and the Antarctic Peninsula. They suggested

that these GWs were generated by the eastward zonal wind blowing over the topography and then being

advected eastward. Becker and Vadas (2018) used a different GW‐resolving global circulation model and

showed that these orographic GWs could break in the middle atmosphere and then generate LSWs. The

LSWs were then responsible for the eastward zonal‐mean wind around 60°E and z ~ 100 km, which has been

simulated by two GW‐resolving models (Becker & Vadas, 2018; Watanabe &Miyahara, 2009). These simula-

tion studies illustrate the importance of LSWs on the global circulation. However, the global distributions of

the LSWs and their seasonal dependence have not been adequately examined yet.

The focus of this paper is to explore the global distributions of orographic GWs and the associated LSWs in

the middle atmosphere (30–100 km). The possible mechanisms are also be explored using topographic and

wind data, as well as the linear theory of MWs.

2. Data and Method

The data used in this work are (1) the topographic data from the Global 30 Arc‐Second Elevation

(GTOPO30); (2) the wind data from the Modern Era Retrospective analysis for Research and Applications

2 (Gelaro et al., 2017; Molod et al., 2015); and (3) the temperature data measured by the SABER

10.1029/2019GL082256Geophysical Research Letters

LIU ET AL. 2



instrument (Russell et al., 1999) over 16 years (2002–2017). The temperature accuracy of SABER V2.0 is 1–

3 K from 30 to 80 km and 5–10 K from 90 to 100 km as reported at http://saber.gats‐inc.com/ website. The

random nature of the error in the SABER measurements does not significantly affect the GW profile since

the GWs extracted by our method have coherent wave‐like structure (see below).

The GW extraction method we use here is the same as that described in Appendix A of Liu et al. (2017). The

resolved GWs have λz of 5–30 km. Due to the limb scan of the SABER observations, the resolved along track

λx have a minimum of about 300 km (John & Kumar, 2012; Preusse et al., 2002). The maximal resolved along

track λx are ~3,200–5,000 km, which are estimated by converting the zonal wavenumber of 8 to the circum-

ference of a zonal circle. Note that the upper limit of 5,000 km is the maximum of what we expect for the

smallest‐amplitude LSWs in the tail of the distribution; indeed, most of the LSWs have λx of 1,000–

2,500 km (Becker & Vadas, 2018; Vadas & Becker, 2018). From each GW profile, we determine the profile

of GW potential energy per unit mass (PE). We then average the daily PE profiles if they fall into a bin of

5° × 20° (latitude × longitude) and get an averaged PE profile in each bin. The bins have an overlap of

2.5° in latitude and 10° in longitude, respectively. We concentrate on the GW PE from 50°S to 50°N.

3. Global Distributions of the Primary and Larger‐Scale Secondary GWs

To illustrate the global distributions of the primary and larger‐scale secondary GWs, as well as their latitu-

dinal and seasonal dependencies, we decompose the global GW PE into five latitude bands and four seasons.

The five latitude bands are 40°S (50–30°S), 20°S (30–10°S), equator (10°S to 10°N), 20°N (10–30°N), and 40°N

(30–50°N). The four seasons are the NH spring (March, April, and May), NH summer (June, July, and

August), NH autumn (September, October, and November), and NH winter (December, January,

and February).

3.1. The Primary and Larger‐Scale Secondary GWs at 40°S

The GW PE in the latitude band of 40°S is taken as an example to illustrate the longitudinal variation of both

the primary GWs and the LSWs. This is because the Southern Andes mountains are included in this latitude

band and result in a large wintertime GW hot spot (Becker & Vadas, 2018; Hindley et al., 2015; Hoffmann

et al., 2013, 2016; Sato et al., 2012; Trinh et al., 2018). Figure 1 shows the seasonal zonal‐mean PE for each

year and longitude‐height variations of percentage of the relative seasonal mean PE (short for relative PE) at

around 40°S during each NH summer from 2002 to 2017.

The seasonal zonal‐mean PE exhibits year‐to‐year variations and increases exponentially with height (see

left column of Figure 1), especially in the upper stratosphere and lower mesosphere (z ~ 30–70 km). In order

to see the variations “equally” at all altitudes and to highlight the longitudinal variations, we show the rela-

tive PE in columns 2–5 of Figure 1. For ease of comparison, we also overplot the seasonal mean zonal wind

and the average topographic elevations.

From Figure 1, we see that the relative PE each year always has a peak at around 60–80°W, which is just

above and east of the Andes mountains (Becker & Vadas, 2018; de Wit et al., 2017; Sato et al., 2012). The fea-

tures of these peaks can be described by their magnitudes and vertical extents. The magnitudes of the peaks

exceed 80% in most years. Specifically, the peaks of the relative PE are 80% in 2008 and 2011 and reach 160%

in 2010. Noted that in 2006, the peak is not as strong as in other years. The vertical extents of the peaks vary

from year to year and extend to about z ~ 60 km in most years. Compared to the strong peaks below

z ~ 60 km, the peaks are weaker and somewhat more “spread out” longitudinally above z ~ 60 km. These

weak peaks have a westward tilt west of 80°W above z ~ 60 km. We note that the vertical extent of the peak

is only up to about z ~ 40 km in 2006, 2009, and 2016. This might be due to interannual variations of either

the wave sources (e.g., the strength of the wind blowing over the Andes) or the atmospheric environment

that the MWs propagate in (e.g., the strength of the stratospheric jet). If the initial MW amplitudes are very

large or the jet is weak, then the MWs will not penetrate very far into the stratosphere before breaking.

Further examination of Figure 1 shows that there is a transition region whereby the magnitude of the rela-

tive PE decreases and then increases again. This important transition region varies from year to year and

occurs at z ~ 55 km to z ~ 65 km in most years. This decrease was shown in Figure 2 of Trinh et al. (2018).

The altitude where this decrease occurs is where the primary orographic waves typically break and deposit

their momentum, thereby creating local body forces in the transition region (Becker & Vadas, 2018). Because
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local body forces generate LSWs that propagate upward and downward away from the body forces (Vadas

et al., 2003, 2018), we suggest that the increase of the relative PE occurs where the secondary GWs have a

large‐enough amplitude to be observed by SABER. From the seasonal zonal‐mean PE shown in Figure 1,

we see that this quantity does not increase exponentially with height from z ~ 65 km to z ~ 80 km. This is

likely due to the dissipation of some of the secondary GWs (Becker & Vadas, 2018), as well as to the fact

that the secondary GW amplitudes are relatively weak below z ~ 80 km. This latter point coincides with

the simulation studies of Vadas and Becker (2018), who found that the secondary GW amplitudes at

z ~ 50–80 km were smaller than that of the primary GW amplitudes at z ~ 50 km. The smaller secondary

Figure 1. Seasonal zonal‐mean PE (the leftmost column) and longitude‐height distributions of the relative seasonal mean PE in each year (color‐filled contours in

the right four columns, in percent) at around 40°S and during the NH summer (June, July, and August) from 2002 to 2017. Also plotted in each panel is the

seasonal mean zonal wind calculated from the Modern Era Retrospective analysis for Research and Applications 2 and averaged over the same season and latitude

band as that for PE (the magenta contour lines in the right four columns with contour interval of 10 m/s; the solid and dashed contour lines represent the

eastward andwestward winds, respectively). The average topographic elevations (multiplied by a factor of 20 for readability) at around 40°S are shown as black lines

at the bottom of each panel. The seasonal zonal‐mean PE during each year is indicated by a different color. Note that the color scale for the relative PE differs from

year to year to highlight the longitudinal variations for each year. PE = potential energy per unit mass.
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GW amplitudes occur because most of the momentum deposited into the background flow from primary

GW breaking drives a mean flow response, thereby resulting in small initial secondary GW amplitudes.

A general feature of the zonal wind shown in Figure 1 is that it increases with height in the stratosphere and

has a peak at z ~ 50 km (polar stratospheric jet) above the Andes. During a strong MW event, the eastward

zonal wind increases with time in the stratosphere; this causes theMWs to be swept or advected downstream

east of the Andes (Becker & Vadas, 2018; de Wit et al., 2017; Sato et al., 2012; Vadas & Becker, 2018). This

causes the longitudinal gradient of the relative PE to be sharper west of (rather than east of) the Andes.

Comparing the transition region and the vertical structure of the polar stratospheric jet, the lower boundary

of the transition region coincides with the peak of the stratospheric jet. Above the transition region, the GWs

appear in a wider longitudinal range. This is due to LSWs, because they propagate in all directions from the

body forces (except perpendicular to the force; Vadas et al., 2003, 2018).

According to linear theory, the λz of a MW depends on the zonal wind (u0(z)) as

λz ¼ 2πu0 zð Þ=Nb:

Thus, λz increases as the eastward zonal wind increases with height. The vertical group velocity (cgz) of aMW

can be written as (Nappo, 2002)

cgz ¼ u0 zð Þ λxλzð Þ= λ
2
x þ λ

2
z

� �

Simple calculation shows that an increasing u0(z) results in larger λz and cgz. The waves with longer λzwill be

observed more easily by the limb scans of the SABER measurement mode and our method of extracting

GWs, while the waves with faster cgz will propagate to higher heights. This might contribute to the strong

peak of the relative PE above the Andes. Above the peak height of the stratospheric jet, the zonal wind

decreases with height. This causes the λz to decrease and the intrinsic horizontal phase speeds to decrease,

which typically results in the MW quickly reaching convective instability and breaking. This agrees with the

location of the transition region. Subsequently, local body forces created by the momentum deposition that

occurs during MW breaking generate upward and downward‐propagating LSWs. Because the secondary

GWs initially have much smaller amplitudes than the primary GWs, those propagating downward will

not be seen by SABER. However, because of the decreasing background density with altitude, those propa-

gating upward (either eastward or westward) will increasingly be observed by SABER.

An important feature of Figure 1 is that there is a westward tilt of the secondary GWs during most of the

years (e.g., at z ~ 60–80 km in 2012–2015). This westward tilt is in the direction of the large‐scale wind shear,

because the strong eastward wind in the stratosphere decelerates rapidly at these altitudes. This tilt is under-

stood as follows. Eastward and westward LSWs are excited symmetrically in a frame moving eastward at the

location of the body force (i.e., close to the peak of the stratospheric jet). In that reference frame, their intrin-

sic phase speeds (not their ground‐based phase speeds) are symmetric about 0 m/s. As these waves propagate

upward, the decreasing eastward wind applies a net westward wind on these waves (relative to the wind at

their excitation altitude), which causes λz and the intrinsic frequencies of the westward (eastward) LSWs to

decrease (increase). According to equation (14) of Vadas and Liu (2009), this causes the temperature pertur-

bations of the westward (eastward) secondary GWs to increase (decrease) with height, which results in the

westward tilt of the relative PE at z ~ 60–80 km seen in Figure 1. Note that effect causes the westward sec-

ondary GWs to break and attenuate below the altitude where the eastward secondary GWs break and attenu-

ate (Becker & Vadas, 2018).

Figure 2 shows the 16‐year‐averaged relative monthly mean PE each month at around 40°S in order to illus-

trate the months where the longitudinal variations of GWs occur. The corresponding monthly mean zonal

wind is also overplotted. We see that the relative PEs have prominent peaks in the longitude range of

60–80°W from April to October. Their magnitudes vary from month to month and exceed 60% from April

to October. The maximum value of 130% occurs during June and September but not during July and

August. This might be related to the fact that the GW generation over the oceans from spontaneous emission

is strongest during July and August (Figures 13 and 14 of Ern et al., 2018). This imposes a stronger zonal‐

mean component of the GW activity during July–August. As a result, the relative importance of the GW oro-

graphic hot spot is weaker during those months, even though the absolute GW activity over the Southern

Andes is likely stronger during July and August than during June and September (Hoffmann et al., 2016).
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The peaks extend to z ~ 80 km fromApril to October. However, the peaks above 60 km are weaker than those

below 50 km during these months.

Upon careful examination of the vertical structure of the relative PE, we see a transition region whereby the

magnitude of the peak of the relative PE decreases with height and then increases again. This transition

region varies from month to month and generally occurs at z ~ 55–60 km (where the relative PE begins to

decrease) and occurs at z ~ 65–70 km (where the relative PE begins to increase). This is similar to the situation

for the relative PE shown in Figure 1. Comparing to the vertical structure of zonal wind, we find that the tran-

sition region is located just about the peak height of the stratospheric jet. In the transition region, the oro-

graphic waves break, create body forces, and excite LSWs. Note that the upward propagating LSWs form a

wide peak longitudinally above the transition region (see Figure 2). As in Figure 1, there is a prominent west-

ward tilt of the LSWs from April–September due to the decrease in the eastward wind with height.

Comparing the result for each summer (Figure 1) with the 16‐year‐averaged relative monthly mean PE

(Figure 2) at 40°S, we see that the prominent weak LSWs peak above the transition region (z> 65 km) always

exists, at least on a time scale of 16 years. Thus, this is a persistent longitudinal structure that is related to the

specific orography of the Andes mountains and the polar stratospheric jet in this latitude band during

these months.

Figure 2. Longitude‐height contours of the 16‐year‐averaged relative monthly mean PE (color‐filled contours, in percent) at

around 40°S. Also plotted in each panel is the monthly mean zonal wind at around 40°S calculated from the Modern Era

Retrospective analysis for Research and Applications 2 and averaged over the 16 years (the magenta contour lines with

contour interval of 10 m/s). The solid and dash contour lines represent the eastward and westward winds, respectively. The

zero wind is indicated by a dark solid magenta line. The average elevations (multiplied by a factor of 20 for readability) in the

latitude band of 40°S is shown as a black line in the bottom of each panel. The 16‐year‐averaged relative monthly mean PE is

obtained by averaging the relative monthly PE in the same month over the 16‐year. The relative monthly mean PE is

defined in a similar manner as the relative seasonal mean PE but within a monthly time scale. Note that the color scale for

the relative PE differs from month to month to highlight the longitudinal variations. PE = potential energy per unit mass.
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In contrast to the prominent peaks in the longitude range of 60–80°W from April to October, the peaks are

relatively weak (<35% in all altitudes) during other months (January–March, November, and December).

These weak peaks are centered at around 70°W, 30°E, and 150°E.

3.2. Global Distributions of the GW PE and the Larger‐Scale Secondary GWs

Figure 3 shows the longitude‐height distributions of the 16‐year‐averaged relative PE in the five latitude

bands for the four seasons. For convenience, we plot the seasonal mean zonal wind and the average eleva-

tions in each season and latitude band.

Figure 3. Longitude‐height distributions of the 16‐year‐averaged relative seasonal mean PE (color, in percent) in five latitude bands (from left to right: 40°S, 20°S,

equator, 20°N, and 40°N) and four seasons (from upper to lower panel: NH spring, NH summer, NH autumn, and NH winter). Also plotted in each panel is the

seasonal mean zonal wind calculated from the Modern Era Retrospective analysis for Research and Applications 2 and averaged over the same season and latitude

band as that for PE (the magenta contour lines with contour interval of 10 m/s; the solid and dash contour lines represent the eastward and westward winds

respectively; the zero wind is indicated by a bold solid line). The averaged elevations in each latitude band (multiplied by a factor of 20 for better readability) are

plotted as a black line in the bottom of each panel. The 16‐year‐averaged relative seasonal mean PE is obtained by averaging the relative seasonal mean PE in

the same season for 16 years. Note that the color scale for the relative PE differs among the panels to better highlight the longitudinal variations. PE = potential

energy per unit mass; NH = Northern Hemisphere.
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We first concentrate on the relative PE at 40°S during the four seasons. There is a prominent peak above the

Andes in the NH spring, summer, and autumn. This coincides with the prominent wintertime peak (NH

summer) above the Andes in almost all the 16 years in Figure 1. This also coincides with the prominent peak

above the Andes from April to October in Figure 2. The prominent peak above the Andes extends to a higher

height in the NH spring and summer than during the NH autumn. Moreover, there are transition regions of

the relative PE in the NH spring and summer. The minima of the relative PE in the transition region are at

z ~ 70 km (z ~ 65 km) in the NH spring (summer). Above the transition region, the relative PE becomes wider

in longitude due to the upward propagation of the LSWs. Note the westward tilt of the LSWs in NH spring

and summer due to the decreasing eastward wind. During NH winter, the peak over the Andes is much

weaker than during the other three seasons. This is likely caused by the wind reversal at z ~ 20 km, which

acts as a critical level and prohibits the upward propagation of orographic GWs. There are two other peaks

at around 30°E and 150°E, which have similar magnitudes as that over the Andes. These peaks are presum-

ably related to the weak GW hot spots over South Africa and Tasmania. Note that a peak over New Zealand

(at 180°E) is missing in this representation.

At around 40°N, there is a prominent peak at 40°W to 40°E in the NH spring and winter. The peak in the NH

winter extends to z ~ 80 km and then shifts west of 60°W. Moreover, the peak in the NHwinter is larger than

that in spring. The longitude structures of the relative PE in NH spring and winter do not coincide with the

topography at around 40°N. Thus, these GWs might not be generated by topography but might instead be

generated by the tropospheric jet occurring at z ~ 10 km. In the NH summer the relative PE have two peaks

which are east of two topography peaks (Rockies and Tibetan Plateau). Comparing with the zonal wind in

the summer, we suggest that these two peaks might be caused in large part by the LSWs fromMW breaking.

In this scenario, the eastward zonal wind flows over the two topography peaks (Rockies and Tibetan Plateau)

and generates orographic GWs. If the eastward wind accelerates in time, then the MWs will be swept down-

stream (Vadas & Becker, 2018). The MWs would then break and deposit their momentum downstream at

z ~ 20 km where the wind reversal occurs. This would generate LSWs, some of which would propagate

upward and create the peaks seen east of the topographic peaks in Figure 3. It is also possible that the peak

east of the Rockies was caused in part by GWs from deep convection, because there is a summertime convec-

tive hot spot there in the Atmospheric Infrared Sounder data (Hoffmann et al., 2013; Hoffmann &

Alexander, 2010). However, the minimum λx that SABER can observe is 300 km, which is much larger than

that of the GWs typically excited by thunderstorms. Therefore, the GWs that SABER observes are unlikely to

be dominated by GWs from deep convection.

At around 20°N, the relative PE has three peaks centered at around 80°W, 20°E, and 110°E; these peaks are

much stronger during the NH summer than during the NH spring and autumn. These three peaks are

located at and eastward of the topographic peaks, which are Mexico (~80°W), Northern Africa (~20°E),

and Southern Asia (110°E). They are related to the regions of maximum moist convection during these sea-

sons. Since these regions shift to the south during the NH winter, the corresponding peaks in the relative PE

are not visible during the NH winter.

At around 20°S and during the NH winter, three peaks in the relative PE occur near 70°W (North Andes),

40°E (central Africa), and 150°E (Australia). This is similar to those at around 40°S in the NH winter and

at 20°N in the NH summer. These peaks coincide with those in from satellite observations (Jiang, Wang,

et al., 2004; Wu & Eckermann, 2008). It should be noted that the peak at around 20°S and 70°W exists in

three seasons (NH spring, autumn, and winter) and is likely a combination of orographic and convective

GW sources.

Summarizing, at low latitudes, the longitudinal variations of the relative PE are not consistent with that of

the topography, except for the peak at around 70°W during the NH winter. This may be because of the fol-

lowing: (1) The main GW source near the equator is deep tropical convection (Ern et al., 2011; Ern &

Preusse, 2012; Jiang, Wang, et al., 2004; Wu & Eckermann, 2008). (2) The longitude and height variations

of the zonal winds are complex and are not favorable for the upward propagation of orographic GWs.

4. Summary

The global temperature profiles measured by the SABER instrument during the past 16 years (2002–2017)

were used to study the global distributions of the orographic GWs and the associated LSWs, as well as
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their latitudinal and seasonal dependencies. To evaluate the mechanisms, we also utilized the zonal wind

from the Modern Era Retrospective analysis for Research and Applications 2 and topography data

from GTOP30.

At around 40°S and in each NH summer of 2002–2017, the GWs had a strong peak over the Andes moun-

tains that extended to z ~ 55 km. Above this altitude, a transition region occurred whereby the PE decreased

then increased again up to z ~ 90 km.We can understand these features as follows. The peak below z ~ 55 km

was formed by the primary orographic GWs, which propagated upward to the stratopause region. At z ~ 55–

65 km, the primary orographic GWs broke and deposited their momentum into the mean flow. This resulted

in the creation of local body forces, which unbalanced the mean flow. As a result, LSWs were generated.

Those which propagated upward created the wide GW peak above z ~ 65 km. GW propagation, breaking,

and the generation of secondary GWs was seen from April to October at 40°S. During the Southern

Hemisphere winter of the Andes, we also found that orographic GWs broken just above the peak height

of the stratospheric jet at 40°S.

At around 40°N during the NH summer, GWs peaked above the topographic regions (at z ≥ 30 km), while

nonorographic GW sources were important for the longitudinal structure during the NHwinter. Because the

orographic GWs likely broke where the wind reversal occurred at lower altitudes, we hypothesize that the

SABER GWs at middle latitudes during the NH summer are LSWs generated by the body forces created

by primary orographic GW breaking at z ~ 20 km. At low latitudes, we found that a combination of convec-

tive and orographic GW generation explains the GW peaks seen in the middle atmosphere.

In conclusion, we find that both the primary orographic GWs and the associated LSWs are responsible for

the persistent global distribution of GWs. We note that both the primary and LSWs studied here have λz

of 5–30 km and λx ranging from 300 to ~3,200–5,000 km. These GWs only occupy part of the GW spectra.

To fully understand the global distributions of GWs, GW‐resolving model simulations and observations

are needed, especially in orographic hot spot regions such as the Andes and the Tibetan Plateau.
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